JP5167520B2 - Method for producing porous ceramic using waste glass fiber reinforced plastic - Google Patents
Method for producing porous ceramic using waste glass fiber reinforced plastic Download PDFInfo
- Publication number
- JP5167520B2 JP5167520B2 JP2008274979A JP2008274979A JP5167520B2 JP 5167520 B2 JP5167520 B2 JP 5167520B2 JP 2008274979 A JP2008274979 A JP 2008274979A JP 2008274979 A JP2008274979 A JP 2008274979A JP 5167520 B2 JP5167520 B2 JP 5167520B2
- Authority
- JP
- Japan
- Prior art keywords
- glass fiber
- porous ceramic
- plastic
- temperature
- fiber reinforced
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/60—Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes
Landscapes
- Floor Finish (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
- Road Paving Structures (AREA)
Description
本発明は、セラミックの製造方法であって、とくに廃棄ガラス繊維強化プラスチックを再利用した軽量で強度の高い多孔質セラミックの製造方法に関するものである。 The present invention relates to a method for producing a ceramic, and more particularly to a method for producing a lightweight, high-strength porous ceramic using recycled glass fiber reinforced plastic.
現在、我々の身の周りには様々なプラスチック製品が使用されており、使用済みのプラスチックは廃棄プラスチックと呼ばれ、それらの処分が大きな社会問題となっている。この廃棄プラスチックの約60%はリサイクルなどの技術によって有効活用がなされているが、残りの40%は埋立てや単純焼却による廃棄処分が行なわれ、特にガラス繊維強化プラスチックは埋立て処分をする場合に、プラスチックに含まれるガラス繊維が環境を汚染する恐れがあり、その有効活用が強く求められている。 Currently, various plastic products are used around us, and used plastics are called waste plastics, and their disposal is a big social problem. About 60% of this waste plastic is effectively utilized by recycling and other technologies, but the remaining 40% is disposed of by landfill or simple incineration, especially when glass fiber reinforced plastic is disposed of by landfill. In addition, glass fibers contained in plastics may contaminate the environment, and their effective use is strongly demanded.
廃棄プラスチックの処理方法としては、サーマルリサイクル法、ケミカルリサイクル法、およびマテリアルリサイクル法があり、多種類の廃棄プラスチックに対して、これらの処理方法の中から最適なものが選択されている。しかしながら、これらの処理方法はいずれもプラスチックのみの廃棄プラスチックを対象とするで、上記のガラス繊維強化プラスチックを処理する場合には、プラスチックに含まれるガラス繊維の処理ができない場合があった。 There are a thermal recycling method, a chemical recycling method, and a material recycling method as disposal methods of waste plastics, and the most suitable one is selected from these treatment methods for various types of waste plastics. However, since all of these treatment methods are intended for waste plastics made only of plastics, in the case of treating the above glass fiber reinforced plastics, there are cases where the glass fibers contained in the plastics cannot be treated.
そこで、廃棄ガラス繊維強化プラスチックの破砕物と熱硬化性樹脂との混合物をプレス加工して床材、舗装材ブロックとする技術が提案されている(特許文献1参照。)。また、銅製錬鉱さいに石灰石および粘土を配合した基材に、ガラス繊維強化プラスチック廃砕物を添加して成形後、焼成する多孔質セラミックの製造技術もある(特許文献2参照。)。 Then, the technique which presses the mixture of the crushed material of a waste glass fiber reinforced plastic and a thermosetting resin, and makes it a flooring and a paving material block is proposed (refer patent document 1). In addition, there is a technique for producing a porous ceramic in which a glass fiber reinforced plastic waste material is added to a base material in which limestone and clay are blended with copper smelting ore and then fired (see Patent Document 2).
