JP5168730B2 - Magnetic measuring device - Google Patents

Magnetic measuring device Download PDF

Info

Publication number
JP5168730B2
JP5168730B2 JP2008220845A JP2008220845A JP5168730B2 JP 5168730 B2 JP5168730 B2 JP 5168730B2 JP 2008220845 A JP2008220845 A JP 2008220845A JP 2008220845 A JP2008220845 A JP 2008220845A JP 5168730 B2 JP5168730 B2 JP 5168730B2
Authority
JP
Japan
Prior art keywords
axis
magnetic
magnetic sensor
output data
posture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008220845A
Other languages
Japanese (ja)
Other versions
JP2009075099A (en
Inventor
健二 飯島
尚登 三品
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2008220845A priority Critical patent/JP5168730B2/en
Publication of JP2009075099A publication Critical patent/JP2009075099A/en
Application granted granted Critical
Publication of JP5168730B2 publication Critical patent/JP5168730B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Description

この発明は、地磁気中における微小磁気の計測を行う磁気計測装置に関する。   The present invention relates to a magnetic measuring device that measures minute magnetism in geomagnetism.

一般に、地磁気の変動よりも微小な磁気を計測する場合、地磁気補償用磁気センサ出力を被補償用磁気センサ出力から引いて地磁気補償を行っており、3軸磁気センサにおいては、地磁気補償用磁気センサと被補償用磁気センサの設置の際、東西南北に関しては地磁気を利用し、鉛直方向に関しては水準器を利用して、地磁気補償用磁気センサと被補償用磁気センサの姿勢を調整し、3軸の方向を一致させている。   Generally, when measuring magnetism smaller than the fluctuation of geomagnetism, the magnetic sensor output for geomagnetism compensation is subtracted from the output of the compensated magnetic sensor, and the geomagnetic compensation is performed. When the magnetic sensor for compensation is installed, the geomagnetism is used for the east, west, north, and south, and the level is used for the vertical direction to adjust the orientation of the magnetic sensor for compensation and the magnetic sensor for compensation. The directions are matched.

また、磁気センサの姿勢を調整するのが困難な場所においては、基準の姿勢の磁気センサで測定した地磁気の3成分より、任意の姿勢の磁気センサで測定した地磁気の3成分の感度軸に対するずれ角を算出し、前記ずれ角に基づいて軸まわりの回転演算を行い、感度軸に対して所望する関係となるように被測定磁界値を変換し、3軸の方向を一致させる磁気測定装置が開示されており(例えば特許文献1参照)、任意の姿勢で設置された地磁気補償用磁気センサと被補償用磁気センサを基準姿勢に変換し、地磁気補償用磁気センサと被補償用磁気センサの3軸の方向を一致させている。
特開平7−198809号公報
Further, in a place where it is difficult to adjust the attitude of the magnetic sensor, the deviation of the geomagnetic three components measured by the magnetic sensor of an arbitrary attitude from the three geomagnetic components measured by the magnetic sensor of the arbitrary attitude with respect to the sensitivity axis. A magnetic measuring device that calculates an angle, performs a rotation calculation around the axis based on the deviation angle, converts a measured magnetic field value so as to have a desired relationship with the sensitivity axis, and matches the directions of the three axes. The geomagnetic compensation magnetic sensor and the compensated magnetic sensor installed in an arbitrary posture are converted into a reference posture, and 3 of the geomagnetic compensation magnetic sensor and the compensated magnetic sensor are disclosed. The axis directions are matched.
JP-A-7-198809

上記した従来の一般的な方法で地磁気補償用磁気センサと被補償用磁気センサの3軸方向を一致させる場合、地磁気及び水準器を使用して合わせる方法では、手間、時間がかかる。また、特許文献1に記載の方法では、任意姿勢の磁気センサから見れば、基準姿勢磁気センサと姿勢が異なっていても、地磁気の3軸の出力が同じになる姿勢が存在するため、任意姿勢の地磁気補償用磁気センサと被補償用磁気センサの姿勢を基準姿勢に一致させるのは、困難である、
この発明は、上記した事情に鑑みてなされたものであり、地磁気補償用磁気センサと被補償用磁気センサの姿勢を任意に設置しても、地磁気補償用磁気センサと被補償用磁気センサの3軸の方向が一致するようにし、地磁気補償をなしうる磁気計測装置を提供することを目的とする。
When matching the three axial directions of the magnetic sensor for geomagnetism compensation and the magnetic sensor for compensation by the conventional general method described above, the method of matching using the geomagnetism and the level takes time and effort. In addition, in the method described in Patent Document 1, when viewed from a magnetic sensor in an arbitrary posture, there is a posture in which the output of the three geomagnetism axes is the same even if the posture is different from the reference posture magnetic sensor. It is difficult to match the attitude of the geomagnetic compensation magnetic sensor and the compensated magnetic sensor to the reference attitude.
The present invention has been made in view of the above-described circumstances. Even if the postures of the geomagnetic compensation magnetic sensor and the compensated magnetic sensor are arbitrarily installed, the geomagnetic compensation magnetic sensor and the compensated magnetic sensor 3 are provided. It is an object of the present invention to provide a magnetic measuring device which can make geomagnetic compensation by making the directions of the axes coincide.

本願の請求項1に係る磁気計測装置は、 地磁気中で動作させる複数個の3軸磁気センサとこれら3軸磁気センサからの信号を地磁気補償する信号処理装置とを具備してなるものにおいて、前記信号処理装置に任意の姿勢に設置した3軸磁気センサの各軸の出力データを、少なくとも1個の姿勢を規定して設置した基準姿勢3軸磁気センサの各軸の出力データを用いて、前記基準姿勢磁気センサと同じ姿勢で計測した場合と等価な出力データに変換する手段を備えたことを特徴とする。   A magnetic measuring device according to claim 1 of the present application comprises a plurality of three-axis magnetic sensors operated in geomagnetism, and a signal processing device for compensating for the geomagnetism of signals from these three-axis magnetic sensors. Using the output data of each axis of the three-axis magnetic sensor installed in an arbitrary posture in the signal processing device, using the output data of each axis of the reference posture three-axis magnetic sensor installed defining at least one posture, Means is provided for converting to output data equivalent to a case where measurement is performed in the same attitude as the reference attitude magnetic sensor.

また、請求項2に係る磁気計測装置は、前記基準姿勢変換後の3軸磁気センサを、地磁気補償用磁気センサと被補償用磁気センサに分類し、請求項1に係る磁気計測装置の前記信号処理装置により、基準姿勢変換後の被補償磁気センサ各軸出力データから基準姿勢変換後の地磁気補償磁気センサ各軸出力データを減算することにより地磁気補償を行う手段を備えたことを特徴とする。   The magnetic measurement device according to claim 2 classifies the three-axis magnetic sensor after the reference attitude conversion into a magnetic sensor for geomagnetic compensation and a magnetic sensor for compensation, and the signal of the magnetic measurement device according to claim 1 The processing device includes means for performing geomagnetic compensation by subtracting the output data of each axis of the compensated magnetic sensor after the reference attitude conversion from the output data of each axis of the compensated magnetic sensor after the conversion of the reference attitude.

また、請求項3に係る磁気計測装置は、請求項2に係る磁気計測装置の前記信号処理装置により、前記基準姿勢変換後の地磁気補償用磁気センサの出力データに係数をかけて、前記基準姿勢変換後の被補償用磁気センサの出力データから減算を行い、基準姿勢変換後の被補償用磁気センサの各軸の出力データ及び全磁力の出力データの地磁気補償を行う手段を備えたことを特徴とする。   According to a third aspect of the present invention, there is provided a magnetic measurement device that uses the signal processing device of the magnetic measurement device according to the second aspect to multiply the output data of the geomagnetic compensation magnetic sensor after the reference posture conversion by multiplying a coefficient to the reference posture. A means is provided for subtracting from the output data of the compensated magnetic sensor after conversion, and performing geomagnetic compensation of the output data of each axis and the output data of the total magnetic force of the compensated magnetic sensor after the reference attitude conversion. And

この発明によれば、3軸磁気センサを設置する際に、基準姿勢磁気センサ以外の3軸磁気センサの姿勢を気にせずに、つまり方向を規定することなく設置できるので、姿勢を規定して設置することが困難な場所においても磁気測定を行なうことが可能となる。   According to this invention, when installing the 3-axis magnetic sensor, it is possible to install the 3-axis magnetic sensor other than the reference attitude magnetic sensor without worrying about the attitude of the 3-axis magnetic sensor, that is, without specifying the direction. Magnetic measurements can be performed even in places where installation is difficult.

また、信号処理装置が、基準姿勢変換後の被補償磁気センサ各軸出力データから基準姿勢変換後の地磁気補償磁気センサ各軸出力データを減算する機能を備えることとすれば、地磁気補償を行うことができるため、微小磁気計測を行うことが可能となる。   Further, if the signal processing device has a function of subtracting the output data of each axis of the compensated magnetic sensor after the reference attitude conversion from the output data of each axis of the compensated magnetic sensor after the reference attitude conversion, the geomagnetic compensation is performed. Therefore, it is possible to perform minute magnetic measurement.

以下、実施の形態により、この発明をさらに詳細に説明する。図1はこの発明の一実施形態磁気計測装置のシステム構成を示す概略構成図である。   Hereinafter, the present invention will be described in more detail with reference to embodiments. FIG. 1 is a schematic configuration diagram showing a system configuration of a magnetic measuring apparatus according to an embodiment of the present invention.

この実施形態磁気計測装置では、複数個(ここでは3個)の3軸磁気センサ1−1、1−2、1−3が配置されている。これらの3軸磁気センサ1−1〜1−3は少なくとも1個の3軸磁気センサ1−1が姿勢を規定した基準姿勢磁気センサとされ、この3軸磁気センサ1−1の3軸は、例えば、南北、東西、鉛直方向に向いている。その他の複数個の3軸の磁気センサ1−2、1−3は、それぞれ任意の姿勢で設置されている。3軸磁気センサ1−1〜1−3で検出された3軸の磁気データは、信号処理装置2に取り込まれ、データ処理される。   In this embodiment of the magnetic measurement apparatus, a plurality (three in this case) of three-axis magnetic sensors 1-1, 1-2, and 1-3 are arranged. These three-axis magnetic sensors 1-1 to 1-3 are reference posture magnetic sensors in which at least one three-axis magnetic sensor 1-1 defines the posture, and the three axes of the three-axis magnetic sensor 1-1 are For example, the direction is north-south, east-west, and vertical. The other plurality of three-axis magnetic sensors 1-2 and 1-3 are installed in arbitrary postures. The triaxial magnetic data detected by the triaxial magnetic sensors 1-1 to 1-3 is taken into the signal processing device 2 and processed.

信号処理装置2では、図2に示すフロー図の各信号処理を実行する機能を有する。第1の処理として、ステップS1において、基準姿勢変換係数計算を行う。ここでは、任意姿勢の3軸磁気センサ1−2、1−3の出力を基準姿勢の出力に変換するための変換係数(基準姿勢変換係数)を求める。次にステップS2に移行する。   The signal processing device 2 has a function of executing each signal processing of the flowchart shown in FIG. As a first process, reference posture conversion coefficient calculation is performed in step S1. Here, a conversion coefficient (reference attitude conversion coefficient) for converting the outputs of the three-axis magnetic sensors 1-2 and 1-3 having an arbitrary attitude into the output of the reference attitude is obtained. Next, the process proceeds to step S2.

ステップS2において、第2の処理として、基準姿勢変換を行う。ここでは、第1の処理で求めた基準姿勢変換係数を任意姿勢の3軸磁気センサ1−2、1−3の出力に適用し、基準姿勢出力に変換する。次にステップS3に移行する。   In step S2, reference posture conversion is performed as a second process. Here, the reference posture conversion coefficient obtained in the first process is applied to the outputs of the three-axis magnetic sensors 1-2 and 1-3 having an arbitrary posture, and converted into a reference posture output. Next, the process proceeds to step S3.

ステップS3において、第3の処理として、地磁気補償係数計算を行う。ここでは、地磁気補償を行うために、基準姿勢に変換した3軸磁気センサ1−2、1−3の出力を地磁気補償用出力及び被補償用出力に分類し、被補償用磁気データから地磁気補償用磁気データを引く際の振幅、オフセット補償用の地磁気補償係数を求める。次にステップS4へ移行する。   In step S3, geomagnetic compensation coefficient calculation is performed as a third process. Here, in order to perform geomagnetic compensation, the outputs of the three-axis magnetic sensors 1-2 and 1-3 converted to the reference posture are classified into geomagnetic compensation outputs and compensated outputs, and geomagnetic compensation is performed from the compensated magnetic data. The amplitude at the time of subtracting the magnetic data and the geomagnetic compensation coefficient for offset compensation are obtained. Next, the process proceeds to step S4.

ステップS4において、第4の処理として、地磁気補償を行う。ここでは、第3の処理で求めた地磁気補償係数を用いて地磁気補償を行う。   In step S4, geomagnetic compensation is performed as a fourth process. Here, geomagnetic compensation is performed using the geomagnetic compensation coefficient obtained in the third process.

以下に、第1の処理から第4の処理の詳細を説明する。   Details of the first process to the fourth process will be described below.

先ず、第1の処理、基準姿勢変換係数計算について説明する。図3に示すように、基準姿勢磁気センサのZ軸と地磁気Hのなす角をθk、基準姿勢磁気センサのX軸と地磁気のXY平面成分のなす角をφk、任意姿勢磁気センサのZ軸と地磁気のなす角をθn、任意姿勢磁気センサのX軸と地磁気のXY平面成分のなす角をφn、任意姿勢磁気センサのZ軸まわりの回転角をψnとする。また姿勢の変換に関しては、式(1)に示す各軸周りの回転に関する一般式を用いる。式(1)の回転方向を図4に示す。図4において、(a)はX軸周りの回転を、(b)はY軸周りの回転を、(c)はZ軸周りの回転を示す。   First, the first process, the reference attitude conversion coefficient calculation, will be described. As shown in FIG. 3, the angle between the Z axis of the reference attitude magnetic sensor and the geomagnetism H is θk, the angle between the X axis of the reference attitude magnetic sensor and the XY plane component of the geomagnetism is φk, and the Z axis of the arbitrary attitude magnetic sensor Assume that the angle formed by the geomagnetism is θn, the angle formed by the X axis of the arbitrary magnetic sensor and the XY plane component of the geomagnetism is φn, and the rotation angle around the Z axis of the arbitrary magnetic sensor is ψn. As for the posture conversion, a general expression relating to rotation around each axis shown in Expression (1) is used. The rotation direction of Formula (1) is shown in FIG. 4, (a) shows rotation around the X axis, (b) shows rotation around the Y axis, and (c) shows rotation around the Z axis.





次に、第1の処理における基準姿勢変換係数の信号処理過程を図5に示すフロー図を用いて説明する。先ずステップST1において、時刻tにおける基準姿勢センサデータHx、Hy、Hzを取り込む。
次に、ステップST2へ移行する。
Next, the signal processing process of the reference attitude conversion coefficient in the first process will be described with reference to the flowchart shown in FIG. First, in step ST1, the reference attitude sensor data Hx, Hy, Hz at time t are fetched.
Next, the process proceeds to step ST2.

ステップST2においては、基準姿勢センサの角度θk、φkを求める。この角度θk、φkは式(2)にステップST1で求めたデータHx、Hy、Hzを入れて求める。なお、基準姿勢センサは地磁気を基準として東西方向を合わせている場合、φkは0である。また、θkを求めるときは、式(2)に示すように、式(3)を用いて、Hx’、Hy’をHxφ’、Hyφ’に変換しておく必要がある。 In step ST2, the angles θk and φk of the reference attitude sensor are obtained. The angles θk and φk are obtained by adding the data Hx, Hy, and Hz obtained in step ST1 to the equation (2). Note that φk is 0 when the reference attitude sensor is aligned in the east-west direction with reference to geomagnetism. Further, when obtaining θk, it is necessary to convert Hx ′ and Hy ′ into Hx φ ′ and Hy φ ′ using the formula (3) as shown in the formula (2).

次に、ステップST3へ移行する。   Next, the process proceeds to step ST3.

ステップST3においては、基本姿勢センサのZ軸周りにφk、Y軸周りにθk回転し、基本姿勢センサのZ軸を地磁気のベクトルの方向と一致させる変換(以下、変換1という)を行う。変換式は、式(1)を用いて、式(3)、式(4)のように表せる。   In step ST3, a transformation (hereinafter referred to as transformation 1) is performed by rotating φk around the Z axis of the basic attitude sensor and θk around the Y axis to make the Z axis of the basic attitude sensor coincide with the direction of the geomagnetic vector. The conversion expression can be expressed as Expression (3) and Expression (4) using Expression (1).

次に、ステップST4へ移行する。
ステップST4においては、時刻tにおける任意姿勢センサデータHx、Hy、Hzを取り込む。
次に、ステップST5へ移行する。
ステップST5においては、時刻tにおけるθn、φnを求める。この係数θn、φnは、ステップST2における式(2)と同様に式(5)に、ステップST4で求めたHx、Hy、Hzを入れて求める。なお、θnを求めるときは、式(5)に示すように、式(6)を用いて、Hx’、Hy’をHxφ’、Hyφ’に変換しておく必要がある。
Next, the process proceeds to step ST4.
In step ST4, the arbitrary attitude sensor data Hx , Hy , Hz at time t are captured.
Next, the process proceeds to step ST5.
In step ST5, θn and φn at time t are obtained. The coefficients θn and φn are obtained by adding Hx , Hy , and Hz obtained in step ST4 to equation (5) in the same manner as equation (2) in step ST2. When obtaining θn, it is necessary to convert Hx ′ and Hy ′ to Hx φ ′ and Hy φ ′ using equation (6) as shown in equation (5).

次に、ステップST6へ移行する。
ステップST6においては、ステップST3で基準姿勢センサに変換を行なったと同様に、任意姿勢センサについても、式(6)、式(7)を用いて変換1を行なう。
Next, the process proceeds to step ST6.
In step ST6, as in the case of the conversion to the reference posture sensor in step ST3, the conversion 1 is performed for the arbitrary posture sensor using the equations (6) and (7).

次に、ステップST7へ移行する。
ステップST7においては、変換1後の基準姿勢センサと任意姿勢センサのx、y軸を一致させるために、任意姿勢センサのx、y軸をz軸周りにψn回転させ、変換1後の基準姿勢センサのx、y軸と一致させる。回転角ψnは式(8)を用いて求める。
Next, the process proceeds to step ST7.
In step ST7, in order to match the x and y axes of the reference attitude sensor after conversion 1 and the arbitrary attitude sensor, the x and y axes of the arbitrary attitude sensor are rotated by ψn around the z axis, and the reference attitude after conversion 1 is set. Match the x and y axes of the sensor. The rotation angle ψn is obtained using equation (8).

次に、ステップST8へ移行する。
ステップST8においては、基準姿勢変換係数θn、φn、ψnを記憶部に格納する。
Next, the process proceeds to step ST8.
In step ST8, the reference posture conversion coefficients θn, φn, and ψn are stored in the storage unit.

続いて、第2の処理における基準姿勢変換の処理過程を図6に示すフロー図を参照して説明する。   Next, the reference posture conversion process in the second process will be described with reference to the flowchart shown in FIG.

先ずステップST11においては、上記した第1の処理過程で求めた基準姿勢変換係数θn、φn、ψnを読み込む。
次に、ステップST12へ移行する。
First, in step ST11, the reference orientation conversion coefficients θn, φn, and ψn obtained in the first process are read.
Next, the process proceeds to step ST12.

ステップST12においては、任意姿勢センサデータHx、Hy、Hzを取り込む。
次に、ステップST13へ移行する。
ステップST13においては、基準姿勢変換係数θn、φn、ψn、θkと任意姿勢センサデータHx、Hy、Hzとを用いて式(9)を演算し、基準姿勢変換を実行する。この演算の実行により、基準姿勢変換結果Hx0 、Hy0 、Hz0 を得る。
In step ST12, arbitrary attitude sensor data Hx , Hy , Hz are taken.
Next, the process proceeds to step ST13.
In step ST13, Expression (9) is calculated using the reference attitude conversion coefficients θn, φn, ψn, θk and the arbitrary attitude sensor data Hx , Hy , Hz ′, and the reference attitude conversion is executed. By executing this calculation, reference posture conversion results Hx 0 , Hy 0 , and Hz 0 are obtained.

続いて、第3の処理における地磁気補償係数計算の処理過程を図7に示すフロー図を参照して説明する。
先ず処理開始のステップST21においては、基準姿勢変換後の地磁気補償用磁気データを読み込む。
次に、ステップST22へ移行する。
Next, the process of calculating the geomagnetic compensation coefficient in the third process will be described with reference to the flowchart shown in FIG.
First, in step ST21 of the process start, the magnetic data for geomagnetic compensation after the reference attitude conversion is read.
Next, the process proceeds to step ST22.

ステップST22においては、基準姿勢変換後の被補償用磁気データを読み込む。
次に、ステップST23へ移行する。
ステップST23においては、地磁気補償係数をステップST21と、ステップST22で読み込んだデータから最小自乗法を用いて3軸分の地磁気補償係数を求める。地磁気補償係数α、βは式(10)を演算実行して求める。
In step ST22, the compensated magnetic data after the reference attitude conversion is read.
Next, the process proceeds to step ST23.
In step ST23, geomagnetic compensation coefficients for three axes are obtained from the data read in steps ST21 and ST22 using the least square method. The geomagnetic compensation coefficients α and β are obtained by executing the equation (10).

なお、Nはデータ数、Hx0’は補償用磁気データ、Hx は地磁気補償用磁気データを示す。また、y、z軸についても、式(10)と同様に求める。
最後に、第4の処理における地磁気補償計算の処理過程を図8に示すフロー図を参照して説明する。
N represents the number of data, Hx 0 ′ represents compensation magnetic data, and Hx 1 represents geomagnetic compensation magnetic data. Also, the y and z axes are obtained in the same manner as in equation (10).
Finally, the process of the geomagnetic compensation calculation in the fourth process will be described with reference to the flowchart shown in FIG.

先ずステップST31において、地磁気補償係数を読み込む。
次に、ステップST32へ移行する。
ステップST32においては、基準姿勢変換後地磁気補償用磁気データを取り込む。
次にステップST33へ移行する。
First, in step ST31, a geomagnetic compensation coefficient is read.
Next, the process proceeds to step ST32.
In step ST32, the magnetic data for geomagnetic compensation after reference attitude conversion is taken.
Next, the process proceeds to step ST33.

ステップST33においては、基準姿勢変換後被補償用磁気データを取り込む。
次にステップST34に移行する。
ステップST34おいては、基準姿勢変換後被補償用磁気データから、基準姿勢変換後地磁気補償用磁気データに地磁気補償係数をかけた結果を引く。地磁気補償データは、次の式(11)を演算実行して求める。
In step ST33, the compensated magnetic data is acquired after the reference attitude conversion.
Next, the process proceeds to step ST34.
In step ST34, a result obtained by applying a geomagnetic compensation coefficient to the magnetic data for geomagnetic compensation after reference attitude conversion is subtracted from the compensated magnetic data after reference attitude conversion. The geomagnetic compensation data is obtained by calculating and executing the following equation (11).


ここで、Hx0 は被補償用磁気データ、Hx1 は地磁気補償用磁気データ、Hx2 は地磁気補償結果を示す。y軸、z軸についても同様に求める。
なお、上記実施形態において、第1の処理における角度ψnは式(8)を用いて求めたが、最小自乗法を用いて求めても良いし、式(12)に示すように、角度ψnによる回転の代わりに、任意姿勢センサの一致させる軸の出力と他の2軸の出力を用いて、基準姿勢センサの軸と一致させても良いし、角度ψnによる回転と式(12)を用いた方法を併用しても良い。式(12)は、x軸をあわせる場合に使用する式である。y軸、z軸も同様の式を用いる。また、第3の処理における地磁気補償係数は式(11)を用いて求めたが、オフセット、感度のみでなく、3軸の直交度も考慮した補償係数を求めても良い。
Here, Hx 0 represents compensated magnetic data, Hx 1 represents geomagnetic compensation magnetic data, and Hx 2 represents geomagnetic compensation results. The same applies to the y-axis and z-axis.
In the above embodiment, the angle ψn in the first process is obtained using the equation (8). However, the angle ψn may be obtained using the least square method, or as shown in the equation (12). Instead of rotation, the output of the axis to be matched by the arbitrary attitude sensor and the output of the other two axes may be used to match the axis of the reference attitude sensor, or the rotation by the angle ψn and the equation (12) are used. You may use a method together. Expression (12) is an expression used when aligning the x-axis. Similar equations are used for the y-axis and the z-axis. In addition, although the geomagnetic compensation coefficient in the third process is obtained using the equation (11), a compensation coefficient that considers not only offset and sensitivity but also three-axis orthogonality may be obtained.

以上本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではない。例えば、本発明における信号処理装置2は、上記第1の処理及び第2の処理のみを実行可能に構成されているもの、及び、上記第1〜第4の処理を全て実行可能に構成されているもののいずれであってもよい。ただし、第1〜第4の処理をすべて実行可能に構成されている信号処理装置2を採用すれば、地磁気補償を行うことができるため、微小磁気計測が可能となる。 Although the embodiment of the present invention has been described above, the present invention is not limited to the above embodiment. For example, the signal processing device 2 according to the present invention is configured to be able to execute only the first process and the second process, and is configured to be able to execute all the first to fourth processes. Any of them may be used. However, if the signal processing device 2 configured so as to be able to execute all of the first to fourth processes is employed, it is possible to perform geomagnetic compensation, thereby enabling a minute magnetic measurement.

また、上記実施形態において、基準姿勢変換後の地磁気補償用磁気センサの出力データに地磁気補償係数α、β等をかけて減算することとしたが、係数を掛けることなく減算することとしても良い。ただし、上記実施形態のように求めた地磁気補償係数を掛けて減算することにより、地磁気補償の精度を向上させることが可能となる。   In the above embodiment, the output data of the geomagnetic compensation magnetic sensor after the reference attitude conversion is subtracted by applying the geomagnetic compensation coefficients α, β, etc., but the subtraction may be performed without applying the coefficients. However, it is possible to improve the accuracy of the geomagnetic compensation by multiplying and subtracting the obtained geomagnetic compensation coefficient as in the above embodiment.

この発明の一実施形態磁気計測装置のシステム構成を示す概略図である。It is the schematic which shows the system configuration | structure of the magnetic measuring device of one Embodiment of this invention. 同実施形態磁気計測装置の処理概要を説明する図である。It is a figure explaining the process outline | summary of the magnetic measuring apparatus of the embodiment. 地磁気と3軸感度軸の位置関係と説明する図である。It is a figure explaining the positional relationship of geomagnetism and a triaxial sensitivity axis. 3軸まわりの回転移動を説明する図である。It is a figure explaining the rotational movement of 3 axis | shafts. 上実施形態磁気計測装置における基準姿勢変換係数計算の処理過程を説明するフロー図である。It is a flowchart explaining the process of the reference | standard attitude | position conversion coefficient calculation in the magnetic measuring device of the upper embodiment. 同実施形態磁気計測装置における基準姿勢変換の処理過程変換を説明するフロー図である。It is a flowchart explaining process-process conversion of the reference | standard attitude | position conversion in the magnetic measuring device of the embodiment. 同実施形態磁気計測装置における地磁気補償係数計算の処理過程を説明するフロー図である。It is a flowchart explaining the process of the geomagnetic compensation coefficient calculation in the magnetic measuring device of the embodiment. 同実施形態磁気計測装置における地磁気補償の処理過程を説明するフロー図であるIt is a flowchart explaining the process of a geomagnetic compensation in the magnetic measuring device of the embodiment

符号の説明Explanation of symbols

1−1 基準姿勢センサ
1−2、1−3 任意姿勢センサ
2 信号処理装置
1-1 Reference posture sensor 1-2, 1-3 Arbitrary posture sensor 2 Signal processing device

Claims (3)

地磁気中で動作させる複数個の3軸磁気センサと、これら3軸磁気センサからの信号を地磁気補償する信号処理装置とを具備してなる磁気計測装置において、
前記信号処理装置に、任意の姿勢に設置した3軸磁気センサの各軸の出力データを、少なくとも1個の姿勢を規定して設置した基準姿勢3軸磁気センサの各軸の出力データを用いて、前記基準姿勢磁気センサと同じ姿勢で計測した場合と等価な出力データに変換する手段を備えたことを特徴とする磁気計測装置
In a magnetic measurement device comprising a plurality of three-axis magnetic sensors operated in the geomagnetism and a signal processing device for compensating for the geomagnetism of signals from these three-axis magnetic sensors,
Using the output data of each axis of the three-axis magnetic sensor installed in an arbitrary posture in the signal processing device, using the output data of each axis of the reference posture three-axis magnetic sensor installed by defining at least one posture And a magnetic measuring device comprising means for converting into output data equivalent to that measured in the same posture as the reference posture magnetic sensor
前記任意の姿勢に設置した3軸磁気センサを、地磁気補償用磁気センサと被補償用磁気センサに分類し、前記信号処理装置により、地磁気補償用磁気センサ及び被補償用磁気センサの出力データを基準姿勢変換し、基準姿勢変換後の被補償用磁気センサ各軸出力データから基準姿勢変換後の地磁気補償用磁気センサ各軸出力データを減算することにより、地磁気補償を行うようにしたことを特徴とする請求項1記載の磁気計測装置。   The three-axis magnetic sensor installed in the arbitrary posture is classified into a geomagnetic compensation magnetic sensor and a compensated magnetic sensor, and the output data of the geomagnetic compensation magnetic sensor and the compensated magnetic sensor is used as a reference by the signal processing device. It is characterized in that geomagnetic compensation is performed by subtracting the output data of each axis of the compensated magnetic sensor after the reference attitude conversion from the output data of each axis of the compensated magnetic sensor after converting the attitude. The magnetic measurement apparatus according to claim 1. 前記基準姿勢変換後の地磁気補償用磁気センサの出力データに係数をかけて、前記基準姿勢変換後の被補償用磁気センサの出力データから減算を行い、基準姿勢変換後の被補償用磁気センサの各軸の出力データ及び全磁力の出力データの地磁気補償を行うようにしたことを特徴とする請求項2記載の磁気計測装置。   A coefficient is applied to the output data of the geomagnetic compensation magnetic sensor after the reference attitude conversion, and subtraction is performed from the output data of the compensated magnetic sensor after the reference attitude conversion. 3. The magnetic measuring apparatus according to claim 2, wherein geomagnetic compensation is performed on the output data of each axis and the output data of the total magnetic force.
JP2008220845A 2007-08-30 2008-08-29 Magnetic measuring device Expired - Fee Related JP5168730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008220845A JP5168730B2 (en) 2007-08-30 2008-08-29 Magnetic measuring device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007223362 2007-08-30
JP2007223362 2007-08-30
JP2008220845A JP5168730B2 (en) 2007-08-30 2008-08-29 Magnetic measuring device

Publications (2)

Publication Number Publication Date
JP2009075099A JP2009075099A (en) 2009-04-09
JP5168730B2 true JP5168730B2 (en) 2013-03-27

Family

ID=40610179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008220845A Expired - Fee Related JP5168730B2 (en) 2007-08-30 2008-08-29 Magnetic measuring device

Country Status (1)

Country Link
JP (1) JP5168730B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5364907B2 (en) * 2009-08-18 2013-12-11 独立行政法人土木研究所 Deformation measurement system and deformation measurement method
JP5083837B2 (en) * 2009-08-28 2012-11-28 防衛省技術研究本部長 Magnetic measurement system
CN108732519B (en) * 2018-03-28 2023-08-11 天津工业大学 Wireless charging electromagnetic field three-dimensional magnetic measurement method and device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05196711A (en) * 1991-08-08 1993-08-06 Shimadzu Corp Magnetism measuring apparatus
JPH07248366A (en) * 1994-03-11 1995-09-26 Shimadzu Corp Magnetic noise compensating method
JP4945995B2 (en) * 2004-10-12 2012-06-06 ヤマハ株式会社 Geomagnetic detector

Also Published As

Publication number Publication date
JP2009075099A (en) 2009-04-09

Similar Documents

Publication Publication Date Title
CN108225308B (en) Quaternion-based attitude calculation method for extended Kalman filtering algorithm
Vasconcelos et al. Geometric approach to strapdown magnetometer calibration in sensor frame
WO2017063387A1 (en) Method for updating all attitude angles of agricultural machine on the basis of nine-axis mems sensor
CN108225370B (en) Data fusion and calculation method of motion attitude sensor
WO2014010727A1 (en) Device for estimating moving object travel direction and method for estimating travel direction
JP2020528553A (en) How to calibrate the magnetometer
CN109550219A (en) A kind of determination method, system and the mobile device of motion information
KR20110081205A (en) Electronic compass
JP5086225B2 (en) Calibration apparatus, method and program for magnetic direction sensor
US11408735B2 (en) Positioning system and positioning method
WO2011158856A1 (en) Error cause determination method and device, error compensation method, three-axis magnetic sensor, sensor module, and program for determining error cause
Xu et al. A novel orientation determination approach of mobile robot using inertial and magnetic sensors
CN106403952A (en) Method for measuring combined attitudes of Satcom on the move with low cost
JP2005061969A (en) Azimuthal angle measuring instrument and azimuthal angle measuring method
JP2013029512A (en) System and method for portable electronic device that detect attitude and angular velocity using magnetic sensor and accelerometer
CN106568462A (en) Multi-probe star sensor fusion attitude testing method
JP5168730B2 (en) Magnetic measuring device
CN108534772A (en) Attitude angle acquisition methods and device
Chao et al. Minimum settings calibration method for low-cost tri-axial IMU and magnetometer
JP5109800B2 (en) Magnetic measuring device
Sun et al. A quaternion-based sensor fusion approach using orthogonal observations from 9D inertial and magnetic information
CN112525144B (en) Nonlinear attitude detection compensation method and terminal
JP5017527B2 (en) Electronic compass system
JP2013185898A (en) State estimation device
CN110375773B (en) Attitude initialization method for MEMS inertial navigation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121216

R151 Written notification of patent or utility model registration

Ref document number: 5168730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees