JP5164940B2 - Floor excitation force reduction structure - Google Patents

Floor excitation force reduction structure Download PDF

Info

Publication number
JP5164940B2
JP5164940B2 JP2009162934A JP2009162934A JP5164940B2 JP 5164940 B2 JP5164940 B2 JP 5164940B2 JP 2009162934 A JP2009162934 A JP 2009162934A JP 2009162934 A JP2009162934 A JP 2009162934A JP 5164940 B2 JP5164940 B2 JP 5164940B2
Authority
JP
Japan
Prior art keywords
floor
excitation force
vibration reduction
mass
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009162934A
Other languages
Japanese (ja)
Other versions
JP2011017396A (en
Inventor
龍大 欄木
一郎 長島
大助 片山
秀秋 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
MM Bridge Co Ltd
Original Assignee
Taisei Corp
Mitsubishi Heavy Industries Bridge and Steel Structures Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp, Mitsubishi Heavy Industries Bridge and Steel Structures Engineering Co Ltd filed Critical Taisei Corp
Priority to JP2009162934A priority Critical patent/JP5164940B2/en
Publication of JP2011017396A publication Critical patent/JP2011017396A/en
Application granted granted Critical
Publication of JP5164940B2 publication Critical patent/JP5164940B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Building Environments (AREA)
  • Floor Finish (AREA)

Description

本発明は、空気バネ等を間に介して支持された振動低減床上から作用する、多数の人の動き等に起因して作用する加振力を低減化させるための床の加振力低減構造に関するものである。   The present invention relates to a structure for reducing the excitation force of a floor for reducing the excitation force acting due to the movement of a large number of people, etc., acting from the vibration reduction floor supported via an air spring or the like. It is about.

コンサートホールやエアロビクス等を行うスポーツジムのスタジオ等の、多数の人が同時に特定の振動数で動作する建物の床においては、上記動作が加振力となって当該床から基礎に加わり、これが同じ階における別の床や、上下階の床に伝わって振動障害を引き起こすことがある。   In the floor of a building where a large number of people operate at a specific frequency at the same time, such as a sports gym studio that performs concert halls or aerobics, the above movement is applied to the foundation from the floor as a vibration force, and this is the same It may be transmitted to another floor on the floor or to the floor on the upper and lower floors to cause vibration disturbance.

また、上記加振力に起因する振動が、上記建物の基礎から地盤を介して隣接する建物に伝わり、同様の振動障害を招くこともある。
そこで、一般にこの種の床に対しては、図11に示すように、建物の梁やスラブ等の支持構造物1上に、コイルスプリングや空気バネ等のバネ2を介して振動低減床3を構築する加振力低減構造が採用されている。
Moreover, the vibration resulting from the excitation force may be transmitted from the foundation of the building to the adjacent building via the ground, resulting in the same vibration disturbance.
Therefore, generally for this type of floor, as shown in FIG. 11, a vibration reduction floor 3 is provided on a support structure 1 such as a beam or slab of a building via a spring 2 such as a coil spring or an air spring. The structure to reduce the excitation force to be built is adopted.

このような加振力低減構造によれば、振動低減床3上で動作する多数の人による鉛直方向の加振力Fをバネ2によって吸収して、支持構造物1に作用する加振力fを低減させる(F>f)ことにより、上述した隣接する床や建物等における振動障害の発生を抑制することができる。ちなみに、支持構造物1に作用する加振力fを、振動低減床3に作用する加振力Fよりも小さくするためには、バネ2の剛性を低く設定して、振動吸収床3の固有周期を加振周期よりも1.4倍以上長くする必要がある。   According to such an excitation force reduction structure, the excitation force f acting on the support structure 1 by absorbing the vertical excitation force F by a large number of people operating on the vibration reduction floor 3 by the spring 2. By reducing (F> f), it is possible to suppress the occurrence of vibration disturbances on the adjacent floors and buildings described above. Incidentally, in order to make the excitation force f acting on the support structure 1 smaller than the excitation force F acting on the vibration reduction floor 3, the rigidity of the spring 2 is set to be low and the vibration absorption floor 3 has its own characteristic. It is necessary to make the cycle 1.4 times longer than the excitation cycle.

ところで、上記加振力低減構造にあっては、振動低減床3の固有周期を長くするほど、加振力の低減効果は高くなるが、逆に振動低減床3の応答(揺れ)hが大きくなるために、多数の人が動作する床の加振力低減構造としては、実用的でなくなってしまう。   By the way, in the above-described excitation force reduction structure, the longer the natural period of the vibration reduction floor 3 is, the higher the effect of reducing the excitation force is, but conversely the response (swing) h of the vibration reduction floor 3 is large. Therefore, it becomes impractical as a floor excitation force reduction structure in which a large number of people operate.