しかしながら上記の特許文献1に記載されている技術は、廃棄ガラス繊維強化プラスチックを熱硬化性樹脂と混合してプレス加工することにより、床材、舗装材ブロックとして再利用するものであり、製造される床材、舗装材ブロックの材質は、製造前と同じ繊維強化材を含んだプラスチック材(有機化合物)となる。これらを処分する場合には、再びその廃棄方法が問題となることが予想されることから、同製造方法は、根本的な廃棄プラスチックの処理方法とはならない。また特許文献2の多孔質プラスチックの製造技術は、ガラス繊維強化プラスチック廃棄物を使って多孔質セラミックを製造する点で類似するものの、1000℃未満の焼成温度で製造することで、多孔質を形成することを主な目的としたものであり、ガラス繊維の有効活用に関しては、何らの技術的な開示はなされていない。さらに、後述する実施例にもあるように、粘土にガラス繊維入りの廃棄プラスチックを混合して、1000℃未満の焼成温度で多孔質なガラス繊維入りセラミックを製造した場合には、強化材としてのガラス繊維の効果はほとんど期待できず、製品は十分な強度を有しない。 However, the technique described in the above-mentioned Patent Document 1 is reused as a flooring material or a paving material block by mixing waste glass fiber reinforced plastic with a thermosetting resin and pressing it. The material of the floor material and the paving material block to be used is a plastic material (organic compound) containing the same fiber reinforcing material as before manufacture. When these are disposed of, the disposal method is expected to become a problem again, and thus the manufacturing method is not a fundamental disposal method for waste plastic. In addition, the manufacturing technology of the porous plastic of Patent Document 2 is similar in that the porous ceramic is manufactured using glass fiber reinforced plastic waste, but the porous material is formed by manufacturing at a firing temperature of less than 1000 ° C. The main purpose is to do so, and no technical disclosure has been made regarding the effective utilization of glass fibers. Furthermore, as shown in the examples described later, when glass fiber-containing waste plastic is mixed with clay to produce a porous glass fiber-containing ceramic at a firing temperature of less than 1000 ° C., The effect of glass fiber can hardly be expected, and the product does not have sufficient strength.
上記の問題点に鑑み本発明者らは、鋭意研究の結果、粘土にガラス繊維入りの廃棄プラスチックを混合して成形し、セラミックの強度増加方法として、ガラス繊維成分によって強度増加する温度まで昇温して焼成する技術を確立し、軽量で強度の高い多孔質セラミックを提供するにいたった。本技術により、根本的な廃棄プラスチックの処理及び再利用の用途を提供する。 In view of the above-mentioned problems, the present inventors, as a result of diligent research, mixed and molded waste plastic containing glass fiber with clay, and increased the temperature to a temperature at which the strength of the glass fiber increases as a ceramic strength increasing method. As a result, the technology for firing was established, and a lightweight, high-strength porous ceramic was provided. This technology provides fundamental waste plastic processing and reuse applications.
このため本発明の多孔質セラミックの製造方法は、廃棄ガラス繊維強化プラスチックと、粘土を混合して成形するステップと、該プラスチックのプラスチック成分を分解する温度で焼成するステップと、前記プラスチックのガラス繊維成分によって強度増加する温度まで昇温して焼成するステップからなることを特徴とする。
For this reason, the method for producing a porous ceramic of the present invention comprises a step of mixing waste glass fiber reinforced plastic and clay, a step of firing at a temperature at which the plastic component of the plastic is decomposed, and a glass fiber of the plastic. It is characterized by comprising a step of raising the temperature to a temperature at which the strength is increased by the component and firing.
本発明の多孔質セラミックの製造方法は、廃棄ガラス繊維強化プラスチックと粘土を混合して成形するステップと、該プラスチックのプラスチック成分が分解する温度の700〜1000℃まで昇温する第一焼成ステップと、前記プラスチックのガラス繊維成分が溶融しない温度の1100℃までさらに昇温する第二焼成ステップを含む、前記プラスチック由来の溶融していないガラス繊維により強度増加することを第1の特徴とする。
The method for producing a porous ceramic according to the present invention includes a step of mixing and molding waste glass fiber reinforced plastic and clay, and a first firing step of raising the temperature to 700 to 1000 ° C. at which the plastic component of the plastic decomposes. The first feature is that the strength is increased by the unmelted glass fiber derived from the plastic, including a second firing step in which the glass fiber component of the plastic is further heated to 1100 ° C., a temperature at which the glass fiber component does not melt.
前記第二焼成ステップにおける焼成温度において、所定の時間保持する第三焼成ステップをさらに含むことを第2の特徴とする。
A second feature is that the method further includes a third baking step of maintaining a predetermined time at the baking temperature in the second baking step .
廃棄ガラス繊維強化プラスチックと粘土を混合して成形するステップにおいて、ガラス繊維成分を全体質量比8%以上含有するように混合することを第3の特徴とする。
In the step of mixing and molding the waste glass fiber reinforced plastic and clay, a third feature is that the glass fiber components are mixed so as to contain 8% or more of the total mass ratio.
そして、上記の製造方法によって作成されたタイルであることを特徴とする。
And it is the tile created by said manufacturing method, It is characterized by the above-mentioned.
さらに、前記タイルを使用した舗道用吸水性ブロックであることを特徴とする。
Further characterized in that a paving absorbent blocks using the tile.
本発明に係る多孔質セラミックの製造方法によれば、廃棄されるガラス繊維強化プラスチックと粘土を混合して成形し、プラスチック成分を分解する温度と、ガラス繊維成分が溶融しない温度に昇温して焼成するため、軽量であると共に、強度の高い多孔質セラミックを製造することができる。
According to the porous ceramic of the manufacturing method according to the present invention, by forming a mixture of glass fiber reinforced plastic and clay to be discarded, and the temperature degrade plastic components, the temperature was raised to a temperature where the glass fiber component does not melt Because it is fired, it is possible to produce a porous ceramic that is lightweight and has high strength.
この製造方法によって作成されたタイル及び舗道用吸水性ブロックは、タイル専用の粘土を使用せずに安価な粘土を使用しており、一般的なタイルと同等以上の強度が得られるため、得られるタイルの品質に対して材料費が非常に安価である。 The tiles and pavement water-absorbing blocks created by this manufacturing method can be obtained because they use cheap clay without using tile-specific clay, and can obtain strength equal to or higher than general tiles. Material costs are very low for tile quality.
しかも、従来有効活用が困難であったガラス繊維を含む廃棄プラスチックの再利用が可能であるという優れた効果を有する。 In addition, it has an excellent effect that it is possible to reuse waste plastic containing glass fiber, which has been difficult to effectively use.
以下、本発明の廃棄ガラス繊維強化プラスチックを用いた多孔質セラミックの製造方法を実施例に従い詳細に説明する。尚、本実施例においては、タイルの製造を例として説明するが、本技術により作成可能な多孔製セラミックの製品はこれに限定されるものではない。 Hereafter, the manufacturing method of the porous ceramic using the waste glass fiber reinforced plastic of this invention is demonstrated in detail according to an Example. In the present embodiment, the manufacture of tiles will be described as an example, but the porous ceramic product that can be produced by the present technology is not limited to this.
タイルの主原料として、タイル用に調製されていない市販の宮崎県産の国富粘土と、添加原料としてガラス繊維40%含有のPOM樹脂(ポリプラスチック社製)を準備した。このガラス繊維含有のPOM樹脂は自動車のドアミラーなどに用いられており、現在及び将来の大量廃棄が考えられるものである。 A commercial Kunitomi clay produced in Miyazaki Prefecture, which is not prepared for tiles, and a POM resin containing 40% glass fiber (manufactured by Polyplastics Co., Ltd.) as an additive material were prepared as the main raw material for tiles. This glass fiber-containing POM resin is used in automobile door mirrors and the like, and is considered to be discarded in large quantities at present and in the future.
(タイルの成形)
1)粘土及びPOM樹脂をそれぞれ500μmのふるいにかけ、500μm以下の粘土およびPOM樹脂の粉末をえる。
2)得られた粘土とPOM樹脂粉末を所定の混合比で混合し、原料質量の8%の水を加え混練した後、15gずつ秤量して金型に入れる。
3)金型をインバータホットプレス(モトヤマ社製)に投入し、9.8MPaの圧力で1分間保持して成形を行なう。
金型で作成した試験片のサイズは成形時は幅20mm、長さ70mm、厚さは配合条件により異なり約5mm〜7mmである。表1にPOM樹脂の配合条件を示す。尚、比較としてPOM樹脂(ガラス繊維を含まない)を配合した試験片も作成した。
(Tile molding)
1) Each of clay and POM resin is passed through a 500 μm sieve to obtain clay and POM resin powders of 500 μm or less.
2) The obtained clay and POM resin powder are mixed at a predetermined mixing ratio, 8% water of the raw material mass is added and kneaded, and 15 g is weighed and put into a mold.
3) The mold is put into an inverter hot press (manufactured by Motoyama Co., Ltd.), and molding is performed by holding at a pressure of 9.8 MPa for 1 minute.
The size of the test piece prepared with the mold is 20 mm in width and 70 mm in length at the time of molding, and the thickness is about 5 mm to 7 mm depending on the blending conditions. Table 1 shows the blending conditions of the POM resin. For comparison, a test piece containing POM resin (not including glass fiber) was also prepared.
(タイルの焼成)
上記で準備した試験片を、次の焼成温度条件に従い焼成した。
1)100℃/hで200℃まで昇温
2)200℃で1時間保持
3)焼成温度T−200℃まで100℃/hで昇温
4)焼成温度Tまで60℃/hで昇温
5)焼成温度Tで1時間保持
6)常温まで炉冷
焼成温度Tは900℃、1000℃、1100℃、1200℃と設定し、試験片を焼成した。図1に焼成温度条件(温度上昇曲線)を示す。
(Tile firing)
The test piece prepared above was fired according to the following firing temperature conditions.
1) Temperature rise to 200 ° C. at 100 ° C./h 2) Hold for 1 hour at 200 ° C. 3) Temperature rise at 100 ° C./h to firing temperature T-200 ° C. 4) Temperature rise at 60 ° C./h to firing temperature T 5 ) Holding at firing temperature T for 1 hour 6) Furnace cooling to room temperature The firing temperature T was set to 900 ° C, 1000 ° C, 1100 ° C, 1200 ° C, and the test piece was fired. FIG. 1 shows the firing temperature condition (temperature rise curve).
(収縮試験)
上記焼成したタイルの試験片の、焼成前と焼成後の寸法を測定して体積を求め、次の数1に従い収縮率を求めた。結果を図2に示す。
(Shrinkage test)
The volume of the test piece of the fired tile before and after firing was measured to determine the volume, and the shrinkage was determined according to the following equation (1). The results are shown in FIG.
(結果)
図1に示すように、粘土とPOM樹脂のみを混合して焼成した場合、試験片の収縮率はPOM樹脂の混合率が増加するに従い低下した。粘土とガラス繊維入りPOM樹脂を混合して焼成した場合、焼成温度1100℃を除きPOM樹脂の混合率が増加してもガラス繊維の混合率が増加するにつれて高くなった。特に、1200℃で焼成した場合、ガラス繊維が部分的に溶融するため試験片の収縮率は、ガラス繊維の混合率が増加するにつれて著しく高くなった。尚、焼成した試験片を実体顕微鏡によって観察したところ、ガラス繊維成分が1100℃までの焼成では溶融しておらず、1200℃の焼成で部分溶融していることが確認された。
(result)
As shown in FIG. 1, when only clay and POM resin were mixed and fired, the shrinkage ratio of the test piece decreased as the mixing ratio of the POM resin increased. When clay and glass fiber-filled POM resin were mixed and fired, the glass fiber mixing rate increased as the glass fiber mixing rate increased, except for the firing temperature of 1100 ° C., even though the mixing rate increased. In particular, when fired at 1200 ° C., the glass fibers partially melt, so that the shrinkage rate of the test piece was remarkably increased as the glass fiber mixing rate increased. When the fired test piece was observed with a stereomicroscope, it was confirmed that the glass fiber component was not melted by firing up to 1100 ° C. and was partially melted by firing at 1200 ° C.
(吸水試験)
タイル試験片を乾燥器に入れ、24時間乾燥させた後にその質量を測定した。次にこの乾燥済の試験片を約20℃の静水中の水面下10cmの位置に沈め、24時間放置した後湿った布で試験片の表面の水滴を拭き取り、再度質量を測定した。これらの測定値から次の数2に従い吸水率を求めた。結果を図3に示す。
(Water absorption test)
The tile test piece was placed in a dryer and dried for 24 hours, and then its mass was measured. Next, this dried test piece was submerged at a
(結果)
ガラス繊維の有無に関わらずPOM樹脂の混合率が増加するにつれて試験片の吸水率が高くなった。また同じPOM樹脂の混合率の試験片を900℃〜1100℃で焼成した場合、ガラス繊維入りの試験片の吸水率が相対的に高かった。そして1200℃で焼成した場合は、ガラス繊維なし試験片の吸水率が相対的に高かった。
(result)
Regardless of the presence or absence of glass fiber, the water absorption of the test piece increased as the mixing ratio of the POM resin increased. Moreover, when the test piece of the mixing rate of the same POM resin was baked at 900 degreeC-1100 degreeC, the water absorption rate of the test piece containing glass fiber was relatively high. And when baked at 1200 degreeC, the water absorption rate of the test piece without glass fiber was relatively high.
