JP5171451B2 - Method of manufacturing copper wire for magnet wire, copper wire for magnet wire and magnet wire - Google Patents

Method of manufacturing copper wire for magnet wire, copper wire for magnet wire and magnet wire Download PDF

Info

Publication number
JP5171451B2
JP5171451B2 JP2008188746A JP2008188746A JP5171451B2 JP 5171451 B2 JP5171451 B2 JP 5171451B2 JP 2008188746 A JP2008188746 A JP 2008188746A JP 2008188746 A JP2008188746 A JP 2008188746A JP 5171451 B2 JP5171451 B2 JP 5171451B2
Authority
JP
Japan
Prior art keywords
wire
magnet
skinning
drawn
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008188746A
Other languages
Japanese (ja)
Other versions
JP2010023091A (en
Inventor
真一 工藤
英則 安部
秀寿 長山
稔之 堀越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2008188746A priority Critical patent/JP5171451B2/en
Publication of JP2010023091A publication Critical patent/JP2010023091A/en
Application granted granted Critical
Publication of JP5171451B2 publication Critical patent/JP5171451B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、マグネットワイヤ用銅線の製造方法及びマグネットワイヤ用銅線並びにマグネットワイヤに関するものである。   The present invention relates to a method for producing a copper wire for a magnet wire, a copper wire for a magnet wire, and a magnet wire.

マグネットワイヤ等に適した線材用銅は、銅鋳塊を圧延加工して製造される(連続鋳造圧延法)銅荒引線等であり、かかる線材用鋼は所定寸法の素線(丸線、平角線等)に加工されたのち樹脂被覆されてマグネットワイヤ等として用いられている。近年では、マグネットワイヤの接続溶接時にガスボイドを生じ難い無酸素銅の要求があり、マグネットワイヤの素線には、接続溶接時にガスボイドが生じない無酸素銅線が使用されている。前記無酸素銅線の製造方法としては、コアロッド(無酸素銅)の外周に無酸素溶銅を連続的に凝固させるディップフォーミング法、或いは、溶銅湯面に配置した鋳型内で溶銅を凝固させて上方に連続的に引き上げる上方引上連続鋳造法(アップキャスト法)等がある。   Copper for wire rods suitable for magnet wires and the like is a copper rough wire drawn by rolling a copper ingot (continuous casting and rolling method), and such wire rod steel is a strand of a predetermined size (round wire, flat wire). After being processed into a wire etc., it is coated with a resin and used as a magnet wire or the like. In recent years, there has been a demand for oxygen-free copper that hardly generates gas voids during connection welding of magnet wires, and oxygen-free copper wires that do not generate gas voids during connection welding are used as the strands of the magnet wires. The oxygen-free copper wire can be produced by a dip forming method in which oxygen-free molten copper is continuously solidified on the outer periphery of the core rod (oxygen-free copper), or by solidifying molten copper in a mold placed on the surface of the molten copper. For example, there is an upward pulling continuous casting method (upcasting method) that continuously pulls upward.

前記無酸素銅線の表面にはワレ等の微小欠陥が存在する。この微小欠陥は前記無酸素銅線をマグネットワイヤの素線(丸線、平角線等)に加工する際に残存し、樹脂被覆後の焼付工程で樹脂被覆層に膨れ等の欠陥が生じる原因となる。また、平角線においては、平角成形加工の際に圧延方向軸と垂直な方向に残存している微小欠陥が引張応力を受けるため、前記微小欠陥が拡大し易いという問題がある。また、平角線のエッジ部は、樹脂が均一な厚さに被覆されないため、膨れ等の欠陥が生じ易くなってしまうという問題がある。   There are minute defects such as cracks on the surface of the oxygen-free copper wire. This minute defect remains when the oxygen-free copper wire is processed into an element wire (round wire, flat wire, etc.) of a magnet wire, and causes a defect such as swelling in the resin coating layer in the baking process after resin coating. Become. Further, in the flat wire, since the minute defect remaining in the direction perpendicular to the rolling direction axis is subjected to tensile stress at the time of the flat forming process, there is a problem that the minute defect is easily expanded. In addition, since the edge portion of the flat wire is not coated with a uniform thickness, there is a problem that defects such as swelling are likely to occur.

これに対し、前記無酸素銅線の微小欠陥は、銅鋳塊に含まれる粗大なブローホールが原因で生じるとし、マグネットワイヤ用銅線となる銅鋳塊に含まれるブローホールの内径を3.0mm以下とすること、及び、銅鋳塊を連続圧延する前に、前記銅鋳塊に800〜950℃の温度で圧下率3〜20%の軽圧下圧延を施すことで、樹脂被覆後の樹脂被覆層に膨れ等が生じる原因となる銅鋳塊のブローホールを無害化するといったマグネットワイヤ及びその製造方法がある(特許文献1参照)。   On the other hand, the minute defect of the oxygen-free copper wire is caused by a coarse blowhole contained in the copper ingot, and the inner diameter of the blowhole contained in the copper ingot to be the copper wire for magnet wire is set to 3. Resin after resin coating by setting the thickness to 0 mm or less and subjecting the copper ingot to light rolling at a rolling reduction of 3 to 20% at a temperature of 800 to 950 ° C. before continuously rolling the copper ingot. There is a magnet wire and a method for manufacturing the same that renders a blow hole of a copper ingot that causes swelling or the like in a coating layer harmless (see Patent Document 1).

通常、前述した連続鋳造圧延法、ディップフォーミング法或いはアップキャスト法等で製造されたマグネットワイヤ用銅線(荒引線)では、圧延中に発生するワレ欠陥や不規則に押し込まれる酸化膜等の除去を目的として、皮剥ぎ工程(切削工程)が鋳造工程の次工程に組み込まれている(特許文献2参照)。   Usually, the copper wire for magnet wire (rough drawing wire) manufactured by the continuous casting rolling method, dip forming method, or upcasting method described above, removes crack defects generated during rolling and oxide films that are irregularly pressed. For this purpose, a skinning process (cutting process) is incorporated in the next process of the casting process (see Patent Document 2).

しかし、無酸素銅線はタフピッチ銅線と比較して皮剥ぎ等の切削性が著しく低いことから、通常、皮剥ぎ工程では、少量切削、複数回切削が行われている。これは、無酸素銅線の切削性が悪いことから、大量の皮剥ぎを一度に行うと、新たにカブリ等の欠陥をも誘発させてしまうことを避けるためである。   However, since an oxygen-free copper wire has remarkably low cutting properties such as skinning compared to a tough pitch copper wire, usually, a small amount of cutting and a plurality of times of cutting are performed in the skinning process. This is because the machinability of the oxygen-free copper wire is poor, so that when a large amount of skinning is performed at one time, new defects such as fogging are avoided.

このように、従来の無酸素銅線の表面に存在するワレ等の欠陥を抑えるだけでは、樹脂被覆後の焼付工程で樹脂被覆層の膨れ等の欠陥を抑えることができず、皮剥ぎ等の切削不良により発生するカブリ等の欠陥を抑えることが望まれていた。さらには、樹脂の材質により、特に、ピリアミドイミド系の樹脂は、焼付けの際の反応の過程において二酸化炭素が発生するため、樹脂被覆前の線材(丸線、平角線等)の表面に微小欠陥が存在していれば、その微小欠陥を起点として、焼付け時に膨れ等の欠陥が発生し易くなるという問題がある。よって、製造工程で発生する如何なる微小欠陥をも問題視しなければ、樹脂被覆層の膨れを抑制することは困難である。   In this way, only by suppressing defects such as cracks existing on the surface of conventional oxygen-free copper wires, defects such as blistering of the resin coating layer cannot be suppressed in the baking process after resin coating. It has been desired to suppress defects such as fog caused by cutting defects. Furthermore, depending on the material of the resin, carbon dioxide is generated in the process of baking, especially in the case of pyramidoimide resins, so the surface of the wire (round wire, rectangular wire, etc.) before resin coating is very small. If there is a defect, there is a problem that a defect such as a blister is likely to occur at the time of baking, starting from the minute defect. Therefore, it is difficult to suppress the swelling of the resin coating layer unless any minute defect generated in the manufacturing process is considered as a problem.

特開2005−313208号公報JP-A-2005-313208 特開平11−010220号公報Japanese Patent Laid-Open No. 11-010220

皮剥ぎ工程においては、前記無酸素銅線の皮剥ぎ性は前述した各製造方法(連続鋳造圧延法、ディップフォーミング法、アップキャスト法等)によって大きく異なる。そのため、ある特定の皮剥ぎ条件を製造方法の異なる無酸素銅線に適用する場合、安定した品質を得ることは難しいという問題があった。   In the skinning process, the peelability of the oxygen-free copper wire varies greatly depending on the above-described production methods (continuous casting and rolling method, dip forming method, upcast method, etc.). Therefore, there is a problem that it is difficult to obtain a stable quality when a specific skinning condition is applied to an oxygen-free copper wire having a different manufacturing method.

特に、アップキャスト法により製造した無酸素銅線については、前述した他の製造方法(連続鋳造圧延法、ディップフォーミング法)と比較して、無酸素銅線の結晶粒サイズが原因となり、新たな欠陥等を誘発してしまい、安定した品質を得ることは難しかった。   In particular, the oxygen-free copper wire produced by the upcast method has a new grain size compared to the other production methods described above (continuous casting and rolling method, dip forming method). It was difficult to obtain stable quality by inducing defects and the like.

前述した特許文献1に記載の技術は、前記無酸素銅線(荒引線)の表面にもともと存在する微小欠陥(ブローホール)を無害化することで、樹脂被覆後の焼付工程で樹脂被覆層の膨れ等の欠陥を生じさせる原因となる線材表面の欠陥を低減するものであるが、皮剥ぎ等の切削加工の際に新たに発生する欠陥の低減を図ることは困難であった。   The technique described in Patent Document 1 described above makes harmless micro defects (blow holes) originally present on the surface of the oxygen-free copper wire (rough drawing wire), so that the resin coating layer can be formed in the baking process after resin coating. Although it is intended to reduce defects on the surface of the wire that cause defects such as blistering, it has been difficult to reduce defects newly generated during cutting such as peeling.

また、無酸素銅線の製造方法の一つであるディップフォーミング法は製造工程が複雑であり、アップキャスト法の方が安価に無酸素銅線を製造することが可能である。   In addition, the dip forming method, which is one of the methods for producing an oxygen-free copper wire, has a complicated production process, and the upcast method can produce an oxygen-free copper wire at a lower cost.

このことから、本発明者らは、アップキャスト法により製造した線材用銅(無酸素銅線)の皮剥ぎ性について検討し、皮剥ぎ性の違いは線材用銅の結晶粒サイズ(線材長手方向の結晶粒長さ)に起因することを見出して本発明をなすに至ったものである。   From this, the present inventors examined the peelability of copper for wire rods (oxygen-free copper wire) produced by the upcast method, and the difference in peelability is the crystal grain size of copper for wire rods (longitudinal direction of wire rods). The inventors have found that this is caused by the crystal grain length) of the present invention and have made the present invention.

さらには、本発明者らは、皮剥ぎ加工前の線材に適正な加工度の伸線加工を施すことにより、線材表層の硬さが原因となって皮剥ぎ加工により新たに発生し得る欠陥を抑制するための最適な皮剥ぎ加工条件を選定した。   Furthermore, the present inventors have performed a wire drawing process with an appropriate degree of processing on the wire material before the skinning process, thereby causing defects that may newly occur due to the hardness of the surface layer of the wire material. The optimal skinning conditions for suppression were selected.

そこで、本発明の目的は、樹脂被覆層の膨れ等の欠陥を低減したマグネットワイヤを提供し、また、樹脂被覆後の焼付工程で樹脂被覆層に生じ得る膨れ等の欠陥を抑制すべく、皮剥ぎ性の良好なマグネットワイヤ用銅線(無酸素銅線)を提供することにある。また、本発明の目的は、前記上方引上連続鋳造法(アップキャスト法)により製造し得る安価な無酸素銅線を提供することにある。   Accordingly, an object of the present invention is to provide a magnet wire in which defects such as swelling of the resin coating layer are reduced, and to suppress defects such as swelling that may occur in the resin coating layer in the baking process after resin coating. An object of the present invention is to provide a copper wire for magnet wires (oxygen-free copper wire) having good peelability. Another object of the present invention is to provide an inexpensive oxygen-free copper wire that can be produced by the upward pulling continuous casting method (upcast method).

上記目的を達成するために請求項1の発明は、銅溶湯を連続的に引き上げて鋳造線材を形成し、該鋳造線材をダイスを用いて皮剥ぎ加工してマグネットワイヤ用銅線を得るマグネットワイヤ用銅線の製造方法であって、前記鋳造線材の形成に当たり、鋳造線材の表層における線材長手方向の結晶粒長さを300μm以下に制御し、該鋳造線材を加工度30〜40%で伸線加工した後に皮剥ぎ加工することを特徴とするマグネットワイヤ用銅線の製造方法である。 In order to achieve the above object, a first aspect of the present invention provides a magnet wire in which a molten copper is continuously pulled up to form a cast wire, and the cast wire is stripped using a die to obtain a copper wire for a magnet wire. A method for producing a copper wire for forming a cast wire, wherein a crystal grain length in a longitudinal direction of the wire in a surface layer of the cast wire is controlled to 300 μm or less, and the cast wire is drawn at a workability of 30 to 40%. It is a manufacturing method of the copper wire for magnet wires characterized by carrying out skinning after processing .

請求項2の発明は、前記鋳造線材の酸素含有量が0.001wt%以下であることを特徴とする請求項1に記載のマグネットワイヤ用銅線の製造方法である。 Invention of Claim 2 is a manufacturing method of the copper wire for magnet wires of Claim 1 whose oxygen content of the said cast wire is 0.001 wt% or less .

請求項3の発明は、1100〜1200℃の銅溶湯を4〜5m/minの速度で連続的に引き上げて前記鋳造線材を形成することを特徴とする請求項1又は2に記載のマグネットワイヤ用銅線の製造方法である。 The invention according to claim 3 is the magnet wire according to claim 1 or 2 , wherein the cast wire is formed by continuously pulling up a copper melt of 1100 to 1200 ° C at a speed of 4 to 5 m / min . It is a manufacturing method of a copper wire.

請求項の発明は、請求項1〜いずれかに記載のマグネットワイヤ用銅線の製造方法を用いて製造したことを特徴とするマグネットワイヤ用銅線である。 Invention of Claim 4 was manufactured using the manufacturing method of the copper wire for magnet wires in any one of Claims 1-3 , It is the copper wire for magnet wires characterized by the above-mentioned.

請求項の発明は、請求項に記載のマグネットワイヤ用銅線の上に、高密着性ポリイミド、ポリアミドイミドの2層構造からなる樹脂被覆層を被覆してなることを特徴とするマグネットワイヤである。 According to a fifth aspect of the present invention, the magnet wire is formed by coating the copper wire for the magnetic wire according to the fourth aspect with a resin coating layer having a two-layer structure of highly adhesive polyimide and polyamideimide. It is.

請求項の発明は、請求項に記載のマグネットワイヤ用銅線の上に、高密着性ポリアミドイミド、ポリイミド、ポリアミドイミドの3層構造からなる樹脂被覆層を被覆してなることを特徴とするマグネットワイヤである。 The invention of claim 6 is characterized in that the magnet wire copper wire according to claim 4 is coated with a resin coating layer composed of a three-layer structure of high adhesion polyamideimide, polyimide and polyamideimide. It is a magnet wire.

本発明によれば、皮剥ぎ加工前の荒引線材(鋳造線材)に加工度30〜40%の加工度の伸線加工を施すことで、樹脂被覆層の膨れ等の欠陥を低減したマグネットワイヤを得ることが可能となり、また、表層における線材長手方向の結晶粒長さが300μm以下の微細構造とすることで、皮剥ぎ性の良好なマグネットワイヤ用銅線を得ることが可能となる。   According to the present invention, a magnet wire in which defects such as swelling of the resin coating layer are reduced by performing wire drawing with a processing degree of 30 to 40% on the rough-drawn wire (cast wire) before skinning. Moreover, it becomes possible to obtain a copper wire for a magnet wire with good peelability by making the crystal grain length in the longitudinal direction of the wire in the surface layer 300 μm or less.

以下、本発明の好適な一実施の形態を詳述する。   Hereinafter, a preferred embodiment of the present invention will be described in detail.

図1に本発明の一実施形態に係るマグネットワイヤの断面図を示す。図1(a)は丸線のマグネットワイヤを示し、図1(b)は平角線のマグネットワイヤを示す。図2にアップキャスト装置の概略図を示す。   FIG. 1 shows a cross-sectional view of a magnet wire according to an embodiment of the present invention. FIG. 1A shows a round wire magnet wire, and FIG. 1B shows a flat wire magnet wire. FIG. 2 shows a schematic diagram of the upcast apparatus.

図2に示すように、アップキャスト装置(上方引上連続鋳造装置)10は、金属(銅)を溶解する溶解炉(例えば、電気炉)11と、溶解炉11で溶解された銅溶湯12が溶湯樋13を介して流入する保持炉(例えば、電気炉)14と、下部が保持炉14内の溶銅湯面下に侵入される鋳型15を有する鋳造装置16と、鋳型15内を通過する銅溶湯12を冷却するための冷却水が流れる冷却水通路17と、鋳型15内で凝固させた銅溶湯12を無酸素銅線の荒引線材(鋳造線材)18として上方に引き上げるための引上装置19とを有している。溶解炉11内及び保持炉14内の溶銅湯面には、銅溶湯12の酸化を防止するための酸化防止剤20が配置される。   As shown in FIG. 2, an upcast apparatus (upward continuous casting apparatus) 10 includes a melting furnace (for example, an electric furnace) 11 for melting metal (copper) and a molten copper 12 melted in the melting furnace 11. A holding furnace (for example, an electric furnace) 14 that flows in via the molten metal slag 13, a casting apparatus 16 having a mold 15 whose lower part enters under the surface of the molten copper in the holding furnace 14, and the mold 15 pass through. A cooling water passage 17 through which cooling water for cooling the molten copper 12 flows, and a pulling up for pulling upward the copper molten metal 12 solidified in the mold 15 as an oxygen-free copper wire 18 (cast wire) 18 Device 19. An antioxidant 20 for preventing oxidation of the molten copper 12 is arranged on the surface of the molten copper in the melting furnace 11 and the holding furnace 14.

保持炉14の溶銅湯面に配置した鋳型15内で銅溶湯12を冷却、凝固させて、引上装置19を用いて無酸素銅線の荒引線材18を上方に連続的に引き上げる。   The molten copper 12 is cooled and solidified in a mold 15 arranged on the surface of the molten copper in the holding furnace 14, and the oxygen-free copper wire 18 is continuously pulled upward using the pulling device 19.

アップキャスト装置10により鋳造する無酸素銅線の荒引線材18は、表層の結晶粒サイズを200〜300μmとし、且つ、酸素含有量を0.001wt%以下(或いは酸素濃度を10ppm以下)とするのが好ましい。   The oxygen-free copper wire rough-drawn wire 18 cast by the upcast apparatus 10 has a crystal grain size of the surface layer of 200 to 300 μm and an oxygen content of 0.001 wt% or less (or an oxygen concentration of 10 ppm or less). Is preferred.

1100〜1200℃の銅溶湯を速度4〜5m/minで連続的に引き上げることで、表層の結晶粒サイズが200〜300μmとなる無酸素銅線の荒引線材18(本実施形態では、線径φ8mm)を得ることができる。   By drawing the molten copper at 1100 to 1200 ° C. continuously at a speed of 4 to 5 m / min, the rough drawn wire 18 of oxygen-free copper wire having a crystal grain size of the surface layer of 200 to 300 μm (in this embodiment, the wire diameter φ8 mm) can be obtained.

また、溶解炉11内及び保持炉14内の溶銅湯面に酸化防止剤20を配置することで、酸素含有量が0.001wt%以下(或いは酸素濃度が10ppm以下)となる無酸素銅線の荒引線材18を得ることができる。   Moreover, the oxygen-free copper wire in which the oxygen content is 0.001 wt% or less (or the oxygen concentration is 10 ppm or less) by disposing the antioxidant 20 on the surface of the molten copper in the melting furnace 11 and the holding furnace 14. The rough drawn wire 18 can be obtained.

ここで、図4に示すように、アップキャスト装置10により鋳造した無酸素銅線の荒引線材18の表層における結晶組織は、線材表面から線材内部へ向かって伸びている柱状晶組織であるために、細長い結晶粒となる。そこで、本実施形態では、表層における線材長手方向の結晶粒長さの平均値を前記結晶粒サイズとした。   Here, as shown in FIG. 4, the crystal structure in the surface layer of the oxygen-free copper wire rough drawn wire 18 cast by the upcast apparatus 10 is a columnar crystal structure extending from the wire surface toward the inside of the wire. Moreover, it becomes a long and narrow crystal grain. Therefore, in this embodiment, the average value of the crystal grain length in the longitudinal direction of the wire in the surface layer is defined as the crystal grain size.

次に、前記無酸素銅線の荒引線材18を伸線装置により加工度(減面率)30〜40%で伸線加工した後、図3に示すように、伸線加工した線材に皮剥ダイス21(皮剥装置)を用いて皮剥ぎ加工を施した。   Next, after drawing the oxygen-free copper wire 18 with a wire drawing device at a workability (area reduction ratio) of 30 to 40%, as shown in FIG. Skinning was performed using a die 21 (peeling device).

皮剥ぎ加工の際に用いる皮剥ダイス21は、線材が通過するダイス孔22が形成されたダイス本体23と、ダイス孔22の線材入口側に配設された切れ刃24とから構成されている。ダイス孔22は、線材の進行方向に向かい拡径するテーパー状に形成されている。皮剥ぎダイス21は、切れ刃24のすくい角θを20〜35°とするのが好ましい。すくい角θとは、線材長手方向と直交する方向に対する切れ刃24の刃面24aの角度である。   A skinning die 21 used in the skinning process is composed of a die body 23 in which a die hole 22 through which a wire passes is formed, and a cutting edge 24 disposed on the wire material inlet side of the die hole 22. The die hole 22 is formed in a taper shape whose diameter increases toward the traveling direction of the wire. The skin peeling die 21 preferably has a rake angle θ of the cutting edge 24 of 20 to 35 °. The rake angle θ is an angle of the blade surface 24a of the cutting edge 24 with respect to a direction perpendicular to the wire longitudinal direction.

次に、皮剥ぎ加工した線材を所定の線径(本実施形態では、線径φ2.6mm)まで伸線装置により伸線加工した後、伸線加工した線材を焼鈍し、その後、焼鈍した線材を丸線或いは平角線に加工することにより、マグネットワイヤ用銅線25(マグネットワイヤ26の導体)(図1参照)を得る。   Next, after the stripped wire is drawn to a predetermined wire diameter (in this embodiment, wire diameter φ2.6 mm) by a wire drawing device, the drawn wire is annealed and then annealed. Is processed into a round wire or a rectangular wire to obtain a copper wire 25 for magnet wire (a conductor of the magnet wire 26) (see FIG. 1).

最後に、図1に示すように、マグネットワイヤ用銅線25(導体)上に樹脂被覆層27、28を被覆し焼き付けてマグネットワイヤ26を製造した。   Finally, as shown in FIG. 1, the resin coating layers 27 and 28 were coated on the copper wire 25 (conductor) for magnet wire and baked to manufacture the magnet wire 26.

図1に示すように、本実施形態では、樹脂被覆層は、下層27と上層28の2層構造からなるものである。例えば、樹脂被覆層は、高密着性ポリイミド、ポリアミドイミドの2層構造からなる。   As shown in FIG. 1, in the present embodiment, the resin coating layer has a two-layer structure of a lower layer 27 and an upper layer 28. For example, the resin coating layer has a two-layer structure of highly adhesive polyimide and polyamideimide.

高密着性ポリイミドとしては、PI樹脂の絶縁塗料に、密着性向上剤と呼ばれる添加剤が添加、混合されたものを使用することができる。密着性向上剤としては、導体(マグネットワイヤ用銅線25)と内層(下層27)との密着強度を向上させる作用を奏するものであれば特に限定されるものではなく、例えば、ブチル化メラミン樹脂等のメラミン樹脂類、トリアルキルアミン等のアミン類、メルカプトベンズイミダゾール等のメルカプタン類、ポリカルボジイミド樹脂類、等が挙げられる。また、二種類以上の密着性向上剤を併用して添加するようにしても良い。   As the high adhesion polyimide, it is possible to use a PI resin insulating paint with an additive called an adhesion improver added and mixed. The adhesion improver is not particularly limited as long as it has an effect of improving the adhesion strength between the conductor (copper wire 25 for magnet wire) and the inner layer (lower layer 27). For example, butylated melamine resin Melamine resins such as trialkylamine, mercaptans such as mercaptobenzimidazole, polycarbodiimide resins, and the like. Two or more types of adhesion improvers may be added in combination.

また、図示はしないが、樹脂被覆層は、3層構造からなるものであっても良い。例えば、樹脂被覆層は、高密着性ポリアミドイミド、ポリイミド、ポリアミドイミドの3層構造からなる。   Although not shown, the resin coating layer may have a three-layer structure. For example, the resin coating layer has a three-layer structure of highly adhesive polyamideimide, polyimide, and polyamideimide.

高密着性ポリアミドイミドとしては、ポリアミドイミド樹脂に、チアジアゾール、チアゾール、メルカプトベンズイミダゾール、チオフェノール、チオフォン、チオール、テトラゾール、ベンズイミダゾール、ブチル化メラミン、ヘテロ環状メルカプタン等の樹脂からなる密着性向上剤のいずれかが混合された混合樹脂を使用することができる。   As a high adhesion polyamide imide, an adhesion improver comprising a polyamide imide resin, a resin such as thiadiazole, thiazole, mercaptobenzimidazole, thiophenol, thiophone, thiol, tetrazole, benzimidazole, butylated melamine, and heterocyclic mercaptan. A mixed resin in which any of them is mixed can be used.

本実施形態によれば、前記無酸素銅線の荒引線材(鋳造線材)18を加工度30〜40%で伸線加工し、その後に皮剥ぎ加工を施せば、線材をマグネットワイヤ26の導体(マグネットワイヤ用銅線25)に加工(丸線、平角線)し、樹脂(樹脂被覆層27、28)を被覆し焼き付けてマグネットワイヤ26としたときに、樹脂被覆層27、28の膨れ等の欠陥を抑制することができる。   According to the present embodiment, the oxygen-free copper wire rough-drawn wire (cast wire) 18 is drawn at a working degree of 30 to 40%, and then stripped to provide the wire as a conductor of the magnet wire 26. (Magnetic wire copper wire 25) is processed (round wire, rectangular wire), coated with resin (resin coating layers 27, 28) and baked to form magnet wire 26, swelling of resin coating layers 27, 28, etc. Defects can be suppressed.

即ち、無酸素銅線はタフピッチ銅と比較して延性が高く、皮剥ぎ等の切削性が著しく低くなるため、線材表層を硬化させることで、切削性を改善することができる。   That is, the oxygen-free copper wire has higher ductility than tough pitch copper, and the machinability such as peeling is remarkably lowered. Therefore, the machinability can be improved by curing the wire surface layer.

伸線加工の加工度が低い場合(加工度が30%未満である場合)、線材表層は軟らかい状態で十分硬化せず、皮剥ぎ加工時にカブリ傷が発生し、その結果、マグネットワイヤにしたときの膨れの発生率が高い結果となる。   When the degree of wire drawing is low (when the degree of processing is less than 30%), the surface of the wire is soft and does not harden sufficiently, causing fogging during the stripping process, resulting in a magnet wire As a result, the occurrence rate of blistering is high.

また、伸線加工の加工度が高い場合(加工度が50%以上である場合)、線材表層は十分に硬化するが、線材表層が硬いことで、皮剥ぎダイス21の切れ刃24の刃先が線材にくい込み、皮剥ぎ加工時に所定の寸法よりも厚く剥げてしまい、皮剥ぎのくずが皮剥ぎダイスに詰まり、線材が断線する結果となる。   Moreover, when the workability of wire drawing is high (when the workability is 50% or more), the wire surface layer is sufficiently cured, but the wire surface layer is hard, so that the cutting edge 24 of the peeling die 21 has a cutting edge. When the wire rod is difficult to squeeze and peels off more than a predetermined size during the skinning process, the scraps of the skin are clogged in the skinning die, resulting in a wire breakage.

また、本実施形態によれば、無酸素銅線の荒引線材18を表層における線材長手方向の結晶粒長さが300μm以下の微細構造とすることで、皮剥ぎ性の良好なマグネットワイヤ用銅線25を得ることが可能となる。   Further, according to the present embodiment, the rough drawn wire 18 of the oxygen-free copper wire has a fine structure in which the crystal grain length in the longitudinal direction of the wire in the surface layer is 300 μm or less, so that the copper for magnet wire with good peelability is provided. A line 25 can be obtained.

前記無酸素銅線の荒引線材18を皮剥ぎ加工する際、表層における線材長手方向の結晶粒長さ(結晶粒サイズ)が小さい程、切削の起点となる結晶粒界が多数存在し、連続的なせん断変形が容易となり、皮剥ぎ等の切削性が良好となる。よって、マグネットワイヤ用銅線25の表面に新たな欠陥を発生させることなく、且つ、線径φ8mmの荒引線材18に元から存在するワレ等の微小欠陥を除去できる。   When stripping the rough drawn wire 18 of the oxygen-free copper wire, the smaller the crystal grain length (crystal grain size) in the longitudinal direction of the wire in the surface layer, the more crystal grain boundaries that become the starting points of cutting exist, Shear deformation becomes easy, and machinability such as peeling is improved. Therefore, it is possible to remove minute defects such as cracks originally present in the rough drawn wire 18 having a wire diameter of 8 mm without generating new defects on the surface of the magnet wire copper wire 25.

逆に、線材表層における線材長手方向の結晶粒長さ(結晶粒サイズ)が大きいと、切削の起点となる結晶粒界が少ないため、切削時の抵抗の変動が大きく、連続的なせん断変形が困難となり、皮剥ぎ性は悪くなる。その結果、マグネットワイヤ用銅線25の表面に新たな欠陥を生じてしまうとともに、線径φ8mmの荒引線材18に元から存在するワレ等の微小欠陥を除去できず、マグネットワイヤ26としたときの膨れの発生率が多くなる。   Conversely, if the crystal grain length (crystal grain size) in the longitudinal direction of the wire on the surface of the wire is large, there are few crystal grain boundaries that are the starting point of cutting, so the resistance variation during cutting is large and continuous shear deformation occurs. It becomes difficult and the peelability becomes worse. As a result, a new defect is generated on the surface of the copper wire 25 for the magnet wire, and a minute defect such as a crack that originally exists in the rough drawn wire 18 having a wire diameter of 8 mm cannot be removed. The incidence of blistering increases.

以下に実施例1〜6と比較例1〜14を表1と共に説明する。   Examples 1 to 6 and Comparative Examples 1 to 14 will be described below together with Table 1.

Figure 0005171451
Figure 0005171451

(実施例1)
アップキャスト法により、1150℃の溶湯から速度5.0m/minで鋳造線材を上方に連続的に引き上げて、線径φ8mm、表層の結晶粒サイズ200μmの無酸素銅線の荒引線材を製造した。この荒引線材を加工度30%で伸線加工した後、伸線加工した線材に皮剥ぎ厚さ0.15mmで皮剥ぎ加工を施した。皮剥ぎ加工には皮剥ぎダイスを使用し、ダイスの切れ刃のすくい角を30°とした。また、皮剥ぎ速度は200m/minとした。皮剥ぎ加工後、線径φ2.6mmまで伸線した線材を焼鈍した。その後、焼鈍した線材に平角加工を施し、続いて線材を焼鈍し、最後に線材上に樹脂被覆層を被覆し焼き付けてマグネットワイヤを製造した。樹脂被覆層は、高密着性ポリイミド、ポリアミドイミドの2層構造からなるものとした。
Example 1
The cast wire was continuously pulled upward from a molten metal at 1150 ° C. at a speed of 5.0 m / min by an upcast method to produce a rough drawn wire of an oxygen-free copper wire having a wire diameter of 8 mm and a crystal grain size of 200 μm on the surface layer. . The rough-drawn wire was drawn at a workability of 30%, and then the drawn wire was subjected to skinning with a skinning thickness of 0.15 mm. A skinning die was used for the skinning process, and the rake angle of the cutting edge of the die was set to 30 °. Further, the peeling speed was 200 m / min. After the skinning process, the wire drawn to a diameter of 2.6 mm was annealed. Thereafter, the annealed wire was flattened, the wire was then annealed, and finally a resin coating layer was coated on the wire and baked to produce a magnet wire. The resin coating layer was composed of a two-layer structure of highly adhesive polyimide and polyamideimide.

(実施例2)
アップキャスト法により、1150℃の溶湯から速度5.0m/minで鋳造線材を上方に連続的に引き上げて、線径φ8mm、表層の結晶粒サイズ200μmの無酸素銅線の荒引線材を製造した。この荒引線材を加工度40%で伸線加工した後、伸線加工した線材に皮剥ぎ厚さ0.15mmで皮剥ぎ加工を施した。皮剥ぎ加工には皮剥ぎダイスを使用し、ダイスの切れ刃のすくい角を30°とした。また、皮剥ぎ速度は200m/minとした。皮剥ぎ加工後、線径φ2.6mmまで伸線した線材を焼鈍した。その後、焼鈍した線材に平角加工を施し、続いて線材を焼鈍し、最後に線材上に樹脂被覆層を被覆し焼き付けてマグネットワイヤを製造した。樹脂被覆層は、高密着性ポリイミド、ポリアミドイミドの2層構造からなるものとした。
(Example 2)
The cast wire was continuously pulled upward from a molten metal at 1150 ° C. at a speed of 5.0 m / min by an upcast method to produce a rough drawn wire of an oxygen-free copper wire having a wire diameter of 8 mm and a crystal grain size of 200 μm on the surface layer. . The rough-drawn wire was drawn at a workability of 40%, and then the drawn wire was subjected to skinning with a skinning thickness of 0.15 mm. A skinning die was used for the skinning process, and the rake angle of the cutting edge of the die was set to 30 °. Further, the peeling speed was 200 m / min. After the skinning process, the wire drawn to a diameter of 2.6 mm was annealed. Thereafter, the annealed wire was flattened, the wire was then annealed, and finally a resin coating layer was coated on the wire and baked to produce a magnet wire. The resin coating layer was composed of a two-layer structure of highly adhesive polyimide and polyamideimide.

(実施例3)
アップキャスト法により、1150℃の溶湯から速度4.5m/minで鋳造線材を上方に連続的に引き上げて、線径φ8mm、表層の結晶粒サイズ250μmの無酸素銅線の荒引線材を製造した。この荒引線材を加工度30%で伸線加工した後、伸線加工した線材に皮剥ぎ厚さ0.15mmで皮剥ぎ加工を施した。皮剥ぎ加工には皮剥ぎダイスを使用し、ダイスの切れ刃のすくい角を30°とした。また、皮剥ぎ速度は200m/minとした。皮剥ぎ加工後、線径φ2.6mmまで伸線した線材を焼鈍した。その後、焼鈍した線材に平角加工を施し、続いて線材を焼鈍し、最後に線材上に樹脂被覆層を被覆し焼き付けてマグネットワイヤを製造した。樹脂被覆層は、高密着性ポリイミド、ポリアミドイミドの2層構造からなるものとした。
(Example 3)
The cast wire was continuously pulled upward from a molten metal at 1150 ° C. at a speed of 4.5 m / min by an upcast method to produce an oxygen-free copper wire rough drawn wire having a diameter of 8 mm and a surface crystal grain size of 250 μm. . The rough-drawn wire was drawn at a workability of 30%, and then the drawn wire was subjected to skinning with a skinning thickness of 0.15 mm. A skinning die was used for the skinning process, and the rake angle of the cutting edge of the die was set to 30 °. Further, the peeling speed was 200 m / min. After the skinning process, the wire drawn to a diameter of 2.6 mm was annealed. Thereafter, the annealed wire was flattened, the wire was then annealed, and finally a resin coating layer was coated on the wire and baked to produce a magnet wire. The resin coating layer was composed of a two-layer structure of highly adhesive polyimide and polyamideimide.

(実施例4)
アップキャスト法により、1150℃の溶湯から速度4.5m/minで鋳造線材を上方に連続的に引き上げて、線径φ8mm、表層の結晶粒サイズ250μmの無酸素銅線の荒引線材を製造した。この荒引線材を加工度40%で伸線加工した後、伸線加工した線材に皮剥ぎ厚さ0.15mmで皮剥ぎ加工を施した。皮剥ぎ加工には皮剥ぎダイスを使用し、ダイスの切れ刃のすくい角を30°とした。また、皮剥ぎ速度は200m/minとした。皮剥ぎ加工後、線径φ2.6mmまで伸線した線材を焼鈍した。その後、焼鈍した線材に平角加工を施し、続いて線材を焼鈍し、最後に線材上に樹脂被覆層を被覆し焼き付けてマグネットワイヤを製造した。樹脂被覆層は、高密着性ポリイミド、ポリアミドイミドの2層構造からなるものとした。
Example 4
The cast wire was continuously pulled upward from a molten metal at 1150 ° C. at a speed of 4.5 m / min by an upcast method to produce an oxygen-free copper wire rough drawn wire having a diameter of 8 mm and a surface crystal grain size of 250 μm. . The rough-drawn wire was drawn at a workability of 40%, and then the drawn wire was subjected to skinning with a skinning thickness of 0.15 mm. A skinning die was used for the skinning process, and the rake angle of the cutting edge of the die was set to 30 °. Further, the peeling speed was 200 m / min. After the skinning process, the wire drawn to a diameter of 2.6 mm was annealed. Thereafter, the annealed wire was flattened, the wire was then annealed, and finally a resin coating layer was coated on the wire and baked to produce a magnet wire. The resin coating layer was composed of a two-layer structure of highly adhesive polyimide and polyamideimide.

(実施例5)
アップキャスト法により、1150℃の溶湯から速度4.0m/minで鋳造線材を上方に連続的に引き上げて、線径φ8mm、表層の結晶粒サイズ300μmの無酸素銅線の荒引線材を製造した。この荒引線材を加工度30%で伸線加工した後、伸線加工した線材に皮剥ぎ厚さ0.15mmで皮剥ぎ加工を施した。皮剥ぎ加工には皮剥ぎダイスを使用し、ダイスの切れ刃のすくい角を30°とした。また、皮剥ぎ速度は200m/minとした。皮剥ぎ加工後、線径φ2.6mmまで伸線した線材を焼鈍した。その後、焼鈍した線材に平角加工を施し、続いて線材を焼鈍し、最後に線材上に樹脂被覆層を被覆し焼き付けてマグネットワイヤを製造した。樹脂被覆層は、高密着性ポリイミド、ポリアミドイミドの2層構造からなるものとした。
(Example 5)
The cast wire was continuously pulled upward from a molten metal at 1150 ° C. at a speed of 4.0 m / min by an upcast method, and an oxygen-free copper wire rough drawn wire having a wire diameter of 8 mm and a crystal grain size of 300 μm was produced. . The rough-drawn wire was drawn at a workability of 30%, and then the drawn wire was subjected to skinning with a skinning thickness of 0.15 mm. A skinning die was used for the skinning process, and the rake angle of the cutting edge of the die was set to 30 °. Further, the peeling speed was 200 m / min. After the skinning process, the wire drawn to a diameter of 2.6 mm was annealed. Thereafter, the annealed wire was flattened, the wire was then annealed, and finally a resin coating layer was coated on the wire and baked to produce a magnet wire. The resin coating layer was composed of a two-layer structure of highly adhesive polyimide and polyamideimide.

(実施例6)
アップキャスト法により、1150℃の溶湯から速度4.0m/minで鋳造線材を上方に連続的に引き上げて、線径φ8mm、表層の結晶粒サイズ300μmの無酸素銅線の荒引線材を製造した。この荒引線材を加工度40%で伸線加工した後、伸線加工した線材に皮剥ぎ厚さ0.15mmで皮剥ぎ加工を施した。皮剥ぎ加工には皮剥ぎダイスを使用し、ダイスの切れ刃のすくい角を30°とした。また、皮剥ぎ速度は200m/minとした。皮剥ぎ加工後、線径φ2.6mmまで伸線した線材を焼鈍した。その後、焼鈍した線材に平角加工を施し、続いて線材を焼鈍し、最後に線材上に樹脂被覆層を被覆し焼き付けてマグネットワイヤを製造した。樹脂被覆層は、高密着性ポリイミド、ポリアミドイミドの2層構造からなるものとした。
(Example 6)
The cast wire was continuously pulled upward from a molten metal at 1150 ° C. at a speed of 4.0 m / min by an upcast method, and an oxygen-free copper wire rough drawn wire having a wire diameter of 8 mm and a crystal grain size of 300 μm was produced. . The rough-drawn wire was drawn at a workability of 40%, and then the drawn wire was subjected to skinning with a skinning thickness of 0.15 mm. A skinning die was used for the skinning process, and the rake angle of the cutting edge of the die was set to 30 °. Further, the peeling speed was 200 m / min. After the skinning process, the wire drawn to a diameter of 2.6 mm was annealed. Thereafter, the annealed wire was flattened, the wire was then annealed, and finally a resin coating layer was coated on the wire and baked to produce a magnet wire. The resin coating layer was composed of a two-layer structure of highly adhesive polyimide and polyamideimide.

(比較例1)
アップキャスト法により、1150℃の溶湯から速度5.0m/minで鋳造線材を上方に連続的に引き上げて、線径φ8mm、表層の結晶粒サイズ200μmの無酸素銅線の荒引線材を製造した。この荒引線材を加工度20%で伸線加工した後、伸線加工した線材に皮剥ぎ厚さ0.15mmで皮剥ぎ加工を施した。皮剥ぎ加工には皮剥ぎダイスを使用し、ダイスの切れ刃のすくい角を30°とした。また、皮剥ぎ速度は200m/minとした。皮剥ぎ加工後、線径φ2.6mmまで伸線した線材を焼鈍した。その後、焼鈍した線材に平角加工を施し、続いて線材を焼鈍し、最後に線材上に樹脂被覆層を被覆し焼き付けてマグネットワイヤを製造した。樹脂被覆層は、高密着性ポリイミド、ポリアミドイミドの2層構造からなるものとした。
(Comparative Example 1)
The cast wire was continuously pulled upward from a molten metal at 1150 ° C. at a speed of 5.0 m / min by an upcast method to produce a rough drawn wire of an oxygen-free copper wire having a wire diameter of 8 mm and a crystal grain size of 200 μm on the surface layer. . The rough-drawn wire was drawn at a workability of 20%, and then the drawn wire was subjected to skinning with a skinning thickness of 0.15 mm. A skinning die was used for the skinning process, and the rake angle of the cutting edge of the die was set to 30 °. Further, the peeling speed was 200 m / min. After the skinning process, the wire drawn to a diameter of 2.6 mm was annealed. Thereafter, the annealed wire was flattened, the wire was then annealed, and finally a resin coating layer was coated on the wire and baked to produce a magnet wire. The resin coating layer was composed of a two-layer structure of highly adhesive polyimide and polyamideimide.

(比較例2)
アップキャスト法により、1150℃の溶湯から速度5.0m/minで鋳造線材を上方に連続的に引き上げて、線径φ8mm、表層の結晶粒サイズ200μmの無酸素銅線の荒引線材を製造した。この荒引線材を加工度50%で伸線加工した後、伸線加工した線材に皮剥ぎ厚さ0.15mmで皮剥ぎ加工を施した。皮剥ぎ加工には皮剥ぎダイスを使用し、ダイスの切れ刃のすくい角を30°とした。また、皮剥ぎ速度は200m/minとした。
(Comparative Example 2)
The cast wire was continuously pulled upward from a molten metal at 1150 ° C. at a speed of 5.0 m / min by an upcast method to produce a rough drawn wire of an oxygen-free copper wire having a wire diameter of 8 mm and a crystal grain size of 200 μm on the surface layer. . After this rough-drawn wire was drawn at a workability of 50%, the drawn wire was subjected to skinning with a skinning thickness of 0.15 mm. A skinning die was used for the skinning process, and the rake angle of the cutting edge of the die was set to 30 °. Further, the peeling speed was 200 m / min.

(比較例3)
アップキャスト法により、1150℃の溶湯から速度4.5m/minで鋳造線材を上方に連続的に引き上げて、線径φ8mm、表層の結晶粒サイズ250μmの無酸素銅線の荒引線材を製造した。この荒引線材を加工度20%で伸線加工した後、伸線加工した線材に皮剥ぎ厚さ0.15mmで皮剥ぎ加工を施した。皮剥ぎ加工には皮剥ぎダイスを使用し、ダイスの切れ刃のすくい角を30°とした。また、皮剥ぎ速度は200m/minとした。皮剥ぎ加工後、線径φ2.6mmまで伸線した線材を焼鈍した。その後、焼鈍した線材に平角加工を施し、続いて線材を焼鈍し、最後に線材上に樹脂被覆層を被覆し焼き付けてマグネットワイヤを製造した。樹脂被覆層は、高密着性ポリイミド、ポリアミドイミドの2層構造からなるものとした。
(Comparative Example 3)
The cast wire was continuously pulled upward from a molten metal at 1150 ° C. at a speed of 4.5 m / min by an upcast method to produce an oxygen-free copper wire rough drawn wire having a diameter of 8 mm and a surface crystal grain size of 250 μm. . The rough-drawn wire was drawn at a workability of 20%, and then the drawn wire was subjected to skinning with a skinning thickness of 0.15 mm. A skinning die was used for the skinning process, and the rake angle of the cutting edge of the die was set to 30 °. Further, the peeling speed was 200 m / min. After the skinning process, the wire drawn to a diameter of 2.6 mm was annealed. Thereafter, the annealed wire was flattened, the wire was then annealed, and finally a resin coating layer was coated on the wire and baked to produce a magnet wire. The resin coating layer was composed of a two-layer structure of highly adhesive polyimide and polyamideimide.

(比較例4)
アップキャスト法により、1150℃の溶湯から速度4.5m/minで鋳造線材を上方に連続的に引き上げて、線径φ8mm、表層の結晶粒サイズ250μmの無酸素銅線の荒引線材を製造した。この荒引線材を加工度50%で伸線加工した後、伸線加工した線材に皮剥ぎ厚さ0.15mmで皮剥ぎ加工を施した。皮剥ぎ加工には皮剥ぎダイスを使用し、ダイスの切れ刃のすくい角を30°とした。また、皮剥ぎ速度は200m/minとした。
(Comparative Example 4)
The cast wire was continuously pulled upward from a molten metal at 1150 ° C. at a speed of 4.5 m / min by an upcast method to produce an oxygen-free copper wire rough drawn wire having a diameter of 8 mm and a surface crystal grain size of 250 μm. . After this rough-drawn wire was drawn at a workability of 50%, the drawn wire was subjected to skinning with a skinning thickness of 0.15 mm. A skinning die was used for the skinning process, and the rake angle of the cutting edge of the die was set to 30 °. Further, the peeling speed was 200 m / min.

(比較例5)
アップキャスト法により、1150℃の溶湯から速度4.0m/minで鋳造線材を上方に連続的に引き上げて、線径φ8mm、表層の結晶粒サイズ300μmの無酸素銅線の荒引線材を製造した。この荒引線材を加工度20%で伸線加工した後、伸線加工した線材に皮剥ぎ厚さ0.15mmで皮剥ぎ加工を施した。皮剥ぎ加工には皮剥ぎダイスを使用し、ダイスの切れ刃のすくい角を30°とした。また、皮剥ぎ速度は200m/minとした。皮剥ぎ加工後、線径φ2.6mmまで伸線した線材を焼鈍した。その後、焼鈍した線材に平角加工を施し、続いて線材を焼鈍し、最後に線材上に樹脂被覆層を被覆し焼き付けてマグネットワイヤを製造した。樹脂被覆層は、高密着性ポリイミド、ポリアミドイミドの2層構造からなるものとした。
(Comparative Example 5)
The cast wire was continuously pulled upward from a molten metal at 1150 ° C. at a speed of 4.0 m / min by an upcast method, and an oxygen-free copper wire rough drawn wire having a wire diameter of 8 mm and a crystal grain size of 300 μm was produced. . The rough-drawn wire was drawn at a workability of 20%, and then the drawn wire was subjected to skinning with a skinning thickness of 0.15 mm. A skinning die was used for the skinning process, and the rake angle of the cutting edge of the die was set to 30 °. Further, the peeling speed was 200 m / min. After the skinning process, the wire drawn to a diameter of 2.6 mm was annealed. Thereafter, the annealed wire was flattened, the wire was then annealed, and finally a resin coating layer was coated on the wire and baked to produce a magnet wire. The resin coating layer was composed of a two-layer structure of highly adhesive polyimide and polyamideimide.

(比較例6)
アップキャスト法により、1150℃の溶湯から速度4.0m/minで鋳造線材を上方に連続的に引き上げて、線径φ8mm、表層の結晶粒サイズ300μmの無酸素銅線の荒引線材を製造した。この荒引線材を加工度50%で伸線加工した後、伸線加工した線材に皮剥ぎ厚さ0.15mmで皮剥ぎ加工を施した。皮剥ぎ加工には皮剥ぎダイスを使用し、ダイスの切れ刃のすくい角を30°とした。また、皮剥ぎ速度は200m/minとした。
(Comparative Example 6)
The cast wire was continuously pulled upward from a molten metal at 1150 ° C. at a speed of 4.0 m / min by an upcast method, and an oxygen-free copper wire rough drawn wire having a wire diameter of 8 mm and a crystal grain size of 300 μm was produced. . After this rough-drawn wire was drawn at a workability of 50%, the drawn wire was subjected to skinning with a skinning thickness of 0.15 mm. A skinning die was used for the skinning process, and the rake angle of the cutting edge of the die was set to 30 °. Further, the peeling speed was 200 m / min.

(比較例7)
アップキャスト法により、1150℃の溶湯から速度3.0m/minで鋳造線材を上方に連続的に引き上げて、線径φ8mm、表層の結晶粒サイズ400μmの無酸素銅線の荒引線材を製造した。この荒引線材を加工度20%で伸線加工した後、伸線加工した線材に皮剥ぎ厚さ0.15mmで皮剥ぎ加工を施した。皮剥ぎ加工には皮剥ぎダイスを使用し、ダイスの切れ刃のすくい角を30°とした。また、皮剥ぎ速度は200m/minとした。皮剥ぎ加工後、線径φ2.6mmまで伸線した線材を焼鈍した。その後、焼鈍した線材に平角加工を施し、続いて線材を焼鈍し、最後に線材上に樹脂被覆層を被覆し焼き付けてマグネットワイヤを製造した。樹脂被覆層は、高密着性ポリイミド、ポリアミドイミドの2層構造からなるものとした。
(Comparative Example 7)
By an upcast method, the cast wire was continuously pulled upward from a molten metal at 1150 ° C. at a speed of 3.0 m / min to produce a rough drawn wire of an oxygen-free copper wire having a wire diameter of 8 mm and a crystal grain size of 400 μm on the surface layer. . The rough-drawn wire was drawn at a workability of 20%, and then the drawn wire was subjected to skinning with a skinning thickness of 0.15 mm. A skinning die was used for the skinning process, and the rake angle of the cutting edge of the die was set to 30 °. Further, the peeling speed was 200 m / min. After the skinning process, the wire drawn to a diameter of 2.6 mm was annealed. Thereafter, the annealed wire was flattened, the wire was then annealed, and finally a resin coating layer was coated on the wire and baked to produce a magnet wire. The resin coating layer was composed of a two-layer structure of highly adhesive polyimide and polyamideimide.

(比較例8)
アップキャスト法により、1150℃の溶湯から速度3.0m/minで鋳造線材を上方に連続的に引き上げて、線径φ8mm、表層の結晶粒サイズ400μmの無酸素銅線の荒引線材を製造した。この荒引線材を加工度30%で伸線加工した後、伸線加工した線材に皮剥ぎ厚さ0.15mmで皮剥ぎ加工を施した。皮剥ぎ加工には皮剥ぎダイスを使用し、ダイスの切れ刃のすくい角を30°とした。また、皮剥ぎ速度は200m/minとした。皮剥ぎ加工後、線径φ2.6mmまで伸線した線材を焼鈍した。その後、焼鈍した線材に平角加工を施し、続いて線材を焼鈍し、最後に線材上に樹脂被覆層を被覆し焼き付けてマグネットワイヤを製造した。樹脂被覆層は、高密着性ポリイミド、ポリアミドイミドの2層構造からなるものとした。
(Comparative Example 8)
By an upcast method, the cast wire was continuously pulled upward from a molten metal at 1150 ° C. at a speed of 3.0 m / min to produce a rough drawn wire of an oxygen-free copper wire having a wire diameter of 8 mm and a crystal grain size of 400 μm on the surface layer. . The rough-drawn wire was drawn at a workability of 30%, and then the drawn wire was subjected to skinning with a skinning thickness of 0.15 mm. A skinning die was used for the skinning process, and the rake angle of the cutting edge of the die was set to 30 °. Further, the peeling speed was 200 m / min. After the skinning process, the wire drawn to a diameter of 2.6 mm was annealed. Thereafter, the annealed wire was flattened, the wire was then annealed, and finally a resin coating layer was coated on the wire and baked to produce a magnet wire. The resin coating layer was composed of a two-layer structure of highly adhesive polyimide and polyamideimide.

(比較例9)
アップキャスト法により、1150℃の溶湯から速度3.0m/minで鋳造線材を上方に連続的に引き上げて、線径φ8mm、表層の結晶粒サイズ400μmの無酸素銅線の荒引線材を製造した。この荒引線材を加工度40%で伸線加工した後、伸線加工した線材に皮剥ぎ厚さ0.15mmで皮剥ぎ加工を施した。皮剥ぎ加工には皮剥ぎダイスを使用し、ダイスの切れ刃のすくい角を30°とした。また、皮剥ぎ速度は200m/minとした。皮剥ぎ加工後、線径φ2.6mmまで伸線した線材を焼鈍した。その後、焼鈍した線材に平角加工を施し、続いて線材を焼鈍し、最後に線材上に樹脂被覆層を被覆し焼き付けてマグネットワイヤを製造した。樹脂被覆層は、高密着性ポリイミド、ポリアミドイミドの2層構造からなるものとした。
(Comparative Example 9)
By an upcast method, the cast wire was continuously pulled upward from a molten metal at 1150 ° C. at a speed of 3.0 m / min to produce a rough drawn wire of an oxygen-free copper wire having a wire diameter of 8 mm and a crystal grain size of 400 μm on the surface layer. . The rough-drawn wire was drawn at a workability of 40%, and then the drawn wire was subjected to skinning with a skinning thickness of 0.15 mm. A skinning die was used for the skinning process, and the rake angle of the cutting edge of the die was set to 30 °. Further, the peeling speed was 200 m / min. After the skinning process, the wire drawn to a diameter of 2.6 mm was annealed. Thereafter, the annealed wire was flattened, the wire was then annealed, and finally a resin coating layer was coated on the wire and baked to produce a magnet wire. The resin coating layer was composed of a two-layer structure of highly adhesive polyimide and polyamideimide.

(比較例10)
アップキャスト法により、1150℃の溶湯から速度3.0m/minで鋳造線材を上方に連続的に引き上げて、線径φ8mm、表層の結晶粒サイズ400μmの無酸素銅線の荒引線材を製造した。この荒引線材を加工度50%で伸線加工した後、伸線加工した線材に皮剥ぎ厚さ0.15mmで皮剥ぎ加工を施した。皮剥ぎ加工には皮剥ぎダイスを使用し、ダイスの切れ刃のすくい角を30°とした。また、皮剥ぎ速度は200m/minとした。
(Comparative Example 10)
By an upcast method, the cast wire was continuously pulled upward from a molten metal at 1150 ° C. at a speed of 3.0 m / min to produce a rough drawn wire of an oxygen-free copper wire having a wire diameter of 8 mm and a crystal grain size of 400 μm on the surface layer. . After this rough-drawn wire was drawn at a workability of 50%, the drawn wire was subjected to skinning with a skinning thickness of 0.15 mm. A skinning die was used for the skinning process, and the rake angle of the cutting edge of the die was set to 30 °. Further, the peeling speed was 200 m / min.

(比較例11)
アップキャスト法により、1150℃の溶湯から速度2.5m/minで鋳造線材を上方に連続的に引き上げて、線径φ8mm、表層の結晶粒サイズ500μmの無酸素銅線の荒引線材を製造した。この荒引線材を加工度20%で伸線加工した後、伸線加工した線材に皮剥ぎ厚さ0.15mmで皮剥ぎ加工を施した。皮剥ぎ加工には皮剥ぎダイスを使用し、ダイスの切れ刃のすくい角を30°とした。また、皮剥ぎ速度は200m/minとした。皮剥ぎ加工後、線径φ2.6mmまで伸線した線材を焼鈍した。その後、焼鈍した線材に平角加工を施し、続いて線材を焼鈍し、最後に線材上に樹脂被覆層を被覆し焼き付けてマグネットワイヤを製造した。樹脂被覆層は、高密着性ポリイミド、ポリアミドイミドの2層構造からなるものとした。
(Comparative Example 11)
By the upcast method, the cast wire was continuously pulled upward from the molten metal at 1150 ° C. at a speed of 2.5 m / min to produce a rough drawn wire of oxygen-free copper wire having a wire diameter of φ8 mm and a surface crystal grain size of 500 μm. . The rough-drawn wire was drawn at a workability of 20%, and then the drawn wire was subjected to skinning with a skinning thickness of 0.15 mm. A skinning die was used for the skinning process, and the rake angle of the cutting edge of the die was set to 30 °. Further, the peeling speed was 200 m / min. After the skinning process, the wire drawn to a diameter of 2.6 mm was annealed. Thereafter, the annealed wire was flattened, the wire was then annealed, and finally a resin coating layer was coated on the wire and baked to produce a magnet wire. The resin coating layer was composed of a two-layer structure of highly adhesive polyimide and polyamideimide.

(比較例12)
アップキャスト法により、1150℃の溶湯から速度2.5m/minで鋳造線材を上方に連続的に引き上げて、線径φ8mm、表層の結晶粒サイズ500μmの無酸素銅線の荒引線材を製造した。この荒引線材を加工度30%で伸線加工した後、伸線加工した線材に皮剥ぎ厚さ0.15mmで皮剥ぎ加工を施した。皮剥ぎ加工には皮剥ぎダイスを使用し、ダイスの切れ刃のすくい角を30°とした。また、皮剥ぎ速度は200m/minとした。皮剥ぎ加工後、線径φ2.6mmまで伸線した線材を焼鈍した。その後、焼鈍した線材に平角加工を施し、続いて線材を焼鈍し、最後に線材上に樹脂被覆層を被覆し焼き付けてマグネットワイヤを製造した。樹脂被覆層は、高密着性ポリイミド、ポリアミドイミドの2層構造からなるものとした。
(Comparative Example 12)
By the upcast method, the cast wire was continuously pulled upward from the molten metal at 1150 ° C. at a speed of 2.5 m / min to produce a rough drawn wire of oxygen-free copper wire having a wire diameter of φ8 mm and a surface crystal grain size of 500 μm. . The rough-drawn wire was drawn at a workability of 30%, and then the drawn wire was subjected to skinning with a skinning thickness of 0.15 mm. A skinning die was used for the skinning process, and the rake angle of the cutting edge of the die was set to 30 °. Further, the peeling speed was 200 m / min. After the skinning process, the wire drawn to a diameter of 2.6 mm was annealed. Thereafter, the annealed wire was flattened, the wire was then annealed, and finally a resin coating layer was coated on the wire and baked to produce a magnet wire. The resin coating layer was composed of a two-layer structure of highly adhesive polyimide and polyamideimide.

(比較例13)
アップキャスト法により、1150℃の溶湯から速度2.5m/minで鋳造線材を上方に連続的に引き上げて、線径φ8mm、表層の結晶粒サイズ500μmの無酸素銅線の荒引線材を製造した。この荒引線材を加工度40%で伸線加工した後、伸線加工した線材に皮剥ぎ厚さ0.15mmで皮剥ぎ加工を施した。皮剥ぎ加工には皮剥ぎダイスを使用し、ダイスの切れ刃のすくい角を30°とした。また、皮剥ぎ速度は200m/minとした。皮剥ぎ加工後、線径φ2.6mmまで伸線した線材を焼鈍した。その後、焼鈍した線材に平角加工を施し、続いて線材を焼鈍し、最後に線材上に樹脂被覆層を被覆し焼き付けてマグネットワイヤを製造した。樹脂被覆層は、高密着性ポリイミド、ポリアミドイミドの2層構造からなるものとした。
(Comparative Example 13)
By the upcast method, the cast wire was continuously pulled upward from the molten metal at 1150 ° C. at a speed of 2.5 m / min to produce a rough drawn wire of oxygen-free copper wire having a wire diameter of φ8 mm and a surface crystal grain size of 500 μm. . The rough-drawn wire was drawn at a workability of 40%, and then the drawn wire was subjected to skinning with a skinning thickness of 0.15 mm. A skinning die was used for the skinning process, and the rake angle of the cutting edge of the die was set to 30 °. Further, the peeling speed was 200 m / min. After the skinning process, the wire drawn to a diameter of 2.6 mm was annealed. Thereafter, the annealed wire was flattened, the wire was then annealed, and finally a resin coating layer was coated on the wire and baked to produce a magnet wire. The resin coating layer was composed of a two-layer structure of highly adhesive polyimide and polyamideimide.

(比較例14)
アップキャスト法により、1150℃の溶湯から速度2.5m/minで鋳造線材を上方に連続的に引き上げて、線径φ8mm、表層の結晶粒サイズ500μmの無酸素銅線の荒引線材を製造した。この荒引線材を加工度50%で伸線加工した後、伸線加工した線材に皮剥ぎ厚さ0.15mmで皮剥ぎ加工を施した。皮剥ぎ加工には皮剥ぎダイスを使用し、ダイスの切れ刃のすくい角を30°とした。また、皮剥ぎ速度は200m/minとした。
(Comparative Example 14)
By the upcast method, the cast wire was continuously pulled upward from the molten metal at 1150 ° C. at a speed of 2.5 m / min to produce a rough drawn wire of oxygen-free copper wire having a wire diameter of φ8 mm and a surface crystal grain size of 500 μm. . After this rough-drawn wire was drawn at a workability of 50%, the drawn wire was subjected to skinning with a skinning thickness of 0.15 mm. A skinning die was used for the skinning process, and the rake angle of the cutting edge of the die was set to 30 °. Further, the peeling speed was 200 m / min.

実施例1〜6、比較例1〜14において、無酸素銅線の荒引線材の表層における線材長手方向の結晶粒長さ(表層の結晶粒サイズ)の制御は、引上装置の速度(線材の引上速度)を変えることで行った。詳しくは、線材の引上速度を速くすることで、表層の結晶粒サイズが小さい無酸素銅線の荒引線材が得られ、線材の引上速度を遅くすることで、表層の結晶粒サイズが大きい無酸素銅線の荒引線材が得られる。   In Examples 1 to 6 and Comparative Examples 1 to 14, the control of the crystal grain length (crystal grain size of the surface layer) in the longitudinal direction of the surface of the rough drawn wire of the oxygen-free copper wire is controlled by the speed of the pulling device (wire material) By changing the pulling speed of Specifically, an oxygen-free copper wire with a small surface grain size can be obtained by increasing the wire pulling speed, and a surface crystal grain size can be reduced by reducing the wire pulling speed. A large oxygen-free copper wire rough wire is obtained.

また、保持炉は電気炉であるため、保持炉内の溶湯の温度は常に一定になるように制御した。温度の計測は保持炉内に熱電対を挿入し計測した。   Further, since the holding furnace is an electric furnace, the temperature of the molten metal in the holding furnace was controlled to be always constant. The temperature was measured by inserting a thermocouple into the holding furnace.

また、実施例1〜6、比較例1、3、5、7〜9、11〜13においては、ポリイミド(トレニース(登録商標)#3000、東レ株式会社製)塗料の樹脂分100重量部に対して密着性向上剤(ブチル化メラミン樹脂)を1重量部添加した高密着性ポリイミドを使用した。   Moreover, in Examples 1-6 and Comparative Examples 1, 3, 5, 7-9, 11-13, the resin content of 100 parts by weight of polyimide (Trenice (registered trademark) # 3000, manufactured by Toray Industries, Inc.) paint High adhesion polyimide to which 1 part by weight of an adhesion improver (butylated melamine resin) was added was used.

表1に実施例1〜6、比較例1〜14の無酸素銅線の表層の結晶粒サイズ、皮剥ぎ加工前の線材加工度、皮剥ぎ加工時の断線の有無、マグネットワイヤにした時の膨れの発生率、及び総合評価を示す。総合評価は、前記のマグネットワイヤにした時の膨れの発生率が0.30個/km以下のものを◎、0.30個/kmを超えるものを×とした。また、皮剥ぎ加工時に断線が起こったものは総合評価を×とした。   Table 1 shows the crystal grain size of the surface layer of the oxygen-free copper wires of Examples 1 to 6 and Comparative Examples 1 to 14, the degree of wire rod processing before skinning, the presence or absence of disconnection during skinning, and the magnet wire. The incidence of blistering and overall evaluation are shown. Comprehensive evaluation was evaluated as “発 生” when the rate of occurrence of swelling when the magnet wire was used was 0.30 piece / km or less, and “x” when the rate was over 0.30 piece / km. Moreover, the thing with a disconnection at the time of a skinning process made the comprehensive evaluation x.

表1に示すように、実施例1〜6において、アップキャスト法で製造された線径φ8mmの荒引線材に皮剥ぎ加工を施したところ、皮剥ぎ性は良好であり、線材表面に新たな欠陥を発生させることなく、且つ荒引線材の表層に元から存在するワレ等の微小欠陥を除去することにより、マグネットワイヤにした時の膨れの発生率は低く良好な結果であった。   As shown in Table 1, in Examples 1 to 6, when the stripping process was performed on the rough-drawn wire with a diameter of 8 mm manufactured by the upcast method, the peelability was good, and the surface of the wire was new. By removing minute defects such as cracks that originally existed on the surface layer of the rough drawn wire without generating defects, the occurrence rate of blistering when magnet wires were obtained was a good result.

比較例において、皮剥ぎ加工前の線材加工度を20%とした比較例1、3、5、7、11は、線材表層に十分な加工を与えられず、線材表層が軟らかい状態であり、皮剥ぎ加工時にカブリ傷が発生し、その結果、マグネットワイヤにしたときの膨れの発生率が高い結果となった。   In Comparative Examples, Comparative Examples 1, 3, 5, 7, and 11 in which the degree of wire processing before skinning was 20% were not able to give sufficient processing to the surface of the wire, and the surface of the wire was in a soft state. As a result, fogging scratches occurred during the stripping process, and as a result, the rate of occurrence of swelling when the magnet wire was formed was high.

また、皮剥ぎ加工前の線材加工度を50%とした比較例2、4、6、10、14は、線材表層に十分な加工を与えられ、線材表層を硬くしたが、皮剥ぎダイスの切れ刃の刃先が線材にくい込み、皮剥ぎ加工時に所定の寸法よりも厚く剥げてしまい、皮剥ぎのくずが皮剥ぎダイスに詰まり、線材が断線する結果となった。   In Comparative Examples 2, 4, 6, 10, and 14 in which the degree of wire rod processing before skinning was 50%, the wire surface layer was sufficiently processed and the wire surface layer was hardened. The cutting edge of the blade was difficult to squeeze into the wire, and peeled off to a thickness greater than a predetermined size during the skinning process, resulting in the scraping scraps being clogged in the skinning die and the wire being disconnected.

比較例8、9、12、13において、表層の結晶粒サイズが大きく(表層における線材長手方向の結晶粒長さが長く)、切削の起点となる結晶粒界が少ないため、切削時の抵抗の変動が大きく、連続的なせん断変形が困難となり、皮剥ぎ性は悪くなる。その結果、線材表面に新たな欠陥が生じてしまうとともに、荒引線材に元から存在するワレ等の微小欠陥を除去できず、マグネットワイヤにした時の膨れの発生率が高い結果となった。   In Comparative Examples 8, 9, 12, and 13, since the crystal grain size of the surface layer is large (the crystal grain length in the longitudinal direction of the wire in the surface layer is long) and there are few crystal grain boundaries that are the starting points of cutting, Fluctuation is large, continuous shear deformation becomes difficult, and the peelability becomes worse. As a result, new defects are generated on the surface of the wire, and minute defects such as cracks originally present in the rough drawn wire cannot be removed, resulting in a high occurrence rate of swelling when the magnet wire is used.

なお、本実施例においては、高密着性ポリイミド、ポリアミドイミドの2層構造の絶縁被覆を有するエナメル線(マグネットワイヤ)を用いて評価を行ったが、高密着性ポリアミドイミド、ポリイミド、ポリアミドイミドの3層構造の絶縁被覆を有するエナメル線(マグネットワイヤ)を用いた場合にも同様に良好な結果が得られた。   In this example, evaluation was made using an enameled wire (magnet wire) having an insulating coating having a two-layer structure of highly adhesive polyimide and polyamideimide. Similarly good results were obtained when an enameled wire (magnet wire) having a three-layer insulating coating was used.

また、本実施例において、表層の結晶粒サイズが「200μm」よりも小さい無酸素銅線の評価を実施していないのは、現状のアップキャスト装置では、表層の結晶粒サイズが「200μm」よりも小さい荒引線材(鋳造線材)を製造することが困難であるためである。   Moreover, in this example, the evaluation of the oxygen-free copper wire having a surface layer crystal grain size smaller than “200 μm” is not performed because the current upcast apparatus has a crystal grain size of “200 μm” from the surface layer. This is because it is difficult to produce a small rough drawn wire (cast wire).

以上の結果から、皮剥ぎ性の良好なマグネットワイヤ用銅線を得るためには、表層における線材長手方向の結晶粒長さが300μm以下(200〜300μm)の微細構造の荒引線材(鋳造線材)とし、樹脂被覆後の焼付工程で樹脂被覆層に生じ得る膨れ等の欠陥を抑制するためには、皮剥ぎ加工前の荒引線材(鋳造線材)に加工度30〜40%の加工度の伸線加工を施す必要があることがわかった。   Based on the above results, in order to obtain a copper wire for magnet wire with good peelability, a rough-drawn wire (cast wire) having a fine structure with a crystal grain length of 300 μm or less (200 to 300 μm) in the longitudinal direction of the wire in the surface layer In order to suppress defects such as blistering that may occur in the resin coating layer in the baking process after resin coating, the roughing wire (cast wire) before skinning has a processing degree of 30 to 40%. It was found that it was necessary to perform wire drawing.

図1は、本発明の一実施形態に係るマグネットワイヤの断面図である。FIG. 1 is a cross-sectional view of a magnet wire according to an embodiment of the present invention. 図2は、アップキャスト装置の概略図である。FIG. 2 is a schematic diagram of the upcast apparatus. 図3は、皮剥ぎダイスのすくい角を示す説明図である。FIG. 3 is an explanatory view showing the rake angle of the skinning die. 図4は、無酸素銅線(銅荒引線)の長手方向の断面組織を示す模式図である。FIG. 4 is a schematic diagram showing a cross-sectional structure in the longitudinal direction of an oxygen-free copper wire (copper rough wire).

符号の説明Explanation of symbols

12 銅溶湯
18 無酸素銅線の荒引線材(鋳造線材)
21 皮剥ぎダイス(ダイス)
25 マグネットワイヤ用銅線(マグネットワイヤの導体)
26 マグネットワイヤ
27 樹脂被覆層(下層)
28 樹脂被覆層(上層)
12 Molten copper 18 Oxygen-free copper wire rough wire (cast wire)
21 Peeling dice (dies)
25 Copper wire for magnet wire (conductor of magnet wire)
26 Magnet wire 27 Resin coating layer (lower layer)
28 Resin coating layer (upper layer)

Claims (6)

銅溶湯を連続的に引き上げて鋳造線材を形成し、該鋳造線材をダイスを用いて皮剥ぎ加工してマグネットワイヤ用銅線を得るマグネットワイヤ用銅線の製造方法であって、前記鋳造線材の形成に当たり、鋳造線材の表層における線材長手方向の結晶粒長さを300μm以下に制御し、該鋳造線材を加工度30〜40%で伸線加工した後に皮剥ぎ加工することを特徴とするマグネットワイヤ用銅線の製造方法。 A method for producing a copper wire for a magnet wire by continuously pulling up a molten copper to form a cast wire, and stripping the cast wire using a die to obtain a copper wire for a magnet wire , In forming the magnet wire, the crystal wire length in the longitudinal direction of the wire in the surface layer of the cast wire is controlled to 300 μm or less, and the cast wire is drawn at a workability of 30 to 40% and then stripped. Method for manufacturing copper wire. 前記鋳造線材の酸素含有量が0.001wt%以下であることを特徴とする請求項1に記載のマグネットワイヤ用銅線の製造方法。The method for producing a copper wire for a magnet wire according to claim 1, wherein the oxygen content of the cast wire is 0.001 wt% or less. 1100〜1200℃の銅溶湯を4〜5m/minの速度で連続的に引き上げて前記鋳造線材を形成することを特徴とする請求項1又は2に記載のマグネットワイヤ用銅線の製造方法。 Method of manufacturing magnet wire copper wire according to claim 1 or 2 copper melt of 1100 to 1200 ° C. continuously pulled up at a rate of 4 ~5m / min and forming the cast wire. 請求項1〜いずれかに記載のマグネットワイヤ用銅線の製造方法を用いて製造したことを特徴とするマグネットワイヤ用銅線。 It manufactured using the manufacturing method of the copper wire for magnet wires in any one of Claims 1-3 , The copper wire for magnet wires characterized by the above-mentioned. 請求項に記載のマグネットワイヤ用銅線の上に、高密着性ポリイミド、ポリアミドイミドの2層構造からなる樹脂被覆層を被覆してなることを特徴とするマグネットワイヤ。 A magnet wire, comprising a copper wire for a magnet wire according to claim 4 and a resin coating layer having a two-layer structure of a highly adhesive polyimide and a polyamideimide. 請求項に記載のマグネットワイヤ用銅線の上に、高密着性ポリアミドイミド、ポリイミド、ポリアミドイミドの3層構造からなる樹脂被覆層を被覆してなることを特徴とするマグネットワイヤ。 5. A magnet wire comprising a copper wire for a magnet wire according to claim 4 and a resin coating layer having a three-layer structure of high adhesion polyamideimide, polyimide, and polyamideimide.
JP2008188746A 2008-07-22 2008-07-22 Method of manufacturing copper wire for magnet wire, copper wire for magnet wire and magnet wire Expired - Fee Related JP5171451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008188746A JP5171451B2 (en) 2008-07-22 2008-07-22 Method of manufacturing copper wire for magnet wire, copper wire for magnet wire and magnet wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008188746A JP5171451B2 (en) 2008-07-22 2008-07-22 Method of manufacturing copper wire for magnet wire, copper wire for magnet wire and magnet wire

Publications (2)

Publication Number Publication Date
JP2010023091A JP2010023091A (en) 2010-02-04
JP5171451B2 true JP5171451B2 (en) 2013-03-27

Family

ID=41729419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008188746A Expired - Fee Related JP5171451B2 (en) 2008-07-22 2008-07-22 Method of manufacturing copper wire for magnet wire, copper wire for magnet wire and magnet wire

Country Status (1)

Country Link
JP (1) JP5171451B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5428945B2 (en) * 2010-03-03 2014-02-26 株式会社デンソー Apparatus and method for stripping square wire with coating layer
JP2013052434A (en) * 2011-09-06 2013-03-21 Sumitomo Electric Ind Ltd Method for manufacturing copper stock for wire rod
JP2014208886A (en) * 2013-03-27 2014-11-06 三菱電線工業株式会社 Linear conductor and method for producing the same
CN107275011B (en) * 2017-08-02 2024-01-26 芜湖铜冠电工有限公司 Enamelled wire anti-enamelling tumor device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6257741A (en) * 1985-09-06 1987-03-13 Mitsubishi Metal Corp Method for adjusting position of molten metal level for pressure type continuous casting method
JPS62151253A (en) * 1985-12-25 1987-07-06 Mitsubishi Metal Corp Continuous casting furnace
JPH01252315A (en) * 1988-03-29 1989-10-09 Mitsubishi Metal Corp Peeling method of wire rod
JPH1110220A (en) * 1997-06-24 1999-01-19 Fujikura Ltd Manufacture of copper or copper alloy material
JP2005313208A (en) * 2004-04-30 2005-11-10 Furukawa Electric Co Ltd:The Copper for wire rod and producing method therefor
JP2006031980A (en) * 2004-07-13 2006-02-02 Sumitomo Electric Wintec Inc Heat-resistant insulated wire and fusing method using it

Also Published As

Publication number Publication date
JP2010023091A (en) 2010-02-04

Similar Documents

Publication Publication Date Title
JP5147063B2 (en) Manufacturing method of copper wire for magnet wire
JP5171451B2 (en) Method of manufacturing copper wire for magnet wire, copper wire for magnet wire and magnet wire
JP5800300B2 (en) Copper alloy wire
KR20120053087A (en) Cu-ni-si alloy with excellent bendability
JP5344151B2 (en) Method for producing Cu-Ag alloy wire and Cu-Ag alloy wire
JP5935856B2 (en) Copper alloy foil, flexible printed circuit board using the same
JP6908773B2 (en) Manufacturing method of organized plated electrode wire
JP6001420B2 (en) Cu-Mg alloy body, Cu-Mg alloy body manufacturing method, and wire drawing material manufacturing method
JP2007152398A (en) Manufacturing method for copper-clad aluminum wire
JP6288433B2 (en) Copper coil material, copper coil material manufacturing method, copper flat wire manufacturing method, and coated flat wire manufacturing method
JP4924084B2 (en) Copper rough wire and method for manufacturing the same, conductor for electric wire
JP3775244B2 (en) Conductor for bending-resistant cable and method for manufacturing the same
JP5356974B2 (en) Cast material, manufacturing method thereof, copper wire for magnet wire using the same, magnet wire and manufacturing method thereof
JP4833694B2 (en) Oxygen-free copper and oxygen-free copper alloy rough wire rods with excellent peelability
JP5344150B2 (en) Method for producing Cu-Ag alloy wire and Cu-Ag alloy wire
US20090286083A1 (en) Copper wire for a magnet wire, magnet wire using same, and method for fabricating copper wire for a magnet wire
WO2011004888A1 (en) Method for continuous casting of bronze or bronze alloy and casting ring used therefor
JP4140471B2 (en) Copper refining method
JP2012240081A (en) Method of manufacturing copper wire for magnet wire
JP5863675B2 (en) Continuous casting method of copper or copper alloy
JP2016193450A (en) Production method of extruded wire material, extruded wire material and conductor for winding
US10718037B2 (en) Copper alloy material and production method therefor
JP2013052434A (en) Method for manufacturing copper stock for wire rod
JP2005042163A (en) Method for producing wear-resistant trolley wire
JP2006156129A (en) Method for manufacturing copper or copper alloy extrafine wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120711

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121225

R150 Certificate of patent or registration of utility model

Ref document number: 5171451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371