そこで、通常、振動低減床3の質量を大きくすることにより、当該振動低減床3の応答(揺れ)hを小さくすることにより対応しているものの、面積が大きい振動低減床3にあっては、その総重量が嵩むものになるために、別途支持構造物1の補強等が必要になるという問題点がある。   Therefore, although it is usually dealt with by reducing the response (swing) h of the vibration reduction floor 3 by increasing the mass of the vibration reduction floor 3, in the vibration reduction floor 3 having a large area, Since the total weight increases, there is a problem that the support structure 1 needs to be reinforced separately.

一方、下記特許文献1においては、図12に示すように、振動低減床3の下方に、平常時においては振動低減床3に接触せず、衝撃的な外乱が付加されて振動低減床3に大きな応答が生じた際に、当該振動低減床3に接触して、その下方への運動量の一部を吸収することにより、振動低減床3の応答h´を低減させる制振装置4を設けた衝撃の吸収構造が提案されている。   On the other hand, in the following Patent Document 1, as shown in FIG. 12, the vibration reducing floor 3 is not contacted with the vibration reducing floor 3 in a normal state, and a shocking disturbance is added to the vibration reducing floor 3 in a normal state. A vibration damping device 4 is provided that reduces the response h ′ of the vibration reduction floor 3 by contacting the vibration reduction floor 3 and absorbing a part of the downward momentum when a large response occurs. Shock absorbing structures have been proposed.

しかしながら、上記衝撃の吸収構造は、衝撃的な外乱を対象とするものであって、かつ制振装置4も下方への運動量のみを吸収する片効きのダンパーであるために、定常的に上下方向に繰り返される振動低減床3の振動に対しては、効率が悪いうえに、さらに制振装置4の作動・解除の繰り返しによって、振動低減床3の応答が不規則になることから、上述した床上で多数の人が運動するような振動低減床3としては、実用的でないという問題点がある。   However, since the shock absorbing structure is intended for shocking disturbances and the damping device 4 is also a one-effect damper that absorbs only the downward momentum, it is constantly in the vertical direction. The vibration of the vibration reduction floor 3 is not efficient, and the response of the vibration reduction floor 3 becomes irregular due to repeated operation and release of the vibration control device 4. Therefore, there is a problem that it is not practical as the vibration reduction floor 3 in which a large number of people exercise.

他方、下記特許文献2においては、床等の免震対象構造物を、鉛直免震部を介してその下方の支持構造物で支持するとともに、免震対象構造物と支持構造物との間に、免震対象構造物の上下動に連動することで上下振動に関与する慣性質量を増加させる質量付加機構を設けることにより、免震対象構造物の上下振動を長周期化する上下免震装置が提案されている。   On the other hand, in Patent Document 2 below, a seismic isolation target structure such as a floor is supported by a support structure below the vertical seismic isolation part, and between the seismic isolation target structure and the support structure. By installing a mass addition mechanism that increases the inertial mass related to vertical vibration by interlocking with the vertical movement of the seismic isolation target structure, Proposed.

ここで、質量付加機構は、所定の質量を有する円盤と、免震対象構造物の上下動に連動して円盤を回転させるボールネジ式の運動変換機構とからなり、円盤の回転慣性モーメントにより、免震対象構造物の上下振動に関与する慣性質量を増加させることにより、上記免震対象構造物の鉛直方向周期を長期化するものである。   Here, the mass addition mechanism is composed of a disk having a predetermined mass and a ball screw type motion conversion mechanism that rotates the disk in conjunction with the vertical movement of the seismic isolation target structure. By increasing the inertial mass involved in the vertical vibration of the seismic structure, the vertical period of the seismic isolation structure is lengthened.

ところが、上記上下免震装置は、地震時に支持構造物側から伝達する振動に対して、床等の免震対象構造物の固有周期を長期化して免震化するものであって、免震対象構造物側から作用する加振力を減少させることを目的とするものではない。このため、そのまま上記加振力低減構造に適用しても、同様に免震対象構造物から支持構造物側に作用する加振力の低減効果は高めることができるものの、これに対応して免震対象構造物における応答(揺れ)が大きくなってしまうことを解決することはできない。   However, the above-mentioned vertical seismic isolation device is designed to provide seismic isolation by extending the natural period of the seismic isolation target structure such as the floor against vibrations transmitted from the support structure side during an earthquake. It is not intended to reduce the excitation force acting from the structure side. For this reason, even if it is directly applied to the excitation force reducing structure, the effect of reducing the excitation force acting on the support structure side from the seismic isolation target structure can be enhanced in the same way. It cannot be solved that the response (sway) in the seismic structure is increased.

特許第4095689号公報Japanese Patent No. 4095689 特開2004−44748号公報JP 2004-44748 A

本発明は、上記事情に鑑みてなされたものであり、振動低減床側からその支持構造物に作用する加振力を低減することができ、かつ支持構造物への付加を増加させることなく、振動低減床の応答も実用的な範囲内に収めることが可能となる床の加振力低減構造を提供することを課題とするものである。   The present invention has been made in view of the above circumstances, can reduce the excitation force acting on the support structure from the vibration reduction floor side, and without increasing the addition to the support structure, It is an object of the present invention to provide a structure for reducing the vibration force of a floor that makes it possible to keep the response of the vibration reduced floor within a practical range.

上記課題を解決するため、請求項1に記載の床の加振力低減構造は、支持構造物上に、加振力吸収部材を間に介して振動低減床を支持し、かつこの振動低減床と上記支持構造物との間に、上記振動低減床の鉛直方向の変位によって回転することにより上記振動低減床に付加質量を付与する回転慣性質量ダンパーを設けてなり、かつ、上記回転慣性質量ダンパーによる上記付加質量をΔM、上記加振力吸収部材が支持する上記振動低減床の総質量をMとしたときに、ΔM/(M+ΔM)を、0.3〜0.7の範囲に設定したことを特徴とするものである。   In order to solve the above-described problem, the floor excitation force reducing structure according to claim 1 supports the vibration reduction floor on the support structure with the excitation force absorbing member interposed therebetween, and the vibration reduction floor. And a rotary inertia mass damper that provides an additional mass to the vibration reduction floor by rotating due to a vertical displacement of the vibration reduction floor, and the rotation inertia mass damper. ΔM / (M + ΔM) was set in the range of 0.3 to 0.7, where ΔM is the additional mass due to Δ and M is the total mass of the vibration reduction floor supported by the excitation force absorbing member. It is characterized by.

ここで、上記加振力吸収部材としては、空気バネやコイルスプリング等の各種バネが好適である。   Here, as the excitation force absorbing member, various springs such as an air spring and a coil spring are suitable.

また、請求項2に記載の発明は、請求項1に記載の発明において、上記回転慣性質量ダンパーが、軸線を鉛直方向に沿わせて回転自在に設けられたボールネジと、このボールネジの外周に固定された円盤と、上記振動低減床の上下動を上記ボールネジの回転運動に変換する変換機構とを備えるとともに、上記ΔM/(M+ΔM)が0.3〜0.7の範囲になるように、上記円盤の質量、半径および上記ボールネジのリードを設定したことを特徴とするものである。   According to a second aspect of the present invention, in the first aspect of the present invention, the rotary inertia mass damper is fixed to a ball screw provided rotatably along an axis line along a vertical direction, and fixed to the outer periphery of the ball screw. And a conversion mechanism that converts the vertical movement of the vibration reduction floor into the rotational movement of the ball screw, and the ΔM / (M + ΔM) is in the range of 0.3 to 0.7. The mass of the disk, the radius, and the lead of the ball screw are set.

請求項1または2に記載の発明によれば、振動低減床上から加振力が作用すると、その鉛直方向の変位によって回転慣性質量ダンパーが回転して付加質量を発生し、この付加質量によって振動低減床を含めた全体の慣性質量が増加することにより、支持構造物に作用する加振力を、振動低減床に作用する加振力よりも低減させることができるとともに、同時に振動低減床の応答を、上記回転慣性質量ダンパーを設けない場合と比較して小さくすることができる。   According to the first or second aspect of the invention, when an excitation force is applied from the vibration reduction floor, the rotary inertia mass damper is rotated by the vertical displacement to generate an additional mass, and the additional mass reduces the vibration. By increasing the overall inertial mass including the floor, the vibration force acting on the support structure can be reduced more than the vibration force acting on the vibration reduction floor, and at the same time the response of the vibration reduction floor The rotation inertia mass damper can be made smaller than the case where the rotation inertia mass damper is not provided.

この際に、振動低減床の質量に回転慣性質量ダンパーによる付加質量を加えた全質量に対して、上記付加質量が占める割合を大きくすると、相対的に上記振動低減床の質量を小さくすることができるが、上記加振力の低減効果が低下してしまう。
これに対して、上記付加質量が占める割合を小さくすると、上記加振力の低減効果を高めることができるものの、相対的に上記振動低減床の質量の低減効果は小さくなってしまう。
At this time, if the proportion of the additional mass is increased with respect to the total mass of the vibration reduced floor plus the additional mass of the rotary inertia mass damper, the mass of the vibration reduced floor can be relatively reduced. However, the effect of reducing the excitation force is reduced.
On the other hand, if the ratio occupied by the additional mass is reduced, the effect of reducing the excitation force can be enhanced, but the effect of reducing the mass of the vibration reduction floor is relatively reduced.

この点、本発明においては、上記回転慣性質量ダンパーによる付加質量をΔM、上記加振力吸収部材が支持する振動低減床の総質量をMとしたときに、ΔM/(M+ΔM)を、0.3〜0.7の範囲に設定しているために、後述するように、振動低減床の質量を過度に増加させることなく、支持構造物に作用する加振力については、振動低減床からの加振力の0.7以下に低減させることが可能になる。   In this respect, in the present invention, ΔM / (M + ΔM) is set to 0, where ΔM is an added mass by the rotary inertia mass damper, and M is a total mass of the vibration reduction floor supported by the excitation force absorbing member. Since it is set in the range of 3 to 0.7, as will be described later, the excitation force acting on the support structure without excessively increasing the mass of the vibration reduction floor is from the vibration reduction floor. It is possible to reduce the excitation force to 0.7 or less.

ここで、上記回転慣性質量ダンパーとしては、請求項2に記載の発明のように、軸線を鉛直方向に沿わせて回転自在に設けられたボールネジと、このボールネジの外周に固定された円盤と、上記振動低減床の上下動を上記ボールネジの回転運動に変換する変換機構とを備えたものを用いることができる。この場合には、上記円盤の質量、半径および上記ボールネジのリードを適宜設定することにより、容易に上記ΔM/(M+ΔM)を0.3〜0.7の範囲にすることができる。   Here, as the rotary inertia mass damper, as in the invention described in claim 2, a ball screw rotatably provided along an axis line along a vertical direction, a disk fixed to the outer periphery of the ball screw, The thing provided with the conversion mechanism which converts the vertical motion of the said vibration reduction floor into the rotational motion of the said ball screw can be used. In this case, ΔM / (M + ΔM) can be easily set in the range of 0.3 to 0.7 by appropriately setting the mass and radius of the disk and the lead of the ball screw.

本発明に係る床の加振力低減構造の一実施形態を示す概略構成図である。It is a schematic block diagram which shows one Embodiment of the excitation force reduction structure of the floor concerning this invention. 図1の回転慣性質量ダンパーの諸元を示す図である。It is a figure which shows the item of the rotary inertia mass damper of FIG. 本発明の作用効果を検証するための実施例1に用いた加振力低減構造の諸元を示す概略構成図である。It is a schematic block diagram which shows the item of the excitation force reduction structure used for Example 1 for verifying the effect of this invention. 上記実施例1に用いた従来の加振力低減構造の諸元を示す概略構成図である。It is a schematic block diagram which shows the specification of the conventional excitation force reduction structure used for the said Example 1. FIG. 上記実施例1における加振力の低減率の結果を示すグラフである。It is a graph which shows the result of the reduction rate of the exciting force in the said Example 1. FIG. 上記実施例1において加振力に対する変位の低減率の結果を示すグラフである。It is a graph which shows the result of the reduction rate of the displacement with respect to an exciting force in the said Example 1. FIG. 本発明の実施例2に用いた加振力低減構造の諸元を示す概略構成図である。It is a schematic block diagram which shows the item of the exciting force reduction structure used for Example 2 of this invention. 上記実施例2に用いた従来の加振力低減構造の諸元を示す概略構成図である。It is a schematic block diagram which shows the specification of the conventional excitation force reduction structure used for the said Example 2. FIG. 本発明の実施例3における加振力の低減率の結果を示すグラフである。It is a graph which shows the result of the reduction rate of the exciting force in Example 3 of this invention. 上記実施例3において加振力に対する変位の低減率の結果を示すグラフである。It is a graph which shows the result of the reduction rate of the displacement with respect to an exciting force in the said Example 3. 従来の加振力低減構造を示す概略構成図である。It is a schematic block diagram which shows the conventional excitation force reduction structure. 従来の他の加振力低減構造を示す概略構成図である。It is a schematic block diagram which shows the other conventional excitation force reduction structure.

図1および図2は、本発明に係る床の加振力低減構造の一実施形態を示すものであり、図3〜図10は、その作用効果を実施例として示すものである。
図1および図2に示すように、この加振力低減構造は、コンサートホールやスポーツジム等の建物の床に適用したものであり、上記建物の梁やスラブ等の支持構造物10上に、コイルスプリングや空気バネ等のバネからなる加振力吸収部材11によって振動低減床12を支承するとともに、支持構造物10と振動低減床12との間に、回転慣性質量ダンパー13を設けたものである。
FIG. 1 and FIG. 2 show one embodiment of a floor vibration force reducing structure according to the present invention, and FIG. 3 to FIG.
As shown in FIGS. 1 and 2, this excitation force reducing structure is applied to the floor of a building such as a concert hall or a sports gym. On the support structure 10 such as a beam or slab of the building, The vibration reduction floor 12 is supported by an excitation force absorbing member 11 made of a spring such as a coil spring or an air spring, and a rotary inertia mass damper 13 is provided between the support structure 10 and the vibration reduction floor 12. is there.

ここで、多数の人が同時に動作することによって振動低減床12に生じる振動の加振周期は、概ね0.3〜0.5秒(2〜3Hz)であることから、振動低減床12の固有周期は、上記加振周期の1.4倍以上である1秒前後に設定されている。   Here, the vibration period of the vibration generated in the vibration reduction floor 12 when a large number of people operate simultaneously is approximately 0.3 to 0.5 seconds (2 to 3 Hz). The period is set to about 1 second, which is 1.4 times or more of the excitation period.

また、回転慣性質量ダンパー13は、軸線を鉛直方向に沿わせて配設されたボールネジ14と、このボールネジ14の外周に固定された円盤15とを備えており、ボールネジ14の下端部が、支持構造物10に設けられた軸受け16によって回転自在に支承されている。また、このボールネジ14の上端部は、振動低減床12の下面に固定されたナット17に螺合されている。   The rotary inertia mass damper 13 includes a ball screw 14 having an axis lined along the vertical direction, and a disk 15 fixed to the outer periphery of the ball screw 14, and a lower end portion of the ball screw 14 is supported by A bearing 16 provided on the structure 10 is rotatably supported. Further, the upper end portion of the ball screw 14 is screwed into a nut 17 fixed to the lower surface of the vibration reduction floor 12.

これにより、これら軸受け16およびナット17によって、振動低減床12の鉛直方向の変位をボールネジ14の回転運動に変換する変換機構が構成されている。
なお、ナット17を支持構造物10上に固定し、軸受け16を振動低減床12の下面に設けても同様の作用効果を得ることが可能である。
Thereby, the bearing 16 and the nut 17 constitute a conversion mechanism for converting the vertical displacement of the vibration reduction floor 12 into the rotational motion of the ball screw 14.
It is possible to obtain the same effect by fixing the nut 17 on the support structure 10 and providing the bearing 16 on the lower surface of the vibration reduction floor 12.

そして、回転慣性質量ダンパー13のボールネジ14および円盤15が回転することによって生じる付加質量ΔMは、図2に示すように、円盤15の質量をmp、円盤15の半径をR、ボールネジ14のリードをLとしたときに、
ΔM=2×mp×(π×R/L)2
によって算出することができる。
As shown in FIG. 2, the additional mass ΔM generated by the rotation of the ball screw 14 and the disk 15 of the rotary inertia mass damper 13 is expressed as follows: the mass of the disk 15 is mp; the radius of the disk 15 is R; When L
ΔM = 2 × mp × (π × R / L) 2
Can be calculated.

このように、上記回転慣性質量ダンパー13によれば、小さな質量の円盤15によって、大きな付加質量ΔMを得ることができるために、振動低減床12の質量を増加させることなく、その応答(揺れ)を低減させることができる。なお、上記付加質量ΔMをさらに大きくしたい場合には、円盤15の質量mgや半径Rを増加させ、リードLを小さくすることによって対応することができる。   As described above, according to the rotary inertia mass damper 13, since the large additional mass ΔM can be obtained by the small mass disk 15, the response (swaying) without increasing the mass of the vibration reduction floor 12. Can be reduced. If the additional mass ΔM is desired to be further increased, the mass mg or radius R of the disk 15 can be increased and the lead L can be reduced.

そして、この加振力低減構造においては、回転慣性質量ダンパー13における円盤15の質量mp、半径Rおよびボールネジ14のリードLの諸元が、回転慣性質量ダンパー13による付加質量をΔM、加振力吸収部材11によって支持されている振動低減床12の総質量をMとしたときに、振動低減床12の総質量Mと付加質量ΔMとを加えた全質量(M+ΔM)に対する付加質量ΔMの割合(比率)ΔM/(M+ΔM)が0.3〜0.7の範囲になるように設定されている。   In this vibration force reducing structure, the mass mp of the disk 15 in the rotary inertia mass damper 13, the radius R, and the specifications of the lead L of the ball screw 14 indicate that the additional mass by the rotary inertia mass damper 13 is ΔM, and the excitation force When the total mass of the vibration reduction floor 12 supported by the absorbing member 11 is M, the ratio of the additional mass ΔM to the total mass (M + ΔM) of the total mass M of the vibration reduction floor 12 and the additional mass ΔM ( The ratio (ΔM / (M + ΔM)) is set in the range of 0.3 to 0.7.

次に、ΔM/(M+ΔM)が、0.3〜0.7の範囲になるように設定した根拠について、実施例1〜3に基づいて説明する。
(実施例1)
先ず、回転慣性質量ダンパー13の効果を確認するために、図1および図2に示した本実施形態に係る回転慣性質量ダンパー13を設けた加振力低減構造と、図11に示した回転慣性質量ダンパー13が設けられていない従来の加振力低減構造とにおける加振力の低減率(f/F)および振動低減床3、12における変位周波数応答を解析した。
Next, the grounds for setting ΔM / (M + ΔM) to be in the range of 0.3 to 0.7 will be described based on Examples 1 to 3.
Example 1
First, in order to confirm the effect of the rotary inertia mass damper 13, an excitation force reducing structure provided with the rotary inertia mass damper 13 according to the present embodiment shown in FIGS. 1 and 2 and the rotary inertia shown in FIG. The reduction rate (f / F) of the excitation force and the displacement frequency response in the vibration reduction floors 3 and 12 in the conventional excitation force reduction structure in which the mass damper 13 is not provided were analyzed.

まず、構造モデルにおいては、図3に示す本実施形態および図4に示す従来構造ともに、振動低減床3、12の質量を3000kgf、その固有周期を1秒、加振力を5400kgfの同一条件とした。また、本実施形態においては、回転慣性質量ダンパー13の付加質量ΔMを3000kgfとした。   First, in the structural model, in the present embodiment shown in FIG. 3 and the conventional structure shown in FIG. 4, the mass of the vibration reduction floors 3 and 12 is 3000 kgf, the natural period is 1 second, and the excitation force is 5400 kgf. did. In the present embodiment, the additional mass ΔM of the rotary inertia mass damper 13 is set to 3000 kgf.

図5に示す加振力の低減率の解析結果の対比から、対象とした2Hz以上の振動数において、両者ともに0.5倍以下を確保し得ることが判る。これに対して、図6に示す振動低減床12の変位周波数応答の解析結果から明らかなように、本実施形態によれば、振動低減床12の応答(揺れの変位)が、従来構造と比較してほぼ半減している。   From the comparison of the analysis result of the reduction rate of the excitation force shown in FIG. 5, it can be seen that both can be secured 0.5 times or less at the target frequency of 2 Hz or more. In contrast, as is clear from the analysis result of the displacement frequency response of the vibration reduction floor 12 shown in FIG. 6, according to this embodiment, the response (swing displacement) of the vibration reduction floor 12 is compared with the conventional structure. And it is almost halved.

以上のことから、上記回転慣性質量ダンパー13を設けた本実施形態の加振力低減構造にあっては、振動低減床12の質量を増加させることなく、当該振動低減床12地震の揺れを低減させ得ることが確認された。   From the above, in the excitation force reduction structure of this embodiment provided with the rotary inertia mass damper 13, the vibration reduction floor 12 reduces the vibration of the earthquake without increasing the mass of the vibration reduction floor 12. It was confirmed that it could be

(実施例2)
そこで次に、振動低減床12の10m2当たりに、5400kgfの鉛直方向の加振力(2.0Hz)が作用した場合に、加振力の低減率を0.5倍、振動低減床3、12の揺れ(変位)を2.3cm以下にするための加振力低減構造を、本実施形態および従来構造について設計した。
(Example 2)
Therefore, next, when a vertical excitation force (2.0 Hz) of 5400 kgf is applied per 10 m 2 of the vibration reduction floor 12, the reduction rate of the excitation force is 0.5 times, the vibration reduction floor 3, An excitation force reducing structure for reducing the sway (displacement) of 12 to 2.3 cm or less was designed for this embodiment and the conventional structure.

図7は、本実施形態の加振力低減構造における設計例を示すもので、図8は、従来の加振力低減構造における設計例を示すものである。
これらの図から、従来構造においては、振動低減床3の10m2あたりの質量を18000kgfにする必要があるのに対して、本実施形態における振動低減床12では、従来の半分の9000kgfでよいために、支持構造物10への負荷を大幅に低減できることが確認された。
FIG. 7 shows a design example in the excitation force reducing structure of the present embodiment, and FIG. 8 shows a design example in the conventional excitation force reducing structure.
From these figures, in the conventional structure, the mass per 10 m 2 of the vibration reduction floor 3 needs to be 18000 kgf, whereas in the vibration reduction floor 12 in the present embodiment, 9000 kgf, which is half of the conventional, may be used. In addition, it was confirmed that the load on the support structure 10 can be significantly reduced.

(実施例3)
次に、本実施形態の加振力低減構造において、振動低減床12の固有周期と、振動低減床12の総質量Mおよび付加質量ΔMの総和(M+ΔM)を一定とした条件の下に、付加質量ΔMの比率ΔM/(M+ΔM)を20%から80%まで、10%間隔で変化させた場合の、加振力の低減率と振動低減床12の変位周波数応答の変化を検証した。
(Example 3)
Next, in the excitation force reduction structure of the present embodiment, the vibration is added under the condition that the natural period of the vibration reduction floor 12 and the sum (M + ΔM) of the total mass M and the additional mass ΔM of the vibration reduction floor 12 are constant. When the ratio ΔM / (M + ΔM) of the mass ΔM was changed from 20% to 80% at intervals of 10%, the change in the vibration force reduction rate and the displacement frequency response of the vibration reduction floor 12 was verified.

図9および図10は、その解析結果を示すものである。
先ず、振動低減床12の揺れ(変位)については、振動低減床12の総質量Mおよび付加質量ΔMの総和(M+ΔM)と固有周期(加振力吸収部材11のバネ定数)が同じであるために、付加質量ΔMの比率ΔM/(M+ΔM)によらず全て同じ値となる。図10は、そのうちの付加荷重の比率が30%である場合について示すものである。
9 and 10 show the analysis results.
First, regarding the vibration (displacement) of the vibration reduction floor 12, the total sum (M + ΔM) of the total mass M and the additional mass ΔM of the vibration reduction floor 12 and the natural period (spring constant of the excitation force absorbing member 11) are the same. In addition, all the values are the same regardless of the ratio ΔM / (M + ΔM) of the additional mass ΔM. FIG. 10 shows a case where the ratio of the additional load is 30%.

これに対して、図8に示すように、付加質量の比率が低下するにしたがって、加振力の低減率は小さく、すなわち加振力の低減効果が高くなることが判る。そして、上記低減率を所望とする0.7以下にするためには、振動低減床12との総和(M+ΔM)に対する付加質量ΔMの比率ΔM/(M+ΔM)を、0.7以下にする必要がある。   On the other hand, as shown in FIG. 8, it can be seen that as the ratio of the additional mass decreases, the reduction rate of the excitation force decreases, that is, the effect of reducing the excitation force increases. And in order to make the said reduction rate into 0.7 or less which is desired, it is necessary to make ratio (DELTA) M / (M + (DELTA) M) of additional mass (DELTA) M with respect to the sum total (M + (DELTA) M) with the vibration reduction floor 12 or less 0.7. is there.

ところが、付加質量ΔMの比率を過度に小さくすると、上記加振力の低減効果を高めることができるものの、M+ΔMが一定であることから、相対的に振動低減床12の質量Mを大きくする必要があり、この結果振動低減床12の質量低減効果は小さくなってしまう。   However, if the ratio of the additional mass ΔM is excessively reduced, the effect of reducing the excitation force can be increased. However, since M + ΔM is constant, it is necessary to relatively increase the mass M of the vibration reduction floor 12. As a result, the mass reduction effect of the vibration reduction floor 12 becomes small.

このため、加振力の低減効果と、振動低減床12の質量低減効果とを両立させるためには、付加質量ΔMの比率を0.3〜0.7の範囲に設定する必要がある。さらに、加振力の低減効果として0.5程度を確保しつつ、なおかつ有効な振動低減床12の質量低減効果を得るためには、付加質量ΔMの比率を0.4〜0.6の範囲に設定することが好ましい。   For this reason, in order to achieve both the reduction effect of the excitation force and the mass reduction effect of the vibration reduction floor 12, it is necessary to set the ratio of the additional mass ΔM in the range of 0.3 to 0.7. Furthermore, in order to obtain an effective mass reduction effect of the vibration reduction floor 12 while securing about 0.5 as the reduction effect of the excitation force, the ratio of the additional mass ΔM is in the range of 0.4 to 0.6. It is preferable to set to.

以上のように、上記構成からなる床の加振力低減構造によれば、振動低減床12上から加振力Fが作用した際に、その鉛直方向の変位によって回転慣性質量ダンパー12の円盤15が回転して付加質量ΔMを発生し、この付加質量ΔMによって振動低減床12を含めた全体の慣性質量が増加することにより、支持構造物10に作用する加振力fを、振動低減床12から作用する加振力Fよりも低減させることができるとともに、同時に振動低減床12の応答(揺れh)を、回転慣性質量ダンパー13を設けない場合と比較して小さくすることができる。   As described above, according to the floor excitation force reducing structure having the above-described configuration, when the excitation force F is applied from the vibration reduction floor 12, the disk 15 of the rotary inertia mass damper 12 is displaced by the vertical displacement. Rotates to generate an additional mass ΔM, and this additional mass ΔM increases the overall inertial mass including the vibration reduction floor 12, thereby applying an excitation force f acting on the support structure 10 to the vibration reduction floor 12. Therefore, the response (swing h) of the vibration reduction floor 12 can be reduced as compared with the case where the rotary inertia mass damper 13 is not provided.

加えて、振動低減床12の総質量Mと付加質量ΔMとを加えた全質量(M+ΔM)に対する付加質量ΔMの比率ΔM/(M+ΔM)を、0.3〜0.7の範囲に設定しているために、振動低減床12の質量Mを過度に増加させることなく、支持構造物10に作用する加振力fについては、振動低減床12からの加振力Fの0.7以下に低減させることができる。   In addition, the ratio ΔM / (M + ΔM) of the additional mass ΔM to the total mass (M + ΔM) including the total mass M of the vibration reduction floor 12 and the additional mass ΔM is set in a range of 0.3 to 0.7. Therefore, the excitation force f acting on the support structure 10 is reduced to 0.7 or less of the excitation force F from the vibration reduction floor 12 without excessively increasing the mass M of the vibration reduction floor 12. Can be made.

空気バネ等を間に介して支持された振動低減床上に、多数の人の動き等に起因して作用する加振力を低減化させるための床の加振力低減構造として利用可能である。   It can be used as a floor excitation force reduction structure for reducing the excitation force acting due to the movement of a large number of people on the vibration reduction floor supported via an air spring or the like.

10 支持構造物
11 加振力吸収部材
12 振動低減床
13 回転慣性質量ダンパー
14 ボールネジ
15 円盤
16 軸受け
17 ナット
DESCRIPTION OF SYMBOLS 10 Support structure 11 Excitation force absorption member 12 Vibration reduction floor 13 Rotation inertia mass damper 14 Ball screw 15 Disk 16 Bearing 17 Nut

Claims (2)

支持構造物上に、加振力吸収部材を間に介して振動低減床を支持し、かつこの振動低減床と上記支持構造物との間に、上記振動低減床の鉛直方向の変位によって回転することにより上記振動低減床に付加質量を付与する回転慣性質量ダンパーを設けてなり、
かつ、上記回転慣性質量ダンパーによる上記付加質量をΔM、上記加振力吸収部材が支持する上記振動低減床の総質量をMとしたときに、ΔM/(M+ΔM)を、0.3〜0.7の範囲に設定したことを特徴とする床の加振力低減構造。
A vibration reduction floor is supported on the support structure via an excitation force absorbing member, and the vibration reduction floor is rotated by a vertical displacement of the vibration reduction floor between the vibration reduction floor and the support structure. By providing a rotary inertia mass damper for adding an additional mass to the vibration reduction floor,
And, when the additional mass by the rotary inertia mass damper is ΔM and the total mass of the vibration reduction floor supported by the excitation force absorbing member is M, ΔM / (M + ΔM) is 0.3-0. A structure for reducing the excitation force of the floor, characterized in that it is set in a range of 7.
上記回転慣性質量ダンパーは、軸線を鉛直方向に沿わせて回転自在に設けられたボールネジと、このボールネジの外周に固定された円盤と、上記振動低減床の上下動を上記ボールネジの回転運動に変換する変換機構とを備えるとともに、上記ΔM/(M+ΔM)が0.3〜0.7の範囲になるように、上記円盤の質量、半径および上記ボールネジのリードを設定したことを特徴とする請求項1に記載の床の加振力低減構造。   The rotary inertia mass damper converts a ball screw rotatably provided with its axis line along the vertical direction, a disk fixed to the outer periphery of the ball screw, and the vertical movement of the vibration reduction floor into a rotary motion of the ball screw. The mass of the disk, the radius, and the lead of the ball screw are set so that the ΔM / (M + ΔM) is in the range of 0.3 to 0.7. The structure for reducing an excitation force of a floor according to 1.
JP2009162934A 2009-07-09 2009-07-09 Floor excitation force reduction structure Active JP5164940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009162934A JP5164940B2 (en) 2009-07-09 2009-07-09 Floor excitation force reduction structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009162934A JP5164940B2 (en) 2009-07-09 2009-07-09 Floor excitation force reduction structure

Publications (2)

Publication Number Publication Date
JP2011017396A JP2011017396A (en) 2011-01-27
JP5164940B2 true JP5164940B2 (en) 2013-03-21

Family

ID=43595336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009162934A Active JP5164940B2 (en) 2009-07-09 2009-07-09 Floor excitation force reduction structure

Country Status (1)

Country Link
JP (1) JP5164940B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105723037A (en) * 2014-03-05 2016-06-29 韩国机械研究院 Structure for preventing noise between floors using mr actuator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3026110B2 (en) * 1991-01-22 2000-03-27 清水建設株式会社 Damping device
JP2004044748A (en) * 2002-07-15 2004-02-12 Mitsubishi Heavy Ind Ltd Vertical base-isolating device
JP4936174B2 (en) * 2006-08-30 2012-05-23 清水建設株式会社 Excitation reaction force reduction mechanism and setting method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105723037A (en) * 2014-03-05 2016-06-29 韩国机械研究院 Structure for preventing noise between floors using mr actuator
CN105723037B (en) * 2014-03-05 2017-12-08 韩国机械研究院 Utilize the floor gap noise-proof structure of magnetorheological vibrator

Also Published As

Publication number Publication date
JP2011017396A (en) 2011-01-27

Similar Documents

Publication Publication Date Title
JP4831847B1 (en) Damping device, wind power generator and damping method
JP2004044748A (en) Vertical base-isolating device
JP2011069104A (en) Seismic control device and seismic control structure
JP5189213B1 (en) Vibration control device
JP5648821B2 (en) Vibration control mechanism
JP4147535B2 (en) Beam equipment
JP2009007916A (en) Vibration damping structure and its specification setting method
JP5516934B2 (en) Vibration control mechanism
JP4741877B2 (en) Building outer wall mounting structure
JP5164940B2 (en) Floor excitation force reduction structure
JP2001349094A (en) Synchronous pendulum type vibration control device
JP2008249122A (en) Vibration damping device
JP2011106519A (en) Damper and base isolation/vibration control mechanism
JPH0925737A (en) Base isolation structure for structural body
JP5473000B2 (en) Vertical vibration control system for building floor
JP5794528B2 (en) Seismic isolation structure
JP2010070908A (en) Seismic control structure
JP4572707B2 (en) Vibration control device
JP2009155801A (en) Vibration control structure
JP2015199587A (en) Dynamic vibration absorber for elevator
JP2010180669A (en) Damping unit and installation structure for the same
JP5646392B2 (en) Compound damping damper
JP5146763B2 (en) Seismic structure using the floating of the building
JP4307299B2 (en) Building damping device
JP2005299173A (en) Aseismatic structure of towering construction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20181228

Year of fee payment: 6

R150 Certificate of patent or registration of utility model

Ref document number: 5164940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250