(曲げ試験)
タイル試験片を四点曲げ治具に挿入し、オートグラフ(島津製作所製AG500A)を用いてクロススピード0.5mm/sで圧縮し、最大荷重を測定して次の数3に従い、各試験片の最大曲げ応力を求めた。結果を図4に示す。
(Bending test)
Insert the tile test piece into a four-point bending jig and compress it with an autograph (AG500A manufactured by Shimadzu Corporation) at a cross speed of 0.5 mm / s. The maximum bending stress was determined. The results are shown in FIG.
(結果)
ガラス繊維の有無に関わらずPOM樹脂の混合率が増加するにつれて試験片の曲げ強度は低下した。しかし焼成温度1100℃でガラス繊維の混合率8%(POM樹脂の混合率12%)以上の試験片、および焼成温度1200℃のガラス繊維入り試験片はいずれもガラス繊維なしの試験片と比べ、相対的に曲げ強度が高いことがわかった。尚、窯業において粘土を使用した一般的なセラミックの曲げ強度は約6MPaを持つことから、1100℃および1200℃のガラス繊維入り試験片は高強度のタイルであることが判った。この高強度の理由については、ガラス繊維成分が部分溶融する前の1100℃では、ガラス繊維が複合材料における強化繊維の役割を果たし、部分溶融する1200℃では、ガラス繊維が溶融することで粘土を強固に固めるバインダー(結合材)の役割をする二つの異なった高強度の発生メカニズムがあると考えられる。
(result)
The bending strength of the test piece decreased as the mixing ratio of the POM resin increased with or without glass fiber. However, the test piece with a glass fiber mixing rate of 8% (POM
以上、本発明による廃棄ガラス繊維強化プラスチックを用いた多孔質セラミックの製造方法によれば、廃棄されるガラス繊維強化プラスチックと粘土を混合して成形し、プラスチック成分を分解する温度と、ガラス繊維成分が溶融しない温度で焼成するため、軽量であると共に、強度の高い多孔質セラミックを製造することができる。この製造方法によって作成されたタイル及び舗道用吸水性ブロックは、タイル専用の粘土を使用せずに安価な粘土を使用しており、一般的なタイルと同等以上の強度が得られると共に、得られるタイルの品質に対して材料費が非常に安価となる。またタイル専用に調製された粘土を用いれば、さらに高強度のタイルを作製できるものと考える。 As described above, according to the method for producing a porous ceramic using the waste glass fiber reinforced plastic according to the present invention, the glass fiber reinforced plastic to be discarded and clay are mixed and molded, and the glass fiber component is decomposed. Since it is fired at a temperature at which it does not melt, it is possible to produce a porous ceramic that is lightweight and has high strength. The tiles and pavement water-absorbing blocks created by this manufacturing method use cheap clay instead of using tile-specific clay, and can be obtained with strength equal to or higher than general tiles. Material costs are very low for tile quality. In addition, if clay prepared exclusively for tiles is used, it is considered that even higher strength tiles can be produced.
本発明の廃棄ガラス繊維強化プラスチックを用いた多孔質セラミックの製造方法で作成したタイルは、高強度で多孔質な特徴を生かし、ろ過機能を利用した河川堤防用のタイルやヒートアイランド現象の対策技術としての保水コンクリート等の用途として利用可能である。 Tile made by porous ceramic manufacturing method using waste glass fiber reinforced plastic of the present invention makes use of high strength and porous characteristics, as a tile for river embankment using filtration function and heat island phenomenon countermeasure technology It can be used for water-retaining concrete.
Claims (3)
The waste glass fiber reinforced plastic and clay are mixed and molded, and the glass fiber component is mixed so as to contain 8% or more of the total mass ratio. A method for producing a porous ceramic.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008274979A JP5167520B2 (en) | 2008-10-25 | 2008-10-25 | Method for producing porous ceramic using waste glass fiber reinforced plastic |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008274979A JP5167520B2 (en) | 2008-10-25 | 2008-10-25 | Method for producing porous ceramic using waste glass fiber reinforced plastic |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010100497A JP2010100497A (en) | 2010-05-06 |
JP5167520B2 true JP5167520B2 (en) | 2013-03-21 |
Family
ID=42291492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008274979A Expired - Fee Related JP5167520B2 (en) | 2008-10-25 | 2008-10-25 | Method for producing porous ceramic using waste glass fiber reinforced plastic |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5167520B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5984103B2 (en) * | 2011-07-28 | 2016-09-06 | 国立大学法人 宮崎大学 | Greening base material and method for manufacturing greening base |
JP2013227188A (en) * | 2012-03-29 | 2013-11-07 | Morio Kawamura | Method for manufacturing building material using recyclable material and building material |
JP6713597B2 (en) * | 2016-02-01 | 2020-06-24 | 国立大学法人 宮崎大学 | Ceramics porous body for pickled lactic acid bacteria and method for producing the same |
CN107746266B (en) * | 2017-09-19 | 2020-02-07 | 北京大学 | Fiber-reinforced cordierite marmite and preparation method thereof |
CN113387660B (en) * | 2021-07-21 | 2023-03-31 | 四川佰汇混凝土工程有限公司 | C30 underwater self-compacting concrete and preparation method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0547005U (en) * | 1991-11-21 | 1993-06-22 | 川崎炉材株式会社 | Brick for paving |
JPH06116057A (en) * | 1992-09-30 | 1994-04-26 | Ehime Pref Gov | Porous ceramic and its production |
JPH07204603A (en) * | 1994-01-24 | 1995-08-08 | Sekisui Chem Co Ltd | Separating and recovering method |
JP2002154866A (en) * | 2000-11-13 | 2002-05-28 | Inax Corp | Method for manufacturing ceramic product and ceramic product |
JP2002255668A (en) * | 2001-02-27 | 2002-09-11 | Meidensha Corp | Porous body from remainder of waste fiber reinforced plastic material and production method thereof |
-
2008
- 2008-10-25 JP JP2008274979A patent/JP5167520B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010100497A (en) | 2010-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5167520B2 (en) | Method for producing porous ceramic using waste glass fiber reinforced plastic | |
US8545748B2 (en) | Building bricks including plastics | |
KR102324211B1 (en) | Method of Preparing Artificial Lightweight Aggregate | |
KR102241908B1 (en) | Method for producing lightweight concrete bricks with reduced cement | |
JP5435255B2 (en) | Geopolymer solidified product using sewage sludge molten slag as active filler and method for producing the same | |
KR101645321B1 (en) | Recycled cold asphalt concrete mixture and Construction thereof | |
US20150094412A1 (en) | Laterite and polymer construction brick and material and method of manufacturing same | |
KR20110125913A (en) | Bricks for interior containing stone sludge and methods for preparing thereof | |
KR100736745B1 (en) | Method of manufacturing unusable glass fiber to construction panel | |
KR101502777B1 (en) | Product method of concrete block containg spb which is polymerized sulfur and dcpd modifier | |
KR100915432B1 (en) | manufacture method brick of permeability a utilization zincslag | |
JPH09100151A (en) | Feedstock composition for producing ceramic product and ceramic product made therefrom | |
KR100949056B1 (en) | Clay sintered material comprising red-mud and method for the preparation thereof | |
JP6504775B2 (en) | Pellet-like recycled plastic material and method for producing pellet-like recycled plastic material | |
KR101494421B1 (en) | Method for manufacturing sidewalk bock using waste molding sand and the sidewalk bock thereof | |
KR101333051B1 (en) | product method of SPB concrete manufacture | |
KR101779907B1 (en) | Manufacturing method of interior board through a alc recycling | |
JP4991979B2 (en) | Industrial waste glassware | |
JP4049680B2 (en) | Manufacturing method for products made from waste materials | |
KR20110098873A (en) | Soil composition using waste soil which is contained in construction waste | |
KR102117863B1 (en) | Marble panel comprising slag and stone powder and manufacturing method thereof | |
JP2002348181A (en) | Glass wool sintered material, method for manufacturing the same, and treated material containing the same | |
KR100602728B1 (en) | a ceramics cinder with low absorptiveness using waste mine tailing and a manufacturing method thereof | |
KR101015262B1 (en) | Manufacturing method for block using waste | |
US20100052220A1 (en) | Ceramic Product Made with Glass and High Alumina Cement and Method of Manufacturing Same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110930 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120228 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120427 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120717 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120912 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121127 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121205 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5167520 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |