JP2010177055A - Method for manufacturing cu-ag alloy wire, and cu-ag alloy wire - Google Patents

Method for manufacturing cu-ag alloy wire, and cu-ag alloy wire Download PDF

Info

Publication number
JP2010177055A
JP2010177055A JP2009018749A JP2009018749A JP2010177055A JP 2010177055 A JP2010177055 A JP 2010177055A JP 2009018749 A JP2009018749 A JP 2009018749A JP 2009018749 A JP2009018749 A JP 2009018749A JP 2010177055 A JP2010177055 A JP 2010177055A
Authority
JP
Japan
Prior art keywords
wire
alloy
surface layer
less
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009018749A
Other languages
Japanese (ja)
Other versions
JP5344150B2 (en
Inventor
Tetsuya Kuwabara
鉄也 桑原
Taichiro Nishikawa
太一郎 西川
Yoshiyuki Takagi
義幸 高木
Yoshihiro Nakai
由弘 中井
Kazuhiro Matsumura
一広 松村
Minoru Suzuki
稔 鈴木
Yukifusa Morita
行房 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009018749A priority Critical patent/JP5344150B2/en
Priority to CN201010107451A priority patent/CN101791638A/en
Publication of JP2010177055A publication Critical patent/JP2010177055A/en
Application granted granted Critical
Publication of JP5344150B2 publication Critical patent/JP5344150B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a Cu-Ag alloy wire for manufacturing an extra-fine Cu-Ag alloy wire at sufficient productivity, and the extra-fine Cu-Ag alloy wire. <P>SOLUTION: The extra-fine wire with a finished wire diameter of 0.05 mm or below is manufactured by drawing a cast material including Ag of 0.5-15.0 wt.%. The cast material wherein foreign bodies of more than 0.2 μm related to disconnection of a wire are very few is used. A surface layer of the wire with a wire diameter ϕ of 1.0 mm or below is removed at a wire which is in a halfway stage of wire-drawing to a finished wire diameter. Removal of the surface layer is performed so as to make thickness t of the surface layer to be removed satisfy t/r≥0.02 when one half of a wire diameter ϕ of the wire before removing the surface layer is set up to be r. The obtained extra-fine Cu-Ag alloy wire and a strand wire twisting the Cu-Ag alloy wire are suitably used for a center conductor of a coaxial cable. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、Cu-Ag合金からなる極細線、この極細線を素線とする撚り線、これら極細線や撚り線を導体とする同軸ケーブル、及び上記極細線の製造方法に関するものである。   The present invention relates to an extra fine wire made of a Cu-Ag alloy, a stranded wire using the extra fine wire as a strand, a coaxial cable using the extra fine wire or the stranded wire as a conductor, and a method of manufacturing the extra fine wire.

近年、種々の電子機器の小型化、軽量化の要望に伴い、電子機器に利用される同軸ケーブルなどの導体の細径化が望まれている(特許文献1)。極細の導体材料として、導電率が高く、銅よりも高強度であるCu-Ag合金線が提案されている(特許文献2)。   In recent years, along with demands for reducing the size and weight of various electronic devices, it is desired to reduce the diameter of conductors such as coaxial cables used in electronic devices (Patent Document 1). As an ultrafine conductor material, a Cu-Ag alloy wire having high conductivity and higher strength than copper has been proposed (Patent Document 2).

極細の導体に利用される極細線は、一般的に、鋳造材を伸線することで製造される。製造工程のうち、溶解から鋳造に至るまでの工程で利用する坩堝や鋳型、これらを繋ぐ桶などの構成材料に由来すると考えられる異物が素材に混入されることがある。この異物の混入は、高純度の原料を用いても回避することが難しい。また、伸線工程でも、素材表面に疵が生じたり、素材表面に異物が巻き込まれたりすることがある。このような異物や表面疵の存在は、極細線を製造する際に断線の要因となり、極細線の生産性を低下させる。特許文献1では、断線を生じ難くするために、伸線加工された素線の線径から最終線径にまで縮径するにあたり、化学溶解を利用することを開示している。   An extra fine wire used for an extra fine conductor is generally manufactured by drawing a cast material. In the manufacturing process, foreign materials that are considered to be derived from constituent materials such as crucibles and molds used in the processes from melting to casting and molds that connect these may be mixed into the material. It is difficult to avoid this contamination even if a high-purity raw material is used. Further, even in the wire drawing process, wrinkles may be generated on the surface of the material or foreign substances may be caught on the surface of the material. The presence of such foreign matters and surface flaws causes disconnection when manufacturing the fine wire, and decreases the productivity of the fine wire. Patent Document 1 discloses the use of chemical dissolution in reducing the diameter from the wire diameter of the drawn wire to the final wire diameter in order to make it difficult to cause disconnection.

特開2002-140935号公報Japanese Patent Laid-Open No. 2002-140935 特開2001-040439号公報JP 2001-040439 A

しかし、従来の技術では、0.05mm以下の極細のCu-Ag合金線を生産性よく製造できるとは言い難い。   However, it is hard to say that the conventional technology can produce an ultrafine Cu-Ag alloy wire of 0.05 mm or less with high productivity.

特許文献1は、線径20μm(0.02mm)まで伸線した銅素線に電気化学溶解を施すことを開示している。しかし、従来の方法では、0.05mm以下まで伸線して長尺な極細線を製造すること自体が難しいことから、線径0.02mmまで伸線する間に断線が多発して、長尺な銅素線を得ることが困難である。また、異物径の絶対値は変化しないため、線径0.02mmの線材の表面層を除去する場合、線径に対する異物径の割合が大きくなることから、除去量が少ないと異物を完全に除去することが難しく、異物を完全に除去するために除去量を多くすると、廃棄分(表面層を除去した後の線材重量/表面層を除去する前の線材重量)が多くなる。特許文献1に記載されるように線径20μmの素線を線径14μmに縮径すると、歩留まりが約50%であり、半分を廃棄していることになる。この廃棄分は、0.02mmまで加工した費用が加わった部分であることから、この部分を廃棄することで歩留まりが悪く、コスト高になるという問題もある。   Patent Document 1 discloses performing electrochemical dissolution on a copper element wire drawn to a wire diameter of 20 μm (0.02 mm). However, with the conventional method, it is difficult to produce a long ultrafine wire by drawing it to 0.05 mm or less, so many breaks occur during drawing to a wire diameter of 0.02 mm, resulting in a long copper wire. It is difficult to obtain a strand. In addition, since the absolute value of the foreign substance diameter does not change, when removing the surface layer of a wire with a wire diameter of 0.02 mm, the ratio of the foreign substance diameter to the wire diameter increases, so the foreign substance is completely removed if the removal amount is small. However, if the removal amount is increased in order to completely remove foreign matter, the amount of waste (the weight of the wire after removing the surface layer / the weight of the wire before removing the surface layer) increases. As described in Patent Document 1, when a strand having a wire diameter of 20 μm is reduced to a wire diameter of 14 μm, the yield is about 50% and half of the wire is discarded. Since this waste is a part added to the cost of processing to 0.02 mm, there is a problem that discarding this part results in poor yield and high cost.

本発明は上記事情に鑑みてなされたものであり、その目的の一つは、伸線時の断線を低減して、線径0.05mm以下のCu-Ag合金線を生産性よく製造することができるCu-Ag合金線の製造方法を提供することにある。また、本発明の他の目的は、高導電性で高強度な極細のCu-Ag合金線、及びこの極細線を撚り合わせた撚り線、並びにこの極細線や撚り線を中心導体とした同軸ケーブルを提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to reduce the disconnection during wire drawing and to produce a Cu-Ag alloy wire having a wire diameter of 0.05 mm or less with high productivity. An object of the present invention is to provide a method for producing a Cu-Ag alloy wire. Another object of the present invention is to provide a highly conductive and high-strength ultra-fine Cu-Ag alloy wire, a stranded wire obtained by twisting the ultra-fine wire, and a coaxial cable having the ultra-fine wire or the stranded wire as a central conductor. Is to provide.

本発明者らは、高純度の原料を利用することによる鋳造材に含まれる異物の低減には限界があることから、鋳造材に含まれる異物の量がどの程度であれば極細線用の鋳造材として許容できるかという観点から検討した。その結果、鋳造材の一部をサンプルとして取得し、含有される異物の濃度を測定し、一定以上の径を有する異物の量が所定値以下であれば、断線に関与する異物が非常に少ない鋳造材になることを見出した。そして、この鋳造材は、伸線時に断線し難いため、生産性よく極細線を製造できるとの知見を得た。また、この鋳造材は、特定の条件の鋳造を行うことで製造できるとの知見を得た。   Since the present inventors have a limit to the reduction of foreign matter contained in a cast material by using a high-purity raw material, what is the amount of foreign matter contained in the cast material? It was examined from the viewpoint of acceptability as a material. As a result, a part of the cast material is obtained as a sample, the concentration of the contained foreign matter is measured, and if the amount of foreign matter having a certain diameter or more is a predetermined value or less, the foreign matter involved in the disconnection is very small. I found it to be a cast material. And since this cast material was hard to break at the time of wire drawing, the knowledge that an ultrafine wire could be manufactured with high productivity was acquired. Moreover, the knowledge that this cast material can be manufactured by casting under specific conditions was obtained.

更に、0.05mm以下といった非常に極細のCu-Ag合金線を製造する場合は、上記断線に関与し得る異物が少ない鋳造材を用いることに加えて、伸線の途中段階にある特定の大きさの線材に対して、特定の量の表面層を除去することで、伸線時の断線を効果的に低減することができ、所望の大きさの極細線を生産性よく製造することができるとの知見を得た。   In addition, when producing very fine Cu-Ag alloy wires of 0.05 mm or less, in addition to using a cast material with less foreign matter that can be involved in the disconnection, a specific size in the middle of wire drawing By removing a specific amount of the surface layer, it is possible to effectively reduce the disconnection at the time of wire drawing, and to produce a very fine wire of a desired size with high productivity. I got the knowledge.

上記知見に基づき、本発明のCu-Ag合金線の製造方法は、特定の鋳造材を用いると共に、特定の表面層の除去を行う。具体的には、本発明Cu-Ag合金線の製造方法は、Agを0.5質量%以上15.0質量%以下含有する鋳造材に伸線加工を施して、最終線径が0.05mm以下の極細線を製造する方法であり、以下の鋳造工程及び表面層除去工程を具える。
(1) 鋳造工程:用意した原料Cu及び原料Agを高純度のカーボンからなる坩堝で溶解し、この混合溶湯をCuとAgとの混合物の液相点温度以上に30分以上保持して、混合溶湯の表面に不純物を分離させる。この後、高純度のカーボンからなる鋳型を用いて、上記不純物を分離した混合溶湯から鋳造材を作製する。
(2) 表面層除去工程:最終線径に至るまでの伸線の途中段階にある線材の表面層を除去する。この表面層除去工程は、特に、線径φが1.0mm以下の細い線材の表面層を除去する細線加工工程を具える。そして、この細線加工工程において表面層の除去は、表面層の除去前の線材の線径φの1/2をrとするとき、除去する表面層の厚さtがt/r≧0.02を満たすように行う。
Based on the above knowledge, the method for producing a Cu—Ag alloy wire of the present invention uses a specific cast material and removes a specific surface layer. Specifically, in the method for producing a Cu-Ag alloy wire of the present invention, an ultrafine wire having a final wire diameter of 0.05 mm or less is obtained by subjecting a cast material containing Ag to 0.5 mass% to 15.0 mass% to wire drawing. It is a manufacturing method, and includes the following casting process and surface layer removal process.
(1) Casting process: Melt the prepared raw material Cu and raw material Ag in a crucible made of high purity carbon, hold this mixed molten metal for 30 minutes or more above the liquidus temperature of the mixture of Cu and Ag, and mix Impurities are separated on the surface of the molten metal. Thereafter, a cast material is produced from the molten metal from which the impurities are separated, using a mold made of high purity carbon.
(2) Surface layer removal step: The surface layer of the wire in the middle of drawing until reaching the final wire diameter is removed. This surface layer removing step particularly includes a thin wire processing step for removing a surface layer of a thin wire having a wire diameter φ of 1.0 mm or less. Then, in this fine wire processing step, the removal of the surface layer is such that the thickness t of the surface layer to be removed satisfies t / r ≧ 0.02, where r is 1/2 of the wire diameter φ of the wire before the removal of the surface layer. Do as follows.

断線に関与し得る異物が少ない鋳造材を用いると共に、伸線前の素材に皮剥ぎを行って異物や表面疵を除去したものを伸線に供することが考えられる。しかし、このような上流の工程で皮剥ぎを行っても、0.05mm以下、特に0.04mm以下、取り分け0.025mm未満といった非常に極細のCu-Ag合金線を伸線により製造する場合、断線が多発して、連続して極細線を製造することが難しいとの知見を得た。つまり、上流で皮剥ぎしても、素材のごく表面に存在する異物や疵しか除去できないため、その後の伸線により、素材の内部に存在した異物や疵が表面側に現れることで断線する恐れがある。また、上流で皮剥ぎしても、伸線途中に新たに異物を巻き込んだり疵が生じたりすることでも、断線する恐れがあり、連続して極細線を製造することが難しい。一方、引用文献1のように伸線後(最終線径直前)といった最下流の工程で表面層を除去すると、上述のように歩留まりの低下やコストの上昇を招き易い。これに対し、本発明者らは、1.0mm以下といった細径になってから表面層の除去を行うと、断線が生じ難くなり、0.025mm未満といった非常に極細の線材であっても連続して製造することができ、断線回数の減少から生産性を向上できる、との知見を得た。そこで、本発明製造方法では、伸線の途中段階である細径の線材に対して、表面層の除去を行う。   It is conceivable to use a cast material with less foreign matter that can be involved in disconnection, and to strip the raw material before drawing to remove foreign matter and surface flaws. However, even when stripping in such an upstream process, if a very fine Cu-Ag alloy wire with a thickness of 0.05 mm or less, particularly 0.04 mm or less, especially less than 0.025 mm, is produced by wire drawing, frequent disconnections occur. As a result, it has been found that it is difficult to continuously produce extra fine wires. In other words, even if the skin is peeled upstream, only foreign matter and wrinkles present on the very surface of the material can be removed. There is. Further, even if the skin is peeled upstream, foreign matter may be newly involved in the drawing process or wrinkles may be generated, and there is a risk of disconnection, and it is difficult to continuously manufacture the fine wire. On the other hand, if the surface layer is removed in the most downstream process after wire drawing (just before the final wire diameter) as in Cited Document 1, yields and costs are likely to increase as described above. On the other hand, when the surface layer is removed after the diameter becomes 1.0 mm or less, the present inventors hardly break the wire, and even a very fine wire material of less than 0.025 mm continuously. It was possible to manufacture and gained the knowledge that productivity could be improved by reducing the number of disconnections. Therefore, in the production method of the present invention, the surface layer is removed from the thin wire rod that is in the middle of wire drawing.

上記構成を具える本発明製造方法は、0.05mm以下の極細のCu-Ag合金線の製造にあたり、断線が生じ難く、連続して伸線することができる。そのため、本発明製造方法によれば、長尺で極細の線材を製造することができ、生産性に優れる。以下、本発明をより詳細に説明する。   The manufacturing method of the present invention having the above-described configuration is capable of continuous wire drawing without causing disconnection in manufacturing an ultrafine Cu—Ag alloy wire of 0.05 mm or less. Therefore, according to the manufacturing method of the present invention, a long and extremely fine wire can be manufactured, and the productivity is excellent. Hereinafter, the present invention will be described in more detail.

上記鋳造工程では、特に、混合溶湯の表面に不純物を分離させるための保持時間が重要である。この保持時間が30分より短いと、不純物の分離が不十分になり、鋳造材に含まれる異物も多くなる。特に、保持時間が0〜20分の場合、断線に関与する異物が高い確率で鋳造材に含有され、このような鋳造材を利用することで、伸線時に断線が生じ易くなる。保持時間は、30分以上であればよく、上限は特に問わないが、生産性を考慮すると、10時間以下が好ましい。   In the casting process, the holding time for separating impurities on the surface of the mixed molten metal is particularly important. When this holding time is shorter than 30 minutes, the separation of impurities becomes insufficient, and the foreign material contained in the cast material also increases. In particular, when the holding time is 0 to 20 minutes, the foreign material involved in the disconnection is contained in the cast material with a high probability, and by using such a cast material, disconnection is likely to occur at the time of wire drawing. The holding time may be 30 minutes or longer, and the upper limit is not particularly limited. However, considering productivity, it is preferably 10 hours or shorter.

上記鋳造工程により、断線に関与し得る異物が少ない鋳造材が得られる。具体的には、鋳造材の一部を酸で溶解した後、孔径0.2μmのフィルターで濾過し、フィルターに回収された残渣物に含まれるAl量及びSi量がそれぞれ溶解させた鋳造材に対して1質量ppm以下である。即ち、この鋳造材は、0.2μm超のAl化合物及びSi化合物が非常に少ない。伸線時に破断の要因となる粗大な異物が少ないため、この鋳造材を利用することで、伸線時の断線を効果的に低減することができる。なお、Al量及びSi量が1質量ppmを超える場合、鋳造材を作り直して、上記異物が少ない鋳造材を伸線に供することが好ましい。   By the casting process, a cast material with few foreign matters that can be involved in the disconnection is obtained. Specifically, after part of the cast material is dissolved with an acid, it is filtered with a filter having a pore size of 0.2 μm, and the cast material in which the amount of Al and the amount of Si contained in the residue collected on the filter are respectively dissolved is dissolved. 1 ppm by mass or less. That is, this cast material has very little Al compound and Si compound exceeding 0.2 μm. Since there are few coarse foreign matters that cause breakage at the time of wire drawing, the use of this cast material can effectively reduce the disconnection at the time of wire drawing. In addition, when the amount of Al and the amount of Si exceed 1 ppm by mass, it is preferable to recreate the cast material and use the cast material with less foreign matter for wire drawing.

また、鋳造材に含有される異物を低減するために高純度のカーボンからなる坩堝や鋳型を利用する。具体的には、不純物量が20質量ppm以下、より好ましくは5質量ppm以下のカーボン製のものを使用することが好ましい。更に、原料Cuや原料Agも純度の高いもの、例えば、フォーナインクラス(純度99.99%)以上のものを利用することが好ましい。   In addition, a crucible or mold made of high-purity carbon is used to reduce foreign substances contained in the cast material. Specifically, it is preferable to use a carbon product having an impurity amount of 20 mass ppm or less, more preferably 5 mass ppm or less. Furthermore, it is preferable to use a raw material Cu or a raw material Ag having a high purity, for example, a four-nine class (purity 99.99%) or higher.

原料Agの添加量は、得られた極細線中のAgの含有量が0.5〜15.0質量%となるように調整する。Agの含有量が15.0質量%を超えると、伸線時の加工度(減面率)や中間熱処理を調整しても、後述するような所定の導電率が得られず、0.5質量%を下回ると、伸線時の加工度や中間熱処理を調整しても、後述するような所定の強度が得られない。   The addition amount of the raw material Ag is adjusted so that the content of Ag in the obtained ultrafine wire is 0.5 to 15.0% by mass. If the Ag content exceeds 15.0% by mass, even if the degree of workability (area reduction) and intermediate heat treatment at the time of wire drawing are adjusted, the predetermined conductivity as described later cannot be obtained, and it is less than 0.5% by mass. And even if it adjusts the workability at the time of wire drawing, and intermediate heat processing, the predetermined intensity | strength which is mentioned later cannot be obtained.

本発明製造方法において伸線加工(特に冷間)は、最終線径となるまで複数パスに亘って行う。所望の線径や引張強さなどの特性を有する線材が得られるように伸線条件を調整するとよい。特に、最初に行う冷間伸線加工は、加工度が70%以上であると、以降の伸線加工を所定の加工度で行い易い。   In the manufacturing method of the present invention, the wire drawing (particularly cold) is performed over a plurality of passes until the final wire diameter is reached. The wire drawing conditions may be adjusted so that a wire having characteristics such as a desired wire diameter and tensile strength can be obtained. In particular, the cold wire drawing performed first is easy to perform the subsequent wire drawing with a predetermined degree of processing when the degree of processing is 70% or more.

複数パスの伸線加工を行う場合、途中段階に中間熱処理を行うと、この中間熱処理前に線材に導入された加工歪みを除去して、以降の伸線加工を行い易くすることができる。また、中間熱処理によりAgを析出させて、以降の伸線加工によりAg析出物を繊維状とすることで、極細線の強度を向上できる。中間熱処理の条件は、加熱温度:350〜500℃(好ましくは、400〜450℃)、保持時間:0.5〜10時間が挙げられる。   When performing a multipass wire drawing process, if an intermediate heat treatment is performed at an intermediate stage, it is possible to remove the processing distortion introduced into the wire before the intermediate heat treatment and facilitate the subsequent wire drawing. Moreover, the strength of the ultrafine wire can be improved by precipitating Ag by an intermediate heat treatment and making the Ag precipitate into a fibrous form by subsequent wire drawing. The conditions for the intermediate heat treatment include heating temperature: 350 to 500 ° C. (preferably 400 to 450 ° C.) and holding time: 0.5 to 10 hours.

本発明製造方法において、少なくとも細線加工工程における表面層の除去は、化学処理や電気化学処理により行うことが好ましい。細線加工工程において表面層の除去を行う対象となる線材は、線径φが1.0mm以下と細いため、通常の皮剥ぎに利用される皮剥ぎダイスを利用すると、ダイス孔の中心に線材の中心を合わせることが難しく、生産性の低下を招く。一方、化学処理や電気化学処理は、どのような線径の線材に対しても簡単に施すことができる上に、処理後の表面が非常に平滑で断線の原因となる疵などが存在し難いため、処理後の線材に更に伸線加工を施す際、断線し難く、伸線性に優れる。代表的な処理として、電解研磨などが挙げられる。公知の処理を利用してもよい。細線加工工程において表面層の除去を行う線材は、線径がφ1.0mm以下であればよいが、線径が小さ過ぎると、線材から除去される廃棄分が多くなり、製造コストの増加を招くことから、線径がφ0.2mm以上であることが好ましい。   In the production method of the present invention, at least the removal of the surface layer in the fine wire processing step is preferably performed by chemical treatment or electrochemical treatment. The wire that is subject to removal of the surface layer in the thin wire processing step is thin with a wire diameter φ of 1.0 mm or less, so when using a peeling die that is used for normal skinning, the center of the wire is located at the center of the die hole. It is difficult to match, leading to a decrease in productivity. On the other hand, chemical treatment and electrochemical treatment can be easily applied to wires of any wire diameter, and the surface after treatment is very smooth and hardly causes defects such as wire breakage. For this reason, when the drawn wire is further subjected to wire drawing, it is difficult to break and excellent in wire drawing. Typical processing includes electrolytic polishing. A known process may be used. The wire that removes the surface layer in the thin wire processing step may have a wire diameter of φ1.0 mm or less, but if the wire diameter is too small, the amount of waste removed from the wire increases, resulting in an increase in manufacturing cost. Therefore, the wire diameter is preferably φ0.2 mm or more.

上記細線加工工程において表面層の除去割合t/rは、0.02以上とし、好ましくは、0.08以上とする。また、表面層の除去は、細線加工工程を含めて複数回行うと、表面層の除去量が多くなることで、疵や異物を十分に除去することができ、断線の発生を低減することができる。表面層の除去を複数回行う場合、各処理における除去割合t/rの合計が、0.08以上となるように表面層の除去を行うことが好ましく、0.12以上がより好ましい。しかし、除去量が大きくなり過ぎると歩留まりが悪くなるため、t/rの合計の上限は0.20程度である。なお、表面層の厚さtとは、線材の表面から、線材の径方向に沿った距離とする。また、線材の断面形状は、代表的には、円形状である。   In the fine wire processing step, the removal rate t / r of the surface layer is 0.02 or more, preferably 0.08 or more. Also, if the surface layer is removed multiple times including the thin wire processing step, the amount of removal of the surface layer increases, so that wrinkles and foreign matters can be sufficiently removed, and the occurrence of disconnection can be reduced. it can. When removing the surface layer a plurality of times, it is preferable to remove the surface layer so that the total removal ratio t / r in each treatment is 0.08 or more, and more preferably 0.12 or more. However, if the removal amount becomes too large, the yield deteriorates, so the upper limit of the total t / r is about 0.20. The surface layer thickness t is a distance along the radial direction of the wire from the surface of the wire. Moreover, the cross-sectional shape of a wire is typically circular.

本発明製造方法により製造するCu-Ag合金線は、めっきを有していてもよい。めっきを施すことで、Cu-Ag合金線の耐食性を向上する他、線材同士の接続や線材を他の部材に接続する際の接続性を高められる。めっきは、Au,Au合金,Ag,Ag合金,Sn,Sn合金,Ni及びNi合金から選択される1種以上が挙げられる。このめっきは、細線加工工程により表面層の除去を行った後の任意の時期に行うとよい。即ち、めっき工程は、最終の伸線終了後でもよいし、細線加工工程以降の伸線途中(パス間)でもよい。表面層の除去後の線材は、表面が平滑で清浄であることからめっきを施し易い。   The Cu—Ag alloy wire produced by the production method of the present invention may have plating. By performing the plating, the corrosion resistance of the Cu-Ag alloy wire can be improved, and the connectivity between the wires and when connecting the wires to other members can be enhanced. Examples of the plating include one or more selected from Au, Au alloy, Ag, Ag alloy, Sn, Sn alloy, Ni, and Ni alloy. This plating may be performed at any time after the surface layer is removed by the fine wire processing step. That is, the plating process may be performed after the end of the final wire drawing or during the wire drawing (between passes) after the fine wire processing step. The wire after removal of the surface layer is easy to be plated because the surface is smooth and clean.

上記本発明製造方法により得られた本発明Cu-Ag合金線は、Agを0.5質量%以上15.0質量%以下含有し、残部がCu及び不可避的不純物からなる。また、本発明Cu-Ag合金線は、上述した鋳造材と同様にAl量及びSi量が少なく、それぞれ1質量ppm以下である。本発明Cu-Ag合金線は、異物の含有量が非常に少ないため、例えば、更に伸線加工を施す場合や、複数のCu-Ag合金線を撚り合わせて撚り線にする場合などで断線が生じ難い。また、Cu-Ag合金線やその撚り線を同軸ケーブルの中心導体とした場合、同軸ケーブルの使用時に断線などの不具合が生じ難い。   The Cu-Ag alloy wire of the present invention obtained by the above-described production method of the present invention contains 0.5% by mass or more and 15.0% by mass or less of Ag, with the balance being Cu and inevitable impurities. Further, the Cu-Ag alloy wire of the present invention has a small amount of Al and Si as in the above-described cast material, and each is 1 ppm by mass or less. Since the Cu-Ag alloy wire of the present invention has a very low content of foreign matter, for example, when further drawing, or when twisting a plurality of Cu-Ag alloy wires into a stranded wire, disconnection may occur. Not likely to occur. Moreover, when a Cu-Ag alloy wire or its stranded wire is used as the central conductor of a coaxial cable, problems such as disconnection are less likely to occur when the coaxial cable is used.

上記本発明製造方法では、伸線時に断線が生じ難いことから、極細の本発明Cu-Ag合金線が得られる。具体的には、線径を0.05mm以下とすることができる。伸線加工を更に施すことで、線径を0.01mm(10μm)〜0.03mm(30μm)とすることもできる。   In the above-mentioned production method of the present invention, it is difficult for wire breakage to occur at the time of wire drawing, so that an ultrafine Cu-Ag alloy wire of the present invention can be obtained. Specifically, the wire diameter can be 0.05 mm or less. By further drawing, the wire diameter can be set to 0.01 mm (10 μm) to 0.03 mm (30 μm).

上記本発明製造方法では、伸線加工による加工硬化や上述したAg析出物を繊維状とした効果などにより、高強度な本発明Cu-Ag合金線が得られる。特に、引張強さが800MPa以上1600MPa以下であることが好ましい。このような引張強さを有する本発明Cu-Ag合金線は、例えば、コイル状に巻回したり、複数のCu-Ag合金線を撚り合わせたりするときに破断し難い。引張強さや後述する導電率が所望の値となるように、Agの含有量や伸線時の加工度(減面率)、中間熱処理条件などを調整するとよい。   In the production method of the present invention, the Cu-Ag alloy wire of the present invention having high strength can be obtained by work hardening by wire drawing, the effect of making the above Ag precipitate into a fiber, or the like. In particular, the tensile strength is preferably 800 MPa or more and 1600 MPa or less. The Cu—Ag alloy wire of the present invention having such a tensile strength is difficult to break when wound into a coil or when a plurality of Cu—Ag alloy wires are twisted together. It is advisable to adjust the Ag content, the workability during wire drawing (area reduction ratio), the intermediate heat treatment conditions, etc. so that the tensile strength and the electrical conductivity described later have desired values.

本発明Cu-Ag合金線は、導電率が65%IACS以上、特に70%IACS以上、更には80%IACS以上であることが好ましい。このような極細で、高強度・高導電率な本発明Cu-Ag合金線は、種々の電気機器の導体材料に好適に利用できると期待される。   The Cu—Ag alloy wire of the present invention preferably has a conductivity of 65% IACS or more, particularly 70% IACS or more, more preferably 80% IACS or more. Such an ultrafine, high strength and high conductivity Cu-Ag alloy wire of the present invention is expected to be suitably used as a conductor material for various electrical devices.

本発明Cu-Ag合金線の製造方法によれば、線径0.05mm以下といった極細なCu-Ag合金線を連続して製造することができ、Cu-Ag合金線の生産性に優れる。また、この製造方法により得られたCu-Ag合金線や、このCu-Ag合金線の撚り線は、高強度で高導電率であり、同軸ケーブルなどの導体に好適に利用することができる。   According to the method for producing a Cu-Ag alloy wire of the present invention, an ultrafine Cu-Ag alloy wire having a wire diameter of 0.05 mm or less can be continuously produced, and the productivity of the Cu-Ag alloy wire is excellent. Moreover, the Cu-Ag alloy wire obtained by this manufacturing method and the stranded wire of this Cu-Ag alloy wire have high strength and high conductivity, and can be suitably used for conductors such as coaxial cables.

Cu-Ag合金からなる複数の極細線を製造し、伸線性を調べた。   Several ultra-fine wires made of Cu-Ag alloy were manufactured and the drawability was investigated.

<鋳造材の作製>
原料Cuとして、純度99.99%以上の電気銅、原料Agとして純度99.99%以上の銀粒(Ag)を用意した。用意した上記電気銅を酸洗し、電気銅の表面に付着した異物を除去した後、酸洗した電気銅と上記銀粒とを高純度カーボン製坩堝に投入して、連続鋳造装置内で真空溶解させ、Cu及びAgが溶解した混合溶湯を作製した。なお、銀粒の添加量は、混合溶湯に対するAg含有量が0.6質量%となるように調整した。
<Production of casting material>
Electrolytic copper having a purity of 99.99% or more was prepared as a raw material Cu, and silver grains (Ag) having a purity of 99.99% or more were prepared as a raw material Ag. After the prepared electrolytic copper is pickled and foreign matter adhering to the surface of the electrolytic copper is removed, the pickled electrolytic copper and the silver particles are put into a high-purity carbon crucible and vacuumed in a continuous casting apparatus. A mixed molten metal was prepared by melting and dissolving Cu and Ag. In addition, the addition amount of the silver grain was adjusted so that Ag content with respect to mixed molten metal might be 0.6 mass%.

上記混合溶湯は、銀粒を添加した後、CuとAgとの混合物の液相点温度以上に30分保持して、上記坩堝内の混合溶湯の表面に異物を含む不純物を分離させた。   After the silver melt was added, the mixed molten metal was held at a temperature higher than the liquidus temperature of the mixture of Cu and Ag for 30 minutes to separate impurities including foreign matters on the surface of the mixed molten metal in the crucible.

不純物を分離させた後、高純度カーボン製鋳型を用いて線径8.0mmの丸線(鋳造材)を製造した。得られた鋳造材中のAl量及びSi量を測定した。ここでは、鋳造材を200g取り分けて、6.4mol以上の硝酸を含む水溶液に溶解し、この溶液を孔径0.2μmのフィルターで濾過して、残渣物をフィルターで回収した。回収した残渣物を白金製坩堝内で乾燥し、フィルターを灰化した後、融剤を加えて溶融し、ガラス状物質とした。得られたガラス状物質を、塩酸を含む水溶液に溶解した。鋳造材の溶解からガラス状物質の溶解までの作業は、クリーンブース内で実施した。そして、ガラス状物質が溶解した溶液を誘導結合プラズマ(ICP)発光分光分析により、Si量及びAl量を定量した。その結果、Si量:0.1質量ppm、Al:0.3質量ppmであり、いずれも1質量ppm以下であった。なお、Si量及びAl量の測定に利用する鋳造材の量は、100g〜200g程度で十分である。   After separating the impurities, a round wire (cast material) having a wire diameter of 8.0 mm was manufactured using a high purity carbon mold. The amount of Al and the amount of Si in the obtained cast material were measured. Here, 200 g of the cast material was separated and dissolved in an aqueous solution containing 6.4 mol or more of nitric acid. This solution was filtered with a filter having a pore size of 0.2 μm, and the residue was collected with a filter. The collected residue was dried in a platinum crucible to incinerate the filter, and then melted by adding a flux to give a glassy substance. The obtained glassy substance was dissolved in an aqueous solution containing hydrochloric acid. The work from the melting of the cast material to the melting of the glassy substance was carried out in a clean booth. The amount of Si and Al was quantified by inductively coupled plasma (ICP) emission spectroscopic analysis of the solution in which the glassy substance was dissolved. As a result, the Si content was 0.1 mass ppm and the Al was 0.3 mass ppm, both of which were 1 mass ppm or less. In addition, about 100-200g is sufficient for the quantity of the casting material utilized for the measurement of Si amount and Al amount.

得られた鋳造材に複数パスの冷間伸線加工を施し、最終線径0.021mmの線材を得た。伸線加工には、American Wire Gage規格(AWG規格)のダイスを使用した。また、いずれの試料においても、伸線の途中段階である、線径が2.6mmである線材に中間熱処理(400℃×8時間)を施した。更に、いずれの試料においても、伸線の途中段階である、線径が0.3mmである線材にAgめっきを施した。   The obtained cast material was subjected to multiple passes of cold drawing to obtain a wire material having a final wire diameter of 0.021 mm. For wire drawing, an American Wire Gage standard (AWG standard) die was used. In each sample, intermediate heat treatment (400 ° C. × 8 hours) was performed on a wire rod having a wire diameter of 2.6 mm, which is an intermediate stage of wire drawing. Further, in any sample, Ag plating was applied to a wire material having a wire diameter of 0.3 mm, which is an intermediate stage of wire drawing.

(試料1)
試料1は、伸線の途中段階である、線径φが0.9mm(≦1.0mm)となったとき、線材に電解研磨を施し、表面層を除去した。電解研磨は、電解液にリン酸水溶液を用い、電流密度:40A/dm2、浸漬時間:6.8min、温度:30℃として行った。除去した表面層の厚さtは、t=0.06mmとした。線径φの1/2をrとすると、r=φ×(1/2)=0.9×(1/2)=0.45、t/r≒0.133(≧0.02)である。
(Sample 1)
In Sample 1, when the wire diameter φ became 0.9 mm (≦ 1.0 mm), which was an intermediate stage of wire drawing, the wire was subjected to electropolishing and the surface layer was removed. The electropolishing was performed using an aqueous phosphoric acid solution as the electrolytic solution, with a current density of 40 A / dm 2 , an immersion time of 6.8 min, and a temperature of 30 ° C. The thickness t of the removed surface layer was t = 0.06 mm. When r is 1/2 of the wire diameter φ, r = φ × (1/2) = 0.9 × (1/2) = 0.45, t / r≈0.133 (≧ 0.02).

(試料2)
試料2は、伸線の途中段階である、線径φ1が2.6mm(>1.0mm)となったとき、線材に上記中間熱処理を施した後、化学研磨を施し、表面層を除去した。化学研磨は、研磨液に硫酸水素水溶液を用い、浸漬時間:150min、温度:30℃として行った。除去した表面層の厚さt1は、t1=0.15mmとした。線径φ1の1/2をr1とすると、r1=1.30、t1/r1≒0.115である。更に、この試料2は、伸線の途中段階である、線径φ2が0.9mm(≦1.0mm)となったとき、上記と同様の化学研磨を線材に施し、表面層を除去した。除去した表面層の厚さt2は、浸漬時間を異ならせることで変化させ、t2=0.01mmとした。線径φ2の1/2をr2とすると、r2=0.45、t2/r2≒0.022(≧0.02)である。2回の表面層の除去におけるr1/t1及びt2/r2の合計は、0.115+0.022=0.137(≧0.08)である。
(Sample 2)
For sample 2, when the wire diameter φ 1 reached 2.6 mm (> 1.0 mm), which was in the middle of wire drawing, the wire was subjected to the above intermediate heat treatment and then subjected to chemical polishing to remove the surface layer. Chemical polishing was performed using an aqueous hydrogen sulfate solution as the polishing liquid, with an immersion time of 150 min and a temperature of 30 ° C. The thickness t 1 of the removed surface layer was t 1 = 0.15 mm. If 1/2 of the wire diameter φ 1 is r 1 , r 1 = 1.30 and t 1 / r 1 ≈0.115. Further, in this sample 2, when the wire diameter φ 2 , which is an intermediate stage of wire drawing, became 0.9 mm (≦ 1.0 mm), the wire was subjected to chemical polishing similar to the above to remove the surface layer. The thickness t 2 of the removed surface layer was changed by varying the immersion time, and t 2 = 0.01 mm. When 1/2 of the wire diameter φ 2 is r 2 , r 2 = 0.45, t 2 / r 2 ≈0.022 (≧ 0.02). Total r 1 / t 1 and t 2 / r 2 in the removal of the two surface layers is 0.115 + 0.022 = 0.137 (≧ 0.08 ).

(試料3)
試料3は、試料1と同様に線径φが0.9mmとなったとき、試料1と同様の電解研磨を線材に施し、表面層を除去した。除去した表面層の厚さt3は、浸漬時間を異ならせることで変化させ、t3=0.04mmとした。線径φの1/2をrとすると、r=0.45、t/r3≒0.089(≧0.02)である。
(Sample 3)
Sample 3 was subjected to the same electrolytic polishing as that of Sample 1 on the wire when the wire diameter φ was 0.9 mm as in Sample 1, and the surface layer was removed. The thickness t 3 of the removed surface layer was changed by changing the immersion time to t 3 = 0.04 mm. When r is 1/2 of the wire diameter φ, r = 0.45 and t / r 3 ≈0.089 (≧ 0.02).

(試料4)
試料4は、線径φが2.6mmのときに表面層の除去を行わず、線径φが0.9mmとなったとき、試料2と同様の化学研磨を線材に施し、表面層を除去した。除去した表面層の厚さt4は、浸漬時間を異ならせることで変化させ、t4=0.02mmとした。線径φの1/2をrとすると、r=0.45、t/r4≒0.044(≧0.02)である。
(Sample 4)
For sample 4, the surface layer was not removed when the wire diameter φ was 2.6 mm, and when the wire diameter φ became 0.9 mm, the wire was subjected to chemical polishing similar to that of sample 2 to remove the surface layer. The thickness t 4 of the removed surface layer was changed by changing the immersion time to t 4 = 0.02 mm. When r is 1/2 of the wire diameter φ, r = 0.45 and t / r 4 ≈0.044 (≧ 0.02).

比較例:(試料I)
試料Iは、伸線の途中段階である、線径φIが2.6mm(>1.0mm)となったとき、線材に上記中間熱処理を施した後、試料2と同様の化学研磨を施し、表面層を除去した。除去した表面層の厚さtIはtI=0.15mmとした。線径φの1/2をrIとすると、rI=1.30、tI/rI≒0.115である。なお、この試料Iは、線径φが0.9mmのときに表面層の除去を行わなかった。
Comparative example: (Sample I)
Sample I was in the middle of wire drawing, and when the wire diameter φ I was 2.6 mm (> 1.0 mm), the wire was subjected to the above intermediate heat treatment and then subjected to the same chemical polishing as Sample 2, The layer was removed. The thickness t I of the removed surface layer was t I = 0.15 mm. When r I is 1/2 of the wire diameter φ, r I = 1.30 and t I / r I ≈0.115. In Sample I, the surface layer was not removed when the wire diameter φ was 0.9 mm.

比較例:(試料II)
試料IIは、伸線の途中段階に表面層の除去を行わず、上述した中間熱処理及びめっきのみを線材に施した試料である。
Comparative example: (Sample II)
Sample II is a sample in which the surface layer is not removed in the middle of wire drawing, and only the above-described intermediate heat treatment and plating are applied to the wire.

<伸線性の評価>
各試料に対して、線径8mmの鋳造材を最終線径0.021mmまで伸線したときの伸線性を調べた。その結果を表1に示す。伸線性は、上述した鋳造材を20kgずつ用意し、20kg全量が伸線し終わるまでの間に発生した断線回数を測定し、20kgをその断線回数で割った値(kg/回)により評価した。
<Evaluation of wire drawing>
For each sample, the drawability when a cast material having a wire diameter of 8 mm was drawn to a final wire diameter of 0.021 mm was examined. The results are shown in Table 1. The wire drawing property was evaluated by a value (kg / time) obtained by dividing the above-mentioned cast material by 20 kg, measuring the number of breaks that occurred until the entire 20 kg was drawn, and dividing 20 kg by the number of breaks. .

<Cu-Ag合金線の特性>
また、得られた試料1〜4について、引張強さ(MPa)及び導電率(%IACS)を測定した。その結果も表1に示す。
<Characteristics of Cu-Ag alloy wire>
Further, the obtained samples 1 to 4 were measured for tensile strength (MPa) and electrical conductivity (% IACS). The results are also shown in Table 1.

Figure 2010177055
Figure 2010177055

表1に示すように、混合溶湯をCuとAgとの混合物の液相点温度以上に30分以上保持して作製した鋳造材を用いると共に、線径が1.0mm以下となった線材に特定量の表面層の除去を行った試料1〜4はいずれも、伸線性が高く、線径が0.025mm未満といった極細の線材の製造であっても、断線し難いことが分かる。特に、表面層の除去を複数回行うと、より一層断線し難くなることが分かる。また、異物が少ない鋳造材を利用していても、特定の線径の線材に表面層の除去を行わないと、0.025mm未満といった非常に極細の線材を製造する場合は、断線が多発することが分かる。   As shown in Table 1, while using a cast material prepared by holding the mixed molten metal for 30 minutes or more above the liquidus temperature of the mixture of Cu and Ag, a specific amount is used for the wire material whose wire diameter is 1.0 mm or less. It can be seen that Samples 1 to 4 from which the surface layer was removed are highly wire-drawable and difficult to break even in the production of ultrafine wires having a wire diameter of less than 0.025 mm. In particular, it can be seen that if the surface layer is removed a plurality of times, it becomes more difficult to disconnect. Also, even if a casting material with few foreign objects is used, if the surface layer is not removed from the wire material with a specific wire diameter, disconnection will frequently occur when producing extremely fine wire materials of less than 0.025 mm. I understand.

更に、得られた試料1〜4はいずれも、引張強さが大きく、導電率も高いことが分かる。これら試料1〜4の線材をそれぞれ7本ずつ用意し、7本撚りの撚り線を製造したところ、断線などが生じることなく、撚り線を作製することができた。また、得られた撚り線を中心導体として、同軸ケーブルを製造したところ、問題なく作製することができた。従って、本発明Cu-Ag合金線は、種々の電気機器に使用される配線などの導体に求められる特性を十分に具えており、上記導体に好適に利用できると期待される。   Further, it can be seen that all of the obtained samples 1 to 4 have high tensile strength and high electrical conductivity. Seven of each of the samples 1 to 4 were prepared, and a 7-stranded strand was manufactured. As a result, a strand could be produced without disconnection or the like. Further, when a coaxial cable was manufactured using the obtained stranded wire as a central conductor, it could be produced without any problem. Therefore, the Cu-Ag alloy wire of the present invention has sufficient characteristics required for conductors such as wirings used in various electric devices, and is expected to be suitably used for the conductors.

なお、上述した実施形態は、本発明の要旨を逸脱することなく、適宜変更することが可能であり、上述した構成に限定されるものではない。例えば、Agの含有量や、表面層の除去割合、表面層の除去を行う線径、最終線径などを適宜変更することができる。   The above-described embodiment can be appropriately changed without departing from the gist of the present invention, and is not limited to the above-described configuration. For example, the content of Ag, the removal rate of the surface layer, the wire diameter for removing the surface layer, the final wire diameter, and the like can be appropriately changed.

本発明Cu-Ag合金線の製造方法は、線径が0.05mm以下といった極細の線材の製造に好適に利用することができる。本発明Cu-Ag合金線及び撚り線は、自動車や電子部品、産業用ロボットなどに利用される本発明同軸ケーブルの導体に好適に利用することができる。   The method for producing a Cu-Ag alloy wire of the present invention can be suitably used for producing an ultrafine wire having a wire diameter of 0.05 mm or less. The Cu-Ag alloy wire and the stranded wire of the present invention can be suitably used for the conductor of the coaxial cable of the present invention used for automobiles, electronic parts, industrial robots and the like.

Claims (8)

Agを0.5質量%以上15.0質量%以下含有する鋳造材に伸線加工を施して、最終線径が0.05mm以下の極細線を製造するCu-Ag合金線の製造方法であって、
用意した原料Cu及び原料Agを高純度のカーボンからなる坩堝で溶解し、この混合溶湯をCuとAgとの混合物の液相点温度以上に30分以上保持して、混合溶湯の表面に不純物を分離させた後、高純度のカーボンからなる鋳型を用いて前記鋳造材を作製する鋳造工程と、
前記最終線径に至るまでの伸線の途中段階にある線材において、線材の表面層を除去する表面層除去工程とを具え、
前記表面層除去工程は、線径φが1.0mm以下の細い線材の表面層を除去する細線加工工程を具え、
前記細線加工工程において表面層の除去は、表面層の除去前の線材の線径φの1/2をrとするとき、除去する表面層の厚さtがt/r≧0.02を満たすように行うことを特徴とするCu-Ag合金線の製造方法。
A method for producing a Cu-Ag alloy wire, in which an ultrafine wire having a final wire diameter of 0.05 mm or less is produced by performing wire drawing on a cast material containing 0.5 mass% or more and 15.0 mass% or less of Ag,
The prepared raw material Cu and raw material Ag are melted in a crucible made of high-purity carbon, and this mixed molten metal is kept at a temperature higher than the liquidus temperature of the mixture of Cu and Ag for 30 minutes or more, so that impurities are introduced into the surface of the mixed molten metal After separating, a casting process for producing the cast material using a mold made of high purity carbon,
In the wire in the middle of the drawing until reaching the final wire diameter, comprising a surface layer removal step of removing the surface layer of the wire,
The surface layer removing step includes a thin wire processing step of removing a surface layer of a thin wire having a wire diameter φ of 1.0 mm or less,
In the fine wire processing step, the surface layer is removed so that the thickness t of the surface layer to be removed satisfies t / r ≧ 0.02 when r is 1/2 of the wire diameter φ of the wire before the surface layer is removed. A method for producing a Cu-Ag alloy wire, which is characterized in that it is performed.
前記表面層除去工程を複数回具えており、各工程におけるt/rの合計が0.08以上となるように表面層の除去を行うことを特徴とする請求項1に記載のCu-Ag合金線の製造方法。   2. The Cu-Ag alloy wire according to claim 1, wherein the surface layer removal step is provided a plurality of times, and the surface layer is removed so that the total t / r in each step is 0.08 or more. Production method. 前記細線加工工程を経た線材の表面にめっきを施すめっき工程を具えることを特徴とする請求項1又は2に記載のCu-Ag合金線の製造方法。   3. The method for producing a Cu—Ag alloy wire according to claim 1, further comprising a plating step of plating the surface of the wire rod that has undergone the thin wire processing step. 請求項1〜3のいずれか1項に記載のCu-Ag合金線の製造方法により製造され、
Agを0.5質量%以上15.0質量%以下含有し、残部がCu及び不可避的不純物からなり、
線径が0.05mm以下であることを特徴とするCu-Ag合金線。
Produced by the method for producing a Cu-Ag alloy wire according to any one of claims 1 to 3,
Containing 0.5 mass% or more and 15.0 mass% or less of Ag, with the balance consisting of Cu and inevitable impurities,
A Cu-Ag alloy wire characterized by a wire diameter of 0.05 mm or less.
引張強さが800MPa以上1600MPa以下であることを特徴とする請求項4に記載のCu-Ag合金線。   5. The Cu—Ag alloy wire according to claim 4, wherein the tensile strength is 800 MPa or more and 1600 MPa or less. 表面にめっきが施されており、
前記めっきは、Au,Au合金,Ag,Ag合金,Sn,Sn合金,Ni及びNi合金から選択される1種以上からなることを特徴とする請求項4又は5に記載のCu-Ag合金線。
The surface is plated,
6. The Cu—Ag alloy wire according to claim 4, wherein the plating is made of at least one selected from Au, Au alloy, Ag, Ag alloy, Sn, Sn alloy, Ni and Ni alloy. .
請求項4〜6のいずれか1項に記載のCu-Ag合金線を素線として撚り合わせたことを特徴とするCu-Ag合金撚り線。   A Cu-Ag alloy stranded wire obtained by twisting the Cu-Ag alloy wire according to any one of claims 4 to 6 as a strand. 請求項4〜6のいずれか1項に記載のCu-Ag合金線、又はこのCu-Ag合金線を素線として撚り合わせたCu-Ag合金撚り線を中心導体としたことを特徴とする同軸ケーブル。   Coaxial, characterized in that the Cu-Ag alloy wire according to any one of claims 4 to 6, or a Cu-Ag alloy stranded wire obtained by twisting the Cu-Ag alloy wire as a strand is used as a central conductor. cable.
JP2009018749A 2009-01-29 2009-01-29 Method for producing Cu-Ag alloy wire and Cu-Ag alloy wire Expired - Fee Related JP5344150B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009018749A JP5344150B2 (en) 2009-01-29 2009-01-29 Method for producing Cu-Ag alloy wire and Cu-Ag alloy wire
CN201010107451A CN101791638A (en) 2009-01-29 2010-01-29 The manufacture method of Cu-Ag alloy wire and Cu-Ag alloy wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009018749A JP5344150B2 (en) 2009-01-29 2009-01-29 Method for producing Cu-Ag alloy wire and Cu-Ag alloy wire

Publications (2)

Publication Number Publication Date
JP2010177055A true JP2010177055A (en) 2010-08-12
JP5344150B2 JP5344150B2 (en) 2013-11-20

Family

ID=42707784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009018749A Expired - Fee Related JP5344150B2 (en) 2009-01-29 2009-01-29 Method for producing Cu-Ag alloy wire and Cu-Ag alloy wire

Country Status (1)

Country Link
JP (1) JP5344150B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012035862A1 (en) * 2010-09-17 2012-03-22 住友電気工業株式会社 Coaxial cable
US10720258B2 (en) 2017-01-10 2020-07-21 Hitachi Metals, Ltd. Method for manufacturing a conductive wire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106205870A (en) * 2016-08-11 2016-12-07 泰兴市圣达铜业有限公司 A kind of processing technique of high argentiferous copper cash

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06103809A (en) * 1992-09-16 1994-04-15 Showa Electric Wire & Cable Co Ltd Manufacture of cu-ag alloy wire
JPH11293365A (en) * 1998-04-09 1999-10-26 Furukawa Electric Co Ltd:The Super-fine conductor for winding, and its manufacture
JP2000199042A (en) * 1998-11-04 2000-07-18 Showa Electric Wire & Cable Co Ltd PRODUCTION OF Cu-Ag ALLOY WIRE ROD AND Cu-Ag ALLOY WIRE ROD
JP2002121629A (en) * 2000-10-13 2002-04-26 Hitachi Cable Ltd Super-extra-fine copper-alloy wire, copper-alloy stranded-wire conductor, extra-fine coaxial cable, and method for manufacturing super-extra-fine copper-alloy wire
JP2009280860A (en) * 2008-05-21 2009-12-03 Sumitomo Electric Ind Ltd Cu-Ag ALLOY WIRE AND METHOD FOR PRODUCING THE SAME

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06103809A (en) * 1992-09-16 1994-04-15 Showa Electric Wire & Cable Co Ltd Manufacture of cu-ag alloy wire
JPH11293365A (en) * 1998-04-09 1999-10-26 Furukawa Electric Co Ltd:The Super-fine conductor for winding, and its manufacture
JP2000199042A (en) * 1998-11-04 2000-07-18 Showa Electric Wire & Cable Co Ltd PRODUCTION OF Cu-Ag ALLOY WIRE ROD AND Cu-Ag ALLOY WIRE ROD
JP2002121629A (en) * 2000-10-13 2002-04-26 Hitachi Cable Ltd Super-extra-fine copper-alloy wire, copper-alloy stranded-wire conductor, extra-fine coaxial cable, and method for manufacturing super-extra-fine copper-alloy wire
JP2009280860A (en) * 2008-05-21 2009-12-03 Sumitomo Electric Ind Ltd Cu-Ag ALLOY WIRE AND METHOD FOR PRODUCING THE SAME

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012035862A1 (en) * 2010-09-17 2012-03-22 住友電気工業株式会社 Coaxial cable
US10720258B2 (en) 2017-01-10 2020-07-21 Hitachi Metals, Ltd. Method for manufacturing a conductive wire

Also Published As

Publication number Publication date
JP5344150B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
JP5344151B2 (en) Method for producing Cu-Ag alloy wire and Cu-Ag alloy wire
JP3948203B2 (en) Copper alloy wire, copper alloy stranded wire conductor, coaxial cable, and method for producing copper alloy wire
JP3941304B2 (en) Super fine copper alloy wire, method for producing the same, and electric wire using the same
JP6782167B2 (en) Manufacturing method of aluminum alloy wire, aluminum alloy stranded wire, coated electric wire and wire harness, and aluminum alloy wire
JP5713230B2 (en) Cu-Ag alloy wire and method for producing Cu-Ag alloy wire
JP5950249B2 (en) Copper alloy wire, copper alloy stranded wire, covered wire, and wire with terminal
JP2011146352A (en) Cu-Ag ALLOY WIRE
JP2001148205A (en) Material for ultra thin copper alloy wire and its method of manufacturing
CN101791638A (en) The manufacture method of Cu-Ag alloy wire and Cu-Ag alloy wire
WO2011030898A1 (en) Copper alloy wire and process for producing same
JP5652741B2 (en) Copper wire and method for producing the same
JP6529346B2 (en) High bending fatigue resistance copper based alloy wire
JP2009249660A (en) Drawn wire material, stranded wire, coaxial cable and cast material for drawn wire material
JP5344150B2 (en) Method for producing Cu-Ag alloy wire and Cu-Ag alloy wire
WO2016051864A1 (en) Copper alloy material, connector terminal, and method for producing copper alloy material
JP5605594B2 (en) Method of manufacturing cast material for wire drawing material, method of manufacturing wire drawing material, method of manufacturing stranded wire, and method of manufacturing coaxial cable
JP5376396B2 (en) Wire conductor for wire harness
JP3775244B2 (en) Conductor for bending-resistant cable and method for manufacturing the same
JP5510879B2 (en) Wire conductor and wire
JP2009242871A (en) High strength and high electric conductivity two-phase copper alloy foil
JP4501922B2 (en) Cu-Ag alloy wire for coaxial cable
JP2013052434A (en) Method for manufacturing copper stock for wire rod
JP2015151608A (en) Copper alloy material for connector terminals and method for producing the same
JP2017150065A (en) Wire for connector terminals
JP7129911B2 (en) Wire rod for connector terminal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130730

R150 Certificate of patent or registration of utility model

Ref document number: 5344150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees