CN106568462A - Multi-probe star sensor fusion attitude testing method - Google Patents

Multi-probe star sensor fusion attitude testing method Download PDF

Info

Publication number
CN106568462A
CN106568462A CN201610967123.1A CN201610967123A CN106568462A CN 106568462 A CN106568462 A CN 106568462A CN 201610967123 A CN201610967123 A CN 201610967123A CN 106568462 A CN106568462 A CN 106568462A
Authority
CN
China
Prior art keywords
star sensor
matrix
error
calculate
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610967123.1A
Other languages
Chinese (zh)
Inventor
斯祝华
严新颖
丰平
于嘉茹
刘武
刘一武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Control Engineering
Original Assignee
Beijing Institute of Control Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Control Engineering filed Critical Beijing Institute of Control Engineering
Priority to CN201610967123.1A priority Critical patent/CN106568462A/en
Publication of CN106568462A publication Critical patent/CN106568462A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Navigation (AREA)

Abstract

一种多探头星敏感器融合姿态测试方法,从星敏感器误差特性出发,分解分类并拟定对应姿态测试方法,解决了一类多探头星敏感器融合姿态测试无章可循的问题,为星敏感器在系统级的融合应用提供指导。本发明所述的系统误差测试方法和周期误差测试方法,可摸索该类星敏感器的融合定姿能力边界,进一步可为星敏感器支架、整星热控、力学结构设计提供约束,有利于高精度卫星方案实施。

A multi-probe star sensor fusion attitude test method, starting from the error characteristics of the star sensor, decomposing and classifying and drawing up the corresponding attitude test method, solves a kind of multi-probe star sensor fusion attitude test without rules to follow. Sensor fusion applications at the system level provide guidance. The system error test method and cycle error test method described in the present invention can explore the boundary of the fusion attitude determination capability of the star sensor, and further provide constraints for star sensor support, whole star thermal control, and mechanical structure design, which is beneficial to High-precision satellite program implementation.

Description

一种多探头星敏感器融合姿态测试方法A multi-probe star sensor fusion attitude test method

技术领域technical field

本发明涉及星敏感器技术领域,特别是一种多探头式星敏感器融合姿态测试方法,适用于根据多个探头信息进行融合定姿的星敏感器测试,能够为星敏感器系统级的融合应用提供指导,也能应用于非信息融合类星敏感器测试。The invention relates to the technical field of star sensors, in particular to a multi-probe star sensor fusion attitude test method, which is suitable for the star sensor test of fusion and attitude determination based on the information of multiple probes, and can be used for the fusion of star sensors at the system level. The application provides guidance and can also be applied to the non-information fusion quasar sensor test.

背景技术Background technique

星敏感器是当前广泛应用于航天器姿态测量的高精度光学姿态敏感器,它以恒星为测量目标,通过光学系统将恒星成像于光电转换器上,经星点提取和星图识别,并结合恒星星表确定星敏感器光轴矢量在惯性坐标系下的指向,进而完成姿态测量。The star sensor is a high-precision optical attitude sensor widely used in spacecraft attitude measurement. It takes the star as the measurement target, images the star on the photoelectric converter through the optical system, extracts the star point and recognizes the star map, and combines The star catalog determines the direction of the star sensor optical axis vector in the inertial coordinate system, and then completes the attitude measurement.

传统的星敏感器多为一体式结构,即光学探头与处理线路一一对应,处理线路仅计算对应探头的惯性姿态。在实际应用环境中,航天器根据需求不同选定星敏感器个数,并设计相应安装方位,然后在姿态与轨道控制系统(AOCS,Attitude Orbit Control System)中进行系统级的姿态确定(参考文献[1]:Jie Li,Yiqing Chen.Constant-gaininformation filter for attitude determination of precision pointingspacecraft.47th International Astronautical Congress,1996;参考文献[2]:刘一武,陈义庆.星敏感器测量模型及其在卫星姿态确定系统中的应用.宇航学报,2003)。系统级的融合姿态确定算法通常与星敏感器性能指标以及安装方位存在关联。Most traditional star sensors have an integrated structure, that is, the optical probe corresponds to the processing circuit one by one, and the processing circuit only calculates the inertial attitude of the corresponding probe. In the actual application environment, the spacecraft selects the number of star sensors according to different requirements, and designs the corresponding installation orientation, and then performs system-level attitude determination in the attitude and orbit control system (AOCS, Attitude Orbit Control System) (Reference [1]: Jie Li, Yiqing Chen. Constant-gaininformation filter for attitude determination of precision pointing spacecraft. 47th International Astronautical Congress, 1996; Reference [2]: Liu Yiwu, Chen Yiqing. Star sensor measurement model and its application in satellite attitude determination system Applications in. Acta Astronautica Sinica, 2003). The system-level fusion attitude determination algorithm is usually related to the star sensor performance index and installation orientation.

为提高星敏感器动态性能和精度指标,增强产品可靠性,目前研究机构已着手研制多探头信息融合类星敏感器,即单个处理线路可处理多个探头信息且单个探头信息可用于多个处理线路,在处理线路中,可结合各探头的安装方位,对各探头信息进行融合,以给出更高精度的姿态测量,如法国SODERN公司研制的HYDRA星敏感器(参考文献:L.Blarre,N.Perrimon.New Multiple Head Star Sensor(HYDRA)description and developmentstatus:a highly autonomous,accurate and very robust system to pave the wayfor gyroless very accurate AOCS systems.AIAA Guidance,Navigation,and ControlConference and Exhibit.2005)。利用信息融合进行姿态测量的方法间接扩大了星敏感器的组合视场,增加了可用星数。另外,星敏感器能够自主完成探头间安装精度标定、低频误差估计、岁差光行差补偿等功能,从而提高定姿精度,其输出的姿态称之为融合姿态。中国第二代三轴稳定静止轨道气象卫星即采用HYDRA作为主用姿态敏感器,与传统卫星一样,其AOCS系统级也设计了类似的融合算法。In order to improve the dynamic performance and accuracy index of the star sensor and enhance the reliability of the product, research institutes have started to develop a multi-probe information fusion quasar sensor, that is, a single processing circuit can process multiple probe information and a single probe information can be used for multiple processing In the processing circuit, the information of each probe can be fused in combination with the installation orientation of each probe, so as to provide a higher-precision attitude measurement, such as the HYDRA star sensor developed by the French SODERN company (references: L.Blarre, N. Perrimon. New Multiple Head Star Sensor (HYDRA) description and development status: a highly autonomous, accurate and very robust system to pave the way for gyroless very accurate AOCS systems. AIAA Guidance, Navigation, and Control Conference and Exhibit. 2005). The method of attitude measurement using information fusion indirectly expands the combined field of view of the star sensor and increases the number of available stars. In addition, the star sensor can independently complete the functions of installation accuracy calibration between probes, low-frequency error estimation, and precession and aberration compensation, thereby improving the accuracy of attitude determination. The attitude output by it is called fusion attitude. China's second-generation three-axis stable geostationary orbit meteorological satellite uses HYDRA as the main attitude sensor. Like traditional satellites, its AOCS system level also designs a similar fusion algorithm.

综上所述,现有的AOCS对星敏感器的使用都是依靠系统级信息融合,融合算法与产品特性具有一定的关联,地面测试对星敏感器各类误差没有刻意去关注,甚至没有实施相关测试,系统设计没能得到有效检验。而信息融合类星敏感器的研制与应用尚处于初步阶段,在轨如何抉择系统级融合还是星敏感器级融合需要一定的地面测试做保障,此外,地面测试可摸索该类星敏感器的融合能力边界,为星敏感器支架、整星热控、力学结构设计提供约束,有利于高精度卫星方案实施。To sum up, the existing AOCS use of star sensors relies on system-level information fusion, and the fusion algorithm has a certain relationship with product characteristics. The ground test did not deliberately pay attention to various errors of star sensors, or even implemented them. Relevant tests and system design have not been effectively tested. However, the development and application of information fusion quasar sensors are still in the preliminary stage. How to choose system-level fusion or star-sensor-level fusion in orbit requires a certain amount of ground testing. In addition, ground testing can explore the fusion of the quasar sensor. The capability boundary provides constraints for star sensor support, whole star thermal control, and mechanical structure design, which is conducive to the implementation of high-precision satellite solutions.

发明内容Contents of the invention

本发明的技术解决问题:克服现有技术的不足,提供了一种多探头式星敏感器融合姿态测试方法,解决了多探头星敏感器融合姿态测试无章可循的问题,可以为航天器在轨如何选择系统级融合还是敏感器级融合提供参考。The technology of the present invention solves the problem: overcomes the deficiencies in the prior art, and provides a multi-probe star sensor fusion attitude test method, which solves the problem that the multi-probe star sensor fusion attitude test has no rules to follow, and can be used for spacecraft How to choose system-level fusion or sensor-level fusion in orbit provides a reference.

本发明的技术解决方案:一种多探头星敏感器融合姿态测试方法,包括如下步骤:Technical solution of the present invention: a multi-probe star sensor fusion attitude testing method, comprising the following steps:

(1)当进行随机误差测试时转入步骤(2),当进行系统误差测试时,转入步骤(4),当进行周期误差测试时,转入步骤(6),当进行岁差光行差测试时,转入步骤(7);(1) Go to step (2) when performing a random error test, go to step (4) when performing a systematic error test, go to step (6) when performing a periodic error test, and go to step (6) when performing a precessional aberration During testing, turn to step (7);

(2)获取星敏感器理论测量姿态矩阵CSI、星敏感器光轴噪声指标σx、星敏感器横轴噪声指标σz,计算得到随机误差下的星敏感器测量姿态矩阵tempC为(2) Obtain the theoretical measurement attitude matrix C SI of the star sensor, the optical axis noise index σ x of the star sensor, and the horizontal axis noise index σ z of the star sensor, and calculate the measurement attitude matrix tempC of the star sensor under the random error as

式中,randn(σ)表示产生均值为0、均方差为σ的高斯噪声,σ的取值为σx或者σzIn the formula, randn(σ) means to generate Gaussian noise with a mean value of 0 and a mean square error of σ, and the value of σ is σ x or σ z ;

(3)对随机误差下的星敏感器测量姿态矩阵tempC进行正交归一化处理,得出星敏感器实际测量姿态矩阵其中,的第1行,的第2行,的第3行,norm为向量L2范数归一化函数,×为向量叉乘算子(3) Orthogonal normalization is performed on the star sensor measurement attitude matrix tempC under random error, and the actual measurement attitude matrix of the star sensor is obtained in, for line 1 of the for line 2 of the for In line 3 of , norm is the vector L2 norm normalization function, and × is the vector cross product operator

转入步骤(9);Go to step (9);

(4)获取星敏感器在所安装卫星的本体坐标系下的的等效安装偏差Δx、Δy、Δz,计算得到星敏感器安装偏差矩阵ΔCSB(4) Obtain the equivalent installation deviations Δx, Δy, Δz of the star sensor in the body coordinate system of the installed satellite, and calculate the star sensor installation deviation matrix ΔC SB as

ΔCSB=Ry(Δy)·Rx(Δx)·Rz(Δz)ΔC SB =R y (Δy)·R x (Δx)·R z (Δz)

其中,Rx(υ)为绕卫星本体坐标系中X轴转动角度υ时的方向余弦阵、Ry(υ)为绕卫星本体坐标系中Y轴转动角度υ时的方向余弦阵、Rz(υ)为绕卫星本体坐标系中Z轴转动角度υ时的方向余弦阵;Among them, R x (υ) is the direction cosine array when rotating angle υ around the X axis in the satellite body coordinate system, R y (υ) is the direction cosine array when rotating angle υ around the Y axis in the satellite body coordinate system, R z (υ) is the direction cosine matrix when rotating the angle υ around the Z axis in the satellite body coordinate system;

(5)获取星敏感器的理论安装矩阵CSB、卫星惯性姿态矩阵CBI,计算得到当前星敏感器的实际测量姿态矩阵(5) Obtain the theoretical installation matrix C SB of the star sensor and the inertial attitude matrix C BI of the satellite, and calculate the actual measurement attitude matrix of the current star sensor for

转入步骤(9);Go to step (9);

(6)接收外部发送的旋转轴选择指令,并选择旋转轴,获取星敏感器干扰幅值AST、星敏感器干扰周期TST,当选择的旋转轴为光轴时,计算得到干扰影响下的星敏感器测量误差矩阵ΔCX(6) Receive the rotation axis selection instruction sent from the outside, and select the rotation axis to obtain the star sensor interference amplitude A ST and the star sensor interference period T ST . When the selected rotation axis is the optical axis, calculate the The star sensor measurement error matrix ΔC X is

当选择的旋转轴为横轴时,计算得到干扰影响下的星敏感器测量误差矩阵ΔCZWhen the selected rotation axis is the horizontal axis, the calculated star sensor measurement error matrix ΔC Z under the influence of interference is:

然后根据星敏感器测量误差矩阵、理论测量姿态矩阵CSI,计算当前星敏感器实际测量姿态矩阵Then, according to the star sensor measurement error matrix and the theoretical measurement attitude matrix C SI , calculate the actual measurement attitude matrix of the current star sensor for

or

转入步骤(9);Go to step (9);

其中,t为星敏感器测量时刻;所述的旋转轴选择指令包括光轴或者横轴;所述的旋转轴包括光轴、横轴;Wherein, t is the measurement time of the star sensor; the rotation axis selection command includes the optical axis or the horizontal axis; the rotation axis includes the optical axis and the horizontal axis;

(7)获取当前历元时,然后计算星敏感器的岁差补偿矩阵CPR(7) When obtaining the current epoch, then calculate the precession compensation matrix C PR of the star sensor as

其中,ζA、θA、ε、ψ、Δε为岁差描述参数;Among them, ζ A , θ A , ε, ψ, Δε are the description parameters of precession;

(8)获取星敏感器的理论测量姿态矩阵CSI,计算得到当前星敏感器实际测量姿态矩阵(8) Obtain the theoretical measurement attitude matrix C SI of the star sensor, and calculate the actual measurement attitude matrix of the current star sensor for

转入步骤(9);Go to step (9);

(9)计算当前星敏感器实际测量姿态矩阵对应的四元数然后获取星敏感器实际测量输出的四元数qSI,计算得到误差四元数(9) Calculate the actual measurement attitude matrix of the current star sensor corresponding quaternion Then obtain the quaternion q SI actually measured and output by the star sensor, and calculate the error quaternion for

式中,为qSI的共轭四元数,为四元数乘法算子;In the formula, is the conjugate quaternion of q SI , is a quaternion multiplication operator;

然后根据误差四元数计算得到当前星敏感器的三轴等效姿态误差ex、ey、ezThen according to the error quaternion Calculate the three-axis equivalent attitude error e x , e y , e z of the current star sensor as

式中,表示误差四元数的第i个分量,i=1,2,3。In the formula, Indicates the error quaternion The i-th component of , i=1, 2, 3.

本发明与现有技术相比具有如下优点:Compared with the prior art, the present invention has the following advantages:

(1)本发明测试方法在综合分析星敏感器误差特点基础上,解决了一类多探头星敏感器融合姿态测试无章可循的问题,与现有技术相比更有利于理解产品各项性能指标;(1) On the basis of comprehensive analysis of star sensor error characteristics, the test method of the present invention solves the problem that a class of multi-probe star sensor fusion attitude test has no rules to follow. Compared with the prior art, it is more conducive to understanding the various items of the product Performance;

(2)本发明误差测试方法,与现有技术相比有利于分析多探头星敏感器姿态输出有效性与系统偏差关系,间接对星敏感器安装偏差提出约束,为整星力学结构设计提供帮助;(2) The error testing method of the present invention, compared with the prior art, is beneficial to analyze the relationship between the validity of the multi-probe star sensor attitude output and the system deviation, indirectly puts constraints on the installation deviation of the star sensor, and provides help for the design of the mechanical structure of the whole star ;

(3)本发明误差测试方法,与现有技术相比能够更好的分析多探头星敏感器融合姿态确定精度与周期误差关系,在满足一定精度指标的前提下,间接对星敏感器安装支架结构变形提出约束,为整星力学结构、热控设计提供参考;(3) The error testing method of the present invention, compared with the prior art, can better analyze the relationship between the accuracy of the multi-probe star sensor fusion attitude determination and the periodic error. Under the premise of meeting a certain accuracy index, the star sensor can be installed indirectly Structural deformation puts forward constraints to provide reference for the design of the mechanical structure and thermal control of the whole star;

(4)本发明误差测试方法,与现有技术相比能够更有利于挖掘产品的各项性能指标,对在轨敏感器级/系统级融合选择具有指导作用。(4) Compared with the prior art, the error testing method of the present invention can be more conducive to mining various performance indicators of products, and has a guiding effect on the fusion selection of on-orbit sensor level/system level.

附图说明Description of drawings

图1为本发明测试系统构成图;Fig. 1 is the constitution diagram of testing system of the present invention;

图2为本发明测试主流程图;Fig. 2 is the test main flowchart of the present invention;

图3为本发明各测试模式流程图。Fig. 3 is a flowchart of each test mode of the present invention.

具体实施方式detailed description

本发明针对现有技术不足,提出一种多探头星敏感器融合姿态测试方法。下面以法国SODERN公司研制的HYDRA星敏感器测试为例,结合附图详细介绍本发明方法的具体实施方式,包括如下步骤:Aiming at the deficiencies in the prior art, the invention proposes a multi-probe star sensor fusion attitude testing method. Taking the HYDRA star sensor test developed by French SODERN company as an example below, the specific implementation of the method of the present invention is described in detail in conjunction with the accompanying drawings, including the following steps:

(1)按图1所示连接星敏感器地面测试系统,该系统由地面测试设备与星载设备构成。地面测试设备为动力学计算机与EGSE(Electrical Ground Support Equipment),星载设备包括星敏感器(含处理线路Electronic Unit和光学探头Optical Head)和AOCS,其中动力学计算机运行本发明所述的各项测试程序(即下文步骤2所述公式算法)。(1) Connect the star sensor ground test system as shown in Figure 1. The system consists of ground test equipment and spaceborne equipment. The ground test equipment is a dynamics computer and EGSE (Electrical Ground Support Equipment), and the spaceborne equipment includes a star sensor (including processing circuit Electronic Unit and optical probe Optical Head) and AOCS, wherein the dynamics computer runs the items described in the present invention Test program (i.e. the formula algorithm described in step 2 below).

(2)根据测试目的,设置星敏感器测试模式,动力学计算机根据测试模式选择相应的测试子流程,图2为测试主流程框图。当进行随机误差测试时转入步骤(2a),当进行系统误差测试时,转入步骤(2b),当进行周期误差测试时,转入步骤(2c),当进行岁差光行差测试时,转入步骤(2d),图3为各测试程序子流程框图。(2) According to the test purpose, set the star sensor test mode, and the dynamic computer selects the corresponding test sub-process according to the test mode. Figure 2 is a block diagram of the main test process. When carrying out random error test, turn to step (2a), when carrying out systematic error test, turn to step (2b), when carrying out periodic error test, turn to step (2c), when carrying out precession aberration test, Turning to step (2d), Fig. 3 is a sub-flow diagram of each test program.

(2a)随机误差测试子流程:获取星敏感器理论测量姿态矩阵CSI、星敏感器光轴噪声指标σx、星敏感器横轴噪声指标σz,计算得到随机误差下的星敏感器测量姿态矩阵tempC为(2a) Random error test sub-process: obtain the theoretical measurement attitude matrix C SI of the star sensor, the optical axis noise index σ x of the star sensor, and the horizontal axis noise index σ z of the star sensor, and calculate the star sensor measurement under random error The attitude matrix tempC is

式中,randn(σ)表示产生均值为0、均方差为σ的高斯噪声,σ的取值为σx或者σzIn the formula, randn(σ) means to generate Gaussian noise with a mean value of 0 and a mean square error of σ, and the value of σ is σ x or σ z ;

对随机误差下的星敏感器测量姿态矩阵tempC进行正交归一化处理,得出星敏感器实际测量姿态矩阵其中,的第1行,的第2行,的第3行,norm为向量L2范数归一化函数,×为向量叉乘算子Orthogonal normalization is performed on the star sensor measurement attitude matrix tempC under the random error, and the actual measurement attitude matrix of the star sensor is obtained in, for line 1 of the for line 2 of the for In line 3 of , norm is the vector L2 norm normalization function, and × is the vector cross product operator

转入步骤(3);Go to step (3);

(2b)系统误差测试子流程:获取星敏感器在所安装卫星的本体坐标系下的的等效安装偏差Δx、Δy、Δz,计算得到星敏感器安装偏差矩阵ΔCSB(2b) System error test sub-process: Obtain the equivalent installation deviations Δx, Δy, Δz of the star sensor in the body coordinate system of the installed satellite, and calculate the star sensor installation deviation matrix ΔC SB as

ΔCSB=Ry(Δy)·Rx(Δx)·Rz(Δz)ΔC SB =R y (Δy)·R x (Δx)·R z (Δz)

其中,Rx(υ)为绕卫星本体坐标系中X轴转动角度υ时的方向余弦阵、Ry(υ)为绕卫星本体坐标系中Y轴转动角度υ时的方向余弦阵、Rz(υ)为绕卫星本体坐标系中Z轴转动角度υ时的方向余弦阵;Among them, R x (υ) is the direction cosine array when rotating angle υ around the X axis in the satellite body coordinate system, R y (υ) is the direction cosine array when rotating angle υ around the Y axis in the satellite body coordinate system, R z (υ) is the direction cosine matrix when rotating the angle υ around the Z axis in the satellite body coordinate system;

获取星敏感器的理论安装矩阵CSB、卫星惯性姿态矩阵CBI,计算得到当前星敏感器的实际测量姿态矩阵Obtain the theoretical installation matrix C SB of the star sensor and the inertial attitude matrix C BI of the satellite, and calculate the actual measurement attitude matrix of the current star sensor for

转入步骤(3);Go to step (3);

(2c)周期误差测试子流程:接收外部发送的旋转轴选择指令,并选择旋转轴,获取星敏感器干扰幅值AST、星敏感器干扰周期TST,当选择的旋转轴为光轴时,计算得到干扰影响下的星敏感器测量误差矩阵ΔCX(2c) Periodic error test sub-process: Receive the rotation axis selection command sent from the outside, and select the rotation axis, and obtain the star sensor interference amplitude A ST and star sensor interference period T ST , when the selected rotation axis is the optical axis , the star sensor measurement error matrix ΔC X under the influence of interference is calculated as

当选择的旋转轴为横轴时,计算得到干扰影响下的星敏感器测量误差矩阵ΔCZWhen the selected rotation axis is the horizontal axis, the calculated star sensor measurement error matrix ΔC Z under the influence of interference is:

然后根据星敏感器测量误差矩阵ΔCX或ΔCZ、理论测量姿态矩阵CSI,计算当前星敏感器实际测量姿态矩阵Then calculate the actual measurement attitude matrix of the current star sensor according to the star sensor measurement error matrix ΔC X or ΔC Z and the theoretical measurement attitude matrix C SI for

or

转入步骤(3);Go to step (3);

其中,t为星敏感器测量时刻;所述的旋转轴选择指令包括光轴或者横轴;所述的旋转轴包括光轴、横轴;Wherein, t is the measurement time of the star sensor; the rotation axis selection command includes the optical axis or the horizontal axis; the rotation axis includes the optical axis and the horizontal axis;

(2d)岁差光行差测试子流程:获取当前历元时,然后计算星敏感器的岁差补偿矩阵CPR(2d) Precession aberration test sub-process: when obtaining the current epoch, then calculate the precession compensation matrix C PR of the star sensor as

其中,ζA、θA、ε、ψ、Δε为岁差描述参数,仅与历元时有关,具体计算可参见文献(刘林.航天器轨道理论.国防科技大学出版社);Among them, ζ A , θ A , ε, ψ, and Δε are precession description parameters, which are only related to epoch time. For specific calculations, please refer to the literature (Liu Lin. Spacecraft Orbit Theory. National Defense University Press);

获取星敏感器的理论测量姿态矩阵CSI,计算得到当前星敏感器实际测量姿态矩阵Obtain the theoretical measurement attitude matrix C SI of the star sensor, and calculate the actual measurement attitude matrix of the current star sensor for

转入步骤(3);Go to step (3);

(3)计算当前星敏感器实际测量姿态矩阵对应的四元数并激励EGSE,然后获取星敏感器实际测量输出的四元数qSI,计算得到误差四元数(3) Calculate the actual measurement attitude matrix of the current star sensor corresponding quaternion And stimulate EGSE, then obtain the quaternion q SI actually measured by the star sensor, and calculate the error quaternion for

式中,为qSI的共轭四元数,为四元数乘法算子;In the formula, is the conjugate quaternion of q SI , is a quaternion multiplication operator;

然后根据误差四元数计算得到当前星敏感器的三轴等效姿态误差ex、ey、ezThen according to the error quaternion Calculate the three-axis equivalent attitude error e x , e y , e z of the current star sensor as

式中,表示误差四元数的第i个分量,i=1,2,3。In the formula, Indicates the error quaternion The i-th component of , i=1, 2, 3.

本发明未详细阐述部分属于本领域公知技术。Parts not described in detail in the present invention belong to the well-known technology in the art.

Claims (1)

1.一种多探头星敏感器融合姿态测试方法,其特征在于包括如下步骤:1. a multi-probe star sensor fusion attitude testing method is characterized in that comprising the steps: (1)当进行随机误差测试时转入步骤(2),当进行系统误差测试时,转入步骤(4),当进行周期误差测试时,转入步骤(6),当进行岁差光行差测试时,转入步骤(7);(1) Go to step (2) when performing a random error test, go to step (4) when performing a systematic error test, go to step (6) when performing a periodic error test, and go to step (6) when performing a precessional aberration During testing, turn to step (7); (2)获取星敏感器理论测量姿态矩阵CSI、星敏感器光轴噪声指标σx、星敏感器横轴噪声指标σz,计算得到随机误差下的星敏感器测量姿态矩阵tempC为(2) Obtain the theoretical measurement attitude matrix C SI of the star sensor, the optical axis noise index σ x of the star sensor, and the horizontal axis noise index σ z of the star sensor, and calculate the measurement attitude matrix tempC of the star sensor under the random error as tt ee mm pp CC == CC SS II ++ rr aa nno dd nno (( σσ xx )) rr aa nno dd nno (( σσ xx )) rr aa nno dd nno (( σσ xx )) 00 00 00 rr aa nno dd nno (( σσ zz )) rr aa nno dd nno (( σσ zz )) rr aa nno dd nno (( σσ zz )) 式中,randn(σ)表示产生均值为0、均方差为σ的高斯噪声,σ的取值为σx或者σzIn the formula, randn(σ) means to generate Gaussian noise with a mean value of 0 and a mean square error of σ, and the value of σ is σ x or σ z ; (3)对随机误差下的星敏感器测量姿态矩阵tempC进行正交归一化处理,得出星敏感器实际测量姿态矩阵其中,的第1行,的第2行,的第3行,norm为向量L2范数归一化函数,×为向量叉乘算子(3) Orthogonal normalization is performed on the star sensor measurement attitude matrix tempC under random error, and the actual measurement attitude matrix of the star sensor is obtained in, for line 1 of the for line 2 of the for In line 3 of , norm is the vector L2 norm normalization function, and × is the vector cross product operator CC ‾‾ SS II 33 == nno oo rr mm (( tt ee mm pp CC 33 )) CC ‾‾ SS II 22 == nno oo rr mm (( tt ee mm pp CC 33 ×× tt ee mm pp CC 11 )) CC ‾‾ SS II 11 == nno oo rr mm (( CC ‾‾ SS II 22 ×× CC ‾‾ SS II 33 )) ;; 转入步骤(9);Go to step (9); (4)获取星敏感器在所安装卫星的本体坐标系下的的等效安装偏差Δx、Δy、Δz,计算得到星敏感器安装偏差矩阵ΔCSB(4) Obtain the equivalent installation deviations Δx, Δy, Δz of the star sensor in the body coordinate system of the installed satellite, and calculate the star sensor installation deviation matrix ΔC SB as ΔCSB=Ry(Δy)·Rx(Δx)·Rz(Δz)ΔC SB =R y (Δy)·R x (Δx)·R z (Δz) 其中,Rx(υ)为绕卫星本体坐标系中X轴转动角度υ时的方向余弦阵、Ry(υ)为绕卫星本体坐标系中Y轴转动角度υ时的方向余弦阵、Rz(υ)为绕卫星本体坐标系中Z轴转动角度υ时的方向余弦阵;Among them, R x (υ) is the direction cosine array when rotating angle υ around the X axis in the satellite body coordinate system, R y (υ) is the direction cosine array when rotating angle υ around the Y axis in the satellite body coordinate system, R z (υ) is the direction cosine matrix when rotating the angle υ around the Z axis in the satellite body coordinate system; (5)获取星敏感器的理论安装矩阵CSB、卫星惯性姿态矩阵CBI,计算得到当前星敏感器的实际测量姿态矩阵(5) Obtain the theoretical installation matrix C SB of the star sensor and the inertial attitude matrix C BI of the satellite, and calculate the actual measurement attitude matrix of the current star sensor for CC ‾‾ SS II == ΔCΔC SS BB ·&Center Dot; CC SS BB ·&Center Dot; CC BB II ;; 转入步骤(9);Go to step (9); (6)接收外部发送的旋转轴选择指令,并选择旋转轴,获取星敏感器干扰幅值AST、星敏感器干扰周期TST,当选择的旋转轴为光轴时,计算得到干扰影响下的星敏感器测量误差矩阵ΔCX(6) Receive the rotation axis selection instruction sent from the outside, and select the rotation axis to obtain the star sensor interference amplitude A ST and the star sensor interference period T ST . When the selected rotation axis is the optical axis, calculate the The star sensor measurement error matrix ΔC X is ΔCΔC Xx == RR xx (( AA SS TT sthe s ii nno 22 ππ tt TT SS TT )) ;; 当选择的旋转轴为横轴时,计算得到干扰影响下的星敏感器测量误差矩阵ΔCZWhen the selected rotation axis is the horizontal axis, the calculated star sensor measurement error matrix ΔC Z under the influence of interference is: ΔCΔC ZZ == RR zz (( AA SS TT sthe s ii nno 22 ππ tt TT SS TT )) ;; 然后根据星敏感器测量误差矩阵ΔCX或ΔCZ、理论测量姿态矩阵CSI,计算当前星敏感器实际测量姿态矩阵Then calculate the actual measurement attitude matrix of the current star sensor according to the star sensor measurement error matrix ΔC X or ΔC Z and the theoretical measurement attitude matrix C SI for or 转入步骤(9);Go to step (9); 其中,t为星敏感器测量时刻;所述的旋转轴选择指令包括光轴或者横轴;所述的旋转轴包括光轴、横轴;Wherein, t is the measurement time of the star sensor; the rotation axis selection instruction includes the optical axis or the horizontal axis; the rotation axis includes the optical axis and the horizontal axis; (7)获取当前历元时,然后计算星敏感器的岁差补偿矩阵CPR(7) When obtaining the current epoch, then calculate the precession compensation matrix C PR of the star sensor as CC PP RR == 11 00 -- ψψ sthe s ii nno ϵϵ -- θθ AA 00 11 θθ AA ζζ AA -- ΔΔ ϵϵ ψψ sthe s ii nno ϵϵ ++ θθ AA -- θθ AA ζζ AA ++ ΔΔ ϵϵ 11 其中,ζA、θA、ε、ψ、Δε为岁差描述参数;Among them, ζ A , θ A , ε, ψ, Δε are the description parameters of precession; (8)获取星敏感器的理论测量姿态矩阵CSI,计算得到当前星敏感器实际测量姿态矩阵(8) Obtain the theoretical measurement attitude matrix C SI of the star sensor, and calculate the actual measurement attitude matrix of the current star sensor for CC ‾‾ SS II == CC SS II ·&Center Dot; CC PP RR 转入步骤(9);Go to step (9); (9)计算当前星敏感器实际测量姿态矩阵对应的四元数然后获取星敏感器实际测量输出的四元数qSI,计算得到误差四元数(9) Calculate the actual measurement attitude matrix of the current star sensor corresponding quaternion Then obtain the quaternion q SI actually measured and output by the star sensor, and calculate the error quaternion for qq ~~ == qq SS II -- 11 ⊗⊗ qq ‾‾ SS II 式中,为qSI的共轭四元数,为四元数乘法算子;In the formula, is the conjugate quaternion of q SI , is a quaternion multiplication operator; 然后根据误差四元数计算得到当前星敏感器的三轴等效姿态误差ex、ey、ezThen according to the error quaternion Calculate the three-axis equivalent attitude error e x , e y , e z of the current star sensor as ee xx == 22 qq ~~ (( 11 )) ee ythe y == 22 qq ~~ (( 22 )) ee zz == 22 qq ~~ (( 33 )) 式中,表示误差四元数的第i个分量,i=1,2,3。In the formula, Indicates the error quaternion The i-th component of , i=1, 2, 3.
CN201610967123.1A 2016-10-28 2016-10-28 Multi-probe star sensor fusion attitude testing method Pending CN106568462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610967123.1A CN106568462A (en) 2016-10-28 2016-10-28 Multi-probe star sensor fusion attitude testing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610967123.1A CN106568462A (en) 2016-10-28 2016-10-28 Multi-probe star sensor fusion attitude testing method

Publications (1)

Publication Number Publication Date
CN106568462A true CN106568462A (en) 2017-04-19

Family

ID=58539747

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610967123.1A Pending CN106568462A (en) 2016-10-28 2016-10-28 Multi-probe star sensor fusion attitude testing method

Country Status (1)

Country Link
CN (1) CN106568462A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107389089A (en) * 2017-05-31 2017-11-24 上海航天控制技术研究所 A kind of spaceborne Multi probe Rotating Platform for High Precision Star Sensor method of testing
CN108489483A (en) * 2018-02-28 2018-09-04 北京控制工程研究所 A kind of boat-carrying Stellar orientation instrument list star suboptimum correction algorithm
CN110793540A (en) * 2019-09-11 2020-02-14 北京控制工程研究所 Method for improving attitude measurement precision of multi-probe star sensor
CN111207772A (en) * 2020-01-14 2020-05-29 上海卫星工程研究所 Method for testing light path and polarity of multi-head star sensor
CN111637879A (en) * 2020-04-22 2020-09-08 北京控制工程研究所 Double-star-sensitive weighted attitude determination method based on multi-dimensional differential error characteristic distribution
CN111854803A (en) * 2020-07-29 2020-10-30 中国科学院长春光学精密机械与物理研究所 A kind of star sensor thermal stability detection equipment and detection method thereof
CN113720350A (en) * 2021-08-03 2021-11-30 上海卫星工程研究所 On-orbit measurement accuracy evaluation method and system for multi-head star sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102706363A (en) * 2012-05-25 2012-10-03 清华大学 Precision measuring method of high-precision star sensor
CN103604428A (en) * 2013-11-22 2014-02-26 哈尔滨工程大学 Star sensor positioning method based on high-precision horizon reference
CN104061928A (en) * 2014-06-26 2014-09-24 北京控制工程研究所 Method for automatically and preferentially using star sensor information
CN104280049A (en) * 2014-10-20 2015-01-14 北京控制工程研究所 Outfield precision testing method for high-precision star sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102706363A (en) * 2012-05-25 2012-10-03 清华大学 Precision measuring method of high-precision star sensor
CN103604428A (en) * 2013-11-22 2014-02-26 哈尔滨工程大学 Star sensor positioning method based on high-precision horizon reference
CN104061928A (en) * 2014-06-26 2014-09-24 北京控制工程研究所 Method for automatically and preferentially using star sensor information
CN104280049A (en) * 2014-10-20 2015-01-14 北京控制工程研究所 Outfield precision testing method for high-precision star sensor

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
刘林: "《航天器轨道理论》", 1 June 2000, 国防科技大学出版社 *
卢欣: "星敏感器低频误差分析", 《空间控制技术与应用》 *
王佐伟: "航天器控制系统高可信度地面测试技术", 《空间控制技术与应用》 *
陈军,邓新蒲,汪璞: "基于简化误差修正的卫星姿态确定算法", 《航天电子对抗》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107389089A (en) * 2017-05-31 2017-11-24 上海航天控制技术研究所 A kind of spaceborne Multi probe Rotating Platform for High Precision Star Sensor method of testing
CN108489483A (en) * 2018-02-28 2018-09-04 北京控制工程研究所 A kind of boat-carrying Stellar orientation instrument list star suboptimum correction algorithm
CN108489483B (en) * 2018-02-28 2020-06-09 北京控制工程研究所 A single-satellite suboptimal correction algorithm for ship-borne starlight director
CN110793540A (en) * 2019-09-11 2020-02-14 北京控制工程研究所 Method for improving attitude measurement precision of multi-probe star sensor
CN111207772A (en) * 2020-01-14 2020-05-29 上海卫星工程研究所 Method for testing light path and polarity of multi-head star sensor
CN111637879A (en) * 2020-04-22 2020-09-08 北京控制工程研究所 Double-star-sensitive weighted attitude determination method based on multi-dimensional differential error characteristic distribution
CN111637879B (en) * 2020-04-22 2021-10-01 北京控制工程研究所 A dual-star-sensing weighted attitude determination method based on multi-dimensional differential error characteristic distribution
CN111854803A (en) * 2020-07-29 2020-10-30 中国科学院长春光学精密机械与物理研究所 A kind of star sensor thermal stability detection equipment and detection method thereof
CN113720350A (en) * 2021-08-03 2021-11-30 上海卫星工程研究所 On-orbit measurement accuracy evaluation method and system for multi-head star sensor
CN113720350B (en) * 2021-08-03 2023-09-26 上海卫星工程研究所 Multi-head star sensor on-orbit measurement accuracy evaluation method and system

Similar Documents

Publication Publication Date Title
CN106568462A (en) Multi-probe star sensor fusion attitude testing method
CN104729537B (en) A kind of in-orbit real-time compensation method of star sensor low frequency aberration
CN107065025A (en) A kind of orbital elements method of estimation based on gravity gradient invariant
CN102175260B (en) Error correction method of autonomous navigation system
CN101846510A (en) High-precision satellite attitude determination method based on star sensor and gyroscope
Sushchenko et al. Theoretical and experimental assessments of accuracy of nonorthogonal MEMS sensor arrays
CN109556631A (en) INS/GNSS/polarization/geomagnetic combined navigation system alignment method based on least squares
CN105737858A (en) Attitude parameter calibration method and attitude parameter calibration device of airborne inertial navigation system
CN101846740B (en) A simulation method of space-borne SAR echoes in a specified latitude area
CN107246883A (en) A kind of Rotating Platform for High Precision Star Sensor installs the in-orbit real-time calibration method of matrix
CN102636816A (en) Simple geomagnetic vector measurement method
Jia et al. Observability-based navigation using optical and radiometric measurements for asteroid proximity
CN104765373A (en) On-satellite relative motion state acquiring method
Song et al. A decoupling three-position calibration method based on observability analysis for SINS/CNS integrated navigation
CN103913169B (en) Strap-down inertial/starlight refraction combined navigation method of aircrafts
CN106323271A (en) Spacecraft relative attitude measurement vector selection method based on feature singular values
CN106325099B (en) A kind of spacecraft real-time track improved method based on pseudo- relative motion
Khaniki et al. Satellite attitude determination using absorbed heat fluxes
CN102607597B (en) Expression and Measurement Method of Three-Axis Accuracy of Star Sensor
Chen et al. Observability analysis for orbit determination using spaceborne gradiometer
CN102519471A (en) Imaging type earth sensor earth oblateness compensation method based on trigonometric function fitting
CN105547327B (en) A kind of precision of star sensor test method based on space conversion
Adnane et al. Reliable Kalman filtering for satellite attitude estimation under gyroscope partial failure
CN206847637U (en) A kind of contactless system for determining object space and posture
CN104655094B (en) It is a kind of to determine method of the in-orbit separation process of near-circular orbit spacecraft with respect to the angle of sight

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170419

RJ01 Rejection of invention patent application after publication