WO2011158856A1 - Error cause determination method and device, error compensation method, three-axis magnetic sensor, sensor module, and program for determining error cause - Google Patents

Error cause determination method and device, error compensation method, three-axis magnetic sensor, sensor module, and program for determining error cause Download PDF

Info

Publication number
WO2011158856A1
WO2011158856A1 PCT/JP2011/063674 JP2011063674W WO2011158856A1 WO 2011158856 A1 WO2011158856 A1 WO 2011158856A1 JP 2011063674 W JP2011063674 W JP 2011063674W WO 2011158856 A1 WO2011158856 A1 WO 2011158856A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic field
axis
field detection
sensor
Prior art date
Application number
PCT/JP2011/063674
Other languages
French (fr)
Japanese (ja)
Inventor
靖 及川
直行 小澤
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2011158856A1 publication Critical patent/WO2011158856A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/0206Three-component magnetometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C17/00Compasses; Devices for ascertaining true or magnetic north for navigation or surveying purposes
    • G01C17/38Testing, calibrating, or compensating of compasses

Definitions

  • the present invention relates to an error factor determination method and apparatus, an error compensation method, a three-axis magnetic sensor, a sensor module, and an error factor determination program.
  • an error factor determination method and apparatus capable of determining an error factor included in a measured and calculated azimuth angle and canceling the error and accurately determining an azimuth angle, an error compensation method, and a three-axis magnetic sensor , A sensor module, and an error factor determination program.
  • an orientation detection system (hereinafter referred to as “sensor module”) including a sensor for detecting the orientation is widely used.
  • the sensor module is combined with GPS (Global Positioning System) functions, a navigation system can be constructed by detecting spatial position information in addition to the azimuth angle. ing.
  • GPS Global Positioning System
  • a method of measuring the azimuth by the sensor module a method of detecting each magnetic field in three orthogonal axes, a method of detecting two magnetic fields, and a method of selecting a two-axis direction by detecting a magnetic field in three axes.
  • a method of detecting magnetic fields including a magnetic field
  • a method of obtaining them by combining a tilt angle and a declination angle with respect to geomagnetism by an acceleration sensor or a gyro sensor for example, Patent Documents 1 to 5).
  • FIG. 17A and 17B are diagrams for explaining orthogonal coordinate axes that are logically but fixedly set in the portable electronic device 100.
  • FIG. 17A and 17B are a plan view and a side view of the portable electronic device 100, respectively.
  • the normal direction of the flat front surface of the portable electronic device 100 is the Z-axis direction
  • the longitudinal direction of the portable electronic device 100 is the Y-axis
  • the rest is the X-axis direction.
  • FIG. 18 is a diagram for explaining the dip angle and the declination angle.
  • the angle of intersection ⁇ between the azimuth obtained on the XY plane and the actual geomagnetic direction is called the dip angle
  • the angle of intersection ⁇ between the direction and magnetic north is called the declination.
  • FIG. 19 is a diagram illustrating a logical configuration of a sensor module that can detect magnetic fields in three orthogonal axes and can calculate the azimuth by calculating the magnetic field with the detected dip, declination, and inclination.
  • a sensor module 50 shown in FIG. 19 is mounted with a three-axis magnetic sensor 1 that detects magnetic fields in three orthogonal directions set in a three-dimensional space, a geomagnetic dip and declination, and the sensor module 50.
  • a signal processing unit 3 that calculates an accurate azimuth angle based on information from the triaxial magnetic sensor 1 and the detection unit 2. .
  • the three-axis magnetic sensor 1 includes an X-axis magnetic element 11X, a Y-axis magnetic element 11Y, and a Z-axis magnetic element 11Z that detect magnetic fields in the X-axis, Y-axis, and Z-axis directions. And a signal processing unit 12 that performs signal processing on detection results from the magnetic elements 11X, 11Y, and 11Z. That is, the direction and magnitude of the terrestrial magnetism are detected by separating them into components in three orthogonal directions.
  • the magnetic elements 11X, 11Y, and 11Z include, for example, an MR (Magneto Resistive) sensor using a magnetoresistive effect, a sensor using a Hall element, an MI (Magneto Impedance) sensor using electromagnetic induction, and a flux gate type magnetism.
  • MR Magnetic Resistive
  • MI Magnetic Impedance
  • a sensor, an orthogonal fluxgate magnetic sensor, or the like can be used.
  • FIGS. 20A and 20B are diagrams showing the physical configuration of the three-axis magnetic sensor 1 shown in FIG. 20A is a side view, and FIG. 20B is a plan view.
  • the triaxial magnetic sensor 1 is detected by the mounting substrate 13, the magnetic elements 11X, 11Y, and 11Z mounted thereon by wire bonding, and the magnetic elements 11X, 11Y, and 11Z.
  • a signal processing unit 12 for performing arithmetic processing on the magnetic signal.
  • the three-axis magnetic sensor 1 is mounted in the device so as to align with the above-described coordinate axis set in the device to be mounted, whereby the direction of magnetic detection in each of the magnetic elements 11X, 11Y, and 11Z. Is consistent with each axial direction set in the device.
  • the magnetic field detection directions of the magnetic elements included in the three-axis magnetic sensor are ideally orthogonal to each other. Further, it is assumed that the magnetic field detection direction of each magnetic element and the magnetic field detection direction set for the three-axis magnetic sensor, that is, the three-axis direction set for the portable electronic device are the same. . Further, it is assumed that the sensitivity of each magnetic element is set equal to each other.
  • the first error factor is mounting deviation of the magnetic element with respect to the mounting board in the assembly process of the three-axis magnetic sensor.
  • FIG. 21A and FIG. 21B are diagrams for explaining the first error factor. In the assembly process of installing the magnetic elements 11X, 11Y, and 11Z corresponding to the three-dimensional directions on the mounting substrate 13 of the three-axis magnetic sensor 1, each magnetic field for each axis of the three-axis magnetic sensor 1 is changed.
  • the magnetic elements 11X, 11Y, and 11Z are installed so as to be orthogonal to each other so that they can be detected, and the directions of the axes of the three-axis magnetic sensor 1 and the magnetic field detection of the magnetic elements 11X, 11Y, and 11Z are detected.
  • the direction must match.
  • FIGS. 21A and 21B There are two types of positional deviations shown in FIGS. 21A and 21B.
  • One is a state as shown in FIG. 21A in which at least two axes in the magnetic field detection direction of each of the magnetic elements 11X, 11Y, and 11Z are not orthogonal to each other (hereinafter referred to as “absolute error in assembly”).
  • absolute error in assembly the axis of the magnetic element 11Y is not orthogonal to the axis of the magnetic element 11X.
  • FIG. 21A the axis of the magnetic element 11Y is not orthogonal to the axis of the magnetic element 11X.
  • the second cause of error is that when measuring and adjusting the magnetic sensitivity of each axis of the triaxial magnetic sensor 1, the direction of the coil or the like for applying a magnetic field coincides with the magnetic field detection direction of the triaxial magnetic sensor 1. It is difficult to make it. That is, in the three-axis magnetic sensor 1 used for the sensor module 50, since the geomagnetism is decomposed in the orthogonal coordinate system and the azimuth measurement is performed, the three-axis magnetic sensor 1 in the space in which a magnetic field can be arbitrarily applied in the three-axis directions orthogonal to each other. An azimuth error can be calculated by installing the axial magnetic sensor 1 and evaluating the crossing angle of the magnetic field detection direction of the triaxial magnetic sensor 1.
  • the direction of the coil for applying the magnetic field and the magnetic field detection direction of the triaxial magnetic sensor 1 should be matched.
  • the socket installation direction and the desired magnetic field detection direction of the three-axis magnetic sensor 1 are matched. Is difficult. Therefore, the accuracy of the azimuth error is reduced. Due to the above error factors, it is difficult to measure an accurate error angle, and it is difficult to finally obtain an accurate azimuth angle.
  • the present invention provides an error factor determination method capable of determining an error factor included in a measured and calculated azimuth angle, and an apparatus capable of implementing the error factor determination method.
  • the present invention also provides an error compensation method, a three-axis magnetic sensor, and a sensor module that can accurately determine the azimuth angle by canceling the above errors.
  • An error factor determination method includes a three-axis magnetic field applied to a three-axis magnetic sensor having three magnetic elements that detect magnetic fields in the X-axis, Y-axis, and Z-axis directions orthogonal to each other.
  • An error factor determination device includes a three-axis magnetic sensor having three magnetic elements that detect magnetic fields in the X-axis, Y-axis, and Z-axis directions orthogonal to each other, and the three-axis magnetic sensor. And a three-axis magnetic field applying unit for applying a magnetic field, wherein the three-axis magnetic sensor is configured such that each of the three-axis magnetic sensors when the magnetic field is applied in the X-axis direction of the three-axis magnetic field applying unit.
  • three space vectors representing the magnetic field detection directions of the three-axis magnetic sensor are calculated, and the magnetic field detection directions of the three magnetic elements are respectively calculated.
  • Compute each space vector to represent For the three space vectors representing the magnetic field detection direction of the three-axis magnetic sensor, the mutual angle between the space vectors is calculated, and for each space vector representing the magnetic field detection direction of the three magnetic elements, Calculating the crossing angle between the space vectors, whether the magnetic field application direction by the three-axis magnetic field applying means, the magnetic field detection direction of each magnetic element, and the magnetic field detection direction of the three-axis magnetic sensor coincide with each other; By verifying whether or not the three crossing angles in the magnetic field detection direction of each magnetic element coincide with the three crossing angles in the magnetic field detection direction of the three-axis magnetic sensor, the cause of the error included in the azimuth angle to be obtained is Whether the magnetic element depends on the mounting state of each magnetic element, the magnetic field application direction by the three-axis magnetic field applying means, and the magnetis
  • An error compensation method in a three-axis magnetic sensor is to adjust the magnetic sensitivity of each magnetic element when it is determined that the magnetic field detection directions of the magnetic elements are not orthogonal to each other. Especially, the magnetic field detection directions of the magnetic elements are orthogonal to each other.
  • the three-axis magnetic sensor includes a magnetic element that detects magnetic fields in the directions of the X axis, the Y axis, and the Z axis that are orthogonal to each other, and a signal for the detection result from each magnetic element.
  • a signal processing unit that performs processing, and the signal processing unit realizes the above-described error compensation method.
  • a sensor module includes the above-described three-axis magnetic sensor, a detection unit that detects a dip and declination of geomagnetism, and an inclination angle, and information from the three-axis magnetic sensor and the detection unit. And a signal processing unit for calculating an azimuth angle.
  • the error factor determination method and apparatus it is possible to determine the error factor included in the measured and calculated azimuth angle.
  • the azimuth can be accurately determined by canceling the error.
  • the flowchart which shows the procedure of the error factor determination method in the triaxial magnetic sensor which concerns on the 1st Embodiment of this invention.
  • the flowchart which shows the detail of the process of step S1.
  • the flowchart which shows the detail of the process of step S2.
  • the flowchart which shows the detail of a process of step S3.
  • the flowchart which shows the detail of the process of step S4.
  • the flowchart which shows the detail of a process of step S5.
  • surface which shows the measurement calculation result corresponding to the combination of a state (a) thru
  • the figure for demonstrating the state (A) and (B) of the triaxial magnetic sensor 1 shown in FIG. The figure which shows the relationship between a magnetic field application direction (solid line), the magnetic field detection method (dotted line) of an element, and the magnetic field detection direction (one-dot chain line) of a triaxial magnetic sensor.
  • a coil that can apply a uniform magnetic field in three orthogonal axes (hereinafter referred to as “three-axis Helmholtz coil”), etc.
  • three-axis Helmholtz coil an environment capable of generating an arbitrary uniform magnetic field in a specific spatial region with respect to the orthogonal three-axis directions is prepared, and the three-axis magnetic sensor 1 is installed in the environment.
  • a 3-axis Helmholtz coil it is possible to generate an arbitrary magnetic field in each coil to adjust the magnetic field of the surrounding environment to form an environment under a desired magnetic field strength (hereinafter referred to as “no magnetic field environment”).
  • no magnetic field environment an environment under a desired magnetic field strength
  • magnetic sensitivity is measured, it is not always necessary to form a magnetic field-free environment.
  • FIG. 1 is a flowchart showing a procedure of an error factor determination method in the three-axis magnetic sensor according to the first embodiment of the present invention.
  • Step S1 output values from magnetic elements 11X, 11Y, and 11Z for magnetic field detection in the X-axis, Y-axis, and Z-axis directions when a magnetic field is applied in the X-axis direction of the 3-axis Helmholtz coil are read ( Step S1).
  • FIG. 2 is a flowchart showing details of the processing in step S1.
  • data is acquired for (nmax + 1) magnetic fields Hx while increasing the strength of the magnetic field Hx (steps S11 to S15).
  • the initial value of the magnetic field is set to Hx (start), and the increment is set to Hx (step).
  • step S12 output values from the magnetic elements 11X, 11Y, and 11Z are read (step S13).
  • step S14 1 is added to n for the next strength (step S14), and it is determined whether n is smaller than a predetermined number nmax (step S15). If n is smaller than the predetermined number nmax, the process returns to step S12, increments Hx (step) are added, and steps S13 and S14 are repeated. If n is equal to the predetermined number nmax in step S15, data acquisition has been completed for the predetermined number (nmax + 1) of magnetic fields, and the process proceeds to step S16.
  • steps S16 to S19 contrary to steps S12 to S15, the magnetic field intensity is decreased by Hx (step), and the output values from the magnetic elements 11X, 11Y, and 11Z are read.
  • the details, such as determination of the number of data, are the same as in the case of increasing.
  • the output values from the magnetic elements 11X, 11Y, and 11Z for magnetic field detection in the X, Y, and Z directions when an arbitrary magnetic field is applied to the X-axis of the 3-axis Helmholtz coil, and the 3-axis Helmholtz are obtained.
  • FIG. 3 is a flowchart showing details of the process in step S2.
  • data is acquired for (nmax + 1) magnetic fields Hy while increasing the strength of the magnetic field Hy (steps S21 to S25). At this time, the initial value of the magnetic field is Hy (start), and the increment is Hy (step).
  • the output values from the magnetic elements 11X, 11Y, and 11Z are read for the first time from the magnetic field Hy (start) (step S22) (step S23).
  • 1 is added to n for the next intensity (step S24), and it is determined whether n is smaller than a predetermined number nmax (step S25). If n is smaller than the predetermined number nmax, the process returns to step S22, the increment Hy (step) is added, and steps S23 and S24 are repeated. If n is equal to the predetermined number nmax in step S25, data acquisition is completed for the predetermined number (nmax + 1) of magnetic fields, and the process proceeds to step S26.
  • steps S26 to S29 contrary to steps S22 to S25, the magnetic field intensity is decreased by Hy (step), and the output values from the magnetic elements 11X, 11Y, and 11Z are read.
  • the details, such as determination of the number of data, are the same as in the case of increasing.
  • the output values from the magnetic elements 11X, 11Y, and 11Z for magnetic field detection in the X, Y, and Z directions when an arbitrary magnetic field is applied to the Y-axis of the 3-axis Helmholtz coil, and the 3-axis Helmholtz are obtained.
  • FIG. 4 is a flowchart showing details of the process in step S3.
  • data is acquired for (nmax + 1) magnetic fields Hz while increasing the strength of the magnetic field Hz (steps S31 to S35).
  • the initial value of the magnetic field is set to Hz (start), and the increment is set to Hz (step).
  • step S32 the output values from the magnetic elements 11X, 11Y, and 11Z are read (step S33).
  • step S34 1 is added to n for the next intensity (step S34), and it is determined whether n is smaller than a predetermined number nmax (step S35). If n is smaller than the predetermined number nmax, the process returns to step S32, increments Hy (step) is added, and steps S33 and S34 are repeated. If n is equal to the predetermined number nmax in step S35, data acquisition has been completed for the predetermined number (nmax + 1) of magnetic fields, and the process proceeds to step S36.
  • steps S36 to S39 contrary to steps S32 to S35, the intensity of the magnetic field is decreased by Hz (step) and the output values from the magnetic elements 11X, 11Y, and 11Z are read.
  • the details, such as determination of the number of data, are the same as in the case of increasing.
  • the output values from the magnetic elements 11X, 11Y, and 11Z for magnetic field detection in the X, Y, and Z directions when an arbitrary magnetic field is applied to the Z-axis of the 3-axis Helmholtz coil, and the 3-axis Helmholtz are obtained.
  • space vectors Xm, Ym, Zm are calculated from the magnetic element (sensor) output values in the table of FIG. 8 (step S4).
  • FIG. 5 is a flowchart showing details of the process in step S4.
  • the space vectors Xm, Ym, and Zm thus obtained are the magnetic field detection directions (hereinafter referred to as the three magnetic elements 11X, 11Y, and 11Z in the three-axis magnetic sensor 1 when a magnetic field is applied in the specific magnetic field generation direction. , Which are referred to as “magnetic field detection direction of the three-axis magnetic sensor”).
  • space vectors Xe, Ye, and Ze are calculated from the magnetic element (sensor) output values in the table of FIG. 9 (step S5).
  • FIG. 6 is a flowchart showing details of the process in step S5.
  • the space vectors Xe, Ye, Ze obtained in this way are the magnetic field detection directions (hereinafter referred to as the individual magnetic elements 11X, 11Y, 11Z) of the three-axis magnetic sensor 1 when a magnetic field is applied in a specific magnetic field generation direction. , “Referred to as“ magnetic field detection direction of the element ”).
  • the relationship between the obtained space vectors Xm, Ym, Zm, Xe, Ye, Ze and the magnetic field application direction (Hx, Hy, Hz) is shown, for example, in FIGS. .
  • the mutual angles between the vectors are calculated for the space vectors Xm, Ym, and Zm, and the mutual angles between the vectors are calculated for the space vectors Xe, Ye, and Ze, respectively (step) S6).
  • step S62 the mutual angle between the vectors is calculated (step S62). That is, when the intersection angle ⁇ exy between the space vector Xe and the space vector Ye, the intersection angle ⁇ eyz between the space vector Ye and the space vector Ze, and the intersection angle ⁇ ezx between the space vector Ze and the space vector Xe are defined, ) To (6) are satisfied.
  • the magnetic field application direction by the triaxial Helmholtz coil, the magnetic field detection direction of the element, and the magnetic field detection direction of the triaxial magnetic sensor coincide with each other, and the magnetic field detection direction of the element obtained as described above.
  • the magnetic field application direction It is possible to determine whether it is due to a mismatch between the magnetic field detection directions and the magnetic field detection direction, due to inconsistency in sensitivity of the magnetic elements, or a combination thereof.
  • a state where the magnetic field application direction and the magnetic field detection direction coincide with each other is “state (a)”, and a case where the magnetic field detection directions of the magnetic elements 11X, 11Y, and 11Z are orthogonal to each other.
  • (B) ” a case where the magnetic sensitivities of the magnetic elements 11X, 11Y, and 11Z are the same is referred to as“ state (c) ”. If these events are independent from each other, there are eight combinations, but since they are not independent from each other, there are combinations that are not possible in reality.
  • FIG. 10 shows measurement calculation results corresponding to the combinations of the states (a) to (c), that is, the coincidence between the magnetic field detection direction of the element and the magnetic field detection direction of the three-axis magnetic sensor, and the magnetic field detection direction of the element. It is a figure which shows as a table
  • FIG. 11 is a diagram for explaining the states (A) and (B) of the triaxial magnetic sensor 1 shown in FIG. In FIG. 10, in the data column ⁇ , when they match, the ⁇ in the status (a) to (c) columns indicates that the status is in that state.
  • the magnetic field application direction is “direction (1)”
  • the magnetic field detection direction of the element is “direction (2)”
  • the magnetic field detection direction of the triaxial magnetic sensor is “direction (3)”.
  • 12 to 16 are diagrams showing the relationship between the magnetic field application direction (solid line), the magnetic field detection method of the element (dotted line), and the magnetic field detection direction of the three-axis magnetic sensor (dashed line).
  • the state (A) of the three-axis magnetic sensor 1 shown in FIG. 10 is obtained when the direction (2) and the direction (3) are the same, that is, the vector Xm and the vector Xe, and the vector Ym and the vector.
  • the states (a) to (c) are all satisfied. That is, as shown in FIG. 12, the magnetic field application direction, the magnetic field detection direction of the element, and the magnetic field detection direction of the triaxial magnetic sensor coincide with each other, and the magnetic field detection directions of the elements are orthogonal to each other. It is the same. In other words, it can be seen that an output without an azimuth error is obtained from the three-axis magnetic sensor 1 as a measurement result, and the magnetic sensitivities of the elements 11X, 11Y, and 11Z are accurately measured.
  • the direction (2) and the direction (3) are the same according to the measurement calculation result, that is, the vector Xm and the vector Xe, the vector Ym and the vector Ye, and the vector Zm and the vector.
  • the states (b) and (c) are satisfied, but the state (a) is not satisfied. That is, the magnetic field detection direction of each element is orthogonal to each other, and the magnetic sensitivity of each element is the same. As shown in FIG. 13, the magnetic field detection direction of the element and the magnetic field detection direction of the three-axis magnetic sensor are one. This is the case when they do not match the magnetic field application direction.
  • a measurement error (hereinafter referred to as an “installation position error”) due to an installation position deviation of the triaxial magnetic sensor 1 in a predetermined magnetic field detection direction with respect to the magnetic field application direction, and the triaxial magnetic sensor 1
  • installation position error a measurement error due to mounting deviations of the respective elements 11X, 11Y, and 11Z with respect to the mounting substrate 13
  • the error in the installation position depends on the installation method of the 3-axis magnetic sensor 1 to be measured with respect to the 3-axis Helmholtz coil, and the error can be reduced as much as possible by using a method with high alignment accuracy.
  • the absolute error in assembly forms electrical connections between the magnetic elements 11 and the signal processing unit 12 in addition to the alignment accuracy of the mounting substrate 13 and the magnetic elements 11X, 11Y, and 11Z.
  • the parallelism between the mounting substrate 13 surface and the magnetic sensitive surface of each element 11 depends on the height of each solder ball. Therefore, since the absolute error in assembly is larger than the error in installation position, in practice, the error evaluated by the present invention can be considered as an absolute error in assembly in many cases.
  • the direction (2) and the direction (3) are not the same according to the measurement calculation result, and each vector between the direction (2) and the direction (3)
  • each vector between the direction (2) and the direction (3) This is a case where at least one of the intersection angles does not match, but the three intersection angles in the direction (2) are 90 degrees.
  • the states (a) and (b) are satisfied, but the state (c) is not satisfied. That is, as shown in FIG. 14, although the magnetic field application direction and the magnetic field detection direction of the element coincide with each other, they do not coincide with the magnetic field detection direction of the three-axis magnetic sensor.
  • the directions are perpendicular to each other, but the magnetic sensitivities of the elements are not the same.
  • the direction (2) and the direction (3) are not the same (at least one of the vectors does not match) according to the measurement calculation result, but the direction (2) and the direction (3 ),
  • the crossing angles of the respective vectors coincide, that is, the crossing angle of Xm and Ym and the crossing angle of Xe and Ye, the crossing angle of Ym and Zm and the crossing angle of Ye and Ze, and the crossing angle of Zm and Xm
  • the intersection angles of Ze and Xe are the same.
  • the state (c) is satisfied. That is, as shown in FIG.
  • the magnetic field application direction, the magnetic field detection direction of the element, and the magnetic field detection direction of the triaxial magnetic sensor do not coincide with each other, and the magnetic field detection directions of the elements are orthogonal to each other. However, this is a case where each element has the same magnetic sensitivity.
  • the direction (2) and the direction (3) are not the same (at least one of the vectors does not match), and the direction (2) and the direction ( 3), at least one of the intersection angles of each vector does not match, and at least one of the three intersection angles in the direction (2) is not 90 degrees.
  • none of the state (a), the state (b), and the state (c) is satisfied. That is, as shown in FIG. 16, the magnetic field application direction, the magnetic field detection direction of the element, and the magnetic field detection direction of the triaxial magnetic sensor do not coincide with each other, and the magnetic field detection directions of the elements are orthogonal to each other. This is a case where the magnetic sensitivities of the elements are not the same.
  • the state of FIG. 15 differs from the state of FIG. 16 only in whether the magnetic sensitivities of the respective elements are the same or not the same. Since it is assumed that the magnetic field application directions are orthogonal to each other, the state (F) and the state (G) in the table of FIG. 10 are combinations that cannot be taken.
  • the magnetic field detection directions of the magnetic elements are orthogonally orthogonal.
  • the signal processing unit 12 in FIG. 19 intentionally adjusts the magnetic sensitivity of each magnetic element, Hence, the magnetic field detection directions of the respective elements are orthogonal to each other, and the three-axis magnetic sensor can be optimally adjusted.
  • the confirmation of orthogonality can be determined from the inner product of vectors in the magnetic field detection direction of the three-axis magnetic sensor.
  • the signal processing unit 3 uses the calculation result from the signal processing unit 12 and the crossing angle of the magnetic field detection direction of the triaxial magnetic sensor and the geomagnetic direction to each component of the magnetic field detection direction of the triaxial magnetic sensor with respect to the geomagnetism.
  • the magnetic field strength is calculated in consideration of the dip and declination of geomagnetism and the inclination angle of the portable electronic device, and the azimuth is derived.
  • the detection unit 2 detects the dip and declination of geomagnetism and the inclination angle of the portable electronic device
  • the signal processing unit 3 detects the triaxial magnetic sensor 1.
  • the triaxial magnetic sensor 1 it is desirable to install the triaxial magnetic sensor 1 on the portable electronic device so that the magnetic field detection direction of the triaxial magnetic sensor and the magnetic field instruction direction of the portable electronic device are parallel to each other.
  • the magnetic field detection directions of the magnetic elements are not orthogonal to each other, but the magnetic field detection directions of the three-axis magnetic sensor can be orthogonal to each other by arithmetic processing.
  • the magnetic field detection direction of the triaxial magnetic sensor instead of the magnetic field detection direction of each element, it is possible to detect the direction without any direction error.
  • the azimuth is calculated with the magnetic field strengths in the X-axis direction and the Y-axis direction of the portable electronic device, but depending on the inclination angle of the portable electronic device, among the X-axis direction, the Y-axis direction, and the Z-axis direction, The direction in which the azimuth is calculated using any two-axis magnetic field strength may be used.
  • the present invention can be applied to a sensor module and a portable electronic device equipped with the sensor module.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

Provided is an error cause determination method for a three-axis magnetic sensor comprising three magnetic elements for respectively detecting magnetic fields in the X-axis, Y-axis, and Z-axis directions. On the basis of output values from the respective magnetic elements when magnetic fields are applied in the respective axis directions, space vectors (Xm, Ym, Zm) indicating the magnetic field detection directions of the three-axis magnetic sensor, and space vectors (Xe, Ye, Ze) indicating the magnetic field detection directions of the respective magnetic elements are calculated. Next, intersection angles between Xm, Ym, and Zm are calculated, and intersection angles between Xe, Ye, and Ze are calculated. It is determined whether an error is caused by the mounting states of the respective magnetic elements, a mismatch between the magnetic field application directions and the magnetic field detection directions of the three-axis magnetic sensor and the respective magnetic elements, nonuniformity of the sensitivities of the respective magnetic elements, or a combination thereof.

Description

誤差要因判定方法およびその装置、並びに誤差補償方法、3軸磁気センサ、センサモジュール、誤差要因判定用のプログラムError factor determination method and apparatus, error compensation method, three-axis magnetic sensor, sensor module, and error factor determination program
 本発明は、誤差要因判定方法およびその装置、並びに誤差補償方法、3軸磁気センサ、センサモジュール、誤差要因判定用のプログラムに関する。特に、計測および算出される方位角に含まれる誤差の要因を判定できると共に、その誤差を相殺して正確に方位角を決定できる誤差要因判定方法およびその装置、並びに誤差補償方法、3軸磁気センサ、センサモジュール、誤差要因判定用のプログラムに関する。
 本願は、2010年6月17日に、日本に出願された特願2010-138531号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an error factor determination method and apparatus, an error compensation method, a three-axis magnetic sensor, a sensor module, and an error factor determination program. In particular, an error factor determination method and apparatus capable of determining an error factor included in a measured and calculated azimuth angle and canceling the error and accurately determining an azimuth angle, an error compensation method, and a three-axis magnetic sensor , A sensor module, and an error factor determination program.
This application claims priority based on Japanese Patent Application No. 2010-138531 filed in Japan on June 17, 2010, the contents of which are incorporated herein by reference.
 携帯電話機などの携帯電子機器や携帯端末においては、方位を検出するためのセンサを含む方位検知システム(以下、「センサモジュール」と称す)が広く利用されている。また、そのセンサモジュールとGPS(Global Positioning System)機能などを組み合わせれば、方位角に加えて、空間的な位置情報も検知してナビゲーションシステムを構成できるので、今後、その他、幅広い利用が見込まれている。 In portable electronic devices such as mobile phones and portable terminals, an orientation detection system (hereinafter referred to as “sensor module”) including a sensor for detecting the orientation is widely used. In addition, if the sensor module is combined with GPS (Global Positioning System) functions, a navigation system can be constructed by detecting spatial position information in addition to the azimuth angle. ing.
 かかるセンサモジュールにより方位を検出するためには、センサモジュールに対する地磁気方向を検知する必要がある。上述の携帯電子機器等は、三次元空間内において、種々の姿勢角で使用されるため、三次元的に種々の向きに置かれていても正確な方位測定を実現する必要がある。 In order to detect the direction by such a sensor module, it is necessary to detect the geomagnetic direction with respect to the sensor module. Since the above-described portable electronic devices and the like are used at various posture angles in a three-dimensional space, it is necessary to realize accurate azimuth measurement even if they are placed in various directions in three dimensions.
 従来より、センサモジュールにより方位を測定する方法としては、直交する3軸方向のそれぞれの磁界を検出して行う方法、2軸方向(3軸方向の磁界を検出して2軸方向を選択する場合を含む)の磁界を検出して行う方法、それらと加速度センサ又はジャイロセンサなどによる地磁気に対する伏角および偏角、並びに傾斜センサ等による傾斜角を組み合わせて求める方法等、各種が存在している(例えば、特許文献1乃至5参照)。 Conventionally, as a method of measuring the azimuth by the sensor module, a method of detecting each magnetic field in three orthogonal axes, a method of detecting two magnetic fields, and a method of selecting a two-axis direction by detecting a magnetic field in three axes. There are various methods such as a method of detecting magnetic fields (including a magnetic field), a method of obtaining them by combining a tilt angle and a declination angle with respect to geomagnetism by an acceleration sensor or a gyro sensor, and a tilt angle by a tilt sensor (for example, Patent Documents 1 to 5).
 ここで、携帯電子機器に設定される座標軸と伏角および偏角について説明する。図17Aおよび図17Bは、携帯電子機器100に論理的に、しかし固定的に設定される直交座標軸を説明するための図である。図17Aおよび図17Bは、それぞれ携帯電子機器100の平面図および側面図である。携帯電子機器100の平坦な前面の法線方向をZ軸方向とし、携帯電子機器100の長手方向をY軸とし、残りをX軸方向としている。図18は、伏角および偏角を説明するための図である。例えばXY平面上に求められる方位と、実際の地磁気方向との交角αを伏角といい、その方位と磁北との交角βを偏角という。 Here, the coordinate axis, dip angle and declination angle set for the mobile electronic device will be described. 17A and 17B are diagrams for explaining orthogonal coordinate axes that are logically but fixedly set in the portable electronic device 100. FIG. 17A and 17B are a plan view and a side view of the portable electronic device 100, respectively. The normal direction of the flat front surface of the portable electronic device 100 is the Z-axis direction, the longitudinal direction of the portable electronic device 100 is the Y-axis, and the rest is the X-axis direction. FIG. 18 is a diagram for explaining the dip angle and the declination angle. For example, the angle of intersection α between the azimuth obtained on the XY plane and the actual geomagnetic direction is called the dip angle, and the angle of intersection β between the direction and magnetic north is called the declination.
 図19は、直交する3軸方向の各磁界を検出でき、かつ、それらを検出した伏角、偏角および傾斜角とともに演算して方位を求めることができるセンサモジュールの論理構成を示す図である。
 図19に示すセンサモジュール50は、三次元空間に設定される直交する3軸の各方向の磁界を検知する3軸磁気センサ1と、地磁気の伏角および偏角と、当該センサモジュール50が搭載される携帯電子機器100の傾斜角とを検出する検出部2と、3軸磁気センサ1および検出部2からの情報に基づいて、正確な方位角等を計算する信号処理部3とを備えている。
FIG. 19 is a diagram illustrating a logical configuration of a sensor module that can detect magnetic fields in three orthogonal axes and can calculate the azimuth by calculating the magnetic field with the detected dip, declination, and inclination.
A sensor module 50 shown in FIG. 19 is mounted with a three-axis magnetic sensor 1 that detects magnetic fields in three orthogonal directions set in a three-dimensional space, a geomagnetic dip and declination, and the sensor module 50. And a signal processing unit 3 that calculates an accurate azimuth angle based on information from the triaxial magnetic sensor 1 and the detection unit 2. .
 詳述すると、3軸磁気センサ1は、X軸、Y軸、Z軸のそれぞれの方向の磁界を検知するX軸用磁気素子11X、Y軸用磁気素子11Y、Z軸用磁気素子11Zと、それらの磁気素子11X、11Y、11Zからの検出結果に対して信号処理を行う信号処理部12とを備えている。つまり、地磁気の方向および大きさを、直交する3軸方向の各成分に分離して検出している。
 なお、磁気素子11X、11Y、11Zとしては、例えば、磁気抵抗効果を利用したMR(Magneto Resistive)センサ、ホール素子を用いたセンサ、電磁誘導を利用したMI(Magneto Impedance)センサ、フラックスゲート型磁気センサ、直交フラックスゲート型磁気センサなどを用いることができる。
Specifically, the three-axis magnetic sensor 1 includes an X-axis magnetic element 11X, a Y-axis magnetic element 11Y, and a Z-axis magnetic element 11Z that detect magnetic fields in the X-axis, Y-axis, and Z-axis directions. And a signal processing unit 12 that performs signal processing on detection results from the magnetic elements 11X, 11Y, and 11Z. That is, the direction and magnitude of the terrestrial magnetism are detected by separating them into components in three orthogonal directions.
The magnetic elements 11X, 11Y, and 11Z include, for example, an MR (Magneto Resistive) sensor using a magnetoresistive effect, a sensor using a Hall element, an MI (Magneto Impedance) sensor using electromagnetic induction, and a flux gate type magnetism. A sensor, an orthogonal fluxgate magnetic sensor, or the like can be used.
 また、図20Aおよび図20Bは、図19に示した3軸磁気センサ1の物理的構成を示す図である。図20Aは側面図であり、図20Bは平面図である。図20Aおよび図20Bに示すように、3軸磁気センサ1は、実装用基板13と、それにワイヤーボンディングで実装された磁気素子11X、11Y、11Zと、各磁気素子11X、11Y、11Zで検出された磁気信号に対して演算処理を施す信号処理部12とを備えている。
 ここで、この3軸磁気センサ1は、搭載される機器に設定された前述の座標軸と整列するように、当該機器内に搭載され、それにより各磁気素子11X、11Y、11Zにおける磁気検知の向きが、機器に設定された各軸方向と一致するようにしている。
20A and 20B are diagrams showing the physical configuration of the three-axis magnetic sensor 1 shown in FIG. 20A is a side view, and FIG. 20B is a plan view. As shown in FIGS. 20A and 20B, the triaxial magnetic sensor 1 is detected by the mounting substrate 13, the magnetic elements 11X, 11Y, and 11Z mounted thereon by wire bonding, and the magnetic elements 11X, 11Y, and 11Z. And a signal processing unit 12 for performing arithmetic processing on the magnetic signal.
Here, the three-axis magnetic sensor 1 is mounted in the device so as to align with the above-described coordinate axis set in the device to be mounted, whereby the direction of magnetic detection in each of the magnetic elements 11X, 11Y, and 11Z. Is consistent with each axial direction set in the device.
 ところで、上述の従来の手法においては、いずれも、3軸磁気センサに含まれる、各磁気素子の磁界検知方向が、理想的に互いに直交していることが前提となっている。
 また、各磁気素子の磁界検知方向と、3軸磁気センサに設定された磁界検知方向、すなわち携帯電子機器に設定された3軸方向、とが、それぞれ一致していることが前提となっている。
 更に、各磁気素子は、その感度が互いに等しく設定されていることが前提となっている。
By the way, in the conventional methods described above, it is assumed that the magnetic field detection directions of the magnetic elements included in the three-axis magnetic sensor are ideally orthogonal to each other.
Further, it is assumed that the magnetic field detection direction of each magnetic element and the magnetic field detection direction set for the three-axis magnetic sensor, that is, the three-axis direction set for the portable electronic device are the same. .
Further, it is assumed that the sensitivity of each magnetic element is set equal to each other.
 しかしながら、実際は、最終的に求められる方位角に誤差が含まれてしまうことは不可避である。その誤差の要因としては、以下が考えられる。
 第一の誤差要因は、3軸磁気センサの組立工程における、実装用基板に対する磁気素子の実装ずれである。図21Aおよび図21Bは、この第一の誤差要因を説明するための図である。
 3軸磁気センサ1の実装基板13上に、三次元の各方向に対応した各磁気素子11X、11Y,11Zを設置する組立工程においては、当該3軸磁気センサ1の各軸についての各磁界が検知できるように、その各磁気素子11X、11Y,11Zは互いに直交するように設置し、かつ、当該3軸磁気センサ1の各軸の方向と、その各磁気素子11X、11Y,11Zの磁界検出方向が一致している必要がある。
However, in practice, it is inevitable that an error is included in the finally determined azimuth angle. Possible causes of the error are as follows.
The first error factor is mounting deviation of the magnetic element with respect to the mounting board in the assembly process of the three-axis magnetic sensor. FIG. 21A and FIG. 21B are diagrams for explaining the first error factor.
In the assembly process of installing the magnetic elements 11X, 11Y, and 11Z corresponding to the three-dimensional directions on the mounting substrate 13 of the three-axis magnetic sensor 1, each magnetic field for each axis of the three-axis magnetic sensor 1 is changed. The magnetic elements 11X, 11Y, and 11Z are installed so as to be orthogonal to each other so that they can be detected, and the directions of the axes of the three-axis magnetic sensor 1 and the magnetic field detection of the magnetic elements 11X, 11Y, and 11Z are detected. The direction must match.
 しかしながら、当該組立工程では、少なからず、実装用基板13に対する各磁気素子11X、11Y,11Zの設置位置ずれが生じる。ここでの位置ずれには、図21Aおよび図21Bに示す2種類がある。
 1つは、図21Aに示すような、各磁気素子11X、11Y,11Zの磁界検知方向の少なくとも二軸が互いに直交していない状態(以下、「組立の絶対誤差」と称す)である。図21Aの例においては、磁気素子11Yの軸が、磁気素子11Xの軸と直交していない。
 もう1つは、図21Bに示すような、各磁気素子11X、11Y,11Zの感磁方向は互いに直交しているが、3軸磁気センサ1の磁界検知方向の各方向と、その各磁気素子11X、11Y,11Zの磁界検出方向との間で、少なくとも1つの方向が一致していない状態(以下、「組立の相対誤差」と称す)である。図21Bの例においては、実装基板13に搭載される各素子が、その実装基板13に対して整列していないので、この場合、3軸磁気センサ1の磁界検知方向のX方向、Y方向と、磁気素子11X、11Yの磁界検出方向とが一致していない。
 なお、実際には、組立の絶対誤差と相対誤差とを区別することは困難である。
However, in the assembling process, the installation position of each of the magnetic elements 11X, 11Y, 11Z with respect to the mounting substrate 13 is not displaced. There are two types of positional deviations shown in FIGS. 21A and 21B.
One is a state as shown in FIG. 21A in which at least two axes in the magnetic field detection direction of each of the magnetic elements 11X, 11Y, and 11Z are not orthogonal to each other (hereinafter referred to as “absolute error in assembly”). In the example of FIG. 21A, the axis of the magnetic element 11Y is not orthogonal to the axis of the magnetic element 11X.
The other is that, as shown in FIG. 21B, the magnetic sensing directions of the magnetic elements 11X, 11Y, and 11Z are orthogonal to each other, but each direction of the magnetic field detection direction of the three-axis magnetic sensor 1 and the magnetic elements thereof. In this state, at least one direction does not coincide with the magnetic field detection directions of 11X, 11Y, and 11Z (hereinafter referred to as “relative error in assembly”). In the example of FIG. 21B, since the elements mounted on the mounting board 13 are not aligned with the mounting board 13, in this case, the X-axis direction and the Y-direction of the magnetic field detection direction of the triaxial magnetic sensor 1 The magnetic field detection directions of the magnetic elements 11X and 11Y do not match.
In practice, it is difficult to distinguish between absolute errors and relative errors in assembly.
 第二の誤差要因は、3軸磁気センサ1の各軸の磁気感度を測定して調整する際に、磁界を印加するためのコイル等の方向と、3軸磁気センサ1の磁界検知方向を一致させることが困難である、という点である。
 すなわち、センサモジュール50に用いる3軸磁気センサ1では、地磁気を直交座標系で分解して方位計測を行うため、互いに直交する3軸方向に任意に磁界を印加することのできる空間内に当該3軸磁気センサ1を設置し、当該3軸磁気センサ1の磁界検知方向の交角を評価することにより、方位誤差を算出することができる。但し、このとき、3軸磁気センサ1の各軸の磁気感度を測定して調整する際に、磁界を印加するためのコイル等の方向と、3軸磁気センサ1の磁界検知方向を一致させることが必要であるが、ソケットなどを用いて、同時に複数の3軸磁気センサ1の磁気感度を測定する場合には、ソケットの設置方向と、3軸磁気センサ1の所望の磁界検知方向を一致させることが困難である。従って、方位誤差の精度は低下してしまう。
 以上のような誤差要因により、正確な誤差角を測定することが困難であるため、最終的に正確な方位角を求めようとしても難しい。
The second cause of error is that when measuring and adjusting the magnetic sensitivity of each axis of the triaxial magnetic sensor 1, the direction of the coil or the like for applying a magnetic field coincides with the magnetic field detection direction of the triaxial magnetic sensor 1. It is difficult to make it.
That is, in the three-axis magnetic sensor 1 used for the sensor module 50, since the geomagnetism is decomposed in the orthogonal coordinate system and the azimuth measurement is performed, the three-axis magnetic sensor 1 in the space in which a magnetic field can be arbitrarily applied in the three-axis directions orthogonal to each other. An azimuth error can be calculated by installing the axial magnetic sensor 1 and evaluating the crossing angle of the magnetic field detection direction of the triaxial magnetic sensor 1. However, at this time, when measuring and adjusting the magnetic sensitivity of each axis of the triaxial magnetic sensor 1, the direction of the coil for applying the magnetic field and the magnetic field detection direction of the triaxial magnetic sensor 1 should be matched. However, when the magnetic sensitivities of a plurality of three-axis magnetic sensors 1 are simultaneously measured using a socket or the like, the socket installation direction and the desired magnetic field detection direction of the three-axis magnetic sensor 1 are matched. Is difficult. Therefore, the accuracy of the azimuth error is reduced.
Due to the above error factors, it is difficult to measure an accurate error angle, and it is difficult to finally obtain an accurate azimuth angle.
特開2005-172787号公報JP 2005-172787 A 特開2006-337057号公報JP 2006-337057 A 特開2008-241676号公報JP 2008-241676 A 特開2007-309833号公報JP 2007-309833 A 特開2009-204305号公報JP 2009-204305 A
 本発明は、計測および算出される方位角に含まれる誤差の要因を判定できる誤差要因判定方法、および前記の誤差要因判定方法を実施可能とする装置を提供する。
 また、本発明は、上記の誤差を相殺して正確に方位角を決定できる誤差補償方法、3軸磁気センサ、およびセンサモジュールを提供する。
The present invention provides an error factor determination method capable of determining an error factor included in a measured and calculated azimuth angle, and an apparatus capable of implementing the error factor determination method.
The present invention also provides an error compensation method, a three-axis magnetic sensor, and a sensor module that can accurately determine the azimuth angle by canceling the above errors.
 本発明の一様態に係る誤差要因判定方法は、互いに直交するX軸、Y軸、Z軸方向それぞれの磁界を検知する3つの磁気素子を有する3軸磁気センサに対して磁界を印加する3軸磁界印加手段がX軸方向に磁界を印加したときの、前記各磁気素子からの出力値と、前記3軸磁界印加手段がY軸方向に磁界を印加したときの、前記各磁気素子からの出力値と、前記3軸磁界印加手段がZ軸方向に磁界を印加したときの、前記各磁気素子からの出力値とに基づいて、前記3軸磁気センサの磁界検知方向を表わす3つの空間ベクトルおよび前記3つの磁気素子の磁界検知方向を表わす各空間ベクトルを計算する工程と、前記3軸磁気センサの磁界検知方向を表わす3つの空間ベクトルについて、前記各空間ベクトル間の互いの交角をそれぞれ計算すると共に、前記3つの磁気素子の磁界検知方向をそれぞれ表わす各空間ベクトルについて、前記各空間ベクトル間の互いの交角をそれぞれ計算する工程と、前記3軸磁界印加手段による磁界印加方向、前記各磁気素子の磁界検知方向、および前記3軸磁気センサの磁界検知方向が互いに一致するか否かと、前記各磁気素子の磁界検知方向の3つの交角と前記3軸磁気センサの磁界検知方向の3つの交角が一致するか否かとに基づいて、求めるべき方位角に含まれる誤差の要因が、前記各磁気素子の実装状態によるものであるのか、前記3軸磁界印加手段による磁界印加方向と前記3軸磁気センサおよび前記各磁気素子の磁界検知方向の不一致によるものであるのか、前記各磁気素子の感度の不統一によるものであるのか、又はそれらの組み合わせであるのかを判定する工程と、を備える。 An error factor determination method according to an aspect of the present invention includes a three-axis magnetic field applied to a three-axis magnetic sensor having three magnetic elements that detect magnetic fields in the X-axis, Y-axis, and Z-axis directions orthogonal to each other. Output value from each magnetic element when the magnetic field applying means applies a magnetic field in the X-axis direction, and output from each magnetic element when the three-axis magnetic field applying means applies a magnetic field in the Y-axis direction Three space vectors representing the magnetic field detection direction of the three-axis magnetic sensor based on the value and the output value from each magnetic element when the three-axis magnetic field applying means applies a magnetic field in the Z-axis direction; The step of calculating each space vector representing the magnetic field detection direction of the three magnetic elements, and the mutual angle between the space vectors for the three space vectors representing the magnetic field detection direction of the three-axis magnetic sensor, respectively. And calculating each other's crossing angle between the space vectors, the magnetic field application direction by the three-axis magnetic field applying means, and the magnetic fields. Whether the magnetic field detection direction of the element and the magnetic field detection direction of the three-axis magnetic sensor coincide with each other, three intersection angles of the magnetic field detection direction of each magnetic element and three intersection angles of the magnetic field detection direction of the three-axis magnetic sensor Whether or not the cause of the error included in the azimuth to be obtained is due to the mounting state of each magnetic element, the magnetic field application direction by the three-axis magnetic field applying means, and the three-axis magnetic field It is due to the mismatch of the magnetic field detection direction of the sensor and each of the magnetic elements, due to inconsistency of the sensitivity of the magnetic elements, or a combination thereof Comprising a step of determining whether the at Align, a.
 本発明の一様態に係る誤差要因判定装置は、互いに直交するX軸、Y軸、Z軸方向それぞれの磁界を検知する3つの磁気素子を有する3軸磁気センサと、前記3軸磁気センサに対して磁界を印加する3軸磁界印加手段とを備えた誤差要因判別装置であって、前記3軸磁気センサは、前記3軸磁界印加手段のX軸方向に磁界が印加されたときの、前記各磁気素子からの出力値と、前記3軸磁界印加手段のY軸方向に磁界が印加されたときの、前記各磁気素子からの出力値と、前記3軸磁界印加手段のZ軸方向に磁界が印加されたときの、前記各磁気素子からの出力値とに基づいて、前記3軸磁気センサの磁界検知方向を表わす3つの空間ベクトルを計算すると共に、前記3つの磁気素子の磁界検知方向をそれぞれ表わす各空間ベクトルを計算し、前記3軸磁気センサの磁界検知方向を表わす3つの空間ベクトルについて、前記各空間ベクトル間の互いの交角をそれぞれ計算すると共に、前記3つの磁気素子の磁界検知方向を表わす各空間ベクトルについて、前記各空間ベクトル間の互いの交角をそれぞれ計算し、前記3軸磁界印加手段による磁界印加方向、前記各磁気素子の磁界検知方向、および3軸磁気センサの磁界検知方向が互いに一致するか否かと、前記各磁気素子の磁界検知方向の3つの交角と前記3軸磁気センサの磁界検知方向の3つの交角が一致するか否かと、を検証することにより、求めるべき方位角に含まれる誤差の要因が、各磁気素子の実装状態によるものであるのか、前記3軸磁界印加手段による磁界印加方向と前記3軸磁気センサおよび前記各磁気素子の磁界検知方向の不一致によるものであるのか、各磁気素子の感度の不統一によるものであるのか、又はそれらの組み合わせであるのかを判定する信号処理部を備える。 An error factor determination device according to an aspect of the present invention includes a three-axis magnetic sensor having three magnetic elements that detect magnetic fields in the X-axis, Y-axis, and Z-axis directions orthogonal to each other, and the three-axis magnetic sensor. And a three-axis magnetic field applying unit for applying a magnetic field, wherein the three-axis magnetic sensor is configured such that each of the three-axis magnetic sensors when the magnetic field is applied in the X-axis direction of the three-axis magnetic field applying unit. An output value from the magnetic element, an output value from each magnetic element when a magnetic field is applied in the Y-axis direction of the triaxial magnetic field applying means, and a magnetic field in the Z-axis direction of the triaxial magnetic field applying means. Based on the output values from the magnetic elements when applied, three space vectors representing the magnetic field detection directions of the three-axis magnetic sensor are calculated, and the magnetic field detection directions of the three magnetic elements are respectively calculated. Compute each space vector to represent , For the three space vectors representing the magnetic field detection direction of the three-axis magnetic sensor, the mutual angle between the space vectors is calculated, and for each space vector representing the magnetic field detection direction of the three magnetic elements, Calculating the crossing angle between the space vectors, whether the magnetic field application direction by the three-axis magnetic field applying means, the magnetic field detection direction of each magnetic element, and the magnetic field detection direction of the three-axis magnetic sensor coincide with each other; By verifying whether or not the three crossing angles in the magnetic field detection direction of each magnetic element coincide with the three crossing angles in the magnetic field detection direction of the three-axis magnetic sensor, the cause of the error included in the azimuth angle to be obtained is Whether the magnetic element depends on the mounting state of each magnetic element, the magnetic field application direction by the three-axis magnetic field applying means, and the magnetism of the three-axis magnetic sensor and each magnetic element. Whether is by detecting the direction of mismatch, comprising the magnetic element or the sensitivity of which the due unstructured, or signal processing unit for determining whether the combination thereof.
 本発明の一様態に係る3軸磁気センサにおける誤差補償方法は、前記各磁気素子の磁界検知方向が互いに直交していないと判定された場合に、前記各磁気素子の磁気感度を調整することにより、見かけ上、前記各磁気素子の磁界検知方向を互いに直交させる。 An error compensation method in a three-axis magnetic sensor according to an aspect of the present invention is to adjust the magnetic sensitivity of each magnetic element when it is determined that the magnetic field detection directions of the magnetic elements are not orthogonal to each other. Apparently, the magnetic field detection directions of the magnetic elements are orthogonal to each other.
 本発明の一様態に係る3軸磁気センサは、互いに直交するX軸、Y軸、Z軸のそれぞれの方向の磁界を検知する各磁気素子と、当該各磁気素子からの検出結果に対して信号処理を行う信号処理部と、を備えた3軸磁気センサであって、前記信号処理部は、上述の誤差補償方法を実現する。 The three-axis magnetic sensor according to one aspect of the present invention includes a magnetic element that detects magnetic fields in the directions of the X axis, the Y axis, and the Z axis that are orthogonal to each other, and a signal for the detection result from each magnetic element. A signal processing unit that performs processing, and the signal processing unit realizes the above-described error compensation method.
 本発明の一様態に係るセンサモジュールは、上述の3軸磁気センサと、地磁気の伏角および偏角と、傾斜角とを検出する検出部と、前記3軸磁気センサおよび前記検出部からの情報に基づいて、方位角を計算する信号処理部と、を備える。 A sensor module according to an aspect of the present invention includes the above-described three-axis magnetic sensor, a detection unit that detects a dip and declination of geomagnetism, and an inclination angle, and information from the three-axis magnetic sensor and the detection unit. And a signal processing unit for calculating an azimuth angle.
 本発明の一様態に係る誤差要因判定用のプログラムは、互いに直交するX軸、Y軸、Z軸のそれぞれの方向の磁界を検知する3つの磁気素子を備えた3軸磁気センサに、3軸磁界印加手段がX軸方向に磁界を印加したときの、前記各磁気素子からの出力値と、前記3軸磁界印加手段がY軸方向に磁界を印加したときの、前記各磁気素子からの出力値と、前記3軸磁界印加手段がZ軸方向に磁界を印加したときの、前記各磁気素子からの出力値とに基づいて、前記3軸磁気センサの磁界検知方向を表わす3つの空間ベクトルおよび前記3つの磁気素子の磁界検知方向をそれぞれ表わす各空間ベクトルを計算する手順と、前記3軸磁気センサの磁界検知方向を表わす3つの空間ベクトルについて、前記各空間ベクトル間の互いの交角をそれぞれ計算すると共に、前記3つの磁気素子の磁界検知方向をそれぞれ表わす各空間ベクトルについて、前記各空間ベクトル間の互いの交角をそれぞれ計算する手順と、前記3軸磁界印加手段による磁界印加方向、前記各磁気素子の磁界検知方向、および前記3軸磁気センサの磁界検知方向が互いに一致するか否かと、前記各磁気素子の磁界検知方向の3つの交角と前記3軸磁気センサの磁界検知方向の3つの交角が一致するか否かに基づいて、求めるべき方位角に含まれる誤差の要因が、前記各磁気素子の実装状態によるものであるのか、前記3軸磁界印加手段による磁界印加方向と前記3軸磁気センサおよび前記各磁気素子の磁界検知方向の不一致によるものであるのか、前記各磁気素子の感度の不統一によるものであるのか、又はそれらの組み合わせであるのかを判定する手順と、を実行させる。 An error factor determination program according to an aspect of the present invention is a three-axis magnetic sensor including three magnetic elements that detect magnetic fields in directions of the X axis, the Y axis, and the Z axis orthogonal to each other. Output value from each magnetic element when the magnetic field applying means applies a magnetic field in the X-axis direction, and output from each magnetic element when the three-axis magnetic field applying means applies a magnetic field in the Y-axis direction Three space vectors representing the magnetic field detection direction of the three-axis magnetic sensor based on the value and the output value from each magnetic element when the three-axis magnetic field applying means applies a magnetic field in the Z-axis direction; The procedure for calculating each space vector representing the magnetic field detection direction of each of the three magnetic elements, and the mutual angle between the space vectors for the three space vectors representing the magnetic field detection direction of the three-axis magnetic sensor, respectively. And for each space vector representing the magnetic field detection direction of each of the three magnetic elements, a procedure for calculating an intersection angle between the space vectors, a magnetic field application direction by the three-axis magnetic field applying means, Whether the magnetic field detection direction of the magnetic element and the magnetic field detection direction of the three-axis magnetic sensor coincide with each other, three intersection angles of the magnetic field detection directions of the magnetic elements and three magnetic field detection directions of the three-axis magnetic sensor Based on whether or not the crossing angles coincide with each other, whether the cause of the error included in the azimuth angle to be obtained is due to the mounting state of each magnetic element, the magnetic field application direction by the three-axis magnetic field application means, and the three-axis Whether the magnetic sensor is due to a mismatch in the magnetic field detection direction of each magnetic element, due to inconsistency in the sensitivity of each magnetic element, or a combination thereof A procedure for determining whether it is fit, is executed.
 本発明の一様態に係る誤差要因判定方法およびその装置によれば、計測および算出される方位角に含まれる誤差の要因を判定できる。
 本発明の一様態に係る誤差補償方法、3軸磁気センサおよびセンサモジュールによれば、その誤差を相殺して正確に方位角を決定できる。
According to the error factor determination method and apparatus according to an embodiment of the present invention, it is possible to determine the error factor included in the measured and calculated azimuth angle.
According to the error compensation method, the three-axis magnetic sensor, and the sensor module according to an aspect of the present invention, the azimuth can be accurately determined by canceling the error.
本発明の第1の実施形態に係る3軸磁気センサにおける誤差要因判定方法の手順を示すフローチャート。The flowchart which shows the procedure of the error factor determination method in the triaxial magnetic sensor which concerns on the 1st Embodiment of this invention. ステップS1の処理の詳細を示すフローチャート。The flowchart which shows the detail of the process of step S1. ステップS2の処理の詳細を示すフローチャート。The flowchart which shows the detail of the process of step S2. ステップS3の処理の詳細を示すフローチャート。The flowchart which shows the detail of a process of step S3. ステップS4の処理の詳細を示すフローチャート。The flowchart which shows the detail of the process of step S4. ステップS5の処理の詳細を示すフローチャート。The flowchart which shows the detail of a process of step S5. ステップS6の処理の詳細を示すフローチャート。The flowchart which shows the detail of a process of step S6. 磁気素子(センサ)出力値の表を示す図。The figure which shows the table | surface of a magnetic element (sensor) output value. 磁気素子(センサ)出力値の表を示す図。The figure which shows the table | surface of a magnetic element (sensor) output value. 状態(a)乃至状態(c)の組み合わせに対応した計測計算結果を示す表。The table | surface which shows the measurement calculation result corresponding to the combination of a state (a) thru | or a state (c). 図10に示した3軸磁気センサ1の状態(A)および(B)を説明するための図。The figure for demonstrating the state (A) and (B) of the triaxial magnetic sensor 1 shown in FIG. 磁界印加方向(実線)、素子の磁界検知方法(点線)、および3軸磁気センサの磁界検知方向(一点鎖線)の関係を示す図。The figure which shows the relationship between a magnetic field application direction (solid line), the magnetic field detection method (dotted line) of an element, and the magnetic field detection direction (one-dot chain line) of a triaxial magnetic sensor. 磁界印加方向(実線)、素子の磁界検知方法(点線)、および3軸磁気センサの磁界検知方向(一点鎖線)の関係を示す図。The figure which shows the relationship between a magnetic field application direction (solid line), the magnetic field detection method (dotted line) of an element, and the magnetic field detection direction (one-dot chain line) of a triaxial magnetic sensor. 磁界印加方向(実線)、素子の磁界検知方法(点線)、および3軸磁気センサの磁界検知方向(一点鎖線)の関係を示す図。The figure which shows the relationship between a magnetic field application direction (solid line), the magnetic field detection method (dotted line) of an element, and the magnetic field detection direction (one-dot chain line) of a triaxial magnetic sensor. 磁界印加方向(実線)、素子の磁界検知方法(点線)、および3軸磁気センサの磁界検知方向(一点鎖線)の関係を示す図。The figure which shows the relationship between a magnetic field application direction (solid line), the magnetic field detection method (dotted line) of an element, and the magnetic field detection direction (one-dot chain line) of a triaxial magnetic sensor. 磁界印加方向(実線)、素子の磁界検知方法(点線)、および3軸磁気センサの磁界検知方向(一点鎖線)の関係を示す図。The figure which shows the relationship between a magnetic field application direction (solid line), the magnetic field detection method (dotted line) of an element, and the magnetic field detection direction (one-dot chain line) of a triaxial magnetic sensor. 携帯電子機器に設定される直交座標軸を説明するための図。The figure for demonstrating the orthogonal coordinate axis set to a portable electronic device. 携帯電子機器に設定される直交座標軸を説明するための図。The figure for demonstrating the orthogonal coordinate axis set to a portable electronic device. 伏角および偏角を説明するための図。The figure for demonstrating a dip and a declination. 3軸方向の各磁界を検出でき、かつ、それらを検出した伏角、偏角および傾斜角とともに演算して方位を求めることができるセンサモジュールの論理構成を示す図。The figure which shows the logical structure of the sensor module which can detect each magnetic field of a triaxial direction, and can calculate it with the dip angle, deflection angle, and inclination angle which detected them, and can obtain | require an azimuth | direction. 図19に示した3軸磁気センサ1の物理的構成を示す図。The figure which shows the physical structure of the triaxial magnetic sensor 1 shown in FIG. 図19に示した3軸磁気センサ1の物理的構成を示す図。The figure which shows the physical structure of the triaxial magnetic sensor 1 shown in FIG. 第一の誤差要因を説明するための図。The figure for demonstrating a 1st error factor. 第一の誤差要因を説明するための図。The figure for demonstrating a 1st error factor.
 以下、図面を参照して、本発明の実施形態について詳細に説明する。
 本発明の第1の実施形態に係る3軸磁気センサにおける誤差要因判定方法においては、まず、直交する3軸方向に均一な磁界を印加できるコイル(以下、「3軸ヘルムホルツコイル」と称す)などにより、直交する3軸方向に対して、特定の空間領域で任意の均一な磁界を発生することのできる環境を用意し、当該環境下に3軸磁気センサ1を設置する。なお、3軸ヘルムホルツコイルでは、各コイルに任意磁界を発生させて周囲環境の磁界を調整し、所望の磁界強度下の環境(以下、「無磁場環境」と称す)を形成することが可能であるが、本実施形態では、磁気感度の測定を実施するので、必ずしも無磁場環境を形成する必要はない。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
In the error factor determination method in the three-axis magnetic sensor according to the first embodiment of the present invention, first, a coil that can apply a uniform magnetic field in three orthogonal axes (hereinafter referred to as “three-axis Helmholtz coil”), etc. Thus, an environment capable of generating an arbitrary uniform magnetic field in a specific spatial region with respect to the orthogonal three-axis directions is prepared, and the three-axis magnetic sensor 1 is installed in the environment. In a 3-axis Helmholtz coil, it is possible to generate an arbitrary magnetic field in each coil to adjust the magnetic field of the surrounding environment to form an environment under a desired magnetic field strength (hereinafter referred to as “no magnetic field environment”). However, in this embodiment, since magnetic sensitivity is measured, it is not always necessary to form a magnetic field-free environment.
 図1は、本発明の第1の実施形態に係る3軸磁気センサにおける誤差要因判定方法の手順を示すフローチャートである。
 図1において、まず、3軸ヘルムホルツコイルのX軸方向に磁界を印加したときの、X軸、Y軸、Z軸方向の磁界検知用の磁気素子11X、11Y、11Zからの出力値を読み取る(ステップS1)。
FIG. 1 is a flowchart showing a procedure of an error factor determination method in the three-axis magnetic sensor according to the first embodiment of the present invention.
In FIG. 1, first, output values from magnetic elements 11X, 11Y, and 11Z for magnetic field detection in the X-axis, Y-axis, and Z-axis directions when a magnetic field is applied in the X-axis direction of the 3-axis Helmholtz coil are read ( Step S1).
 図2は、ステップS1の処理の詳細を示すフローチャートである。図2において、まず、データ取得個数を規定する変数nを初期化する(n=0)(ステップS11)。
 次に、磁界Hxの強さを増加させつつ、(nmax+1)個の磁界Hxについてデータを取得する(ステップS11~S15)。このとき、磁界の初期値をHx(start)とし、その増分をHx(step)とする。
FIG. 2 is a flowchart showing details of the processing in step S1. In FIG. 2, first, a variable n that defines the number of data acquisition is initialized (n = 0) (step S11).
Next, data is acquired for (nmax + 1) magnetic fields Hx while increasing the strength of the magnetic field Hx (steps S11 to S15). At this time, the initial value of the magnetic field is set to Hx (start), and the increment is set to Hx (step).
 詳細には、磁界Hx(start)から初めて(ステップS12)各磁気素子11X、11Y、11Zからの出力値を読み取る(ステップS13)。次に、次の強度にすべく、nに1を加え(ステップS14)、nが所定個数nmaxより小さいか否かを判断する(ステップS15)。nが所定個数nmaxより小さい場合には、ステップS12に戻り、増分Hx(step)を加えて、ステップS13,14を繰り返す。ステップS15において、nが所定個数nmaxと等しくなった場合は、所定個数(nmax+1)の磁界に対してデータ取得が終了したことになるので、ステップS16に移行する。
 ステップS16~S19においては、ステップS12~S15とは逆に、Hx(step)ずつ磁界の強度を落として、各磁気素子11X、11Y、11Zからの出力値を読み取る。データ個数の判断等、詳細は増加させる場合と同様である。
Specifically, for the first time from the magnetic field Hx (start) (step S12), output values from the magnetic elements 11X, 11Y, and 11Z are read (step S13). Next, 1 is added to n for the next strength (step S14), and it is determined whether n is smaller than a predetermined number nmax (step S15). If n is smaller than the predetermined number nmax, the process returns to step S12, increments Hx (step) are added, and steps S13 and S14 are repeated. If n is equal to the predetermined number nmax in step S15, data acquisition has been completed for the predetermined number (nmax + 1) of magnetic fields, and the process proceeds to step S16.
In steps S16 to S19, contrary to steps S12 to S15, the magnetic field intensity is decreased by Hx (step), and the output values from the magnetic elements 11X, 11Y, and 11Z are read. The details, such as determination of the number of data, are the same as in the case of increasing.
 このステップS1の処理により、図8の表のX1(i)、X2(i)、X3(i)(i=0~nmax)と、図9の表のX1(i)、Y1(i)、Z1(i)(i=0~nmax)とが得られる。更に詳細には、3軸ヘルムホルツコイルのX軸に任意の磁界を印加したときの、X、Y、Z方向の磁界検知用の各磁気素子11X、11Y、11Zからの出力値と、3軸ヘルムホルツコイルのX軸、Y軸、Z軸に任意の磁界を印加したそれぞれのときの、X方向の磁界検知用の磁気素子11Xからのそれぞれの出力値が得られる。 By the processing in step S1, X1 (i), X2 (i), X3 (i) (i = 0 to nmax) in the table of FIG. 8, and X1 (i), Y1 (i), Z1 (i) (i = 0 to nmax) is obtained. More specifically, the output values from the magnetic elements 11X, 11Y, and 11Z for magnetic field detection in the X, Y, and Z directions when an arbitrary magnetic field is applied to the X-axis of the 3-axis Helmholtz coil, and the 3-axis Helmholtz The respective output values from the magnetic element 11X for detecting the magnetic field in the X direction when an arbitrary magnetic field is applied to the X axis, Y axis, and Z axis of the coil are obtained.
 図1に戻り、次に、3軸ヘルムホルツコイルのY軸方向に磁界を印加したときの、X、Y、Z方向の磁界検知用の磁気素子11X、11Y、11Zからの出力値を読み取る(ステップS2)。
 図3は、ステップS2の処理の詳細を示すフローチャートである。図3において、まず、データ取得個数を規定する変数nを初期化する(n=0)(ステップS21)。
 次に、磁界Hyの強さを増加させつつ、(nmax+1)個の磁界Hyについてデータを取得する(ステップS21~S25)。このとき、磁界の初期値をHy(start)とし、その増分をHy(step)とする。
Returning to FIG. 1, next, output values from the magnetic elements 11X, 11Y, and 11Z for magnetic field detection in the X, Y, and Z directions when a magnetic field is applied in the Y-axis direction of the three-axis Helmholtz coil are read (steps). S2).
FIG. 3 is a flowchart showing details of the process in step S2. In FIG. 3, first, a variable n that defines the number of data acquisition is initialized (n = 0) (step S21).
Next, data is acquired for (nmax + 1) magnetic fields Hy while increasing the strength of the magnetic field Hy (steps S21 to S25). At this time, the initial value of the magnetic field is Hy (start), and the increment is Hy (step).
 詳細には、磁界Hy(start)から初めて(ステップS22)各磁気素子11X、11Y、11Zからの出力値を読み取る(ステップS23)。次に、次の強度にすべく、nに1を加え(ステップS24)、nが所定個数nmaxより小さいか否かを判断する(ステップS25)。nが所定個数nmaxより小さい場合には、ステップS22に戻り、増分Hy(step)を加えて、ステップS23,24を繰り返す。ステップS25において、nが所定個数nmaxと等しくなった場合は、所定個数(nmax+1)の磁界に対してデータ取得が終了したことになるので、ステップS26に移行する。 Specifically, the output values from the magnetic elements 11X, 11Y, and 11Z are read for the first time from the magnetic field Hy (start) (step S22) (step S23). Next, 1 is added to n for the next intensity (step S24), and it is determined whether n is smaller than a predetermined number nmax (step S25). If n is smaller than the predetermined number nmax, the process returns to step S22, the increment Hy (step) is added, and steps S23 and S24 are repeated. If n is equal to the predetermined number nmax in step S25, data acquisition is completed for the predetermined number (nmax + 1) of magnetic fields, and the process proceeds to step S26.
 ステップS26~S29においては、ステップS22~S25とは逆に、Hy(step)ずつ磁界の強度を落として、各磁気素子11X、11Y、11Zからの出力値を読み取る。データ個数の判断等、詳細は増加させる場合と同様である。
 このステップS2の処理により、図8の表のY1(i)、Y2(i)、Y3(i)(i=0~nmax)と、図9の表のX2(i)、Y2(i)、Z2(i)(i=0~nmax)とが得られる。更に詳細には、3軸ヘルムホルツコイルのY軸に任意の磁界を印加したときの、X、Y、Z方向の磁界検知用の各磁気素子11X、11Y、11Zからの出力値と、3軸ヘルムホルツコイルのX軸、Y軸、Z軸に任意の磁界を印加したそれぞれのときの、Y方向の磁界検知用の各磁気素子11Yからのそれぞれの出力値が得られる。
In steps S26 to S29, contrary to steps S22 to S25, the magnetic field intensity is decreased by Hy (step), and the output values from the magnetic elements 11X, 11Y, and 11Z are read. The details, such as determination of the number of data, are the same as in the case of increasing.
By the processing of step S2, Y1 (i), Y2 (i), Y3 (i) (i = 0 to nmax) in the table of FIG. 8, and X2 (i), Y2 (i), Z2 (i) (i = 0 to nmax) is obtained. More specifically, the output values from the magnetic elements 11X, 11Y, and 11Z for magnetic field detection in the X, Y, and Z directions when an arbitrary magnetic field is applied to the Y-axis of the 3-axis Helmholtz coil, and the 3-axis Helmholtz The respective output values from the magnetic elements 11Y for magnetic field detection in the Y direction when an arbitrary magnetic field is applied to the X axis, Y axis, and Z axis of the coil are obtained.
 図1に戻り、次に、3軸ヘルムホルツコイルのZ軸方向に磁界を印加したときの、X、Y、Z方向の磁界検知用の磁気素子11X、11Y、11Zからの出力値を読み取る(ステップS3)。
 図4は、ステップS3の処理の詳細を示すフローチャートである。図4において、まず、データ取得個数を規定する変数nを初期化する(n=0)(ステップS31)。
 次に、磁界Hzの強さを増加させつつ、(nmax+1)個の磁界Hzについてデータを取得する(ステップS31~S35)。このとき、磁界の初期値をHz(start)とし、その増分をHz(step)とする。
Returning to FIG. 1, next, output values from the magnetic elements 11X, 11Y, and 11Z for magnetic field detection in the X, Y, and Z directions when a magnetic field is applied in the Z-axis direction of the three-axis Helmholtz coil are read (steps). S3).
FIG. 4 is a flowchart showing details of the process in step S3. In FIG. 4, first, a variable n that defines the number of data acquisition is initialized (n = 0) (step S31).
Next, data is acquired for (nmax + 1) magnetic fields Hz while increasing the strength of the magnetic field Hz (steps S31 to S35). At this time, the initial value of the magnetic field is set to Hz (start), and the increment is set to Hz (step).
 詳細には、磁界Hz(start)から初めて(ステップS32)各磁気素子11X、11Y、11Zからの出力値を読み取る(ステップS33)。次に、次の強度にすべく、nに1を加え(ステップS34)、nが所定個数nmaxより小さいか否かを判断する(ステップS35)。nが所定個数nmaxより小さい場合には、ステップS32に戻り、増分Hy(step)を加えて、ステップS33,34を繰り返す。ステップS35において、nが所定個数nmaxと等しくなった場合は、所定個数(nmax+1)の磁界に対してデータ取得が終了したことになるので、ステップS36に移行する。 Specifically, for the first time from the magnetic field Hz (start) (step S32), the output values from the magnetic elements 11X, 11Y, and 11Z are read (step S33). Next, 1 is added to n for the next intensity (step S34), and it is determined whether n is smaller than a predetermined number nmax (step S35). If n is smaller than the predetermined number nmax, the process returns to step S32, increments Hy (step) is added, and steps S33 and S34 are repeated. If n is equal to the predetermined number nmax in step S35, data acquisition has been completed for the predetermined number (nmax + 1) of magnetic fields, and the process proceeds to step S36.
 ステップS36~S39においては、ステップS32~S35とは逆に、Hz(step)ずつ磁界の強度を落として、各磁気素子11X、11Y、11Zからの出力値を読み取る。データ個数の判断等、詳細は増加させる場合と同様である。
 このステップS3の処理により、図8の表のZ1(i)、Z2(i)、Z3(i)(i=0~nmax)と、図9の表のX3(i)、Y3(i)、Z3(i)(i=0~nmax)とが得られる。更に詳細には、3軸ヘルムホルツコイルのZ軸に任意の磁界を印加したときの、X、Y、Z方向の磁界検知用の各磁気素子11X、11Y、11Zからの出力値と、3軸ヘルムホルツコイルのX軸、Y軸、Z軸に任意の磁界を印加したそれぞれのときの、Z方向の磁界検知用の各磁気素子11Zからのそれぞれの出力値が得られる。
In steps S36 to S39, contrary to steps S32 to S35, the intensity of the magnetic field is decreased by Hz (step) and the output values from the magnetic elements 11X, 11Y, and 11Z are read. The details, such as determination of the number of data, are the same as in the case of increasing.
By the processing of step S3, Z1 (i), Z2 (i), Z3 (i) (i = 0 to nmax) in the table of FIG. 8, and X3 (i), Y3 (i), Z3 (i) (i = 0 to nmax) is obtained. More specifically, the output values from the magnetic elements 11X, 11Y, and 11Z for magnetic field detection in the X, Y, and Z directions when an arbitrary magnetic field is applied to the Z-axis of the 3-axis Helmholtz coil, and the 3-axis Helmholtz The respective output values from the magnetic elements 11Z for magnetic field detection in the Z direction when an arbitrary magnetic field is applied to the X axis, Y axis, and Z axis of the coil are obtained.
 図1に戻り、次に、図8の表の磁気素子(センサ)出力値から、空間ベクトルXm、Ym、Zmを計算する(ステップS4)。
 図5は、ステップS4の処理の詳細を示すフローチャートである。
 まず、図8の表の出力値X1(i)、Y1(i)、Z1(i)(i=0~nmax)から、空間ベクトルXmを計算する(ステップS41)。詳細には、出力値X1(i)、Y1(i)、Z1(i)(i=0~nmax)から最小二乗近似直線を決定し、その最小二乗近似直線の方向ベクトルを、空間ベクトルXmとして決定する。
 次に、図8の表の出力値X2(i)、Y2(i)、Z2(i)(i=0~nmax)から、空間ベクトルYmを計算する(ステップS42)。詳細には、出力値X2(i)、Y2(i)、Z2(i)(i=0~nmax)から最小二乗近似直線を決定し、その最小二乗近似直線の方向ベクトルを、空間ベクトルYmとして決定する。
 次に、図8の表の出力値X3(i)、Y3(i)、Z3(i)(i=0~nmax)から、空間ベクトルZmを計算する(ステップS43)。詳細には、出力値X3(i)、Y3(i)、Z3(i)(i=0~nmax)から最小二乗近似直線を決定し、その最小二乗近似直線の方向ベクトルを、空間ベクトルZmとして決定する。
 このようにして得られた空間ベクトルXm、Ym、Zmは、特定磁界発生方向に磁界を印加した際の、3軸磁気センサ1内の3つの磁気素子11X、11Y、11Zによる磁界検知方向(以下、「3軸磁気センサの磁界検知方向」と称す)を、それぞれ示している。
Returning to FIG. 1, next, space vectors Xm, Ym, Zm are calculated from the magnetic element (sensor) output values in the table of FIG. 8 (step S4).
FIG. 5 is a flowchart showing details of the process in step S4.
First, the space vector Xm is calculated from the output values X1 (i), Y1 (i), Z1 (i) (i = 0 to nmax) in the table of FIG. 8 (step S41). Specifically, a least square approximation line is determined from the output values X1 (i), Y1 (i), Z1 (i) (i = 0 to nmax), and the direction vector of the least square approximation line is defined as a space vector Xm. decide.
Next, the space vector Ym is calculated from the output values X2 (i), Y2 (i), Z2 (i) (i = 0 to nmax) in the table of FIG. 8 (step S42). Specifically, a least square approximation line is determined from the output values X2 (i), Y2 (i), Z2 (i) (i = 0 to nmax), and the direction vector of the least square approximation line is defined as a space vector Ym. decide.
Next, the space vector Zm is calculated from the output values X3 (i), Y3 (i), Z3 (i) (i = 0 to nmax) in the table of FIG. 8 (step S43). Specifically, a least square approximation line is determined from the output values X3 (i), Y3 (i), Z3 (i) (i = 0 to nmax), and the direction vector of the least square approximation line is defined as a space vector Zm. decide.
The space vectors Xm, Ym, and Zm thus obtained are the magnetic field detection directions (hereinafter referred to as the three magnetic elements 11X, 11Y, and 11Z in the three-axis magnetic sensor 1 when a magnetic field is applied in the specific magnetic field generation direction. , Which are referred to as “magnetic field detection direction of the three-axis magnetic sensor”).
 図1に戻り、次に、図9の表の磁気素子(センサ)出力値から、空間ベクトルXe、Ye、Zeを計算する(ステップS5)。
 図6は、ステップS5の処理の詳細を示すフローチャートである。
 まず、図9の表の出力値X1(i)、Y1(i)、Z1(i)(i=0~nmax)から、空間ベクトルXeを計算する(ステップS51)。詳細には、出力値X1(i)、Y1(i)、Z1(i)(i=0~nmax)から最小二乗近似直線を決定し、その最小二乗近似直線の方向ベクトルを、空間ベクトルXeとして決定する。
 次に、図9の表の出力値X2(i)、Y2(i)、Z2(i)(i=0~nmax)から、空間ベクトルYeを計算する(ステップS52)。詳細には、出力値X2(i)、Y2(i)、Z2(i)(i=0~nmax)から最小二乗近似直線を決定し、その最小二乗近似直線の方向ベクトルを、空間ベクトルYeとして決定する。
 次に、図9の表の出力値X3(i)、Y3(i)、Z3(i)(i=0~nmax)から、空間ベクトルZeを計算する(ステップS43)。詳細には、出力値X3(i)、Y3(i)、Z3(i)(i=0~nmax)から最小二乗近似直線を決定し、その最小二乗近似直線の方向ベクトルを、空間ベクトルZeとして決定する。
 このようにして得られた空間ベクトルXe、Ye、Zeは、特定の磁界発生方向に磁界を印加した際の、3軸磁気センサ1の個々の磁気素子11X、11Y、11Zによる磁界検知方向(以下、「素子の磁界検知方向」と称す)を、それぞれ示している。
Returning to FIG. 1, next, space vectors Xe, Ye, and Ze are calculated from the magnetic element (sensor) output values in the table of FIG. 9 (step S5).
FIG. 6 is a flowchart showing details of the process in step S5.
First, the space vector Xe is calculated from the output values X1 (i), Y1 (i), Z1 (i) (i = 0 to nmax) in the table of FIG. 9 (step S51). Specifically, a least square approximation line is determined from the output values X1 (i), Y1 (i), Z1 (i) (i = 0 to nmax), and the direction vector of the least square approximation line is defined as a space vector Xe. decide.
Next, the space vector Ye is calculated from the output values X2 (i), Y2 (i), Z2 (i) (i = 0 to nmax) in the table of FIG. 9 (step S52). Specifically, a least square approximation line is determined from the output values X2 (i), Y2 (i), Z2 (i) (i = 0 to nmax), and the direction vector of the least square approximation line is defined as a space vector Ye. decide.
Next, the space vector Ze is calculated from the output values X3 (i), Y3 (i), Z3 (i) (i = 0 to nmax) in the table of FIG. 9 (step S43). Specifically, a least square approximation line is determined from the output values X3 (i), Y3 (i), Z3 (i) (i = 0 to nmax), and the direction vector of the least square approximation line is defined as a space vector Ze. decide.
The space vectors Xe, Ye, Ze obtained in this way are the magnetic field detection directions (hereinafter referred to as the individual magnetic elements 11X, 11Y, 11Z) of the three-axis magnetic sensor 1 when a magnetic field is applied in a specific magnetic field generation direction. , “Referred to as“ magnetic field detection direction of the element ”).
 以上で、得られた空間ベクトルXm、Ym、Zm、Xe、Ye、Zeと、磁界印加方向(Hx、Hy,Hz)との関係は、後に説明する図12~図16に例えば示されている。
 図1に戻り、次に、空間ベクトルXm、Ym,Zmについて、ベクトル間の互いの交角をそれぞれ計算すると共に、空間ベクトルXe、Ye,Zeについて、ベクトル間の互いの交角をそれぞれ計算する(ステップS6)。
The relationship between the obtained space vectors Xm, Ym, Zm, Xe, Ye, Ze and the magnetic field application direction (Hx, Hy, Hz) is shown, for example, in FIGS. .
Returning to FIG. 1, next, the mutual angles between the vectors are calculated for the space vectors Xm, Ym, and Zm, and the mutual angles between the vectors are calculated for the space vectors Xe, Ye, and Ze, respectively (step) S6).
 図7は、ステップS6の処理の詳細を示すフローチャートである。
 まず、空間ベクトルXm、Ym,Zmについて、ベクトル間の互いの交角をそれぞれ計算する(ステップS61)。すなわち、空間ベクトルXmと空間ベクトルYmの間の交角θmxyと、空間ベクトルYmと空間ベクトルZmの間の交角θmyzと、空間ベクトルZmと空間ベクトルXmの間の交角θmzxと定義すると、次式(1)~(3)を満たす。
FIG. 7 is a flowchart showing details of the process in step S6.
First, for each of the space vectors Xm, Ym, Zm, the mutual angle between the vectors is calculated (step S61). That is, if the intersection angle θmxy between the space vector Xm and the space vector Ym, the intersection angle θmyz between the space vector Ym and the space vector Zm, and the intersection angle θmzzx between the space vector Zm and the space vector Xm are defined, ) To (3) are satisfied.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 次に、空間ベクトルXe、Ye,Zeについて、ベクトル間の互いの交角をそれぞれ計算する(ステップS62)。すなわち、空間ベクトルXeと空間ベクトルYeの間の交角θexyと、空間ベクトルYeと空間ベクトルZeの間の交角θeyzと、空間ベクトルZeと空間ベクトルXeの間の交角θezxと定義すると、次式(4)~(6)を満たす。 Next, with respect to the space vectors Xe, Ye, Ze, the mutual angle between the vectors is calculated (step S62). That is, when the intersection angle θexy between the space vector Xe and the space vector Ye, the intersection angle θeyz between the space vector Ye and the space vector Ze, and the intersection angle θezx between the space vector Ze and the space vector Xe are defined, ) To (6) are satisfied.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 本発明では、3軸ヘルムホルツコイルによる磁界印加方向、素子の磁界検知方向、および3軸磁気センサの磁界検知方向が互いに一致するか否かと、上述のように求められた、素子の磁界検知方向の3つの交角、および3軸磁気センサの磁界検知方向の3つの交角が一致するか否かと、を検証することにより、誤差の要因が、各磁気素子の実装状態によるものであるのか、磁界印加方向と磁界検知方向の不一致によるものであるのか、各磁気素子の感度の不統一によるものであるのか、又はそれらの組み合わせであるのかを、判定できる。 In the present invention, whether the magnetic field application direction by the triaxial Helmholtz coil, the magnetic field detection direction of the element, and the magnetic field detection direction of the triaxial magnetic sensor coincide with each other, and the magnetic field detection direction of the element obtained as described above. By verifying whether the three crossing angles and the three crossing angles in the magnetic field detection direction of the three-axis magnetic sensor coincide with each other, whether the cause of the error is due to the mounting state of each magnetic element, the magnetic field application direction It is possible to determine whether it is due to a mismatch between the magnetic field detection directions and the magnetic field detection direction, due to inconsistency in sensitivity of the magnetic elements, or a combination thereof.
 以下、より詳細に説明する。
 ここで、説明の便宜上、磁界印加方向と磁界検知方向が一致している状態を「状態(a)」、各磁気素子11X、11Y,11Zの磁界検知方向が互いに直交している場合を「状態(b)」、各磁気素子11X、11Y,11Zの磁気感度が同一である場合を「状態(c)」とする。これらの事象が互いに独立であるとすると、その組み合わせが8通りあることになるが、互いに独立ではないので、現実にはあり得ない組合せがある。
This will be described in more detail below.
Here, for convenience of explanation, a state where the magnetic field application direction and the magnetic field detection direction coincide with each other is “state (a)”, and a case where the magnetic field detection directions of the magnetic elements 11X, 11Y, and 11Z are orthogonal to each other. (B) ”, a case where the magnetic sensitivities of the magnetic elements 11X, 11Y, and 11Z are the same is referred to as“ state (c) ”. If these events are independent from each other, there are eight combinations, but since they are not independent from each other, there are combinations that are not possible in reality.
 図10は、状態(a)乃至状態(c)の組み合わせに対応した、計測計算結果、すなわち、素子の磁界検知方向と3軸磁気センサの磁界検知方向の一致性と、素子の磁界検知方向の3つの交角と3軸磁気センサの磁界検知方向の3つの交角の一致性とを表として示す図である。また、図11は、図10に示す、3軸磁気センサ1の状態(A)および(B)を説明するための図である。なお、図10において、データ欄の○については、一致している場合、状態(a)乃至(c)欄の○については、その状態にあることを示している。 FIG. 10 shows measurement calculation results corresponding to the combinations of the states (a) to (c), that is, the coincidence between the magnetic field detection direction of the element and the magnetic field detection direction of the three-axis magnetic sensor, and the magnetic field detection direction of the element. It is a figure which shows as a table | surface the three intersection angles and the coincidence of the three intersection angles of the magnetic field detection direction of a 3-axis magnetic sensor. FIG. 11 is a diagram for explaining the states (A) and (B) of the triaxial magnetic sensor 1 shown in FIG. In FIG. 10, in the data column ○, when they match, the ○ in the status (a) to (c) columns indicates that the status is in that state.
 以下、図10に示した3軸磁気センサ1の状態(A)乃至(G)について、順に説明する。また、説明の便宜上、磁界印加方向を「方向(1)」、素子の磁界検知方向を「方向(2)」、3軸磁気センサの磁界検知方向を「方向(3)」とする。
 また、図12乃至16は、磁界印加方向(実線)、素子の磁界検知方法(点線)、および3軸磁気センサの磁界検知方向(一点鎖線)の関係を示す図である。
Hereinafter, the states (A) to (G) of the three-axis magnetic sensor 1 shown in FIG. 10 will be described in order. For convenience of explanation, the magnetic field application direction is “direction (1)”, the magnetic field detection direction of the element is “direction (2)”, and the magnetic field detection direction of the triaxial magnetic sensor is “direction (3)”.
12 to 16 are diagrams showing the relationship between the magnetic field application direction (solid line), the magnetic field detection method of the element (dotted line), and the magnetic field detection direction of the three-axis magnetic sensor (dashed line).
 まず、図10に示す、3軸磁気センサ1の状態(A)は、計測計算結果により、方向(2)と方向(3)が同一の場合、すなわち、ベクトルXmとベクトルXe、ベクトルYmとベクトルYe、ベクトルZmとベクトルZeのそれぞれが、方向および大きさで一致し、かつ、方向(2)と方向(3)との間で、各ベクトルの前記交角がそれぞれ一致している場合、すなわち、XmとYmの交角とXeとYeの交角、YmとZmの交角とYeとZeの交角、ZmとXmの交角とZeとXeの交角、がそれぞれ同一であり、かつ、図11に示した値a,b,cについて、a=b=c=0であった場合である。 First, the state (A) of the three-axis magnetic sensor 1 shown in FIG. 10 is obtained when the direction (2) and the direction (3) are the same, that is, the vector Xm and the vector Xe, and the vector Ym and the vector. Ye, when the vector Zm and the vector Ze match in direction and magnitude, and the crossing angle of each vector matches between the direction (2) and the direction (3), that is, The crossing angle of Xm and Ym and the crossing angle of Xe and Ye, the crossing angle of Ym and Zm and the crossing angle of Ye and Ze, the crossing angle of Zm and Xm and the crossing angle of Ze and Xe are the same, and the values shown in FIG. This is the case where a = b = c = 0 for a, b and c.
 この場合、図10の表に示すように、状態(a)乃至状態(c)は全て満たされている。つまり、図12に示すように磁界印加方向、素子の磁界検知方向、および3軸磁気センサの磁界検知方向は一致し、各素子の磁界検知方向は互いに直交しており、各素子の磁気感度が同一となっている。換言すれば、測定結果の3軸磁気センサ1から方位誤差のない出力が得られ、かつ、各素子11X、11Y,11Zの磁気感度が正確に測定されていることがわかる。つまり、3軸磁気センサ1が、3軸ヘルムホルツコイルによる磁界内に適切に設置され、かつ、組立の絶対誤差と相対誤差がないため、磁気感度の測定が正確であり、各素子11X、11Y,11Zの磁気感度が同一であるという理想的な状態であることがわかる。 In this case, as shown in the table of FIG. 10, the states (a) to (c) are all satisfied. That is, as shown in FIG. 12, the magnetic field application direction, the magnetic field detection direction of the element, and the magnetic field detection direction of the triaxial magnetic sensor coincide with each other, and the magnetic field detection directions of the elements are orthogonal to each other. It is the same. In other words, it can be seen that an output without an azimuth error is obtained from the three-axis magnetic sensor 1 as a measurement result, and the magnetic sensitivities of the elements 11X, 11Y, and 11Z are accurately measured. That is, since the triaxial magnetic sensor 1 is appropriately installed in the magnetic field generated by the triaxial Helmholtz coil and there is no absolute error and relative error in assembly, the magnetic sensitivity is accurately measured, and each element 11X, 11Y, It can be seen that this is an ideal state where the magnetic sensitivity of 11Z is the same.
 次に、図10に示す状態(B)は、計測計算結果により、方向(2)と方向(3)が同一の場合、すなわち、ベクトルXmとベクトルXe、ベクトルYmとベクトルYe、ベクトルZmとベクトルZeのそれぞれが、方向および大きさで一致し、かつ、方向(2)と方向(3)との間で、各ベクトルの前記交角がそれぞれ一致している場合、すなわち、XmとYmの交角とXeとYeの交角、YmとZmの交角とYeとZeの交角、ZmとXmの交角とZeとXeの交角、がそれぞれ同一であるが、図11に示した値a,b,cについて、a=b=c=0は満たされていない場合である。 Next, in the state (B) shown in FIG. 10, the direction (2) and the direction (3) are the same according to the measurement calculation result, that is, the vector Xm and the vector Xe, the vector Ym and the vector Ye, and the vector Zm and the vector. Each of Ze matches in direction and size, and the crossing angle of each vector matches between direction (2) and direction (3), that is, the crossing angle of Xm and Ym The crossing angle of Xe and Ye, the crossing angle of Ym and Zm and the crossing angle of Ye and Ze, the crossing angle of Zm and Xm, and the crossing angle of Ze and Xe are the same, but the values a, b, and c shown in FIG. a = b = c = 0 is not satisfied.
 この場合、図10の表に示すように、状態(b)および(c)は満たされているが、状態(a)は満たされていない。つまり、各素子の磁界検知方向は互いに直交しており、各素子の磁気感度が同一となっており、図13に示すように、素子の磁界検知方向と3軸磁気センサの磁界検知方向は一致しているものの、それらと磁界印加方向とは一致していない場合である。換言すれば、組立の絶対誤差および相対誤差はないが、磁界印加方向に対する3軸磁気センサ1の設置位置ずれ、あるいは、3軸磁気センサ1の実装用基板13に対する素子の実装ずれ等により、各磁気素子11X、11Y,11Zの磁気感度の測定に誤差が生ずる場合である。 In this case, as shown in the table of FIG. 10, the states (b) and (c) are satisfied, but the state (a) is not satisfied. That is, the magnetic field detection direction of each element is orthogonal to each other, and the magnetic sensitivity of each element is the same. As shown in FIG. 13, the magnetic field detection direction of the element and the magnetic field detection direction of the three-axis magnetic sensor are one. This is the case when they do not match the magnetic field application direction. In other words, there is no absolute or relative error in assembly, but due to a deviation in the installation position of the triaxial magnetic sensor 1 with respect to the magnetic field application direction or a deviation in the mounting of the element with respect to the mounting substrate 13 of the triaxial magnetic sensor 1 This is a case where an error occurs in the measurement of the magnetic sensitivity of the magnetic elements 11X, 11Y, and 11Z.
 ところで、実用上は、磁界印加方向に対する3軸磁気センサ1の所定の磁界検知方向の設置位置ずれに起因する測定誤差(以下、「設置位置の誤差」と称す)と、3軸磁気センサ1の実装用基板13に対する各素子11X、11Y,11Zの実装ずれに起因する測定誤差の双方が含まれる場合が多い。この場合、従来の技術では、設置位置の誤差、組立の絶対誤差、組立の相対誤差、各磁気素子の磁気感度の差による誤差を区別して評価することが困難であった。 By the way, in practice, a measurement error (hereinafter referred to as an “installation position error”) due to an installation position deviation of the triaxial magnetic sensor 1 in a predetermined magnetic field detection direction with respect to the magnetic field application direction, and the triaxial magnetic sensor 1 In many cases, both of measurement errors due to mounting deviations of the respective elements 11X, 11Y, and 11Z with respect to the mounting substrate 13 are included. In this case, it has been difficult for the conventional technique to distinguish and evaluate an error in installation position, an absolute error in assembly, a relative error in assembly, and an error due to a difference in magnetic sensitivity of each magnetic element.
 ここで、図10の表の状態(B)の場合、少なくとも、測定対象の3軸磁気センサ1内の各磁気素子11X、11Y,11Zの感度が同一であることがわかる。加えて、XeとYeの交角、YeとZeの交角、およびZeとXeの交角が、それぞれ直角である場合、すなわち、組立の相対誤差がない場合は、XmとXe、YmとYe、ZmとZeのそれぞれが、方向および大きさで一致する。この場合、HzとXeの交角、HyとYeの交角、HzとZeの交角に基づき、設置位置の誤差と組立の絶対誤差の双方を含む誤差を定義することができる。設置位置の誤差は、測定対象である3軸磁気センサ1の3軸ヘルムホルツコイルに対する設置方法に依存し、位置合わせ精度の高い方法と用いれば、当該誤差を極力小さくすることは可能である。一方、組立の絶対誤差は、実装用基板13と各磁気素子11X、11Y,11Zの位置合わせ精度に加えて、各磁気素子11や信号処理部12などとの間で電気的接続を形成するために、半田ボール等を用いた表面実装を行う場合は、実装用基板13面と各素子11の感磁面の平行度が各半田ボールの高さなどに依存する。従って、設置位置の誤差と比較して、組立の絶対誤差の方が大きいので、実用上は、本発明により評価した誤差は、組立の絶対誤差と考えて差し支えない場合が多い。 Here, in the case of the state (B) in the table of FIG. 10, it can be seen that at least the sensitivities of the magnetic elements 11X, 11Y, and 11Z in the three-axis magnetic sensor 1 to be measured are the same. In addition, when the intersection angle of Xe and Ye, the intersection angle of Ye and Ze, and the intersection angle of Ze and Xe are right angles, that is, when there is no relative error in assembly, Xm and Xe, Ym and Ye, Zm and Each of Ze matches in direction and size. In this case, based on the intersection angle of Hz and Xe, the intersection angle of Hy and Ye, and the intersection angle of Hz and Ze, an error including both an installation position error and an assembly absolute error can be defined. The error in the installation position depends on the installation method of the 3-axis magnetic sensor 1 to be measured with respect to the 3-axis Helmholtz coil, and the error can be reduced as much as possible by using a method with high alignment accuracy. On the other hand, the absolute error in assembly forms electrical connections between the magnetic elements 11 and the signal processing unit 12 in addition to the alignment accuracy of the mounting substrate 13 and the magnetic elements 11X, 11Y, and 11Z. In addition, when performing surface mounting using a solder ball or the like, the parallelism between the mounting substrate 13 surface and the magnetic sensitive surface of each element 11 depends on the height of each solder ball. Therefore, since the absolute error in assembly is larger than the error in installation position, in practice, the error evaluated by the present invention can be considered as an absolute error in assembly in many cases.
 なお、図10の表の状態(B)の場合で、XeとYeの交角、YeとZeの交角、およびZeとXeの交角のいずれかが直交していない場合は、各素子11X、11Y,11Zの磁界検知方向の交角のうち、少なくとも1つが直交していなが、各磁気素子11X、11Y,11Zの磁界検知方向の磁気感度は同一である。従って、各磁気素子11X、11Y,11Zの磁気感度に偏差はないが、組立の絶対誤差がある状態であることがわかる。 In the case of the state (B) in the table of FIG. 10, when any of the intersection angle of Xe and Ye, the intersection angle of Ye and Ze, and the intersection angle of Ze and Xe is not orthogonal, each element 11X, 11Y, At least one of the crossing angles in the magnetic field detection direction of 11Z is not orthogonal, but the magnetic sensitivities of the magnetic elements 11X, 11Y, and 11Z in the magnetic field detection direction are the same. Therefore, it can be seen that there is no deviation in the magnetic sensitivities of the magnetic elements 11X, 11Y, and 11Z, but there is an absolute error in assembly.
 次に、図10に示す状態(C)は、計測計算結果により、方向(2)と方向(3)が同一ではなく、また、方向(2)と方向(3)との間で、各ベクトルの前記交角の少なくとも1つが一致していないが、方向(2)の3つの交角が90度である場合である。
 この場合、図10の表に示すように、状態(a)および(b)は満たされているが、状態(c)は満たされていない。つまり、図14に示すように、磁界印加方向と素子の磁界検知方向とは一致しているものの、それらと3軸磁気センサの磁界検知方向は一致しておらず、また、各素子の磁界検知方向は互いに直交しているが、各素子の磁気感度が同一となっていない場合である。
Next, in the state (C) shown in FIG. 10, the direction (2) and the direction (3) are not the same according to the measurement calculation result, and each vector between the direction (2) and the direction (3) This is a case where at least one of the intersection angles does not match, but the three intersection angles in the direction (2) are 90 degrees.
In this case, as shown in the table of FIG. 10, the states (a) and (b) are satisfied, but the state (c) is not satisfied. That is, as shown in FIG. 14, although the magnetic field application direction and the magnetic field detection direction of the element coincide with each other, they do not coincide with the magnetic field detection direction of the three-axis magnetic sensor. The directions are perpendicular to each other, but the magnetic sensitivities of the elements are not the same.
 次に、図10に示す状態(D)は、計測計算結果により、方向(2)と方向(3)が同一ではない(少なくともいずれかのベクトルが不一致)が、方向(2)と方向(3)との間で、各ベクトルの前記交角がそれぞれ一致している、すなわち、XmとYmの交角とXeとYeの交角、YmとZmの交角とYeとZeの交角、ZmとXmの交角とZeとXeの交角、がそれぞれ同一である場合である。
 この場合、図10の表に示すように、状態(c)のみが満たされている。つまり、図15に示すように、磁界印加方向、素子の磁界検知方向、および3軸磁気センサの磁界検知方向は、互いに一致しておらず、また、各素子の磁界検知方向は互いに直交しておらず、しかし、各素子の磁気感度が同一となっている場合である。
Next, in the state (D) illustrated in FIG. 10, the direction (2) and the direction (3) are not the same (at least one of the vectors does not match) according to the measurement calculation result, but the direction (2) and the direction (3 ), The crossing angles of the respective vectors coincide, that is, the crossing angle of Xm and Ym and the crossing angle of Xe and Ye, the crossing angle of Ym and Zm and the crossing angle of Ye and Ze, and the crossing angle of Zm and Xm This is a case where the intersection angles of Ze and Xe are the same.
In this case, as shown in the table of FIG. 10, only the state (c) is satisfied. That is, as shown in FIG. 15, the magnetic field application direction, the magnetic field detection direction of the element, and the magnetic field detection direction of the triaxial magnetic sensor do not coincide with each other, and the magnetic field detection directions of the elements are orthogonal to each other. However, this is a case where each element has the same magnetic sensitivity.
 次に、図10に示す状態(E)は、計測計算結果により、方向(2)と方向(3)が同一ではなく(少なくともいずれかのベクトルが不一致)、また、方向(2)と方向(3)との間で、各ベクトルの前記交角の少なくとも1つが一致しておらず、方向(2)の3つの交角の少なくとも1つが90度でない場合である。
 この場合、図10の表に示すように、状態(a)、状態(b)および状態(c)のいずれも満たされていない。つまり、図16に示すように、磁界印加方向、素子の磁界検知方向、および3軸磁気センサの磁界検知方向は、互いに一致しておらず、また、各素子の磁界検知方向は互いに直交しておらず、また、各素子の磁気感度が同一ではない場合である。換言すれば、磁界印加方向に対する3軸磁気センサ1の設置位置ずれに加えて、3軸磁気センサの実装用基板に対する素子の実装ずれ等により、各素子の正確な磁気感度測定ができないことを意味している。図15の状態と、図16の状態とでは、各素子の磁気感度が同一か同一でないか、の点のみにおいて異なる。
 なお、磁界印加方向は互いに直交していることが前提なので、図10の表における状態(F)、状態(G)は、採り得ない組み合わせである。
Next, in the state (E) shown in FIG. 10, the direction (2) and the direction (3) are not the same (at least one of the vectors does not match), and the direction (2) and the direction ( 3), at least one of the intersection angles of each vector does not match, and at least one of the three intersection angles in the direction (2) is not 90 degrees.
In this case, as shown in the table of FIG. 10, none of the state (a), the state (b), and the state (c) is satisfied. That is, as shown in FIG. 16, the magnetic field application direction, the magnetic field detection direction of the element, and the magnetic field detection direction of the triaxial magnetic sensor do not coincide with each other, and the magnetic field detection directions of the elements are orthogonal to each other. This is a case where the magnetic sensitivities of the elements are not the same. In other words, in addition to the installation position shift of the triaxial magnetic sensor 1 with respect to the magnetic field application direction, it means that accurate magnetic sensitivity measurement of each element cannot be performed due to the mounting displacement of the element with respect to the mounting board of the triaxial magnetic sensor. is doing. The state of FIG. 15 differs from the state of FIG. 16 only in whether the magnetic sensitivities of the respective elements are the same or not the same.
Since it is assumed that the magnetic field application directions are orthogonal to each other, the state (F) and the state (G) in the table of FIG. 10 are combinations that cannot be taken.
 以上のように、3軸磁気センサ1の磁界検知方向に関する設置位置の誤差、組立の相対誤差、組立の絶対誤差、各磁気素子の磁気感度の偏差の情報を得るための手段として、空間座標における素子の磁界検知方向と3軸磁気センサの磁界検知方向を用いる手法が有用である。 As described above, as a means for obtaining information on an installation position error, a relative error in assembly, an absolute error in assembly, and a deviation in magnetic sensitivity of each magnetic element with respect to the magnetic field detection direction of the three-axis magnetic sensor 1, A technique using the magnetic field detection direction of the element and the magnetic field detection direction of the three-axis magnetic sensor is useful.
 次に、上述した判定された誤差要因に基づいて、その誤差要因により生じた実際の誤差を補償する方法について説明する。
 つまり、誤差要因として、状態(b)の満たされていないことを含んでいる場合、すなわち、各素子の磁界検知方向は互いに直交していない場合、それを感度の調整で補償するものである。
Next, a method for compensating for an actual error caused by the above-described determined error factor will be described.
That is, if the error factor includes that the state (b) is not satisfied, that is, if the magnetic field detection directions of the elements are not orthogonal to each other, this is compensated by adjusting the sensitivity.
 より詳細に説明すると、3軸磁気センサ1の組立工程においては、磁気素子の磁界検知方向を正確に直交させることが理想であるが、実際の組立工程では、3軸磁気センサ1の個体ごとに少なからず直交度の偏差が生ずる。そこで、上述の手法で、各素子の磁界検知方向は互いに直交していないことが判定された場合、図19の信号処理部12により、各磁気素子の磁気感度を意図的に調整することにより、見かけ上、各素子の磁界検知方向が互いに直交するようにもっていき、3軸磁気センサを最適に調整することができる。なお、直交性の確認は、3軸磁気センサの磁界検知方向のベクトルの内積などから判断できる。 More specifically, in the assembly process of the triaxial magnetic sensor 1, it is ideal that the magnetic field detection directions of the magnetic elements are orthogonally orthogonal. However, in the actual assembly process, for each individual triaxial magnetic sensor 1 There will be some deviation in orthogonality. Therefore, when it is determined by the above-described method that the magnetic field detection directions of the respective elements are not orthogonal to each other, the signal processing unit 12 in FIG. 19 intentionally adjusts the magnetic sensitivity of each magnetic element, Apparently, the magnetic field detection directions of the respective elements are orthogonal to each other, and the three-axis magnetic sensor can be optimally adjusted. The confirmation of orthogonality can be determined from the inner product of vectors in the magnetic field detection direction of the three-axis magnetic sensor.
 そして前述と同様、信号処理部3が、信号処理部12からの演算結果と、3軸磁気センサの磁界検知方向と地磁気方向の交角とにより、地磁気に対する3軸磁気センサの磁界検知方向の各成分の磁界強度を、地磁気の伏角および偏角と、携帯電子機器の傾斜角とを考慮しつつ算出して、方位を導き出す。
 たとえば、当該センサモジュールを携帯電子機器に実装した場合は、検出部2が、地磁気の伏角および偏角と、携帯電子機器の傾斜角とを検出し、信号処理部3が、3軸磁気センサ1および検出部2からの情報に演算を施して、携帯電子機器の傾きなどに依存しない正確な方位情報を取得することができる。
As described above, the signal processing unit 3 uses the calculation result from the signal processing unit 12 and the crossing angle of the magnetic field detection direction of the triaxial magnetic sensor and the geomagnetic direction to each component of the magnetic field detection direction of the triaxial magnetic sensor with respect to the geomagnetism. The magnetic field strength is calculated in consideration of the dip and declination of geomagnetism and the inclination angle of the portable electronic device, and the azimuth is derived.
For example, when the sensor module is mounted on a portable electronic device, the detection unit 2 detects the dip and declination of geomagnetism and the inclination angle of the portable electronic device, and the signal processing unit 3 detects the triaxial magnetic sensor 1. In addition, it is possible to obtain accurate azimuth information that does not depend on the inclination of the portable electronic device by performing calculation on the information from the detection unit 2.
 その際、3軸磁気センサの磁界検知方向と携帯電子機器の磁界指示方向が平行になるように、携帯電子機器に対して、3軸磁気センサ1を設置することが望ましい。
 この方法によれば、組立の絶対誤差がある場合、各磁気素子の磁界検知方向は互いに直交していないが、演算処理により、3軸磁気センサの磁界検知方向を互いに直交させることができるため、各素子の磁界検知方向の代わりに、3軸磁気センサの磁界検知方向を用いることにより、方位誤差のない方位検知が可能となる。
At this time, it is desirable to install the triaxial magnetic sensor 1 on the portable electronic device so that the magnetic field detection direction of the triaxial magnetic sensor and the magnetic field instruction direction of the portable electronic device are parallel to each other.
According to this method, when there is an absolute error in assembly, the magnetic field detection directions of the magnetic elements are not orthogonal to each other, but the magnetic field detection directions of the three-axis magnetic sensor can be orthogonal to each other by arithmetic processing. By using the magnetic field detection direction of the triaxial magnetic sensor instead of the magnetic field detection direction of each element, it is possible to detect the direction without any direction error.
 なお、通常、携帯電子機器のX軸方向とY軸方向の磁界強度をもって方位を算出するが、携帯電子機器の傾斜角等に応じて、X軸方向、Y軸方向、Z軸方向のうち、任意の2軸の磁界強度を用いて方位を算出する方向でもよい。 Normally, the azimuth is calculated with the magnetic field strengths in the X-axis direction and the Y-axis direction of the portable electronic device, but depending on the inclination angle of the portable electronic device, among the X-axis direction, the Y-axis direction, and the Z-axis direction, The direction in which the azimuth is calculated using any two-axis magnetic field strength may be used.
 本発明は、センサモジュールおよびそれを搭載した携帯電子機器に適用できる。 The present invention can be applied to a sensor module and a portable electronic device equipped with the sensor module.
 1  3軸磁気センサ
 2  検出部
 3  信号処理部
 11X  磁気素子
 11Y  磁気素子
 11Z  磁気素子
 12  信号処理部
 13  実装用基板
 50  センサモジュール
 100  携帯電子機器。
 
DESCRIPTION OF SYMBOLS 1 3-axis magnetic sensor 2 Detection part 3 Signal processing part 11X Magnetic element 11Y Magnetic element 11Z Magnetic element 12 Signal processing part 13 Mounting board 50 Sensor module 100 Portable electronic device.

Claims (6)

  1.  互いに直交するX軸、Y軸、Z軸方向それぞれの磁界を検知する3つの磁気素子を有する3軸磁気センサに対して磁界を印加する3軸磁界印加手段がX軸方向に磁界を印加したときの、前記各磁気素子からの出力値と、前記3軸磁界印加手段がY軸方向に磁界を印加したときの、前記各磁気素子からの出力値と、前記3軸磁界印加手段がZ軸方向に磁界を印加したときの、前記各磁気素子からの出力値とに基づいて、前記3軸磁気センサの磁界検知方向を表わす3つの空間ベクトルおよび前記3つの磁気素子の磁界検知方向をそれぞれ表わす各空間ベクトルを計算する工程と、
     前記3軸磁気センサの磁界検知方向を表わす3つの空間ベクトルについて、前記3つの空間ベクトル間の互いの交角をそれぞれ計算すると共に、前記3つの磁気素子の磁界検知方向をそれぞれ表わす各空間ベクトルについて、前記各空間ベクトル間の互いの交角をそれぞれ計算する工程と、
     前記3軸磁界印加手段による磁界印加方向、前記各磁気素子の磁界検知方向、および前記3軸磁気センサの磁界検知方向が互いに一致するか否かと、前記各磁気素子の磁界検知方向の3つの交角と前記3軸磁気センサの磁界検知方向の3つの交角が一致するか否かとに基づいて、求めるべき方位角に含まれる誤差の要因が、前記各磁気素子の実装状態によるものであるのか、前記3軸磁界印加手段による磁界印加方向と前記3軸磁気センサおよび前記各磁気素子の磁界検知方向の不一致によるものであるのか、前記各磁気素子の感度の不統一によるものであるのか、又はそれらの組み合わせであるのかを判定する工程と、
     を備えることを特徴とする3軸磁気センサにおける誤差要因判定方法。
    When a three-axis magnetic field applying unit that applies a magnetic field to a three-axis magnetic sensor having three magnetic elements that detect magnetic fields in the X-axis, Y-axis, and Z-axis directions orthogonal to each other applies a magnetic field in the X-axis direction. Output values from the magnetic elements, output values from the magnetic elements when the triaxial magnetic field applying means applies a magnetic field in the Y-axis direction, and triaxial magnetic field applying means in the Z-axis direction. Each of the three space vectors representing the magnetic field detection direction of the three-axis magnetic sensor and the magnetic field detection directions of the three magnetic elements based on the output values from the magnetic elements when a magnetic field is applied to the magnetic field. Calculating a space vector;
    For each of the three space vectors representing the magnetic field detection direction of the three-axis magnetic sensor, the intersection angle between the three space vectors is calculated, and for each space vector representing the magnetic field detection direction of the three magnetic elements, respectively. Calculating each other's intersection angle between the space vectors;
    Three crossing angles of the magnetic field application direction by the three-axis magnetic field applying means, the magnetic field detection direction of each magnetic element, and whether or not the magnetic field detection direction of the three-axis magnetic sensor coincide with each other, and the magnetic field detection direction of each magnetic element And whether or not the three intersection angles in the magnetic field detection direction of the three-axis magnetic sensor coincide with each other, whether the cause of the error included in the azimuth angle to be obtained is due to the mounting state of each magnetic element, Whether the magnetic field application direction by the three-axis magnetic field applying means and the magnetic field detection direction of the three-axis magnetic sensor and each magnetic element are inconsistent, the sensitivity of each magnetic element is inconsistent, or Determining whether it is a combination; and
    An error factor determination method for a three-axis magnetic sensor.
  2.  互いに直交するX軸、Y軸、Z軸方向それぞれの磁界を検知する3つの磁気素子を有する3軸磁気センサと、前記3軸磁気センサに対して磁界を印加する3軸磁界印加手段とを備えた誤差要因判別装置であって、
     前記3軸磁気センサは、
     前記3軸磁界印加手段がX軸方向に磁界を印加したときの、X軸、Y軸、Z軸方向の磁界検知用の各磁気素子からの出力値と、前記3軸磁界印加手段がY軸方向に磁界を印加したときの、前記各磁気素子からの出力値と、前記3軸磁界印加手段がZ軸方向に磁界を印加したときの、前記各磁気素子からの出力値とに基づいて、前記3軸磁気センサの磁界検知方向を表わす3つの空間ベクトルおよび前記3つの磁気素子の磁界検知方向をそれぞれ表わす各空間ベクトルを計算し、前記3軸磁気センサの磁界検知方向を表わす3つの空間ベクトルについて、前記3つの空間ベクトル間の互いの交角をそれぞれ計算すると共に、前記3つの磁気素子の磁界検知方向を表わす各空間ベクトルについて、前記各空間ベクトル間の互いの交角をそれぞれ計算し、前記3軸磁界印加手段による磁界印加方向、前記各磁気素子の磁界検知方向、および3軸磁気センサの磁界検知方向が互いに一致するか否かと、前記各磁気素子の磁界検知方向の3つの交角と前記3軸磁気センサの磁界検知方向の3つの交角が一致するか否かとに基づいて、求めるべき方位角に含まれる誤差の要因が、各磁気素子の実装状態によるものであるのか、前記3軸磁界印加手段による磁界印加方向と前記3軸磁気センサおよび前記各磁気素子の磁界検知方向の不一致によるものであるのか、各磁気素子の感度の不統一によるものであるのか、又はそれらの組み合わせであるのかを判定する信号処理部を備えることを特徴とする誤差要因判定装置。
    A three-axis magnetic sensor having three magnetic elements for detecting magnetic fields in the X-axis, Y-axis, and Z-axis directions orthogonal to each other, and a three-axis magnetic field applying unit that applies a magnetic field to the three-axis magnetic sensor. An error factor determination device,
    The three-axis magnetic sensor
    When the three-axis magnetic field applying means applies a magnetic field in the X-axis direction, the output value from each magnetic element for magnetic field detection in the X-axis, Y-axis, and Z-axis directions, and the three-axis magnetic field applying means is the Y-axis. Based on the output value from each magnetic element when a magnetic field is applied in the direction and the output value from each magnetic element when the three-axis magnetic field applying means applies a magnetic field in the Z-axis direction, Three space vectors representing the magnetic field detection directions of the three-axis magnetic sensor are calculated, and three space vectors representing the magnetic field detection directions of the three-axis magnetic sensor are calculated. And calculating each other's crossing angle between the three space vectors, and calculating each other's crossing angle between the space vectors for each space vector representing the magnetic field detection direction of the three magnetic elements. The magnetic field application direction by the three-axis magnetic field applying means, the magnetic field detection direction of each magnetic element, and whether or not the magnetic field detection direction of the three-axis magnetic sensor coincide with each other, and the magnetic field detection direction of each magnetic element. Based on whether or not the intersection angle and the three intersection angles of the magnetic field detection direction of the three-axis magnetic sensor coincide with each other, whether the cause of the error included in the azimuth angle to be obtained is due to the mounting state of each magnetic element, Whether the magnetic field application direction by the three-axis magnetic field applying means is inconsistent with the magnetic field detection direction of the three-axis magnetic sensor and each magnetic element, the sensitivity of each magnetic element is inconsistent, or a combination thereof An error factor determination device comprising a signal processing unit for determining whether or not
  3.  請求項1に記載された誤差要因判定方法により、前記各磁気素子の磁界検知方向が互いに直交していないと判定された場合に、前記各磁気素子の磁気感度を調整することにより、見かけ上、前記各磁気素子の磁界検知方向を互いに直交させることを特徴とする3軸磁気センサにおける誤差補償方法。 When it is determined by the error factor determination method according to claim 1 that the magnetic field detection directions of the magnetic elements are not orthogonal to each other, by adjusting the magnetic sensitivity of the magnetic elements, apparently, An error compensation method for a three-axis magnetic sensor, wherein magnetic field detection directions of the magnetic elements are orthogonal to each other.
  4.  互いに直交するX軸、Y軸、Z軸のそれぞれの方向の磁界を検知する3つの磁気素子と、当該各磁気素子からの検出結果に対して信号処理を行う信号処理部と、を備えた3軸磁気センサであって、
     前記信号処理部は、請求項3に記載の誤差補償方法を実現することを特徴とする3軸磁気センサ。
    3 provided with three magnetic elements that detect magnetic fields in the directions of the X axis, the Y axis, and the Z axis that are orthogonal to each other, and a signal processing unit that performs signal processing on detection results from the respective magnetic elements. An axial magnetic sensor,
    The three-axis magnetic sensor, wherein the signal processing unit realizes the error compensation method according to claim 3.
  5.  請求項4に記載の3軸磁気センサと、
     地磁気の伏角および偏角と、傾斜角とを検出する検出部と、
     前記3軸磁気センサおよび前記検出部からの情報に基づいて、方位角を計算する信号処理部と、
     を備えたことを特徴とするセンサモジュール。
    A triaxial magnetic sensor according to claim 4;
    A detection unit for detecting a dip and declination of geomagnetism and an inclination angle;
    A signal processing unit for calculating an azimuth angle based on information from the three-axis magnetic sensor and the detection unit;
    A sensor module comprising:
  6.  互いに直交するX軸、Y軸、Z軸のそれぞれの方向の磁界を検知する3つの磁気素子を備えた3軸磁気センサに、
     3軸磁界印加手段がX軸方向に磁界を印加したときの、前記各磁気素子からの出力値と、前記3軸磁界印加手段がY軸方向に磁界を印加したときの、前記各磁気素子からの出力値と、前記3軸磁界印加手段がZ軸方向に磁界を印加したときの、前記各磁気素子からの出力値とに基づいて、前記3軸磁気センサの磁界検知方向を表わす3つの空間ベクトルおよび前記3つの磁気素子の磁界検知方向をそれぞれ表わす各空間ベクトルを計算する手順と、
     前記3軸磁気センサの磁界検知方向を表わす3つの空間ベクトルについて、前期3つの空間ベクトル間の互いの交角をそれぞれ計算すると共に、前記3つの磁気素子の磁界検知方向をそれぞれ表わす各空間ベクトルについて、前記各空間ベクトル間の互いの交角をそれぞれ計算する手順と、
     前記3軸磁界印加手段による磁界印加方向、前記各磁気素子の磁界検知方向、および前記3軸磁気センサの磁界検知方向が互いに一致するか否かと、前記各磁気素子の磁界検知方向の3つの交角と前記3軸磁気センサの磁界検知方向の3つの交角が一致するか否かとに基づいて、求めるべき方位角に含まれる誤差の要因が、前記各磁気素子の実装状態によるものであるのか、前記3軸磁界印加手段による磁界印加方向と前記3軸磁気センサおよび前記各磁気素子の磁界検知方向の不一致によるものであるのか、前記各磁気素子の感度の不統一によるものであるのか、又はそれらの組み合わせであるのかを判定する手順と、
     を実行させることを特徴とする誤差要因判定用のプログラム。
     
    A three-axis magnetic sensor including three magnetic elements that detect magnetic fields in the directions of the X axis, the Y axis, and the Z axis orthogonal to each other.
    Output values from the magnetic elements when the triaxial magnetic field applying means applies a magnetic field in the X-axis direction, and from the magnetic elements when the triaxial magnetic field applying means applies a magnetic field in the Y-axis direction. And three spaces representing the magnetic field detection direction of the three-axis magnetic sensor based on the output value from the magnetic elements when the three-axis magnetic field applying means applies a magnetic field in the Z-axis direction. Calculating a vector and each space vector representing the magnetic field detection direction of each of the three magnetic elements;
    For the three space vectors representing the magnetic field detection directions of the three-axis magnetic sensor, the mutual angle between the three space vectors in the previous period is calculated, and for each space vector representing the magnetic field detection directions of the three magnetic elements, A procedure for calculating an intersection angle between the space vectors,
    Three crossing angles of the magnetic field application direction by the three-axis magnetic field applying means, the magnetic field detection direction of each magnetic element, and whether or not the magnetic field detection direction of the three-axis magnetic sensor coincide with each other, and the magnetic field detection direction of each magnetic element And whether or not the three intersection angles in the magnetic field detection direction of the three-axis magnetic sensor coincide with each other, whether the cause of the error included in the azimuth angle to be obtained is due to the mounting state of each magnetic element, Whether the magnetic field application direction by the three-axis magnetic field applying means and the magnetic field detection direction of the three-axis magnetic sensor and each magnetic element are inconsistent, the sensitivity of each magnetic element is inconsistent, or A procedure for determining whether it is a combination;
    An error factor determination program characterized by causing
PCT/JP2011/063674 2010-06-17 2011-06-15 Error cause determination method and device, error compensation method, three-axis magnetic sensor, sensor module, and program for determining error cause WO2011158856A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-138531 2010-06-17
JP2010138531A JP2012002695A (en) 2010-06-17 2010-06-17 Error factor determination method and device thereof, error compensation method, triaxial magnetic sensor, sensor module, and program for determining error factor

Publications (1)

Publication Number Publication Date
WO2011158856A1 true WO2011158856A1 (en) 2011-12-22

Family

ID=45348253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063674 WO2011158856A1 (en) 2010-06-17 2011-06-15 Error cause determination method and device, error compensation method, three-axis magnetic sensor, sensor module, and program for determining error cause

Country Status (2)

Country Link
JP (1) JP2012002695A (en)
WO (1) WO2011158856A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103885002A (en) * 2014-03-06 2014-06-25 中国船舶重工集团公司第七一〇研究所 Parallelism error compensation method and system in magnetic sensor array measurement
CN105760336A (en) * 2016-01-28 2016-07-13 合肥联宝信息技术有限公司 Magnetic force calculation device
CN108761548A (en) * 2018-05-25 2018-11-06 哈尔滨工程大学 The miniature magnetometers magnetic disturbance backoff algorithm of constraint least square ellipsoid fitting
CN111856355A (en) * 2020-07-16 2020-10-30 北京控制工程研究所 System and method for maintaining optimal sensitivity of magnetometer
CN112596015A (en) * 2020-12-28 2021-04-02 上海矽睿科技有限公司 Test method and system of three-axis magnetic sensor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103885020B (en) * 2014-03-28 2017-01-25 卢兆兴 Three-axis magnetometer error correction method based on self-adaptive genetic algorithm
CN105334480B (en) * 2014-08-11 2018-09-18 国家电网公司 The determination method and apparatus of the sensor array spatial position of four array elements
CN104765013B (en) * 2015-04-22 2017-11-07 武元新 Calibrating three-axle magnetic sensor method
CN105513745B (en) * 2016-01-28 2018-04-06 合肥联宝信息技术有限公司 A kind of layout method of magnet assembly and a kind of magnetic switch
CN113253180B (en) * 2021-04-25 2022-04-01 吉林大学 Single-axis measurement precision testing method for field three-axis magnetic sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0262909A (en) * 1988-02-29 1990-03-02 Digicourse Inc Method of correcting azimuth of compass
JPH09243723A (en) * 1996-03-13 1997-09-19 Hitachi Ltd Sensor mounting correcting device for magnetic measuring device
JP2010112871A (en) * 2008-11-07 2010-05-20 Nippon Telegr & Teleph Corp <Ntt> Calibration device for magnetic azimuth sensor, method, and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0262909A (en) * 1988-02-29 1990-03-02 Digicourse Inc Method of correcting azimuth of compass
JPH09243723A (en) * 1996-03-13 1997-09-19 Hitachi Ltd Sensor mounting correcting device for magnetic measuring device
JP2010112871A (en) * 2008-11-07 2010-05-20 Nippon Telegr & Teleph Corp <Ntt> Calibration device for magnetic azimuth sensor, method, and program

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103885002A (en) * 2014-03-06 2014-06-25 中国船舶重工集团公司第七一〇研究所 Parallelism error compensation method and system in magnetic sensor array measurement
CN103885002B (en) * 2014-03-06 2016-06-15 中国船舶重工集团公司第七一〇研究所 Array of magnetic sensors measure in parallelism error compensation method and system
CN105760336A (en) * 2016-01-28 2016-07-13 合肥联宝信息技术有限公司 Magnetic force calculation device
CN108761548A (en) * 2018-05-25 2018-11-06 哈尔滨工程大学 The miniature magnetometers magnetic disturbance backoff algorithm of constraint least square ellipsoid fitting
CN111856355A (en) * 2020-07-16 2020-10-30 北京控制工程研究所 System and method for maintaining optimal sensitivity of magnetometer
CN111856355B (en) * 2020-07-16 2023-04-14 北京控制工程研究所 System and method for keeping optimal sensitivity of magnetometer
CN112596015A (en) * 2020-12-28 2021-04-02 上海矽睿科技有限公司 Test method and system of three-axis magnetic sensor

Also Published As

Publication number Publication date
JP2012002695A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
WO2011158856A1 (en) Error cause determination method and device, error compensation method, three-axis magnetic sensor, sensor module, and program for determining error cause
CN1871496B (en) Magnetic sensor control method, magnetic sensor controller and portable terminal device
JP4252555B2 (en) Tilt sensor and azimuth measuring device using the same
US7870678B2 (en) Hybrid sensor module and sensing method using the same
KR100939158B1 (en) Azimuth measuring device and azimuth measuring method
EP3588011B1 (en) Position sensor system and method, robust against disturbance field
JP2007500350A (en) System using 2-axis magnetic sensor for 3-axis compass solution
JP2007113993A (en) Magnetic compass
KR20110081205A (en) Electronic compass
KR20020030244A (en) A three-axis magnetic sensor, an omnidirectional magnetic sensor and an azimuth measureing method using the same
JP2006226810A (en) Azimuth measuring instrument
JP2005061969A (en) Azimuthal angle measuring instrument and azimuthal angle measuring method
JP5070428B2 (en) Electronic compass and direction measurement method
JP5017527B2 (en) Electronic compass system
JP2012237682A (en) Multi-axis sensor output correction device and multi-axis sensor output correction method
JP2019035629A (en) Calibration device, calibration method, rotational angle detector, and program
JP5457890B2 (en) Orientation detection device
WO2011129288A1 (en) Terrestrial magnetism detection device
KR101298845B1 (en) Apparatus and method for calibrating azimuth magnetic sensor having object
JP4804764B2 (en) Small magnetic sensor element that detects magnetic field in three dimensions
JP2014134388A (en) Magnetic measuring device
JP4648423B2 (en) Rotation angle measurement device and rotation angle measurement method
KR20060085570A (en) Method of controlling magnetic sensor, control device therefor, and portable terminal
JP2013117442A (en) Bearing error compensation device, bearing error compensation method, bearing error compensation program, error angle compensation apparatus, triaxial magnetic sensor and sensor module
Goryanina et al. Stochastic approach to reducing calibration errors of MEMS orientation sensors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795760

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11795760

Country of ref document: EP

Kind code of ref document: A1