JP5159101B2 - Polymer electrolyte laminated film - Google Patents

Polymer electrolyte laminated film Download PDF

Info

Publication number
JP5159101B2
JP5159101B2 JP2006330239A JP2006330239A JP5159101B2 JP 5159101 B2 JP5159101 B2 JP 5159101B2 JP 2006330239 A JP2006330239 A JP 2006330239A JP 2006330239 A JP2006330239 A JP 2006330239A JP 5159101 B2 JP5159101 B2 JP 5159101B2
Authority
JP
Japan
Prior art keywords
polymer electrolyte
film
electrolyte membrane
resin
discharge treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006330239A
Other languages
Japanese (ja)
Other versions
JP2008146899A (en
Inventor
政敏 本多
裕 細田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei E Materials Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2006330239A priority Critical patent/JP5159101B2/en
Publication of JP2008146899A publication Critical patent/JP2008146899A/en
Application granted granted Critical
Publication of JP5159101B2 publication Critical patent/JP5159101B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Laminated Bodies (AREA)
  • Conductive Materials (AREA)

Description

本発明は、固体高分子形燃料電池用の高分子電解質膜に関するものである。   The present invention relates to a polymer electrolyte membrane for a polymer electrolyte fuel cell.

燃料電池は、電池内で、燃料(水素源)と酸化剤(酸素)から電気化学的反応により電気エネルギーを得るものである。つまり燃料の化学エネルギーから直接電気エネルギーに変換している。燃料源としては、純水素をはじめ水素元素を含む石油、天然ガス(メタン等)、メタノールなどが使用できる。
燃料電池自体は、機械部分がないため騒音の発生が少なく、また外部からの燃料と酸化剤を供給し続け原理的には半永久的に発電させることができるのが特徴である。
電解質は、液体電解質や固体電解質に分類されるが、この中で電解質として高分子電解質膜を用いたものが固体高分子形燃料電池である。
特に、固体高分子形燃料電池は、他と比較して低温で作動することから、自動車等の代替動力源や家庭用コジェネレーションシステム、携帯用発電機として期待されている。
固体高分子形燃料電池には、電極触媒層とガス拡散層が積層されたガス拡散電極が高分子電解質膜の両面に接合された膜/電極接合体が少なくとも備えられている。ここで言
う高分子電解質膜は、高分子鎖中にスルホン酸基やカルボン酸基等の強酸性基を有し、プロトンを選択的に透過する性質を有する材料である。このような高分子電解質膜としては、化学的安定性の高いNafion(登録商標、米国デュポン社製)に代表されるパーフルオロ系プロトン交換樹脂膜が好適に用いられる。
A fuel cell obtains electric energy by electrochemical reaction from a fuel (hydrogen source) and an oxidant (oxygen) in the cell. In other words, the chemical energy of the fuel is directly converted into electrical energy. As the fuel source, pure hydrogen and other oils containing hydrogen elements, natural gas (methane, etc.), methanol, and the like can be used.
Since the fuel cell itself has no mechanical part, it generates less noise, and is characterized in that it can generate electric power semi-permanently by continuing to supply external fuel and oxidant.
Electrolytes are classified into liquid electrolytes and solid electrolytes. Among them, a polymer electrolyte fuel cell is one that uses a polymer electrolyte membrane as an electrolyte.
In particular, since the polymer electrolyte fuel cell operates at a low temperature as compared with others, it is expected as an alternative power source such as an automobile, a household cogeneration system, and a portable generator.
The polymer electrolyte fuel cell includes at least a membrane / electrode assembly in which a gas diffusion electrode in which an electrode catalyst layer and a gas diffusion layer are laminated is bonded to both surfaces of a polymer electrolyte membrane. The polymer electrolyte membrane referred to here is a material having a strongly acidic group such as a sulfonic acid group or a carboxylic acid group in a polymer chain and a property of selectively transmitting protons. As such a polymer electrolyte membrane, a perfluoro proton exchange resin membrane represented by Nafion (registered trademark, manufactured by DuPont, USA) having high chemical stability is preferably used.

このような高分子電解質膜は、20〜100μmの薄膜であるのが一般的であり、薄膜のまま取り扱うと皺や傷が入りやすい。よって、膜/電極接合体を作製するまでの保管や取り扱い上の観点から、非特許文献1で示されるような樹脂フィルム(Backing Film 1)上に接着されている事が望ましい。
ところで、高分子電解質膜は一般的に吸水性が極めて高く、高湿度下において、膜が膨潤する。よって、高分子電解質膜と樹脂フィルムとの密着性が悪いと、夏場の高湿度環境において高分子電解質膜が樹脂フィルムからは剥離しやすい、もしくは気泡が入りやすくなるという問題があった。このような問題が生じると、高分子電解質膜に皺やその他欠点が入った不良品になり、燃料電池に使用できなくなるといった課題があった。
Such a polymer electrolyte membrane is generally a thin film having a thickness of 20 to 100 μm, and wrinkles and scratches are likely to occur when it is handled as a thin film. Therefore, it is desirable to adhere on a resin film (Backing Film 1) as shown in Non-Patent Document 1 from the viewpoint of storage and handling until a membrane / electrode assembly is produced.
By the way, the polymer electrolyte membrane generally has extremely high water absorption, and the membrane swells under high humidity. Therefore, when the adhesiveness between the polymer electrolyte membrane and the resin film is poor, there is a problem that the polymer electrolyte membrane is easily peeled off from the resin film or bubbles are likely to enter in a high humidity environment in summer. When such a problem occurs, there is a problem that the polymer electrolyte membrane becomes a defective product with defects and other defects, and cannot be used for a fuel cell.

Dennis E. Curtin, Robert D. Lousenberg, Timothy J. Henry, Paul C. Tangeman, Monica E. Tisack, J. Power Sources, 131 (2004), 41−48Dennis E. Curtin, Robert D. et al. Lousenberg, Timothy J. et al. Henry, Paul C.H. Tageman, Monica E. et al. Tisack, J. et al. Power Sources, 131 (2004), 41-48

本発明は、高分子電解質膜を長期間保管しても皺等の欠点を増やす事なく、取り扱いをしやすくする方法を提供することを目的とする。   An object of the present invention is to provide a method for facilitating handling without increasing defects such as wrinkles even when the polymer electrolyte membrane is stored for a long period of time.

本発明者らは、前記課題を解決すべく鋭意検討をした。その結果、樹脂フィルム上にコロナ放電処理もしくはプラズマ放電処理が施すことで、樹脂フィルムと高分子電解質膜との密着性が適度に向上した高分子電解質積層フィルムが得られ、高湿度下で長期間保管しても剥離等の問題が起きなくなる事を見いだした。これは、樹脂フィルムの表面を親水化する事で、親水性の強い高分子電解質膜との馴染みが良くなったためと推測している。
また、同時にこのような樹脂フィルムとしてポリエチレンテレフタレート製を用いると、膜/電極接合体作製時に高分子電解質積層フィルムの端部から高分子電解質膜を剥離しやすく、取り扱い上、好ましい事を見出した。さらに、コロナ放電処理もしくはプラズマ放電処理が施された樹脂フィルム上に、高分子電解質膜を30〜200℃でラミネート処理する事で、上述のような高分子電解質積層フィルムが得られる事を見出した。すなわち、本発明は以下の通りである。
The present inventors diligently studied to solve the above problems. As a result, a polymer electrolyte laminate film having a moderately improved adhesion between the resin film and the polymer electrolyte membrane can be obtained by applying a corona discharge treatment or a plasma discharge treatment on the resin film. It has been found that problems such as peeling do not occur even when stored. This is presumably because the familiarity with the highly hydrophilic polymer electrolyte membrane was improved by making the surface of the resin film hydrophilic.
At the same time, it was found that the use of polyethylene terephthalate as such a resin film facilitates peeling of the polymer electrolyte membrane from the end of the polymer electrolyte laminate film during the production of the membrane / electrode assembly, which is preferable in handling. Furthermore, it has been found that a polymer electrolyte laminated film as described above can be obtained by laminating a polymer electrolyte membrane at 30 to 200 ° C. on a resin film that has been subjected to corona discharge treatment or plasma discharge treatment. . That is, the present invention is as follows.

(1)コロナ放電処理もしくはプラズマ放電処理が施された、厚み5〜500μm、濡れ性が40〜100mN/mの樹脂フィルム上に厚み1〜500μm高分子電解質膜がラミネート処理され積層されていることを特徴とする高分子電解質積層フィルム。
(2)上記樹脂フィルムがポリエチレンテレフタレート製であることを特徴とする上記(1)に記載の高分子電解質積層フィルム。
(3)コロナ放電処理もしくはプラズマ放電処理が施された、厚み5〜500μm、濡れ性が40〜100mN/mの樹脂フィルム上に、高分子電解質膜を30〜200℃でラミネート処理することを特徴とする高分子電解質積層フィルムの製造方法。
(1) A polymer electrolyte membrane having a thickness of 1 to 500 μm is laminated and laminated on a resin film having a thickness of 5 to 500 μm and a wettability of 40 to 100 mN / m , which has been subjected to corona discharge treatment or plasma discharge treatment. A polymer electrolyte laminate film characterized by that.
(2) The polymer electrolyte laminate film as described in (1) above, wherein the resin film is made of polyethylene terephthalate.
(3) A polymer electrolyte membrane is laminated at 30 to 200 ° C. on a resin film having a thickness of 5 to 500 μm and a wettability of 40 to 100 mN / m that has been subjected to corona discharge treatment or plasma discharge treatment. A method for producing a polyelectrolyte laminate film, which is characterized.

本発明の高分子電解質積層フィルムは、長期間保管しても樹脂フィルム(Backing Film 1)から剥離せず、高分子電解質膜の皺等の欠点を増やす事なく、取り扱いやすさを提供できる。   The polymer electrolyte laminate film of the present invention does not peel off from the resin film (Backing Film 1) even when stored for a long time, and can provide ease of handling without increasing defects such as wrinkles of the polymer electrolyte membrane.

以下に、本発明について詳細に説明する。
本発明の高分子電解質積層フィルムを構成する高分子電解質膜として、最も好適なものは下記に示すようなフッ素系高分子電解質である。
フッ素系高分子電解質としては特に限定されないが、Nafion(登録商標;米国デュポン社製)、Aciplex(登録商標;日本国旭化成ケミカルズ(株)社製)、Flemion(登録商標;日本国旭硝子(株)社製)に代表される、下記化学式(1)で表されるプロトン交換基を有するパーフルオロカーボン重合体が代表例として挙げられる。[CF CX −[CF −CF(−O−(CF −CF(CF
)) −Oc −(CFR −(CFR −(CF −X )]
・・・(1)
(式中、X 、X およびX はそれぞれ独立にハロゲン元素または炭素数1以上3以下のパーフルオロアルキル基、0≦a<1、0<g≦1、a+g=1、0≦b≦8、cは0または1であり、d、eおよびfはそれぞれ独立に0〜6の範囲の数(ただし、d+e+fは0に等しくない)、R およびR はそれぞれ独立にハロゲン元素、炭素数1〜10のパーフルオロアルキル基またはフルオロクロロアルキル基であり、X は、−COOH、−SO H、−PO 、−PO HZ(Zは水素原子、金属原子(Na、K、Ca等)、又はアミン類(NH 、NH R、NH 、NHR 、NR (Rはアルキル基、又はアレーン基))
The present invention is described in detail below.
As the polymer electrolyte membrane constituting the polymer electrolyte laminate film of the present invention, the most preferred is a fluorine-based polymer electrolyte as shown below.
The fluorine-based polymer electrolyte is not particularly limited, but Nafion (registered trademark; manufactured by DuPont, USA), Aciplex (registered trademark; manufactured by Asahi Kasei Chemicals Corporation, Japan), Flemion (registered trademark; Asahi Glass Company, Japan) A typical example is a perfluorocarbon polymer having a proton exchange group represented by the following chemical formula (1) represented by the following chemical formula (1). [CF 2 CX 1 X 2] a - [CF 2 -CF (-O- (CF 2 -CF (CF 2 X 3
)) B -Oc - (CFR 1 ) d - (CFR 2) e - (CF 2) f -X 4)] g
... (1)
(Wherein X 1 , X 2 and X 3 are each independently a halogen element or a perfluoroalkyl group having 1 to 3 carbon atoms, 0 ≦ a <1, 0 <g ≦ 1, a + g = 1, 0 ≦ b. ≦ 8, c is 0 or 1, d, e and f are each independently a number in the range of 0-6 (where d + e + f is not equal to 0), R 1 and R 2 are each independently a halogen element, A C 1-10 perfluoroalkyl group or fluorochloroalkyl group, and X 4 is —COOH, —SO 3 H, —PO 3 H 2 , —PO 3 HZ (Z is a hydrogen atom, a metal atom (Na , K, Ca, etc.) or amines (NH 4 , NH 3 R, NH 2 R 2 , NHR 3 , NR 4 (R is an alkyl group or arene group))

中でも、下記化学式(2)又は(3)で表されるパーフルオロカーボン重合体がプロトン伝導度が高く、好ましい。
[CF CF −[CF −CF(−O−(CF −CF(CF )) −O−(CF −X )] ・・・(2)
(式中0≦a<1、0<g≦1、a+g=1、1≦b≦3、1≦f≦8、そしてX は−COOH、−SO H、−PO 又は−PO Hである。)
[CF CF −[CF −CF(−O−(CF −X )] ・・・(3)
(式中0≦a<1、0<g≦1、a+g=1、1≦f≦8、そしてX は−COOH、−SO H、−PO 又は−PO Hである。)
Among these, a perfluorocarbon polymer represented by the following chemical formula (2) or (3) is preferable because of high proton conductivity.
[CF 2 CF 2] a - [CF 2 -CF (-O- (CF 2 -CF (CF 3)) b -O- (CF 2) f -X 4)] g ··· (2)
(Where 0 ≦ a <1, 0 <g ≦ 1, a + g = 1, 1 ≦ b ≦ 3, 1 ≦ f ≦ 8, and X 4 represents —COOH, —SO 3 H, —PO 3 H 2 or — PO 3 H.)
[CF 2 CF 2] a - [CF 2 -CF (-O- (CF 2) f -X 4)] g ··· (3)
(Where 0 ≦ a <1, 0 <g ≦ 1, a + g = 1, 1 ≦ f ≦ 8, and X 4 is —COOH, —SO 3 H, —PO 3 H 2 or —PO 3 H. )

上記のようなパーフルオロカーボン重合体は、ヘキサフルオロプロピレン、クロロトリフルオロエチレン等のパーフルオロオレフィンや、パーフルオロアルキルビニルエーテル等のコモノマーに由来する単位をさらに含む共重合体であってもよい。
本発明で用いるフッ素系高分子電解質の製造方法は、例えば、米国特許第5, 281,
680号明細書、日本国特開平7−252322号公報、米国特許第5, 608, 022号明細書に記載されている。
The perfluorocarbon polymer as described above may be a copolymer further including units derived from a perfluoroolefin such as hexafluoropropylene or chlorotrifluoroethylene, or a comonomer such as perfluoroalkyl vinyl ether.
A method for producing a fluorine-based polymer electrolyte used in the present invention is, for example, US Pat. No. 5,281,
No. 680, Japanese Patent Application Laid-Open No. 7-252322, and US Pat. No. 5,608,022.

また、上記高分子電解質膜としては、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、フェノール−ホルムアルデヒド樹脂、ポリスチレン樹脂、ポリトリフルオロスチレン樹脂、トリフルオロスチレン樹脂、ポリ(2,3−ジフェニル−1,4−フェニレンオキシド)樹脂、ポリ(アリルエーテルケトン)樹脂、ポリ(アリルエーテルスルホン)樹脂、ポリ(フェニルキノサンリン)樹脂、ポリ(ベンジルシラン)樹脂、ポリスチレン−グラフト−エチレンテトラフルオロエチレン樹脂、ポリスチレン−グラフト−ポリフッ化ビニリデン樹脂、ポリスチレン−グラフト−テトラフルオロエチレン樹脂、ポリイミド樹脂、ポリベンズイミダゾール樹脂といった炭化水素部を有する高分子にスルホン酸基やカルボン酸基を導入したものも該当する。   Examples of the polymer electrolyte membrane include polyethersulfone resin, polyetheretherketone resin, phenol-formaldehyde resin, polystyrene resin, polytrifluorostyrene resin, trifluorostyrene resin, poly (2,3-diphenyl-1, 4-phenylene oxide) resin, poly (allyl ether ketone) resin, poly (allyl ether sulfone) resin, poly (phenylquinosan phosphorus) resin, poly (benzylsilane) resin, polystyrene-graft-ethylenetetrafluoroethylene resin, polystyrene- A sulfonic acid group or a carboxylic acid group was introduced into a polymer having a hydrocarbon moiety such as graft-polyvinylidene fluoride resin, polystyrene-graft-tetrafluoroethylene resin, polyimide resin, polybenzimidazole resin. Also applicable to.

上記高分子電解質膜のプロトン交換容量としては特に限定されないが、1g当たり0.5〜4.0ミリ当量が好ましく、より好ましくは0.8〜4.0ミリ当量、最も好ましくは0.9〜1.5ミリ当量である。より大きいプロトン交換容量の高分子電解質膜を用いる方が、高温低加湿条件下においてより高いプロトン伝導性を示し、燃料電池に用いた場合、運転時により高い出力を得ることができる。
上記高分子電解質膜の厚みは1〜500μmであり、好ましくは2〜200μm、さらに好ましくは5〜100μm、最も好ましくは10〜50μmである。膜厚が厚いほど耐久性は良くなる一方で、初期特性は悪くなるため、上記の範囲に膜厚を設定するのが好ましい。
The proton exchange capacity of the polymer electrolyte membrane is not particularly limited, but is preferably 0.5 to 4.0 milliequivalents per gram, more preferably 0.8 to 4.0 milliequivalents, most preferably 0.9 to 1.5 milliequivalents. The use of a polymer electrolyte membrane having a larger proton exchange capacity exhibits higher proton conductivity under high temperature and low humidification conditions, and when used in a fuel cell, a higher output can be obtained during operation.
The thickness of the polymer electrolyte membrane is 1 to 500 μm, preferably 2 to 200 μm, more preferably 5 to 100 μm, and most preferably 10 to 50 μm. The thicker the film thickness, the better the durability and the worse the initial characteristics. Therefore, it is preferable to set the film thickness within the above range.

一方、本発明の高分子電解質積層フィルムを構成する樹脂フィルムとしては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリスチレン、ポリエチレン、ポリプロピレン、ポリカーボネート、ポリイミド、ポリエーテルエーテルケトン、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等の一般的な樹脂フィルム全てがこれに該当するが、この中でもポリエチレンテレフタレート製の樹脂フィルムの場合、膜/電極接合体作製時に高分子電解質膜を剥離しやすく、取り扱い上、好ましい。   On the other hand, as the resin film constituting the polymer electrolyte laminate film of the present invention, polyethylene terephthalate, polyethylene naphthalate, polystyrene, polyethylene, polypropylene, polycarbonate, polyimide, polyetheretherketone, polyvinylidene fluoride, polytetrafluoroethylene, etc. All of the general resin films correspond to this, and among them, in the case of a resin film made of polyethylene terephthalate, the polymer electrolyte membrane can be easily peeled when the membrane / electrode assembly is produced, which is preferable in handling.

このような樹脂フィルムの厚みは5〜500μmであり、好ましくは2〜200μm、さらに好ましくは5〜100μm、最も好ましくは10〜50μmである。
また、このような樹脂フィルムは、コロナ放電処理もしくはプラズマ放電処理が施されていることを特徴とする。
ここでいうコロナ放電処理とは、放電ハンドブック(発売元 オーム社、昭和57年改訂新版、電気学会放電ハンドブック出版委員会編)p.102〜106に記載されているように、樹脂フィルム表面に対し、ステンレス線やタングステン線などの対向電極を対置して、高周波及び高電圧をかけ、大気中にコロナ放電を発生させ、それによって生成される官能基と電子を直接樹脂フィルムに照射する処理等を指す。
The thickness of such a resin film is 5 to 500 μm, preferably 2 to 200 μm, more preferably 5 to 100 μm, and most preferably 10 to 50 μm.
Moreover, such a resin film is characterized by being subjected to corona discharge treatment or plasma discharge treatment.
The corona discharge treatment referred to here is a discharge handbook (published by Ohm, revised in 1982, edited by the Electrotechnical Society Discharge Handbook Publishing Committee) p. As described in 102 to 106, a counter electrode such as a stainless steel wire or a tungsten wire is placed on the resin film surface, a high frequency and a high voltage are applied, and a corona discharge is generated in the atmosphere, thereby generating The process etc. which directly irradiate a resin film with the functional group and electron which are made.

また、ここでいうプラズマ放電処理とは、放電ハンドブック(発売元 オーム社、昭和57年改訂新版、電気学会放電ハンドブック出版委員会編)p.281〜329に記載されているように、高電圧アークプラズマ放電により大気中にプラズマ放電を発生させ、樹
脂フィルム表面に対しプラズマ放電電子照射を行って活性化するとともに、放電活性化酸素により生成される官能性極性基を樹脂フィルム表面に与える処理等を指す。
以上のようなコロナ放電処理もしくはプラズマ放電処理における放電電子照射量としては、0.01〜1000W/m/minであり、好ましくは0.1〜500W/m/min、より好ましくは1〜200W/m/min、最も好ましくは2〜100W/m/minである。
コロナ放電処理もしくはプラズマ放電処理が施された樹脂フィルムの濡れ性としては40〜100mN/mが好ましく、より好ましくは50〜90mN/m、最も好ましくは60〜80mN/mである。
In addition, the plasma discharge treatment referred to here is a discharge handbook (published by Ohm, revised in 1982, edited by the Institute of Electrical Engineers of Japan Discharge Handbook) p. As described in 281 to 329, plasma discharge is generated in the atmosphere by high-voltage arc plasma discharge, activated by irradiating the surface of the resin film with plasma discharge electrons, and generated by discharge activated oxygen. The treatment which gives the functional polar group to the resin film surface.
The discharge electron irradiation amount in the corona discharge treatment or plasma discharge treatment as described above, a 0.01~1000W / m 2 / min, preferably 0.1~500W / m 2 / min, more preferably 1 to 200 W / m 2 / min, most preferably 2 to 100 W / m 2 / min.
The wettability of the resin film subjected to corona discharge treatment or plasma discharge treatment is preferably 40 to 100 mN / m, more preferably 50 to 90 mN / m, and most preferably 60 to 80 mN / m.

(本発明の高分子電解質積層フィルムの製造例)
本発明の高分子電解質積層フィルムの製造方法として、フッ素系高分子電解質からなる高分子電解質膜を用いた例について以下に説明するが、特に限定されない。
本発明の高分子電解質膜は、例えば、以下の方法で製造することができる。
フッ素系高分子電解質は、下記化学式(4)で示される前駆体ポリマーを下記の
方法で重合した後、加水分解、酸処理を行って製造することができる。
[CF CX −[CF −CF(−O−(CF −CF(CF )) −O−(CFR −(CFR −(CF −X )]
・・・(4)
(式中、X 、X およびX は、それぞれ独立に、ハロゲン元素または炭素数1〜3のパーフルオロアルキル基、0≦a<1、0<g≦1、a+g=1、bは0〜8の数、cは0または1、d、eおよびfはそれぞれ独立に0〜6の数(但し、d+e+fは、0に等しくない)、R およびR はそれぞれ独立に、ハロゲン元素、炭素数1〜10のパーフルオロアルキル基またはフルオロクロロアルキル基、X は−COOR 、−COR または−SO (R は、炭素数1〜3のアルキル基(フッ素置換されていないもの)、R はハロゲン元素))
上記化学式(4)で示される前駆体ポリマーは、フッ化オレフィンとフッ化ビニル化合物とを共重合させることにより製造される。具体的なフッ化オレフィンとしては、CF
=CF ,CF =CFCl,CF =CCl 等が挙げられる。具体的なフッ化ビニル化合物としては、CF =CFO(CF −SO F,CF =CFOCF CF(CF )O(CF −SO F,CF =CF(CF −SO F,CF F(OCF CF(CF )) −(CFz−1 −SO
F,CF =CFO(CF −CO R,CF =CFOCF CF(CF )O(CF −CO R,CF =CF(CF −CO R,CF
=CF(OCF CF(CF )) −(CF −CO R(Zは1〜8の整数、Rは炭素数1〜3のアルキル基(フッ素置換されていないもの)を表す)等が挙げられる。
(Production example of the polymer electrolyte laminate film of the present invention)
An example using a polymer electrolyte membrane made of a fluorine-based polymer electrolyte will be described below as a method for producing the polymer electrolyte laminated film of the present invention, but is not particularly limited.
The polymer electrolyte membrane of the present invention can be produced, for example, by the following method.
The fluorine-based polymer electrolyte can be produced by polymerizing a precursor polymer represented by the following chemical formula (4) by the following method, followed by hydrolysis and acid treatment.
[CF 2 CX 1 X 2] a - [CF 2 -CF (-O- (CF 2 -CF (CF 2 X 3)) b -O c - (CFR 1) d - (CFR 2) e - (CF 2 ) f- X 5 )] g
... (4)
(Wherein X 1 , X 2 and X 3 are each independently a halogen element or a C 1-3 perfluoroalkyl group, 0 ≦ a <1, 0 <g ≦ 1, a + g = 1, b is 0 to 8, c is 0 or 1, d, e and f are each independently a number from 0 to 6 (where d + e + f is not equal to 0), R 1 and R 2 are each independently a halogen element , A C 1-10 perfluoroalkyl group or fluorochloroalkyl group, X 5 is —COOR 3 , —COR 4 or —SO 2 R 4 (R 3 is a C 1-3 alkyl group (fluorinated Not R), R 4 is a halogen element))
The precursor polymer represented by the chemical formula (4) is produced by copolymerizing a fluorinated olefin and a vinyl fluoride compound. As a specific fluorinated olefin, CF 2
= CF 2 , CF 2 = CFCl, CF 2 = CCl 2 and the like. Specific fluorinated vinyl compounds, CF 2 = CFO (CF 2 ) z -SO 2 F, CF 2 = CFOCF 2 CF (CF 3) O (CF 2) z -SO 2 F, CF 2 = CF ( CF 2) z -SO 2 F, CF 2 F (OCF 2 CF (CF 3)) z - (CF 2) z-1 -SO 2
F, CF 2 = CFO (CF 2) z -CO 2 R, CF 2 = CFOCF 2 CF (CF 3) O (CF 2) z -CO 2 R, CF 2 = CF (CF 2) z -CO 2 R , CF 2
= CF (OCF 2 CF (CF 3)) z - a (CF 2) 2 -CO 2 R (Z is an integer of 1 to 8, R represents those not alkyl groups (fluorine-substituted 1 to 3 carbon atoms) For example).

このような前駆体ポリマーの重合方法としては、フッ化ビニル化合物をフロン等の溶媒に溶かした後、テトラフルオロエチレンのガスと反応させ重合する溶液重合法、フロン等の溶媒を使用せずに重合する塊状重合法、フッ化ビニル化合物を界面活性剤とともに水中に仕込んで乳化させた後、テトラフルオロエチレンのガスと反応させ重合する乳化重合法等が挙げられる。上記のいずれの重合方法においても、反応温度は30〜90℃が好ましく、また、反応圧力は280〜1100kPaが好ましい。
このように製造された前駆体ポリマーの、JIS K−7210に基づいた270℃、荷重2.16kgf、オリフィス内径2.09mmで測定されるメルトインデックスMI(g/10分)は限定されないが、0.001以上1000以下が好ましく、より好ましくは0.01以上100以下、最も好ましくは0.1以上10以下である。
As a method for polymerizing such a precursor polymer, a solution polymerization method in which a vinyl fluoride compound is dissolved in a solvent such as chlorofluorocarbon and then reacted with a tetrafluoroethylene gas to perform polymerization. Polymerization is performed without using a solvent such as chlorofluorocarbon. Examples thereof include a bulk polymerization method, and an emulsion polymerization method in which a vinyl fluoride compound is charged with water in a surfactant and emulsified, and then reacted with tetrafluoroethylene gas for polymerization. In any of the above polymerization methods, the reaction temperature is preferably 30 to 90 ° C., and the reaction pressure is preferably 280 to 1100 kPa.
The melt index MI (g / 10 minutes) measured at 270 ° C., load 2.16 kgf, orifice inner diameter 2.09 mm based on JIS K-7210 of the precursor polymer thus produced is not limited. It is preferably 0.001 or more and 1000 or less, more preferably 0.01 or more and 100 or less, and most preferably 0.1 or more and 10 or less.

このような前駆体ポリマーを膜状に成形するには、一般的な溶融押出成形法(Tダイ法
、インフレーション法、カレンダー法等)が用いられる。
このように成形した前駆体ポリマーを、反応液体に接触させる事でイオン交換基前駆体を加水分解して高分子電解質膜を製造する。この場合、イオン交換基前駆体の加水分解は、水酸化アルカリ水溶液中で実施する事ができ、さらに加水分解反応速度を増加させるために比較的高温の溶液を使用するのが有利である。例えば、特開昭61−19638号公報に示されている水酸化ナトリウムを20〜25%含んだ水溶液を用い70〜90℃において16時間加水分解処理する方法等がこれである。また、膜を膨潤させ加水分解反応速度を促進するために水酸化アルカリ水溶液とメチルアルコール、エチルアルコール、プロピルアルコールのようなアルコール系溶剤、もしくはジメチルスルオキシド等の水溶性有機溶剤との混合物により加水分解する方法が用いられている。例えば、特開昭57−139127号公報の水酸化カリウムを11〜13%とジメチルスルオキシドを30%含んだ水溶液を用い90℃で1時間加水分解処理する方法、特開平3−6240号公報の水酸化アルカリを15〜50wt%と水溶性有機化合物を0.1〜30wt%含んだ水溶液を用いて60〜130℃で20分〜24時間加水分解処理する方法がこれである。
In order to form such a precursor polymer into a film, a general melt extrusion method (T-die method, inflation method, calendar method, etc.) is used.
The precursor polymer thus molded is brought into contact with the reaction liquid to hydrolyze the ion exchange group precursor to produce a polymer electrolyte membrane. In this case, the hydrolysis of the ion-exchange group precursor can be carried out in an aqueous alkali hydroxide solution, and it is advantageous to use a relatively high temperature solution in order to further increase the hydrolysis reaction rate. For example, this is a method of hydrolyzing at 70 to 90 ° C. for 16 hours using an aqueous solution containing 20 to 25% sodium hydroxide as disclosed in JP-A 61-19638. Further, in order to swell the membrane and accelerate the hydrolysis reaction rate, the mixture is hydrolyzed with a mixture of an alkali hydroxide aqueous solution and an alcohol solvent such as methyl alcohol, ethyl alcohol or propyl alcohol or a water-soluble organic solvent such as dimethyl sulfoxide. A method of decomposing is used. For example, a method of hydrolyzing at 90 ° C. for 1 hour using an aqueous solution containing 11 to 13% potassium hydroxide and 30% dimethyl sulfoxide disclosed in JP-A-57-139127, JP-A-3-6240 This is a method of hydrolyzing at 60 to 130 ° C. for 20 minutes to 24 hours using an aqueous solution containing 15 to 50 wt% of alkali hydroxide and 0.1 to 30 wt% of a water-soluble organic compound.

このように加水分解処理によりイオン交換基を形成させた後、さらに塩酸等の無機酸で
酸処理する事で、高分子電解質膜を製造する事ができる。
以上の方法で製造された高分子電解質膜、及びコロナ放電処理もしくはプラズマ放電処理が施された樹脂フィルムを用いて高分子電解質積層フィルムを製造する方法としては、これらを積層した状態で、ホットプレス、ロールプレス、真空プレス等の公知のプレス技術やラミネーション技術を用いることにより接合する方法等が例示できる。この中でも、厚み5〜500μの樹脂フィルム上に、高分子電解質膜を30〜200℃でラミネート処理する方法が、より適度な高分子電解質積層フィルムを製造することができて好ましい。
Thus, after forming an ion exchange group by hydrolysis treatment, a polymer electrolyte membrane can be produced by further acid treatment with an inorganic acid such as hydrochloric acid.
As a method for producing a polymer electrolyte laminated film using the polymer electrolyte membrane produced by the above method and a resin film subjected to corona discharge treatment or plasma discharge treatment, a hot press is performed in a state in which these are laminated. Examples thereof include a method of joining by using a known press technique such as a roll press or a vacuum press or a lamination technique. Among these, on a resin film having a thickness of 5~500Myu m, method of lamination a polymer electrolyte membrane at 30 to 200 ° C. it is preferable to be able to produce a more moderate polyelectrolyte multilayer film.

本発明の高分子電解質積層フィルムは、クロルアルカリ電解、水電解、ハロゲン化水素酸電解、食塩電解、酸素濃縮器、湿度センサー、ガスセンサー等に用いることも可能である。高分子電解質膜を酸素濃縮器に利用する方法については、例えば、化学工学,56(3),p.178−180(1992)や、米国特許第4, 879, 016号を参照できる。高分子電解質膜を湿度センサーに利用する方法については、例えば、日本イオン交換学会誌,8(3),p.154−165(1997)や、J. Fang et al., Macromolecules, 35, 6070 (2002) を参照できる。高分子電解質膜をガスセンサーに利用する方法については、例えば、分析化学,50(9),p.585−594(2001)や、X. Yang, S. Johnson, J.
Shi, T. Holesinger, B. Swanson: Sens. Actuators B, 45, 887 (1997) を参照できる。
The polymer electrolyte laminate film of the present invention can also be used for chloralkali electrolysis, water electrolysis, hydrohalic acid electrolysis, salt electrolysis, oxygen concentrator, humidity sensor, gas sensor and the like. For a method of using the polymer electrolyte membrane for the oxygen concentrator, see, for example, Chemical Engineering, 56 (3), p. 178-180 (1992) and U.S. Pat. No. 4,879,016. For a method of using a polymer electrolyte membrane for a humidity sensor, see, for example, Journal of the Japan Ion Exchange Society, 8 (3), p. 154-165 (1997) and J.A. Fang et al. , Macromolecules, 35, 6070 (2002). For a method of using a polymer electrolyte membrane for a gas sensor, see, for example, Analytical Chemistry, 50 (9), p. 585-594 (2001), X. Yang, S.M. Johnson, J.M.
Shi, T .; Holesinger, B.H. Swanson: Sens. Actuators B, 45, 887 (1997).

以下、本発明を実施例により具体的に説明するが、本発明は実施例に制限されるものではない。本発明に用いられる評価法および測定法は以下のとおりである。
[実施例1]
高分子電解質膜として、[CF CF0.812 −[CF −CF(−O−(CF −SO H)]0.188 で表されるパーフルオロスルホン酸重合体(以下、「PFS」と称する)からなる、プロトン交換容量1.22ミリ当量/g、膜厚50μmの高分子電解質膜を以下のように製造した。
まず、PFSの前駆体ポリマーとして、テトラフルオロエチレンとCF =CFO(CF −SO Fとの共重合体からなるパーフルオロカーボン重合体(MI:3.0)を製造した。この前駆体ポリマーを溶融押出して約50μm厚に成形したフィルムを、15wt%の水酸化カリウムと30wt%のジメチルスルオキシドと55wt%の水を含有する反応液体に、60℃にて4時間接触させて、加水分解処理を行った。その後、フィルムを60℃水中に4時間浸漬し、次に60℃の2N塩酸水溶液に3時間浸漬した後
、イオン交換水にて酸を洗い出し、高分子電解質膜を得た。
樹脂フィルムとしては、以下のように、コロナ放電処理を行ったポリエチレンテレフタレート製フィルムを用いた。
ポリエチレンテレフタレート製フィルムとしては、厚み38μmの帝人デュポンフィルム(株)社製テイジンTMテトロンフィルムTMG2を用いた(以下、PETフィルムと称する)。
処理前の樹脂フィルムの濡れ性は、30mN/mであった(JIS K−6768に基づく)
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not restrict | limited to an Example. Evaluation methods and measurement methods used in the present invention are as follows.
[Example 1]
As the polymer electrolyte membrane, a perfluorosulfonic acid polymer represented by [CF 2 CF 2 ] 0.812- [CF 2 -CF (—O— (CF 2 ) 2 —SO 3 H)] 0.188 ( Hereinafter, a polymer electrolyte membrane having a proton exchange capacity of 1.22 meq / g and a film thickness of 50 μm composed of “PFS” was produced as follows.
First, as a PFS precursor polymer, a perfluorocarbon polymer (MI: 3.0) made of a copolymer of tetrafluoroethylene and CF 2 ═CFO (CF 2 ) 2 —SO 2 F was produced. A film formed by melt extrusion of this precursor polymer to a thickness of about 50 μm is brought into contact with a reaction liquid containing 15 wt% potassium hydroxide, 30 wt% dimethyl sulfoxide and 55 wt% water at 60 ° C. for 4 hours. Then, the hydrolysis treatment was performed. Thereafter, the film was immersed in 60 ° C. water for 4 hours and then immersed in a 2N hydrochloric acid aqueous solution at 60 ° C. for 3 hours, and then the acid was washed out with ion-exchanged water to obtain a polymer electrolyte membrane.
As the resin film, a polyethylene terephthalate film subjected to corona discharge treatment was used as follows.
As the polyethylene terephthalate film, Teijin TM Tetron Film TM G2 manufactured by Teijin DuPont Films Co., Ltd. having a thickness of 38 μm was used (hereinafter referred to as PET film).
The wettability of the resin film before treatment was 30 mN / m (based on JIS K-6768).

このようなPETフィルムのコロナ放電処理には、春日電機(株)社製コロナ放電表面処理システムを用い、照射量100W/m/minで、コロナ放電処理を行った。
この樹脂フィルムの濡れ性は、70mN/mであった(JIS K−6768に基づく)。
次に、10cm角の高分子電解質膜とコロナ放電処理したPETフィルムを積層し、その両側をカプトン(登録商標、デュポン社)フィルム(300H、膜厚75μm)で挟み込んだ。これを圧縮成形機((株)神藤工業所社製、VSF−10)にセットして100℃まで昇温した後、10kgf/cmにて10分間プレスした。プレス終了後に圧力を開放して30℃まで降温させた後、サンプルを取り出し、高分子電解質膜がコロナ放電処理されたPETフィルムにラミネートされた本発明の高分子電解質積層フィルムを得た。
この高分子電解質積層フィルムを恒温恒湿槽に入れ、30℃95%RHを3hr⇔10℃30%RHを3hrの乾湿サイクル試験を実施した。400サイクル終了後、本発明の高分子電解質積層フィルムを取り出したところ、高分子電解質膜はコロナ放電処理されたPETフィルムから剥離していなかった。
この高分子電解質積層フィルムから高分子電解質膜を端部から手で剥離しようとしたところ、簡単に剥離できた。
In such a corona discharge treatment of the PET film, a corona discharge treatment was performed at a dose of 100 W / m 2 / min using a corona discharge surface treatment system manufactured by Kasuga Electric Co., Ltd.
The wettability of this resin film was 70 mN / m (based on JIS K-6768).
Next, a 10 cm square polymer electrolyte membrane and a corona discharge-treated PET film were laminated, and both sides thereof were sandwiched between Kapton (registered trademark, DuPont) films (300H, film thickness 75 μm). This was set in a compression molding machine (manufactured by Shinfuji Kogyo Co., Ltd., VSF-10), heated to 100 ° C., and pressed at 10 kgf / cm 2 for 10 minutes. After completion of pressing, the pressure was released and the temperature was lowered to 30 ° C., and then a sample was taken out to obtain a polymer electrolyte laminated film of the present invention laminated on a PET film subjected to corona discharge treatment.
This polymer electrolyte laminated film was placed in a constant temperature and humidity chamber, and a dry / wet cycle test was performed at 30 ° C. and 95% RH for 3 hours to 10 ° C. and 30% RH for 3 hours. When the polymer electrolyte laminate film of the present invention was taken out after 400 cycles, the polymer electrolyte membrane was not peeled off from the corona discharge treated PET film.
When an attempt was made to peel the polymer electrolyte membrane from the polymer electrolyte laminated film by hand from the end, it was easily peeled off.

[実施例2]
実施例1と同じ高分子電解質膜と以下のプラズマ放電処理を行ったPETフィルムとを用いて作製した高分子電解質積層フィルムの例を以下に示す。
PETフィルムのプラズマ放電処理には、春日電機(株)社製プラズマ照射表面改質装置(PS−601S)を用い、照射量100W/m/minで処理を行った。
この樹脂フィルムの濡れ性は、66mN/mであった(JIS K−6768に基づく)。
次に、実施例1と同様のラミネート処理を行って、本発明の高分子電解質積層フィルムを得た。この高分子電解質積層フィルムを実施例1と同じように乾湿サイクル試験を実施したところ、高分子電解質膜はプラズマ放電処理されたPETフィルムから剥離していなかった。
この高分子電解質積層フィルムから高分子電解質膜を端部から手で剥離しようとしたところ、簡単に剥離できた。
[Example 2]
The example of the polymer electrolyte laminated film produced using the same polymer electrolyte membrane as Example 1 and the PET film which performed the following plasma discharge processes is shown below.
For plasma discharge treatment of the PET film, a plasma irradiation surface modification device (PS-601S) manufactured by Kasuga Electric Co., Ltd. was used, and the treatment was performed at an irradiation amount of 100 W / m 2 / min.
The wettability of this resin film was 66 mN / m (based on JIS K-6768).
Next, the same laminating treatment as in Example 1 was performed to obtain the polymer electrolyte laminated film of the present invention. When this polymer electrolyte laminated film was subjected to a dry and wet cycle test in the same manner as in Example 1, the polymer electrolyte membrane was not peeled off from the plasma discharge treated PET film.
When an attempt was made to peel the polymer electrolyte membrane from the polymer electrolyte laminated film by hand from the end, it was easily peeled off.

[比較例1]
コロナ放電処理を行っていないPETフィルムを用いた事以外は、実施例1と同じ方法で高分子電解質積層フィルムを得た。この高分子電解質積層フィルムを実施例1と同じように乾湿サイクル試験を実施したところ、高分子電解質膜はPETフィルムから剥離していた。
この高分子電解質積層フィルムから高分子電解質膜を端部から手で剥離しようとしたところ、簡単に剥離できた。
[Comparative Example 1]
A polymer electrolyte laminate film was obtained in the same manner as in Example 1 except that a PET film not subjected to corona discharge treatment was used. When this polymer electrolyte laminated film was subjected to a dry and wet cycle test in the same manner as in Example 1, the polymer electrolyte membrane was peeled off from the PET film.
When an attempt was made to peel the polymer electrolyte membrane from the polymer electrolyte laminated film by hand from the end, it was easily peeled off.

本発明の高分子電解質積層フィルムは、長期間保管しても樹脂フィルム(Backin
g Film 1)から剥離せず、高分子電解質膜の皺等の欠点を増やす事なく、取り扱いをしやすくする方法を提供できる。
The polymer electrolyte laminate film of the present invention is a resin film (Backin) even when stored for a long time.
It is possible to provide a method for facilitating handling without delamination from g Film 1) and without increasing defects such as wrinkles of the polymer electrolyte membrane.

Claims (3)

コロナ放電処理もしくはプラズマ放電処理が施された、厚み5〜500μm、濡れ性が40〜100mN/mの樹脂フィルム上に厚み1〜500μm高分子電解質膜がラミネート処理され積層されていることを特徴とする高分子電解質積層フィルム。 A polymer electrolyte membrane having a thickness of 1 to 500 μm is laminated and laminated on a resin film having a thickness of 5 to 500 μm and a wettability of 40 to 100 mN / m , which has been subjected to corona discharge treatment or plasma discharge treatment. A polymer electrolyte laminate film. 上記樹脂フィルムがポリエチレンテレフタレート製であることを特徴とする請求項1に記載の高分子電解質積層フィルム。   The polymer electrolyte laminate film according to claim 1, wherein the resin film is made of polyethylene terephthalate. コロナ放電処理もしくはプラズマ放電処理が施された、厚み5〜500μm、濡れ性が40〜100mN/mの樹脂フィルム上に、高分子電解質膜を30〜200℃でラミネート処理することを特徴とする高分子電解質積層フィルムの製造方法。 A polymer electrolyte membrane is laminated at 30 to 200 ° C. on a resin film having a thickness of 5 to 500 μm and a wettability of 40 to 100 mN / m that has been subjected to corona discharge treatment or plasma discharge treatment. A method for producing a polymer electrolyte laminated film.
JP2006330239A 2006-12-07 2006-12-07 Polymer electrolyte laminated film Active JP5159101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006330239A JP5159101B2 (en) 2006-12-07 2006-12-07 Polymer electrolyte laminated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006330239A JP5159101B2 (en) 2006-12-07 2006-12-07 Polymer electrolyte laminated film

Publications (2)

Publication Number Publication Date
JP2008146899A JP2008146899A (en) 2008-06-26
JP5159101B2 true JP5159101B2 (en) 2013-03-06

Family

ID=39606840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006330239A Active JP5159101B2 (en) 2006-12-07 2006-12-07 Polymer electrolyte laminated film

Country Status (1)

Country Link
JP (1) JP5159101B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5570707B2 (en) * 2007-09-10 2014-08-13 東洋ゴム工業株式会社 Release agent coating method
JP5498256B2 (en) * 2010-05-20 2014-05-21 旭化成イーマテリアルズ株式会社 Polymer electrolyte laminated film
JP6553499B2 (en) * 2015-12-16 2019-07-31 本田技研工業株式会社 Step MEA with resin frame for fuel cells
KR102148508B1 (en) * 2017-07-26 2020-08-26 주식회사 엘지화학 Lithium Metal Electrode and Method for Preparing the Same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3584666B2 (en) * 1996-03-21 2004-11-04 昭和電工株式会社 Method for laminating polymer solid electrolyte film
JP4538683B2 (en) * 2002-11-08 2010-09-08 大日本印刷株式会社 Catalyst layer forming sheet for fuel cell, method for producing the sheet, and method for producing catalyst layer-electrolyte membrane laminate
JP4496718B2 (en) * 2003-06-06 2010-07-07 宇部興産株式会社 POLYMER ELECTROLYTE MEMBRANE AND METHOD FOR PRODUCING THE SAME
JP2006253002A (en) * 2005-03-11 2006-09-21 Toyobo Co Ltd Manufacturing method of ion exchange membrane

Also Published As

Publication number Publication date
JP2008146899A (en) 2008-06-26

Similar Documents

Publication Publication Date Title
EP1806371B1 (en) Electrolyte membrane and membrane electrode assembly for solid polymer fuel cell
JP3901457B2 (en) Electrode-membrane assembly and manufacturing method thereof
JP6833164B2 (en) Polymer, solid polymer electrolyte membrane and membrane electrode assembly
WO2005124911A1 (en) Electrolyte membrane for solid polymer fuel cell, method for producing same and membrane electrode assembly for solid polymer fuel cell
JP7359139B2 (en) Laminated electrolyte membrane, membrane electrode assembly, water electrolysis type hydrogen generator, and method for manufacturing the laminated electrolyte membrane
JP2008277288A (en) Manufacturing device of composite polymer electrolyte membrane, manufacturing method of composite polymer electrolyte membrane, functional membrane, and fuel cell
EP4050041A1 (en) Fluorosulfonyl group-containing fluoropolymer and method for producing same, sulfonic acid group-containing fluoropolymer and method for producing same, solid polymer electrolyte membrane, membrane electrode assembly, and solid polymer fuel cell
Yoshitake et al. Perfluorinated ionic polymers for PEFCs (including supported PFSA)
JP5159101B2 (en) Polymer electrolyte laminated film
JP5189394B2 (en) Polymer electrolyte membrane
JP4836438B2 (en) Polymer electrolyte laminate film
EP2017913B1 (en) Direct-liquid fuel cell and process for producing membrane for use in a direct-liquid fuel cell
JP5498256B2 (en) Polymer electrolyte laminated film
JPH11354140A (en) Thin film electrolyte having high strength
JP5104116B2 (en) Method for producing polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP2003055568A (en) Ion exchanger resin dispersion and method for producing the same
JP2001243964A (en) Solid polymer electrolyte fuel cell
JP2003051320A (en) Membrane-electrode junction for solid polymer type fuel cell and its manufacturing method
JP2003346815A (en) Membrane electrode joint body and method for manufacturing the same
JP2003272663A (en) Electrode structural body for fuel cell and solid polymer fuel cell using the same
JP2002343380A (en) Electrolyte film for solid polymer fuel cell, and manufacturing method of the same
JP5316413B2 (en) Solid polymer electrolyte membrane, method for producing solid polymer electrolyte membrane, and fuel cell
CN202585634U (en) Polyelectrolyte laminated membrane
CN103117401B (en) Polyelectrolyte laminated membrane
JP4632717B2 (en) Fluoropolymer solid polymer electrolyte membrane, fluoropolymer solid polymer electrolyte membrane laminate, membrane / electrode assembly, and solid polymer fuel cell

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121211

R150 Certificate of patent or registration of utility model

Ref document number: 5159101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350