JP5156452B2 - Defect classification method, program, computer storage medium, and defect classification apparatus - Google Patents

Defect classification method, program, computer storage medium, and defect classification apparatus Download PDF

Info

Publication number
JP5156452B2
JP5156452B2 JP2008082740A JP2008082740A JP5156452B2 JP 5156452 B2 JP5156452 B2 JP 5156452B2 JP 2008082740 A JP2008082740 A JP 2008082740A JP 2008082740 A JP2008082740 A JP 2008082740A JP 5156452 B2 JP5156452 B2 JP 5156452B2
Authority
JP
Japan
Prior art keywords
defect
classification
substrate
unit
class
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008082740A
Other languages
Japanese (ja)
Other versions
JP2009238992A (en
Inventor
修児 岩永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2008082740A priority Critical patent/JP5156452B2/en
Priority to CN2009801111102A priority patent/CN101981683B/en
Priority to US12/736,204 priority patent/US8379965B2/en
Priority to KR1020107023895A priority patent/KR101396907B1/en
Priority to PCT/JP2009/054646 priority patent/WO2009119314A1/en
Priority to TW098109955A priority patent/TWI476847B/en
Publication of JP2009238992A publication Critical patent/JP2009238992A/en
Application granted granted Critical
Publication of JP5156452B2 publication Critical patent/JP5156452B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/28Determining representative reference patterns, e.g. by averaging or distorting; Generating dictionaries
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/772Determining representative reference patterns, e.g. averaging or distorting patterns; Generating dictionaries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67288Monitoring of warpage, curvature, damage, defects or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Computing Systems (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Medical Informatics (AREA)
  • Quality & Reliability (AREA)
  • Data Mining & Analysis (AREA)
  • Multimedia (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Biology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Description

本発明は、撮像された基板の画像に基づいて、当該基板の欠陥を分類する方法、プログラム、コンピュータ記憶媒体及び欠陥分類装置に関する。   The present invention relates to a method, a program, a computer storage medium, and a defect classification device for classifying defects on a substrate based on a captured image of the substrate.

例えば半導体デバイスの製造におけるフォトリソグラフィー処理では、例えば半導体ウェハ(以下、「ウェハ」という。)上にレジスト液を塗布してレジスト膜を形成するレジスト塗布処理、当該レジスト膜に所定のパターンを露光する露光処理、露光されたレジスト膜を現像する現像処理などが順次行われ、ウェハ上に所定のレジストのパターンが形成される。   For example, in a photolithography process in the manufacture of a semiconductor device, for example, a resist coating process in which a resist solution is applied on a semiconductor wafer (hereinafter referred to as “wafer”) to form a resist film, and a predetermined pattern is exposed on the resist film. An exposure process, a development process for developing the exposed resist film, and the like are sequentially performed to form a predetermined resist pattern on the wafer.

一連のフォトリソグラフィー処理が行われたウェハには、検査装置によって、ウェハ表面に所定のレジスト膜が形成されているか否か、あるいは適切な露光処理が行われているかどうかについて、さらには傷、異物の付着があるかどうか等を検査する、いわゆるマクロ欠陥検査が行われる。   For wafers that have undergone a series of photolithography processes, whether or not a predetermined resist film has been formed on the wafer surface by an inspection device, or whether or not appropriate exposure processing has been performed, as well as scratches and foreign matter A so-called macro defect inspection for inspecting whether or not there is adhesion is performed.

このようなマクロ欠陥検査は、ウェハを載置している載置台を移動させながら、当該載置台上のウェハに照明を照らして、例えばCCDラインセンサの撮像装置によってウェハの画像を取り込み、この画像を画像処理して欠陥の有無を判定するようにしている(特許文献1)。   In such a macro defect inspection, while moving the mounting table on which the wafer is mounted, the wafer on the mounting table is illuminated, and an image of the wafer is captured by, for example, an imaging device of a CCD line sensor. Image processing is performed to determine the presence or absence of defects (Patent Document 1).

そして欠陥の有無を判定する際には、従来より学習型分類と呼ばれる方法を用いて欠陥を分類することが行われている。学習型分類では、教示用画像として欠陥画像を事前に収集し、これを学習することによって欠陥を最適に分類することができる。   And when determining the presence or absence of a defect, conventionally classifying a defect using a method called learning type classification has been performed. In learning type classification, defect images can be collected in advance as teaching images, and defects can be classified optimally by learning them.

特開2007−240519号公報JP 2007-240519 A

しかしながら、従来の学習型分類で欠陥を最適に分類するためには、予め欠陥画像を大量に収集する必要があるため、生産プロセスの立ち上げ時にはかかる欠陥画像がなく欠陥を適切に分類することができなかった。また、少数の欠陥画像のみを用いて欠陥を分類した場合には、過学習と呼ばれる欠陥画像に対する学習の過剰適合現象が生じ、欠陥を適切に分類することが難しかった。   However, in order to classify defects optimally by conventional learning type classification, it is necessary to collect a large amount of defect images in advance, so that there is no such defect image at the start of the production process, and defects can be appropriately classified. could not. In addition, when defects are classified using only a small number of defect images, an overfitting phenomenon of learning with respect to defect images called overlearning occurs, and it is difficult to properly classify defects.

本発明は、かかる点に鑑みてなされたものであり、欠陥画像がない場合又は欠陥画像が少数しかない場合でも、撮像された基板の検査対象画像から当該基板の欠陥を適切に分類することを目的とする。   The present invention has been made in view of such a point, and even when there is no defect image or when there are only a few defect images, the defect of the substrate is appropriately classified from the image to be inspected of the substrate. Objective.

前記の目的を達成するため、本発明は、撮像された基板の検査対象画像に基づいて、当該基板の欠陥を分類する欠陥分類方法であって、欠陥の特徴量に基づいて欠陥の分類クラスを設定し、前記欠陥の特徴量と前記分類クラスとの関係を記憶部に記憶させる設計工程と、前記撮像された基板の検査対象画像から、当該基板の欠陥の特徴量を算出する特徴量算出工程と、前記算出した欠陥の特徴量に基づいて、前記記憶部内に記憶された前記欠陥の特徴量と前記分類クラスとの関係から、前記基板の欠陥を前記分類クラスに分類する分類工程と、を有し、前記設計工程は、複数の欠陥テンプレートを作成する第1の工程と、欠陥のない基板の教示用画像と前記欠陥テンプレートを合成して、欠陥モデルを生成する第2の工程と、前記欠陥モデルにおける欠陥の特徴量を算出する第3の工程と、前記欠陥モデルにおける欠陥の特徴量に対して、欠陥の分類クラスを設定する第4の工程と、前記欠陥の特徴量と前記分類クラスとの関係を前記記憶部に記憶させる第5の工程と、を有することを特徴としている。   In order to achieve the above object, the present invention provides a defect classification method for classifying defects on a substrate based on an image to be inspected of the substrate, wherein the defect classification class is determined based on a feature amount of the defect. A design step of setting and storing a relationship between the feature amount of the defect and the classification class in a storage unit, and a feature amount calculation step of calculating a feature amount of the defect of the substrate from the imaged inspection target image of the substrate And a classification step of classifying the defect of the substrate into the classification class from the relationship between the characteristic quantity of the defect stored in the storage unit and the classification class based on the calculated feature quantity of the defect. The design step includes: a first step of creating a plurality of defect templates; a second step of generating a defect model by synthesizing the defect template with a teaching image of a substrate having no defect; and Defect model A third step of calculating a defect feature amount in the defect, a fourth step of setting a defect classification class for the defect feature amount in the defect model, and the defect feature amount and the classification class. And a fifth step of storing the relationship in the storage unit.

本発明によれば、予め欠陥テンプレートを作成し、当該欠陥テンプレートと欠陥のない教示用画像を合成して欠陥モデルを生成しているので、かかる欠陥モデルを従来の学習型分類方法における欠陥画像として利用することができる。そして、欠陥モデルにおける欠陥の特徴量に対して欠陥の分類クラスを設定し、欠陥の特徴量と欠陥の分類クラスとの関係を記憶部に記憶させることができる。したがって、欠陥画像がない場合又は欠陥画像が少数しかない場合でも、撮像された基板の検査対象画像から欠陥の特徴量を算出し、前記記憶部に記憶させた欠陥の特徴量と欠陥の分類クラスとの関係を用いて、基板の欠陥を適切に分類することができる。   According to the present invention, a defect template is created in advance, and a defect model is generated by synthesizing the defect template and a teaching image having no defect. Therefore, the defect model is used as a defect image in the conventional learning type classification method. Can be used. Then, a defect classification class can be set for the defect feature quantity in the defect model, and the relationship between the defect feature quantity and the defect classification class can be stored in the storage unit. Therefore, even when there is no defect image or there are only a few defect images, the defect feature amount is calculated from the image to be inspected of the imaged substrate, and the defect feature amount and the defect classification class stored in the storage unit Thus, the substrate defects can be classified appropriately.

前記第2の工程において、前記欠陥のない基板の教示用画像と複数の前記欠陥テンプレートを合成して、前記欠陥モデルを生成してもよい。   In the second step, the defect model may be generated by synthesizing a teaching image of the substrate having no defect and a plurality of the defect templates.

前記設計工程において、前記記憶部内の前記欠陥の特徴量及び前記分類クラスを、前記基板が有する固有の情報とリンクさせてもよい。なお、基板が有する固有の情報とは、基板のID、基板のロットID、基板の処理条件、基板の処理日時等である。   In the design process, the feature amount and the classification class of the defect in the storage unit may be linked with unique information of the substrate. The specific information held by the substrate includes a substrate ID, a substrate lot ID, a substrate processing condition, a substrate processing date and time, and the like.

前記設計工程において、同一の前記欠陥の特徴量に対して、当該欠陥が異なる分類クラスに設定されている場合には、いずれか一方の分類クラスを削除するか、又は両方の分類クラスを削除してもよい。 In the design process, when the defect is set to a different classification class for the same feature quantity of the defect, either one of the classification classes is deleted or both of the classification classes are deleted. May be.

前記設計工程において、欠陥のある基板の教示用画像がある場合には、前記教示用画像から欠陥の特徴量を算出し、前記教示用画像における欠陥の特徴量に対して、欠陥の分類クラスを設定し、前記欠陥の特徴量と前記分類クラスとの関係をさらに前記記憶部に記憶させてもよい。   In the design process, when there is a teaching image of a defective substrate, a defect feature amount is calculated from the teaching image, and a defect classification class is set for the defect feature amount in the teaching image. The relationship between the feature quantity of the defect and the classification class may be further stored in the storage unit.

前記基板は複数の検査領域に分割され、前記特徴量算出工程において、前記各検査領域の欠陥の特徴量を算出し、前記分類工程において、前記各検査領域を前記分類クラスに分類してもよい。   The substrate may be divided into a plurality of inspection regions, the feature amount of the defect in each inspection region may be calculated in the feature amount calculation step, and the inspection region may be classified into the classification class in the classification step. .

前記分類工程の後、前記基板の欠陥の前記分類クラスの確認し、当該分類クラスが誤分類であると判断された場合には、前記記憶部内の前記欠陥の特徴量と前記分類クラスとの関係を補正してもよい。   After the classification step, the classification class of the defect of the substrate is confirmed, and if it is determined that the classification class is misclassification, the relationship between the feature quantity of the defect in the storage unit and the classification class May be corrected.

前記分類工程の後、予め定められた複数の分類クラスと単一の分類カテゴリとの関係に基づいて、前記基板の欠陥を前記分類カテゴリに分類してもよい。   After the classification step, the substrate defect may be classified into the classification category based on a relationship between a plurality of predetermined classification classes and a single classification category.

別な観点による本発明によれば、前記欠陥分類方法を欠陥分類装置によって実行させるために、当該欠陥分類装置のコンピュータ上で動作するプログラムが提供される。   According to another aspect of the present invention, in order to cause the defect classification apparatus to execute the defect classification method, a program that operates on a computer of the defect classification apparatus is provided.

また別な観点による本発明によれば、前記プログラムを格納した読み取り可能なコンピュータ記憶媒体が提供される。   According to another aspect of the present invention, a readable computer storage medium storing the program is provided.

さらに別な観点による本発明は、撮像された基板の検査対象画像に基づいて、当該基板の欠陥を分類する欠陥分類装置であって、欠陥の特徴量に基づいて欠陥の分類クラスを設定する設計手段と、前記撮像された基板の検査対象画像から、当該基板の欠陥を前記設計手段で設定された前記分類クラスに分類する診断手段と、を有し、前記設計手段は、複数の欠陥テンプレートが記憶されたテンプレート記憶部と、欠陥のない基板の教示用画像と前記欠陥テンプレートを合成して、欠陥モデルを生成するモデル生成部と、前記欠陥モデルにおける欠陥の特徴量を算出し、当該欠陥の特徴量に対して欠陥の分類クラスを設定する分類クラス設定部と、前記欠陥の特徴量と前記分類クラスとの関係を記憶する記憶部と、を有し、前記診断手段は、前記撮像された基板の検査対象画像から、当該基板の欠陥の特徴量を算出する特徴量算出部と、前記算出した欠陥の特徴量に基づいて、前記記憶部内に記憶された前記欠陥の特徴量と前記分類クラスとの関係から、前記基板の欠陥を前記分類クラスに分類する分類部と、を有することを特徴としている。   According to another aspect of the present invention, a defect classification apparatus for classifying defects on a substrate based on an image to be inspected of a substrate, wherein the defect classification class is set based on a feature amount of the defect. And a diagnostic means for classifying the defect of the substrate into the classification class set by the design means from the imaged inspection target image of the substrate, and the design means includes a plurality of defect templates. A stored template storage unit, a teaching image of a substrate having no defect, and the defect template are combined to generate a defect model; a defect feature amount in the defect model is calculated; A classification class setting unit that sets a defect classification class for the feature quantity; and a storage unit that stores a relationship between the feature quantity of the defect and the classification class. A feature amount calculation unit that calculates a feature amount of a defect of the substrate from the imaged inspection target image of the substrate, and a feature amount of the defect stored in the storage unit based on the calculated feature amount of the defect A classification unit that classifies the defects of the substrate into the classification class based on the relationship with the classification class.

前記モデル生成部は、欠陥のない基板の教示用画像と複数の前記欠陥テンプレートを合成して、欠陥モデルを生成してもよい。   The model generation unit may generate a defect model by combining a teaching image of a substrate having no defect and the plurality of defect templates.

前記設計手段は、前記記憶部内の前記欠陥の特徴量及び前記分類クラスを、前記基板が有する固有の情報とリンクさせて記憶させる記憶部履歴管理機能を有していてもよい。なお、基板が有する固有の情報とは、基板のID、基板のロットID、基板の処理条件、基板の処理日時等である。 The design unit may have a storage unit history management function that stores the feature amount of the defect and the classification class in the storage unit in a linked manner with unique information of the substrate. The specific information held by the substrate includes a substrate ID, a substrate lot ID, a substrate processing condition, a substrate processing date and time, and the like.

前記設計手段は、前記記憶部内において、同一の前記欠陥の特徴量に対して、当該欠陥が異なる分類クラスに設定されている場合には、いずれか一方の分類クラスを削除するか、又は両方の分類クラスを削除する記憶部チェック機能を有していてもよい。 In the storage unit, when the defect is set to a different classification class for the same feature quantity of the defect , the design unit deletes one of the classification classes or both You may have the memory | storage part check function which deletes a classification class.

前記設計手段は、欠陥のある基板の教示用画像から欠陥の特徴量を算出し、当該欠陥の特徴量に対して欠陥の分類クラスを設定する他の分類クラス設定部を有し、前記欠陥の特徴量と前記分類クラスとの関係をさらに前記記憶部に記憶させてもよい。   The design unit includes another classification class setting unit that calculates a defect feature amount from a teaching image of a defective substrate and sets a defect classification class for the defect feature amount. A relationship between the feature quantity and the classification class may be further stored in the storage unit.

前記診断手段において、前記基板を複数の検査領域に分割する前処理部を有し、前記特徴量算出部は、前記各検査領域の欠陥の特徴量を算出し、前記分類部は、前記各検査領域を前記分類クラスに分類してもよい。   The diagnostic unit includes a preprocessing unit that divides the substrate into a plurality of inspection regions, the feature amount calculation unit calculates feature amounts of defects in the inspection regions, and the classification unit includes the inspection units. The region may be classified into the classification class.

前記診断手段は、前記分類部で分類された基板の欠陥の前記分類クラスを確認する確認部を有し、前記確認部において前記分類クラスが誤分類であると判断された場合には、前記記憶部内の前記欠陥の特徴量と前記分類クラスとの関係が補正されてもよい。   The diagnostic means includes a confirmation unit that confirms the classification class of the defect of the substrate classified by the classification unit, and when the confirmation unit determines that the classification class is misclassification, the storage unit The relationship between the feature quantity of the defect in the part and the classification class may be corrected.

前記診断手段は、複数の分類クラスと単一の分類カテゴリとの対応付けを行う後処理部を有し、前記後処理部は、前記対応付けに基づいて、前記基板の欠陥を複数の分類カテゴリに分類してもよい。   The diagnostic means includes a post-processing unit that associates a plurality of classification classes with a single classification category, and the post-processing unit identifies defects on the substrate based on the association with a plurality of classification categories. May be classified.

本発明によれば、欠陥画像がない場合又は欠陥画像が少数しかない場合でも、撮像された基板の検査対象画像から当該基板の欠陥を適切に分類することができる。   According to the present invention, even when there is no defect image or when there are only a few defect images, the defect of the substrate can be appropriately classified from the inspection target image of the imaged substrate.

以下、本発明の好ましい実施の形態について説明する。図1は、本実施の形態にかかる欠陥分類装置を搭載した塗布現像処理システム1の構成の概略を示す平面図であり、図2は、塗布現像処理システム1の正面図であり、図3は、塗布現像処理システム1の背面図である。   Hereinafter, preferred embodiments of the present invention will be described. FIG. 1 is a plan view schematically showing the configuration of a coating and developing treatment system 1 equipped with the defect classification apparatus according to the present embodiment, FIG. 2 is a front view of the coating and developing treatment system 1, and FIG. 2 is a rear view of the coating and developing treatment system 1. FIG.

塗布現像処理システム1は、図1に示すように例えば25枚のウェハWをカセット単位で外部から塗布現像処理システム1に対して搬入出したり、カセットCに対してウェハWを搬入出したりするカセットステーション2と、フォトリソグラフィー工程の中で枚葉式に所定の処理を施す複数の各種処理装置を多段に配置している処理ステーション3と、この処理ステーション3に隣接して設けられている露光装置(図示せず)との間でウェハWの受け渡しをするインターフェイスステーション4とを一体に接続した構成を有している。   As shown in FIG. 1, the coating and developing treatment system 1 is a cassette that carries, for example, 25 wafers W from the outside to the coating and developing treatment system 1 in a cassette unit, and carries a wafer W into and out of the cassette C. A station 2, a processing station 3 in which a plurality of various processing apparatuses for performing predetermined processing in a single wafer type in a photolithography process are arranged in multiple stages, and an exposure apparatus provided adjacent to the processing station 3 It has a configuration in which an interface station 4 that transfers the wafer W to and from (not shown) is integrally connected.

カセットステーション2には、カセット載置台5が設けられ、当該カセット載置台5は、複数のカセットCをX方向(図1中の上下方向)に一列に載置自在になっている。カセットステーション2には、搬送路6上をX方向に向かって移動可能なウェハ搬送体7が設けられている。ウェハ搬送体7は、カセットCに収容されたウェハWのウェハ配列方向(Z方向;鉛直方向)にも移動自在であり、X方向に配列された各カセットC内のウェハWに対して選択的にアクセス可能である。   The cassette station 2 is provided with a cassette mounting table 5 that can mount a plurality of cassettes C in a row in the X direction (vertical direction in FIG. 1). The cassette station 2 is provided with a wafer transfer body 7 that can move in the X direction on the transfer path 6. The wafer carrier 7 is also movable in the wafer arrangement direction (Z direction; vertical direction) of the wafers W accommodated in the cassette C, and is selective to the wafers W in each cassette C arranged in the X direction. Is accessible.

ウェハ搬送体7は、Z軸周りのθ方向に回転可能であり、後述する処理ステーション3側の第3の処理装置群G3に属する温度調節装置60やウェハWの受け渡しを行うためのトランジション装置61に対してもアクセス可能である。   The wafer transfer body 7 is rotatable in the θ direction around the Z axis, and a temperature control device 60 belonging to a third processing device group G3 on the processing station 3 side to be described later, and a transition device 61 for delivering the wafer W. Is also accessible.

カセットステーション2に隣接する処理ステーション3は、複数の処理装置が多段に配置された、例えば5つの処理装置群G1〜G5を備えている。処理ステーション3のX方向負方向(図1中の下方向)側には、カセットステーション2側から第1の処理装置群G1、第2の処理装置群G2が順に配置されている。処理ステーション3のX方向正方向(図1中の上方向)側には、カセットステーション2側から第3の処理装置群G3、第4の処理装置群G4及び第5の処理装置群G5が順に配置されている。第3の処理装置群G3と第4の処理装置群G4の間には、第1の搬送装置A1が設けられており、第1の搬送装置A1の内部には、ウェハWを支持して搬送する第1の搬送アーム10が設けられている。第1の搬送アーム10は、第1の処理装置群G1、第3の処理装置群G3及び第4の処理装置群G4内の各処理装置に選択的にアクセスしてウェハWを搬送することができる。第4の処理装置群G4と第5の処理装置群G5の間には、第2の搬送装置A2が設けられており、第2の搬送装置A2の内部には、ウェハWを支持して搬送する第2の搬送アーム11が設けられている。第2の搬送アーム11は、第2の処理装置群G2、第4の処理装置群G4及び第5の処理装置群G5内の各処理装置に選択的にアクセスしてウェハWを搬送することができる。   The processing station 3 adjacent to the cassette station 2 includes, for example, five processing device groups G1 to G5 in which a plurality of processing devices are arranged in multiple stages. A first processing device group G1 and a second processing device group G2 are arranged in this order from the cassette station 2 side on the X direction negative direction (downward direction in FIG. 1) side of the processing station 3. A third processing device group G3, a fourth processing device group G4, and a fifth processing device group G5 are sequentially arranged from the cassette station 2 side on the X direction positive direction (upward direction in FIG. 1) side of the processing station 3. Is arranged. A first transfer device A1 is provided between the third processing device group G3 and the fourth processing device group G4, and the wafer W is supported and transferred inside the first transfer device A1. A first transfer arm 10 is provided. The first transfer arm 10 can selectively access each processing unit in the first processing unit group G1, the third processing unit group G3, and the fourth processing unit group G4 to transfer the wafer W. it can. A second transfer device A2 is provided between the fourth processing device group G4 and the fifth processing device group G5, and the wafer W is supported and transferred inside the second transfer device A2. A second transfer arm 11 is provided. The second transfer arm 11 can selectively access each processing apparatus in the second processing apparatus group G2, the fourth processing apparatus group G4, and the fifth processing apparatus group G5 to transfer the wafer W. it can.

図2に示すように第1の処理装置群G1には、ウェハWに所定の液体を供給して処理を行う液処理装置、例えばウェハWにレジスト液を塗布するレジスト塗布装置20、21、22、露光処理時の光の反射を防止する反射防止膜を形成するボトムコーティング装置23、24が下から順に5段に重ねられている。第2の処理装置群G2には、液処理装置、例えばウェハWに現像液を供給して現像処理する現像処理装置30〜34が下から順に5段に重ねられている。また、第1の処理装置群G1及び第2の処理装置群G2の最下段には、各処理装置群G1、G2内の液処理装置に各種処理液を供給するためのケミカル室40、41がそれぞれ設けられている。   As shown in FIG. 2, in the first processing unit group G1, a liquid processing apparatus that performs processing by supplying a predetermined liquid to the wafer W, for example, resist coating apparatuses 20, 21, and 22 that apply a resist solution to the wafer W. Bottom coating devices 23 and 24 for forming an antireflection film for preventing reflection of light during the exposure process are stacked in five stages in order from the bottom. In the second processing unit group G2, liquid processing units, for example, development processing units 30 to 34 for supplying a developing solution to the wafer W and performing development processing are stacked in five stages in order from the bottom. In addition, chemical chambers 40 and 41 for supplying various processing liquids to the liquid processing apparatuses in the processing apparatus groups G1 and G2 are provided at the bottom of the first processing apparatus group G1 and the second processing apparatus group G2. Each is provided.

図3に示すように第3の処理装置群G3には、温度調節装置60、トランジション装置61、精度の高い温度管理下でウェハWを温度調節する高精度温度調節装置62〜64及び欠陥検査装置110、110が下から順に7段に重ねられている。欠陥検査装置110には、図1に示すように当該欠陥検査装置110で撮像された検査対象画像からウェハWの欠陥を分類する欠陥分類装置200が接続されている。   As shown in FIG. 3, the third processing unit group G3 includes a temperature control unit 60, a transition unit 61, high-precision temperature control units 62 to 64 that control the temperature of the wafer W under high-precision temperature control, and a defect inspection unit. 110 and 110 are stacked in seven steps from the bottom. As shown in FIG. 1, the defect inspection apparatus 110 is connected with a defect classification apparatus 200 that classifies defects on the wafer W from the inspection target image captured by the defect inspection apparatus 110.

図3に示すように第4の処理装置群G4には、例えば高精度温度調節装置70、レジスト塗布処理後のウェハWを加熱処理するプリベーキング装置71〜74及び現像処理後のウェハWを加熱処理するポストベーキング装置75〜79が下から順に10段に重ねられている。   As shown in FIG. 3, the fourth processing unit group G4 includes, for example, a high-precision temperature control unit 70, pre-baking units 71 to 74 that heat-treat the wafer W after the resist coating process, and a wafer W that has been developed. Post baking apparatuses 75 to 79 to be processed are stacked in 10 stages in order from the bottom.

第5の処理装置群G5には、ウェハWを熱処理する複数の熱処理装置、例えば高精度温度調節装置80〜83、露光後のウェハWを加熱処理するポストエクスポージャーベーキング装置84〜89が下から順に10段に重ねられている。   In the fifth processing unit group G5, a plurality of heat processing devices for heat-treating the wafer W, for example, high-precision temperature control devices 80 to 83, and post-exposure baking devices 84 to 89 for heat-processing the exposed wafer W are sequentially arranged from the bottom. It is stacked in 10 steps.

図1に示すように第1の搬送装置A1のX方向正方向側には、複数の処理装置が配置されており、例えば図3に示すようにウェハWを疎水化処理するためのアドヒージョン装置90、91、ウェハWを加熱する加熱装置92、93が下から順に4段に重ねられている。図1に示すように第2の搬送装置A2のX方向正方向側には、例えばウェハWのエッジ部のみを選択的に露光する周辺露光装置94が配置されている。   As shown in FIG. 1, a plurality of processing devices are arranged on the positive side in the X direction of the first transfer device A1, and for example, an adhesion device 90 for hydrophobizing the wafer W as shown in FIG. 91, and heating devices 92 and 93 for heating the wafer W are stacked in four stages in order from the bottom. As shown in FIG. 1, a peripheral exposure device 94 that selectively exposes only the edge portion of the wafer W, for example, is disposed on the positive side in the X direction of the second transfer device A2.

インターフェイスステーション4には、例えば図1に示すようにX方向に向けて延伸する搬送路100上を移動するウェハ搬送体101と、バッファカセット102が設けられている。ウェハ搬送体101は、Z方向に移動可能でかつθ方向にも回転可能であり、インターフェイスステーション4に隣接した露光装置(図示せず)と、バッファカセット102及び第5の処理装置群G5に対してアクセスしてウェハWを搬送できる。   In the interface station 4, for example, as shown in FIG. 1, a wafer transfer body 101 moving on a transfer path 100 extending in the X direction and a buffer cassette 102 are provided. The wafer transfer body 101 can move in the Z direction and can also rotate in the θ direction. With respect to the exposure apparatus (not shown) adjacent to the interface station 4, the buffer cassette 102, and the fifth processing apparatus group G5. The wafer W can be transferred by accessing.

次に、上述した欠陥検査装置110及び欠陥分類装置200の構成について説明する。   Next, configurations of the defect inspection apparatus 110 and the defect classification apparatus 200 described above will be described.

欠陥検査装置110は、図4に示すようにケーシング111を有している。ケーシング111の一端側(図4中のX方向負方向側)であって、ケーシング111の短手方向に対向する両側面には、ウェハWを搬入出させる搬入出口112がそれぞれ形成されている。搬入出口112には、開閉シャッタ113がそれぞれ設けられている。   The defect inspection apparatus 110 has a casing 111 as shown in FIG. A loading / unloading port 112 for loading / unloading the wafer W is formed on one end side of the casing 111 (X direction negative direction side in FIG. 4) on both side faces of the casing 111 facing the short direction. At the loading / unloading port 112, an opening / closing shutter 113 is provided.

ケーシング111内には、図5に示すようにウェハWを載置する載置台120が設けられている。この載置台120は、モータなどの回転駆動部121によって、回転、停止が自在であり、ウェハWの位置を調節するアライメント機能を有している。ケーシング111の底面には、ケーシング111内の一端側(図5中のX方向負方向側)から他端側(図5中のX方向正方向側)まで延伸するガイドレール122が設けられている。載置台120と回転駆動部121は、ガイドレール122上に設けられ、例えばパルスモータなどの駆動装置123によってガイドレール122に沿って移動できる。   In the casing 111, a mounting table 120 on which the wafer W is mounted is provided as shown in FIG. The mounting table 120 can be freely rotated and stopped by a rotation drive unit 121 such as a motor, and has an alignment function for adjusting the position of the wafer W. A guide rail 122 extending from one end side (X direction negative direction side in FIG. 5) to the other end side (X direction positive direction side in FIG. 5) is provided on the bottom surface of the casing 111. . The mounting table 120 and the rotation driving unit 121 are provided on the guide rail 122 and can be moved along the guide rail 122 by a driving device 123 such as a pulse motor.

ケーシング111内の一端側であって、ウェハWをケーシング111に搬入出する位置P1(図5中の実線で示す位置)には、ウェハWを一時的に支持するバッファアーム124が設けられている。バッファアーム124は、図6に示すように先端にウェハWの支持部124aを有している。支持部124aは、例えば3/4円環状に形成されている。支持部124aの3/4円環状の径は、載置台120の径よりも大きく、支持部124aの内側に載置台120を収容できる。支持部124aの3/4円環状の切り欠き部分は、ケーシング111内の他端側(図6中のX方向正方向側)に形成されており、載置台120は、支持部124aと干渉せずに他端側に移動できる。支持部124a上には、複数の支持ピン124bが設けられ、ウェハWは、この支持ピン124b上に支持される。バッファアーム124の基部124cは、例えばシリンダなどの昇降駆動部125に取り付けられており、バッファアーム124は、載置台120の上下に昇降できる。   A buffer arm 124 that temporarily supports the wafer W is provided at a position P1 (a position indicated by a solid line in FIG. 5) on one end side in the casing 111 where the wafer W is carried into and out of the casing 111. . As shown in FIG. 6, the buffer arm 124 has a support portion 124a for the wafer W at the tip. The support portion 124a is formed in, for example, a 3/4 annular shape. The diameter of the 3/4 circular ring of the support part 124a is larger than the diameter of the mounting table 120, and the mounting table 120 can be accommodated inside the support part 124a. The 3/4 circular notch portion of the support portion 124a is formed on the other end side in the casing 111 (the X direction positive direction side in FIG. 6), and the mounting table 120 interferes with the support portion 124a. Without moving to the other end. A plurality of support pins 124b are provided on the support portion 124a, and the wafer W is supported on the support pins 124b. The base 124 c of the buffer arm 124 is attached to an elevating drive unit 125 such as a cylinder, and the buffer arm 124 can be moved up and down the mounting table 120.

図5に示すようにケーシング111の他端側であって、ウェハWのノッチ部の位置を調整するアライメント位置P2(図5中の点線で示す位置)には、載置台120上のウェハWのノッチ部の位置を検出するセンサ126が設けられている。センサ126によってノッチ部の位置を検出しながら、回転駆動部121によって載置台120を回転させて、ウェハWのノッチ部の位置を調節することができる。   As shown in FIG. 5, on the other end side of the casing 111, the alignment position P2 (position indicated by a dotted line in FIG. 5) for adjusting the position of the notch portion of the wafer W is the position of the wafer W on the mounting table 120. A sensor 126 for detecting the position of the notch portion is provided. The position of the notch portion of the wafer W can be adjusted by rotating the mounting table 120 by the rotation driving unit 121 while detecting the position of the notch portion by the sensor 126.

ケーシング111内の他端側(図5のX方向正方向側)の側面には、撮像装置130が設けられている。撮像装置130には、例えば広角型のCCDカメラが用いられる。ケーシング111の上部中央付近には、ハーフミラー131が設けられている。ハーフミラー131は、撮像装置130と対向する位置に設けられ、鉛直方向から45度傾斜して設けられている。ハーフミラー131の上方には、照度を変更することができる照明装置132が設けられ、ハーフミラー131と照明装置132は、ケーシング111の上面に固定されている。また、撮像装置130、ハーフミラー131及び照明装置132は、載置台120に載置されたウェハWの上方にそれぞれ設けられている。そして、照明装置132からの照明は、ハーフミラー131を通過して下方に向けて照らされる。したがって、この照射領域にある物体の反射光は、ハーフミラー131で反射して、撮像装置130に取り込まれる。すなわち、撮像装置130は、照射領域にある物体を撮像することができる。そして撮像したウェハWの検査対象画像は、欠陥分類装置200に出力される。   An imaging device 130 is provided on a side surface on the other end side in the casing 111 (X direction positive direction side in FIG. 5). For the imaging device 130, for example, a wide-angle CCD camera is used. Near the upper center of the casing 111, a half mirror 131 is provided. The half mirror 131 is provided at a position facing the imaging device 130 and is inclined by 45 degrees from the vertical direction. An illumination device 132 that can change the illuminance is provided above the half mirror 131, and the half mirror 131 and the illumination device 132 are fixed to the upper surface of the casing 111. Further, the imaging device 130, the half mirror 131, and the illumination device 132 are respectively provided above the wafer W placed on the mounting table 120. The illumination from the illumination device 132 passes through the half mirror 131 and is illuminated downward. Therefore, the reflected light of the object in the irradiation area is reflected by the half mirror 131 and is taken into the imaging device 130. That is, the imaging device 130 can image an object in the irradiation area. The captured inspection target image of the wafer W is output to the defect classification apparatus 200.

欠陥分類装置200は、図7に示すように、予め欠陥の特徴量に基づいて欠陥の分類クラスを設定する設計手段201と、欠陥検査装置110で撮像したウェハWの検査対象画像から、ウェハWの欠陥を設計手段201で設定された分類クラスに分類する診断手段202と、を有している。   As illustrated in FIG. 7, the defect classification apparatus 200 includes a design unit 201 that sets a defect classification class based on a defect feature amount in advance, and an inspection target image of the wafer W that is captured by the defect inspection apparatus 110. And a diagnostic unit 202 that classifies the defects into the classification class set by the design unit 201.

設計手段201は、検査対象画像が撮像される前に欠陥検査装置110で撮像された教示用画像が入力される教示用画像入力部210を有している。教示用画像としては、欠陥のないウェハWの画像又は欠陥のあるウェハWの画像のいずれかが入力される。   The design unit 201 includes a teaching image input unit 210 to which a teaching image captured by the defect inspection apparatus 110 is input before an inspection target image is captured. As the teaching image, either an image of the wafer W having no defect or an image of the wafer W having a defect is input.

教示用画像入力部210に入力された教示用画像は、設計前処理部211に出力される。設計前処理部211では、ウェハWの教示用画像が、図8に示すように検査領域としてのチップCに分割される。なお、検査領域はチップCの領域に限定されず、ユーザが任意に設定することができる。   The teaching image input to the teaching image input unit 210 is output to the pre-design processing unit 211. In the pre-design processing unit 211, the teaching image of the wafer W is divided into chips C as inspection regions as shown in FIG. The inspection area is not limited to the area of the chip C, and can be arbitrarily set by the user.

設計手段201は、図7に示すように、ウェハWの欠陥を模したテンプレート(以下、「欠陥テンプレート」という。)を記憶するテンプレート記憶部212を有している。欠陥テンプレートの欠陥として、例えばスクラッチ(擦り傷)、パーティクル、ホットスポット、デフォーカスなどの欠陥が欠陥テンプレートに模されている。欠陥テンプレートは、チップC毎に作成され、例えば図9に示すように、略円形の欠陥Dがある欠陥テンプレートT(図9(a))、細長楕円形の欠陥Dがある欠陥テンプレートT(図9(b))、チップC全面に欠陥Dがある欠陥テンプレートT(図9(c))、多角形の欠陥Dがある欠陥テンプレートT(図9(d))がテンプレート記憶部212に記憶されている。そしてこれら欠陥Dには欠陥番号が付され、かつ欠陥テンプレートTには識別用のコードが付され、テンプレート記憶部212内で管理されている。   As shown in FIG. 7, the design unit 201 includes a template storage unit 212 that stores a template imitating a defect of the wafer W (hereinafter referred to as “defect template”). As defects of the defect template, for example, defects such as scratches (scratches), particles, hot spots, and defocus are imitated by the defect template. A defect template is created for each chip C. For example, as shown in FIG. 9, a defect template T having a substantially circular defect D (FIG. 9A), a defect template T having an elongated elliptical defect D (FIG. 9). 9 (b)), a defect template T having a defect D on the entire surface of the chip C (FIG. 9C), and a defect template T having a polygonal defect D (FIG. 9D) are stored in the template storage unit 212. ing. These defects D are assigned defect numbers, and the defect templates T are assigned identification codes, which are managed in the template storage unit 212.

なお欠陥テンプレートTとしては、図10に示すように、検査対象のウェハWと別プロセスにおいて取得されたウェハWにおけるチップCの欠陥画像と、欠陥のないチップCの画像から欠陥Mのみを抽出し、この欠陥Dの画像を2値化してテンプレート記憶部212に記憶させてもよい。また欠陥テンプレートTは、ユーザが任意に追加することができる。   As the defect template T, as shown in FIG. 10, only the defect M is extracted from the defect image of the chip C on the wafer W acquired in a separate process from the wafer W to be inspected and the image of the chip C without defect. The image of the defect D may be binarized and stored in the template storage unit 212. The defect template T can be arbitrarily added by the user.

教示用画像入力部210に入力された教示用画像が欠陥のないウェハWの画像N1である場合には、設計前処理部211で分割された教示用画像N1は、モデル生成部213に出力される。モデル生成部213では、図11(a)に示すように、教示用画像N1とテンプレート記憶部212に記憶された欠陥テンプレートTを合成して、欠陥モデルMを生成することができる。欠陥モデルMは、欠陥テンプレートTの明度、欠陥Dの大きさ、欠陥Dの位置、欠陥Dの角度、欠陥Dの数等を任意に選択して合成される。また欠陥モデルMは、図11(b)に示すように、教示用画像N1と複数の欠陥テンプレートTを合成して生成されてもよい。なお、モデル生成部213には、欠陥モデルMの生成を補助するためのソフトウェアGUI(Grafical User Interface)が設けられていてもよい。   When the teaching image input to the teaching image input unit 210 is the image N1 of the wafer W having no defect, the teaching image N1 divided by the pre-design processing unit 211 is output to the model generation unit 213. The As shown in FIG. 11A, the model generation unit 213 can generate a defect model M by combining the teaching image N1 and the defect template T stored in the template storage unit 212. The defect model M is synthesized by arbitrarily selecting the brightness of the defect template T, the size of the defect D, the position of the defect D, the angle of the defect D, the number of the defects D, and the like. The defect model M may be generated by combining the teaching image N1 and a plurality of defect templates T as shown in FIG. The model generation unit 213 may be provided with a software GUI (Graphical User Interface) for assisting generation of the defect model M.

モデル生成部213で生成された欠陥モデルMは、図7に示すように、欠陥モデルMにおける欠陥Dの分類クラスを設定する第1の分類クラス設定部214に出力される。第1の分類クラス設定部214では、先ず欠陥モデルMにおける欠陥Dの特徴量が算出される。欠陥Dの特徴量としては、例えば欠陥Dの濃淡、色などの特徴、テクスチャなどの空間の特徴、あるいは形状特徴(欠陥Dの大きさ、形状、長さ、幅)などの幾何学的特徴が算出される。そして算出された欠陥Dの特徴量に対して、欠陥Dの分類クラスが設定される。   As shown in FIG. 7, the defect model M generated by the model generation unit 213 is output to the first classification class setting unit 214 that sets the classification class of the defect D in the defect model M. In the first classification class setting unit 214, first, the feature amount of the defect D in the defect model M is calculated. The feature amount of the defect D includes, for example, the features of the defect D, such as light and shade, color, spatial features such as texture, or geometric features such as shape features (the size, shape, length, and width of the defect D). Calculated. Then, the classification class of the defect D is set for the calculated feature amount of the defect D.

また、教示用画像入力部210に入力された教示用画像が欠陥のあるウェハWの画像N2である場合には、設計前処理部211で分割された教示用画像N2は、第2の分類クラス設定部215に出力される。第2の分類クラス設定部215では、教示用画像N2における欠陥Dの特徴量が算出され、算出された欠陥Dの特徴量に対して、欠陥Dの分類クラスが設定される。   If the teaching image input to the teaching image input unit 210 is the image N2 of the defective wafer W, the teaching image N2 divided by the pre-design processing unit 211 has the second classification class. The data is output to the setting unit 215. The second classification class setting unit 215 calculates the feature quantity of the defect D in the teaching image N2, and sets the classification class of the defect D for the calculated feature quantity of the defect D.

第1の分類クラス設定部214と第2の分類クラス215で設定された、欠陥Dの特徴量及び分類クラスは、記憶部220に出力される。   The feature amount and the classification class of the defect D set by the first classification class setting unit 214 and the second classification class 215 are output to the storage unit 220.

記憶部220に出力された欠陥Dの特徴量及び分類クラスは、記憶部履歴管理機能221によって、図12に示すようにウェハWが有する固有の情報(後述のTag1情報)等とリンクさせて記憶部220に記憶される。記憶部220では、欠陥の分類クラス(図12中のClass)毎に管理記憶されている。そして、各分類クラスには、欠陥Dの番号(図12中のData)、Tag1情報、Tag2情報、欠陥Dの特徴量データがリンクして記憶されている。Tag1情報としては、ウェハWのID、ウェハWのロットのID、ウェハWが処理されたデバイスのID、ウェハW上のレイヤのID、ウェハWのスロットのID、チップCのID、ウェハWにおけるチップCの位置情報、ウェハWの処理のレシピ情報、ウェハWの処理日時等が記憶されている。またTag2情報としては、モデル生成部213で欠陥モデルMを生成する際の、欠陥テンプレートTの使用有無(例えば使用していれば“0”、使用されていなければ“1”と記憶される)、欠陥テンプレートTの識別コード、合成条件(欠陥テンプレートTの明度、欠陥Dの角度、欠陥Dの位置等)などが記憶されている。このように各欠陥Dの分類クラスに、付随する情報をリンクして記憶することによって、その付随するデータの履歴を容易に検索・抽出することができ、記憶部220に記憶された学習の履歴を管理することができる。なお、記憶部220に十分なデータ記憶領域が確保できる場合には、欠陥モデルMや教示用画像N1、N2を保存することができる。また、設計手段201において複数の記憶部220を設けてもよい。   The feature amount and classification class of the defect D output to the storage unit 220 are stored by being linked with unique information (tag 1 information described later) of the wafer W as shown in FIG. 12 by the storage unit history management function 221. Stored in the unit 220. The storage unit 220 manages and stores each defect classification class (Class in FIG. 12). Each classification class stores a defect D number (Data in FIG. 12), Tag1 information, Tag2 information, and feature data of the defect D in a linked manner. Tag1 information includes the ID of the wafer W, the ID of the lot of the wafer W, the ID of the device on which the wafer W was processed, the ID of the layer on the wafer W, the ID of the slot of the wafer W, the ID of the chip C, the ID of the wafer W The position information of the chip C, the processing recipe information of the wafer W, the processing date and time of the wafer W, and the like are stored. As Tag2 information, whether or not the defect template T is used when the model generation unit 213 generates the defect model M (for example, “0” is stored if used, and “1” is stored if not used). The identification code of the defect template T, the synthesis conditions (the brightness of the defect template T, the angle of the defect D, the position of the defect D, etc.) are stored. Thus, by linking and storing the accompanying information to the classification class of each defect D, the history of the accompanying data can be easily retrieved and extracted, and the learning history stored in the storage unit 220 is stored. Can be managed. When a sufficient data storage area can be secured in the storage unit 220, the defect model M and the teaching images N1 and N2 can be stored. Further, the design unit 201 may be provided with a plurality of storage units 220.

また記憶部220では、図7に示す記憶部チェック機能222によって、同一の欠陥Dの特徴量に対して異なる分類クラスが記憶されていないかどうかをチェックすることができる。そして、図13に示すように同一の欠陥Dの特徴量に対して異なる分類クラスが保存されている場合には、その有無をユーザに通知し、いずれか一方の分類クラスを削除するか、あるいはその両方の分類クラスを削除するかをユーザが選択することができる。この機能によって、一の欠陥Dの特徴量に対して一の分類クラスを記憶部220に記憶させておくことができ、欠陥Dを適切に分類することができる。   Further, in the storage unit 220, it is possible to check whether or not different classification classes are stored for the feature quantity of the same defect D by the storage unit check function 222 shown in FIG. Then, when different classification classes are stored for the feature quantity of the same defect D as shown in FIG. 13, the user is notified of the presence or absence and either one of the classification classes is deleted, or The user can select whether to delete both classification classes. With this function, one classification class can be stored in the storage unit 220 for the feature amount of one defect D, and the defect D can be appropriately classified.

診断手段202は、図7に示すように、欠陥検査装置110で撮像されたウェハWの検査対象画像が入力される検査対象画像入力部230を有している。   As illustrated in FIG. 7, the diagnosis unit 202 includes an inspection target image input unit 230 into which an inspection target image of the wafer W imaged by the defect inspection apparatus 110 is input.

検査対象画像入力部230に入力された検査対象画像は、前処理部231に出力される。前処理部231では、図8に示した設計前処理部211での分割処理と同様に、ウェハWの検査対象画像Eが検査領域としてのチップC毎に分割される。   The inspection target image input to the inspection target image input unit 230 is output to the preprocessing unit 231. In the pre-processing unit 231, the inspection target image E of the wafer W is divided for each chip C as an inspection region, similarly to the division processing in the design pre-processing unit 211 shown in FIG.

前処理部231で分割された検査対象画像Eは、図7に示すように特徴量算出部232に出力される。特徴量算出部232では、検査対象画像EのチップC毎の欠陥Dの特徴量がそれぞれ算出される。欠陥Dの特徴量としては、記憶部220に記憶された特徴量と同じパラメータが算出され、例えば欠陥Dの濃淡、色などの特徴、テクスチャなどの空間の特徴、あるいは形状特徴などの幾何学的特徴が算出される。   The inspection target image E divided by the preprocessing unit 231 is output to the feature amount calculation unit 232 as shown in FIG. The feature amount calculation unit 232 calculates the feature amount of the defect D for each chip C of the inspection target image E. As the feature quantity of the defect D, the same parameters as the feature quantity stored in the storage unit 220 are calculated. For example, the density of the defect D, features such as color, spatial features such as texture, or geometric features such as shape features. Features are calculated.

特徴量算出部232で算出された欠陥Dの特徴量は、当該欠陥Dを分類クラスに分類する分類部233に出力される。分類部233では、記憶部220に記憶された欠陥Dの特徴量と分類クラスとの関係から、学習型分類手法を用いて欠陥を分類クラスに分類する。学習型分類手法としては、例えばニューラルネットワークや、k−NN(k−Nearest Neighbar)、TFC(Test Feature Classifier)等の手法が用いられる。なお、このような学習分類手法に記憶部220のデータを対応させるために、設計手段201には、学習・訓練部223が設けられている。学習・訓練部223では、例えば学習効率(計算時間や分類制度)を考慮して、記憶部220内の特徴量データの「選出・抽出」、「重み係数の最適化」、「有用ではないデータの削除」などが行われる。また、記憶部220が複数存在する場合には、その切り替え・選択が行われる。   The feature amount of the defect D calculated by the feature amount calculation unit 232 is output to the classification unit 233 that classifies the defect D into a classification class. The classification unit 233 classifies the defects into classification classes using a learning type classification method based on the relationship between the feature amount of the defect D stored in the storage unit 220 and the classification class. As the learning type classification method, for example, a neural network, a k-NN (k-Nearest Neighbor), a TFC (Test Feature Classifier), or the like is used. Note that a learning / training unit 223 is provided in the design unit 201 in order to make the data in the storage unit 220 correspond to such a learning classification method. In the learning / training unit 223, for example, in consideration of learning efficiency (calculation time and classification system), “selection / extraction” of feature quantity data in the storage unit 220, “optimization of weight coefficient”, “unusable data” Delete "is performed. Further, when there are a plurality of storage units 220, switching and selection are performed.

診断手段202は、複数の分類クラスと単一の分類カテゴリとの対応付けを行う後処理部234を有している。後処理部234では、例えば分類部233で分類された分類クラスが細分化し過ぎ等の問題がある場合に、上述した分類クラスと分類カテゴリの対応付けに基づいて、欠陥Dが分類カテゴリに分類される。例えば欠陥Dの分類クラスClass3〜6の場合、欠陥は分類カテゴリCategory1に分類される。   The diagnostic unit 202 includes a post-processing unit 234 that associates a plurality of classification classes with a single classification category. In the post-processing unit 234, for example, when there is a problem that the classification class classified by the classification unit 233 is too subdivided, the defect D is classified into the classification category based on the association between the classification class and the classification category described above. The For example, in the case of the classification classes Class 3 to 6 of the defect D, the defects are classified into the classification category Category1.

診断手段202は、分類部233で分類された分類クラス、あるいは後処理部234で分類された分類カテゴリの適否をユーザが適時確認できる確認部235を有している。確認部235において、ユーザが欠陥Dの分類クラス又は分類カテゴリが誤分類であると判断した場合には、その欠陥Dの特徴量が設計手段201の分類クラス補正部224に出力される。そして分類クラス補正部224で正しい分類クラスが設定され、その結果が記憶部220に出力され、記憶部220内の分類クラスが補正される。   The diagnosis unit 202 includes a confirmation unit 235 that allows the user to check the suitability of the classification class classified by the classification unit 233 or the classification category classified by the post-processing unit 234 in a timely manner. In the confirmation unit 235, when the user determines that the classification class or classification category of the defect D is misclassification, the feature amount of the defect D is output to the classification class correction unit 224 of the design unit 201. Then, a correct classification class is set by the classification class correction unit 224, the result is output to the storage unit 220, and the classification class in the storage unit 220 is corrected.

診断部202は、分類された欠陥DをウェハW上に可視化して報告する報告部236を有している。報告部236では、図14(a)に示すようにウェハW上のチップC毎の欠陥Dの分類クラスを表示するとともに、図14(b)に示すように欠陥Dの分類クラス(図14(b)中の分類結果)と特徴量との対応表が表示される。   The diagnosis unit 202 has a report unit 236 that visualizes and reports the classified defects D on the wafer W. The reporting unit 236 displays the classification class of the defect D for each chip C on the wafer W as shown in FIG. 14A, and also displays the classification class of the defect D as shown in FIG. b) a correspondence table between the classification result) and the feature amount is displayed.

なお設計手段201と診断手段202を備えた欠陥分類装置200は、例えばコンピュータであり、上述したウェハWの欠陥分類を実行するためのプログラムを有している。前記プログラムは、例えばハードディスク(HD)、コンパクトディスク(CD)、マグネットオプティカルディスク(MO)、メモリーカードなどのコンピュータに読み取り可能な記憶媒体に記録されていたものであって、その記憶媒体から欠陥分類装置200にインストールされたものであってもよい。   The defect classification apparatus 200 including the design unit 201 and the diagnosis unit 202 is, for example, a computer, and has a program for executing the above-described defect classification of the wafer W. The program is recorded on a computer-readable storage medium such as a hard disk (HD), a compact disk (CD), a magnetic optical disk (MO), or a memory card, and defect classification is performed from the storage medium. It may be installed in the apparatus 200.

次に、以上のように構成された欠陥検査装置110で行われるウェハWの欠陥の検査及び欠陥分類装置200で行われるウェハWの欠陥の分類について、塗布現像処理システム1全体で行われるウェハ処理のプロセスと共に説明する。   Next, the wafer processing performed in the entire coating and developing treatment system 1 for the inspection of the defects of the wafer W performed by the defect inspection apparatus 110 configured as described above and the classification of the defects of the wafer W performed by the defect classification apparatus 200. This will be explained together with the process.

先ず、ウェハ搬送体7によって、カセット載置台5上のカセットC内からウェハWが一枚取り出され、第3の処理装置群G3の温度調節装置60に搬送される。温度調節装置60に搬送されたウェハWは、所定温度に温度調節され、その後第1の搬送アーム10によってボトムコーティング装置23に搬送され、反射防止膜が形成される。反射防止膜が形成されたウェハWは、第1の搬送アーム10によって加熱装置92、高精度温度調節装置70に順次搬送され、各装置で所定の処理が施される。その後ウェハWは、レジスト塗布装置20に搬送される。   First, one wafer W is taken out from the cassette C on the cassette mounting table 5 by the wafer transfer body 7 and transferred to the temperature adjustment device 60 of the third processing unit group G3. The wafer W transferred to the temperature adjusting device 60 is adjusted to a predetermined temperature, and then transferred to the bottom coating device 23 by the first transfer arm 10 to form an antireflection film. The wafer W on which the antireflection film is formed is sequentially transferred to the heating device 92 and the high-precision temperature control device 70 by the first transfer arm 10 and subjected to predetermined processing in each device. Thereafter, the wafer W is transferred to the resist coating apparatus 20.

レジスト塗布装置20においてウェハW上にレジスト膜が形成されると、ウェハWは第1の搬送アーム10によってプリベーキング装置71に搬送され、続いて第2の搬送アーム11によって周辺露光装置94、高精度温調装置83に順次搬送されて、各装置において所定の処理が施される。その後、インターフェイスステーション4のウェハ搬送体101によって露光装置(図示せず)に搬送され、ウェハW上のレジスト膜に所定のパターンが露光される。露光処理の終了したウェハWは、ウェハ搬送体101によってポストエクスポージャーベーキング装置84に搬送され、所定の処理が施される。   When a resist film is formed on the wafer W in the resist coating apparatus 20, the wafer W is transferred to the pre-baking apparatus 71 by the first transfer arm 10, and then the peripheral exposure apparatus 94 and the high exposure apparatus 94 are moved by the second transfer arm 11. It is sequentially conveyed to the precision temperature control device 83, and predetermined processing is performed in each device. Thereafter, the wafer is transferred to an exposure apparatus (not shown) by the wafer transfer body 101 of the interface station 4, and a predetermined pattern is exposed on the resist film on the wafer W. The wafer W that has been subjected to the exposure process is transferred to the post-exposure baking apparatus 84 by the wafer transfer body 101 and subjected to a predetermined process.

ポストエクスポージャーベーキング装置84における熱処理が終了すると、ウェハWは第2の搬送アーム11によって高精度温度調節装置81に搬送されて温度調節され、その後現像処理装置30に搬送され、ウェハW上に現像処理が施され、レジスト膜にパターンが形成される。その後ウェハWは、第2の搬送アーム11によってポストベーキング装置75に搬送され、加熱処理が施された後、高精度温度調節装置63に搬送され温度調節される。そしてウェハWは、第1の搬送アーム10によって欠陥検査装置110に搬送され、ウェハWの欠陥検査が行われる。この欠陥検査の詳細については後述する。その後ウェハWは、第1の搬送アーム10によってトランジション装置61に搬送され、ウェハ搬送体7によってカセットCに戻されて一連のフォトリソグラフィー工程が終了する。   When the heat treatment in the post-exposure baking apparatus 84 is completed, the wafer W is transferred to the high-accuracy temperature adjustment apparatus 81 by the second transfer arm 11 and the temperature is adjusted, and then transferred to the development processing apparatus 30 and developed on the wafer W. Is applied to form a pattern on the resist film. Thereafter, the wafer W is transferred to the post-baking device 75 by the second transfer arm 11 and subjected to heat treatment, and then transferred to the high-accuracy temperature adjusting device 63 to adjust the temperature. Then, the wafer W is transferred to the defect inspection apparatus 110 by the first transfer arm 10, and defect inspection of the wafer W is performed. Details of this defect inspection will be described later. Thereafter, the wafer W is transferred to the transition device 61 by the first transfer arm 10 and returned to the cassette C by the wafer transfer body 7 to complete a series of photolithography steps.

次に、欠陥検査装置110におけるウェハWの欠陥の検査方法及び欠陥分類装置200におけるウェハWの欠陥の分類方法について説明する。   Next, a defect inspection method for the wafer W in the defect inspection apparatus 110 and a defect classification method for the wafer W in the defect classification apparatus 200 will be described.

先ず、第1の搬送アーム10によってケーシング111内に搬送されたウェハWは、載置台120上に載置される。そして、載置台120を撮像装置130側に移動させながら、ウェハWがハーフミラー131の下を通過する際に、照明装置132からウェハWに対して所定の照度の照明を照らす。このようにウェハWに照明を照らしながら、撮像装置130においてウェハWの画像を撮像する。撮像されたウェハWの検査対象画像Eは、欠陥分類装置200の検査対象画像入力部230に出力される。なお、検査対象画像Eが撮像されたウェハWは、搬入出口112側に移動された後、バッファアーム124からウェハ搬送体7に受け渡され、当該ウェハ搬送体7によって欠陥検査装置110から搬出される。   First, the wafer W transferred into the casing 111 by the first transfer arm 10 is mounted on the mounting table 120. Then, the illumination device 132 illuminates the wafer W with a predetermined illuminance when the wafer W passes under the half mirror 131 while moving the mounting table 120 toward the imaging device 130. In this way, an image of the wafer W is taken by the imaging device 130 while illuminating the wafer W. The captured inspection image E of the wafer W is output to the inspection target image input unit 230 of the defect classification apparatus 200. The wafer W on which the inspection object image E has been taken is moved to the loading / unloading port 112 side, then transferred from the buffer arm 124 to the wafer carrier 7 and unloaded from the defect inspection apparatus 110 by the wafer carrier 7. The

検査対象画像入力部230に入力されたウェハWの検査対象画像Eは、前処理部231に出力されチップC毎に分割される。そして分割された検査対象画像Eは、特徴量算出部232に出力され、検査対象画像Eから欠陥Dの特徴量が算出される。   The inspection target image E of the wafer W input to the inspection target image input unit 230 is output to the preprocessing unit 231 and divided for each chip C. Then, the divided inspection target image E is output to the feature amount calculation unit 232, and the feature amount of the defect D is calculated from the inspection target image E.

特徴量算出部232で算出された検査対象画像Eの欠陥Dの特徴量は、分類部233に出力される。分類部233では、学習型分類手法を用いて欠陥を分類する。本実施の形態においては、学習型分類手法としてk−NN(k−Nearest Neighbar)手法を用いた場合について説明する。このk−NN手法は、特徴量算出部232から入力された欠陥Dの特徴量に対して、特徴量空間上で予め記憶部220に格納しておいた欠陥Dの特徴量データと比較し、最も類似する(距離の近い)特徴量データ、すなわち最近傍(nearest−neighbar)の属する分類クラスを出力するものである。つまり、最近傍の定義(k値)を増やすことにより、類似する特徴量データの上位k個の属する分類クラスの度数分布から、より適した分類クラスを出力するものである。   The feature amount of the defect D of the inspection target image E calculated by the feature amount calculation unit 232 is output to the classification unit 233. The classification unit 233 classifies defects using a learning type classification method. In the present embodiment, a case will be described in which a k-NN (k-Nearest Neighbor) method is used as a learning type classification method. This k-NN method compares the feature amount of the defect D input from the feature amount calculation unit 232 with the feature amount data of the defect D stored in the storage unit 220 in advance in the feature amount space. The most similar (closest distance) feature quantity data, that is, the classification class to which the nearest neighbor belongs. That is, by increasing the definition (k value) of the nearest neighbor, a more suitable classification class is output from the frequency distribution of the classification classes to which the top k pieces of similar feature amount data belong.

分類部233における分類方法を具体的に説明すると、先ず特徴量算出部232からの欠陥Dの特徴量と記憶部220内の全ての特徴量データの偏差平方和(距離)を算出する。次に算出された距離データを小さい順に並び替える。並び替えられた距離データの上位k個分を抽出する。抽出したデータの度数分布で最も度数の多い分類クラスを見つける。そしてその分類クラスを、欠陥Dの分類結果として出力する。   The classification method in the classification unit 233 will be specifically described. First, the deviation sum of squares (distance) between the feature amount of the defect D from the feature amount calculation unit 232 and all the feature amount data in the storage unit 220 is calculated. Next, the calculated distance data is rearranged in ascending order. The top k pieces of the sorted distance data are extracted. Find the classification class with the highest frequency in the frequency distribution of the extracted data. Then, the classification class is output as the classification result of the defect D.

このように分類部233で分類された分類クラスが、ウェハWの全てのチップCにおいてそのまま使用できる分類クラスである場合には、当該分類クラスは、報告部236に出力される。そして報告部236において、図14(a)に示したようにウェハW上のチップC毎の欠陥Dの分類クラスが表示されるとともに、図14(b)に示すように欠陥Dの分類クラスと特徴量との対応表が表示される。   In this way, when the classification class classified by the classification unit 233 is a classification class that can be used as it is in all the chips C of the wafer W, the classification class is output to the reporting unit 236. Then, in the reporting unit 236, the classification class of the defect D for each chip C on the wafer W is displayed as shown in FIG. 14A, and the classification class of the defect D as shown in FIG. A correspondence table with the feature values is displayed.

一方、分類部233で分類された分類クラスが例えば細分化し過ぎ等の問題がある場合には、後処理部234において、上述した分類クラスと分類カテゴリの対応付けに基づいて、欠陥Dが分類カテゴリに分類される。例えば欠陥Dの分類クラスClass3〜6の場合、欠陥Dは分類カテゴリCategory1に分類される。そして当該分類カテゴリが報告部236に出力され、ウェハW上にチップC毎の分類カテゴリが可視化される。   On the other hand, when there is a problem that the classification class classified by the classification unit 233 is, for example, too subdivided, the post-processing unit 234 determines that the defect D is classified based on the above-described association between the classification class and the classification category. are categorized. For example, in the case of the classification classes Class 3 to 6 of the defect D, the defect D is classified into the classification category Category1. Then, the classification category is output to the report unit 236, and the classification category for each chip C is visualized on the wafer W.

なおユーザは、確認部235において、分類部233で分類された分類クラス、あるいは後処理部234で分類された分類カテゴリの適否を適時確認することができる。確認部235において、ユーザが欠陥Dの分類クラス又は分類カテゴリが誤分類であると判断した場合には、その欠陥Dの特徴量が設計手段201の分類クラス補正部224に出力される。そして分類クラス補正部224で正しい分類クラスが設定され、その結果が記憶部220に出力される。こうして記憶部220の分類クラスが補正される。   Note that the user can check the suitability of the classification class classified by the classification unit 233 or the classification category classified by the post-processing unit 234 in a timely manner in the confirmation unit 235. In the confirmation unit 235, when the user determines that the classification class or classification category of the defect D is misclassification, the feature amount of the defect D is output to the classification class correction unit 224 of the design unit 201. A correct classification class is set by the classification class correction unit 224, and the result is output to the storage unit 220. In this way, the classification class of the storage unit 220 is corrected.

以上の実施の形態によれば、予め欠陥テンプレートTを作成してテンプレート記憶部212に記憶させ、モデル生成部213において欠陥テンプレートTと欠陥のない教示用画像N1を合成して欠陥モデルMを生成しているので、かかる欠陥モデルMを従来の学習型分類方法における欠陥画像として利用することができる。そして第1の分類クラス設定部214において、欠陥モデルMにおける欠陥Dの特徴量を算出し、当該欠陥Dの特徴量に対して欠陥Dの分類クラスを設定して、欠陥Dの特徴量と欠陥Dの分類クラスとの関係を記憶部220に記憶させることができる。したがって、欠陥画像がない場合又は欠陥画像が少数しかない場合でも、記憶部220に記憶させた欠陥Dの特徴量と欠陥Dの分類クラスとの関係を用いて、特徴量算出部232において算出されたウェハWの欠陥Dの特徴量から、ウェハWの欠陥Dを適切に分類することができる。   According to the above embodiment, the defect template T is created in advance and stored in the template storage unit 212, and the model generation unit 213 generates the defect model M by synthesizing the defect template T and the teaching image N1 having no defect. Therefore, the defect model M can be used as a defect image in the conventional learning type classification method. Then, in the first classification class setting unit 214, the feature amount of the defect D in the defect model M is calculated, the classification class of the defect D is set for the feature amount of the defect D, and the feature amount of the defect D and the defect The relationship with the classification class of D can be stored in the storage unit 220. Therefore, even when there is no defect image or there are only a few defect images, the feature amount calculation unit 232 calculates the relationship between the feature amount of the defect D stored in the storage unit 220 and the classification class of the defect D. The defect D of the wafer W can be appropriately classified from the feature amount of the defect D of the wafer W.

また設計前処理部211において、教示用画像入力部210に入力された画像を検査領域としてのチップCに分割しているので、ウェハWの欠陥Dをより細分化して適切に分類することができる。   In addition, since the image input to the teaching image input unit 210 is divided into chips C as inspection areas in the design preprocessing unit 211, the defect D of the wafer W can be further subdivided and appropriately classified. .

また記憶部220では、記憶部履歴管理機能221によって、欠陥Dの特徴量及び分類クラスは、ウェハWが有する固有の情報(上述したTag1情報)等とリンクされているので、分類クラスからウェハWの情報を容易に検索・抽出することができ、記憶部220に記憶された学習の履歴を管理することができる。   Further, in the storage unit 220, the storage unit history management function 221 links the feature amount and classification class of the defect D with unique information (such as the Tag1 information described above) that the wafer W has. Can be easily retrieved and extracted, and the learning history stored in the storage unit 220 can be managed.

また記憶部220では、記憶部チェック機能222によって、同一の欠陥Dの特徴量に対して異なる分類クラスが記憶されていないかどうかをチェックすることができる。そして同一の欠陥Dの特徴量に対して、当該欠陥Dが異なる分類クラスに設定されている場合には、いずれか一方の分類クラスを削除するか、又は両方の分類クラスを削除することができるので、一の欠陥Dの特徴量に対して一の分類クラスを記憶部220に記憶させておくことができ、欠陥Dを適切に分類することができる。   In the storage unit 220, the storage unit check function 222 can check whether or not different classification classes are stored for the feature amount of the same defect D. If the defect D is set to a different classification class for the feature quantity of the same defect D, either one of the classification classes can be deleted, or both classification classes can be deleted. Therefore, one classification class can be stored in the storage unit 220 for the feature amount of one defect D, and the defect D can be appropriately classified.

また教示用画像入力部210に入力された教示用画像が欠陥のあるウェハWの画像N1である場合には、第2の分類クラス設定部215において、教示用画像N1における欠陥Dの特徴量が算出され、算出された欠陥Dの特徴量に対して、欠陥Dの分類クラスが設定されるので、かかる欠陥Dの特徴量と分類クラスとの関係を記憶部220にさらに記憶させることができる。これによって、記憶部220に記憶された欠陥Dの特徴量と分類クラスとの関係を増加させることができると共に、現実の欠陥データが入力されるので、その精度を向上させることができる。   When the teaching image input to the teaching image input unit 210 is the image N1 of the defective wafer W, the second classification class setting unit 215 determines the feature amount of the defect D in the teaching image N1. Since the classification class of the defect D is set for the calculated feature quantity of the defect D, the relationship between the feature quantity of the defect D and the classification class can be further stored in the storage unit 220. As a result, the relationship between the feature quantity of the defect D stored in the storage unit 220 and the classification class can be increased, and since the actual defect data is input, the accuracy can be improved.

また後処理部234において、複数の分類クラスと単一の分類カテゴリとの対応付けを行っているので、例えば分類部233で分類された分類クラスが細分化し過ぎ等の問題がある場合でも、欠陥Dを適切な分類カテゴリに分類することができる。   In addition, since the post-processing unit 234 associates a plurality of classification classes with a single classification category, for example, even if the classification class classified by the classification unit 233 has a problem such as over-division, D can be classified into an appropriate classification category.

また確認部235において、分類部233で分類された分類クラス、あるいは後処理部234で分類された分類カテゴリの適否をユーザが適時確認することができるので、欠陥Dの誤分類を防止することができる。さらに分類クラス又は分類カテゴリが誤分類であると判断された場合には、分類クラス補正部224においてその欠陥Dの特徴量に対する分類クラスが補正されるので、記憶部220内の分類クラスの精度をより向上させることができる。   Further, in the confirmation unit 235, since the user can confirm in a timely manner whether or not the classification class classified by the classification unit 233 or the classification category classified by the post-processing unit 234 is correct, the erroneous classification of the defect D can be prevented. it can. Further, when it is determined that the classification class or the classification category is misclassification, the classification class correction unit 224 corrects the classification class for the feature amount of the defect D, so that the accuracy of the classification class in the storage unit 220 is increased. It can be improved further.

以上の実施の形態では、教示用画像入力部210に入力された教示用画像N1、N2と、検査対象画像入力部230に入力された検査対象画像Eを、それぞれチップCに分割していたが、これら教示用画像N1、N2と検査対象画像Eを分割せずにウェハW全体の欠陥Dを分類してもよい。かかる場合、図15に示すように設計前処理部211と前処理部231における分割処理を省略することができる。そしてテンプレート記憶部212に記憶される欠陥テンプレートTとしては、例えば図16に示すように、ウェハWの上半分に欠陥がある欠陥テンプレートT(図16(a))、ウェハWの右上1/4に欠陥がある欠陥テンプレートT(図16(b))、ウェハWの周縁部にリング状に欠陥がある欠陥テンプレートT(図16(c))、ウェハWの上半分の周縁部に等間隔に複数の欠陥がある欠陥テンプレートT(図16(d))などが用いられる。この場合、上述した欠陥分類方法と同様の方法で、ウェハW全体の欠陥Dを分類することができる。   In the above embodiment, the teaching images N1 and N2 input to the teaching image input unit 210 and the inspection target image E input to the inspection target image input unit 230 are each divided into chips C. The defect D of the entire wafer W may be classified without dividing the teaching images N1 and N2 and the inspection target image E. In such a case, as shown in FIG. 15, the division processing in the design preprocessing unit 211 and the preprocessing unit 231 can be omitted. As the defect template T stored in the template storage unit 212, for example, as shown in FIG. 16, the defect template T (FIG. 16 (a)) having a defect in the upper half of the wafer W, the upper right quarter of the wafer W. A defect template T having a defect in the wafer W (FIG. 16B), a defect template T having a ring-like defect in the peripheral portion of the wafer W (FIG. 16C), and an equal interval in the peripheral portion of the upper half of the wafer W A defect template T having a plurality of defects (FIG. 16D) or the like is used. In this case, the defect D of the entire wafer W can be classified by the same method as the defect classification method described above.

以上、添付図面を参照しながら本発明の好適な実施の形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。本発明はこの例に限らず種々の態様を採りうるものである。本発明は、基板がウェハ以外のFPD(フラットパネルディスプレイ)、フォトマスク用のマスクレチクルなどの他の基板である場合にも適用できる。   The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the idea described in the claims, and these naturally belong to the technical scope of the present invention. It is understood. The present invention is not limited to this example and can take various forms. The present invention can also be applied to a case where the substrate is another substrate such as an FPD (flat panel display) other than a wafer or a mask reticle for a photomask.

本発明は、撮像された基板の画像に基づいて、当該基板の欠陥を分類する際に有用である。   The present invention is useful when classifying defects on a substrate based on the image of the imaged substrate.

本実施の形態にかかる欠陥分類装置を搭載した塗布現像処理システムの構成の概略を示す平面図である。It is a top view which shows the outline of a structure of the coating and developing processing system carrying the defect classification device concerning this Embodiment. 塗布現像処理システムの正面図である。It is a front view of a coating and developing treatment system. 塗布現像処理システムの背面図である。It is a rear view of a coating and developing treatment system. 欠陥検査装置の構成の概略を示す横断面図である。It is a cross-sectional view which shows the outline of a structure of a defect inspection apparatus. 欠陥検査装置の構成の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of a structure of a defect inspection apparatus. バッファアームの構成の概略を示す平面図である。It is a top view which shows the outline of a structure of a buffer arm. 欠陥分類装置の構成の概略を示す模式図である。It is a schematic diagram which shows the outline of a structure of a defect classification device. ウェハ上の検査領域を示した説明図である。It is explanatory drawing which showed the test | inspection area | region on a wafer. 欠陥テンプレートを例示した平面図である。It is the top view which illustrated the defect template. 欠陥テンプレートを生成する様子を示した説明図である。It is explanatory drawing which showed a mode that a defect template was produced | generated. 欠陥モデルを生成する様子を示した説明図である。It is explanatory drawing which showed a mode that a defect model was produced | generated. 記憶部内に記憶されたデータを示した説明図である。It is explanatory drawing which showed the data memorize | stored in the memory | storage part. 記憶部内に同一の欠陥の特徴量に対して異なる分類クラスが設定された場合を示す説明図である。It is explanatory drawing which shows the case where a different classification | category class is set with respect to the feature-value of the same defect in a memory | storage part. 報告部で報告される欠陥の分類を示した説明図である。It is explanatory drawing which showed the classification | category of the defect reported by a report part. 他の実施の形態における欠陥分類装置の構成の概略を示す模式図である。It is a schematic diagram which shows the outline of a structure of the defect classification | category apparatus in other embodiment. ウェハ全体の欠陥テンプレートを例示した平面図である。It is the top view which illustrated the defect template of the whole wafer.

符号の説明Explanation of symbols

1 塗布現像処理システム
110 欠陥検査装置
200 欠陥分類装置
201 設計手段
202 診断手段
210 教示用画像入力部
211 設計前処理部
212 テンプレート記憶部
213 モデル生成部
214 第1の分類クラス設定部
215 第2の分類クラス設定部
220 記憶部
221 記憶部履歴管理機能
222 記憶部チェック機能
223 学習・訓練部
224 分類クラス補正部
230 検査対象画像入力部
231 前処理部
232 特徴量算出部
233 分類部
234 後処理部
235 確認部
236 報告部
C チップ
D 欠陥
E 検査対象画像
M 欠陥モデル
N1 欠陥のない教示用画像
N2 欠陥のない教示用画像
T 欠陥テンプレート
W ウェハ
DESCRIPTION OF SYMBOLS 1 Application | coating development processing system 110 Defect inspection apparatus 200 Defect classification apparatus 201 Design means 202 Diagnosis means 210 Teaching image input part 211 Design pre-processing part 212 Template memory | storage part 213 Model generation part 214 1st classification class setting part 215 2nd Classification class setting unit 220 Storage unit 221 Storage unit history management function 222 Storage unit check function 223 Learning / training unit 224 Classification class correction unit 230 Inspection target image input unit 231 Preprocessing unit 232 Feature amount calculation unit 233 Classification unit 234 Postprocessing unit 235 Confirmation unit 236 Report unit C Chip D Defect E Image to be inspected M Defect model N1 Teaching image without defect N2 Teaching image without defect T Defect template W Wafer

Claims (18)

撮像された基板の検査対象画像に基づいて、当該基板の欠陥を分類する欠陥分類方法であって、
欠陥の特徴量に基づいて欠陥の分類クラスを設定し、前記欠陥の特徴量と前記分類クラスとの関係を記憶部に記憶させる設計工程と、
前記撮像された基板の検査対象画像から、当該基板の欠陥の特徴量を算出する特徴量算出工程と、
前記算出した欠陥の特徴量に基づいて、前記記憶部内に記憶された前記欠陥の特徴量と前記分類クラスとの関係から、前記基板の欠陥を前記分類クラスに分類する分類工程と、を有し、
前記設計工程は、
複数の欠陥テンプレートを作成する第1の工程と、
欠陥のない基板の教示用画像と前記欠陥テンプレートを合成して、欠陥モデルを生成する第2の工程と、
前記欠陥モデルにおける欠陥の特徴量を算出する第3の工程と、
前記欠陥モデルにおける欠陥の特徴量に対して、欠陥の分類クラスを設定する第4の工程と、
前記欠陥の特徴量と前記分類クラスとの関係を前記記憶部に記憶させる第5の工程と、を有することを特徴とする、欠陥分類方法。
A defect classification method for classifying defects on a substrate based on an image to be inspected of a substrate,
Setting a defect classification class based on the feature quantity of the defect, and storing the relationship between the feature quantity of the defect and the classification class in a storage unit;
A feature amount calculation step of calculating a feature amount of a defect of the substrate from the imaged inspection target image of the substrate;
A classification step of classifying the defect of the substrate into the classification class based on the calculated feature quantity of the defect based on the relationship between the classification quantity and the feature quantity of the defect stored in the storage unit; ,
The design process includes
A first step of creating a plurality of defect templates;
A second step of generating a defect model by synthesizing the defect template with a teaching image of a substrate having no defect;
A third step of calculating a feature amount of the defect in the defect model;
A fourth step of setting a defect classification class for the defect feature quantity in the defect model;
A defect classification method comprising: a fifth step of storing a relationship between the feature quantity of the defect and the classification class in the storage unit.
前記第2の工程において、前記欠陥のない基板の教示用画像と複数の前記欠陥テンプレートを合成して、前記欠陥モデルを生成することを特徴とする、請求項1に記載の欠陥分類方法。 2. The defect classification method according to claim 1, wherein, in the second step, the defect model is generated by synthesizing a teaching image of the substrate having no defect and a plurality of the defect templates. 3. 前記設計工程において、前記記憶部内の前記欠陥の特徴量及び前記分類クラスを、前記基板が有する固有の情報とリンクさせることを特徴とする、請求項1又は2に記載の欠陥分類方法。 3. The defect classification method according to claim 1, wherein in the design step, the feature quantity and the classification class of the defect in the storage unit are linked with unique information of the substrate. 前記設計工程において、同一の前記欠陥の特徴量に対して、当該欠陥が異なる分類クラスに設定されている場合には、いずれか一方の分類クラスを削除するか、又は両方の分類クラスを削除することを特徴とする、請求項1〜3のいずれかに記載の欠陥分類方法。 In the design process, when the defect is set to a different classification class for the same feature amount of the defect, either one of the classification classes is deleted or both of the classification classes are deleted. The defect classification method according to claim 1, wherein: 前記設計工程において、欠陥のある基板の教示用画像がある場合には、
前記教示用画像から欠陥の特徴量を算出し、
前記教示用画像における欠陥の特徴量に対して、欠陥の分類クラスを設定し、
前記欠陥の特徴量と前記分類クラスとの関係をさらに前記記憶部に記憶させることを特徴とする、請求項1〜4のいずれかに記載の欠陥分類方法。
In the design process, if there is a teaching image of a defective substrate,
Calculate the feature amount of the defect from the teaching image,
A defect classification class is set for the feature amount of the defect in the teaching image,
The defect classification method according to claim 1, wherein a relationship between the feature quantity of the defect and the classification class is further stored in the storage unit.
前記基板は複数の検査領域に分割され、
前記特徴量算出工程において、前記各検査領域の欠陥の特徴量を算出し、
前記分類工程において、前記各検査領域を前記分類クラスに分類することを特徴とする、請求項1〜5のいずれかに記載の欠陥分類手法。
The substrate is divided into a plurality of inspection areas;
In the feature amount calculating step, the feature amount of the defect in each inspection area is calculated,
The defect classification method according to claim 1, wherein in the classification step, the inspection areas are classified into the classification classes.
前記分類工程の後、前記基板の欠陥の前記分類クラスの確認し、当該分類クラスが誤分類であると判断された場合には、前記記憶部内の前記欠陥の特徴量と前記分類クラスとの関係を補正することを特徴とする、請求項1〜6のいずれかに記載の欠陥分類方法。 After the classification step, the classification class of the defect of the substrate is confirmed, and if it is determined that the classification class is misclassification, the relationship between the feature quantity of the defect in the storage unit and the classification class The defect classification method according to claim 1, wherein the defect classification method is corrected. 前記分類工程の後、予め定められた複数の分類クラスと単一の分類カテゴリとの関係に基づいて、前記基板の欠陥を前記分類カテゴリに分類することを特徴とする、請求項1〜7のいずれかに記載の欠陥分類方法。 The defect of the said board | substrate is classified into the said classification category based on the relationship between a predetermined several classification class and a single classification category after the said classification | category process of Claims 1-7 characterized by the above-mentioned. The defect classification method according to any one of the above. 請求項1〜8の欠陥分類方法を欠陥分類装置によって実行させるために、当該欠陥分類装置のコンピュータ上で動作するプログラム。 A program that operates on a computer of the defect classification apparatus in order to cause the defect classification apparatus to execute the defect classification method according to claim 1. 請求項9に記載のプログラムを格納した読み取り可能なコンピュータ記憶媒体。 A readable computer storage medium storing the program according to claim 9. 撮像された基板の検査対象画像に基づいて、当該基板の欠陥を分類する欠陥分類装置であって、
欠陥の特徴量に基づいて欠陥の分類クラスを設定する設計手段と、
前記撮像された基板の検査対象画像から、当該基板の欠陥を前記設計手段で設定された前記分類クラスに分類する診断手段と、を有し、
前記設計手段は、
複数の欠陥テンプレートが記憶されたテンプレート記憶部と、
欠陥のない基板の教示用画像と前記欠陥テンプレートを合成して、欠陥モデルを生成するモデル生成部と、
前記欠陥モデルにおける欠陥の特徴量を算出し、当該欠陥の特徴量に対して欠陥の分類クラスを設定する分類クラス設定部と、
前記欠陥の特徴量と前記分類クラスとの関係を記憶する記憶部と、を有し、
前記診断手段は、
前記撮像された基板の検査対象画像から、当該基板の欠陥の特徴量を算出する特徴量算出部と、
前記算出した欠陥の特徴量に基づいて、前記記憶部内に記憶された前記欠陥の特徴量と前記分類クラスとの関係から、前記基板の欠陥を前記分類クラスに分類する分類部と、を有することを特徴とする、欠陥分類装置。
A defect classification device that classifies defects on a substrate based on an image to be inspected of the substrate,
A design means for setting a defect classification class based on the feature amount of the defect;
A diagnostic unit that classifies the defect of the substrate into the classification class set by the design unit from the image to be inspected of the substrate,
The design means includes
A template storage unit in which a plurality of defect templates are stored;
A model generation unit that generates a defect model by synthesizing the defect template with a teaching image of a substrate having no defect,
A classification class setting unit that calculates a feature quantity of a defect in the defect model and sets a classification class of the defect with respect to the feature quantity of the defect;
A storage unit that stores a relationship between the feature quantity of the defect and the classification class;
The diagnostic means includes
A feature amount calculation unit that calculates a feature amount of a defect of the substrate from the imaged inspection target image of the substrate;
A classifying unit that classifies the defects on the substrate into the classification class based on the relationship between the feature quantity of the defect stored in the storage unit and the classification class based on the calculated feature quantity of the defect; A defect classification apparatus characterized by.
前記モデル生成部は、欠陥のない基板の教示用画像と複数の前記欠陥テンプレートを合成して、欠陥モデルを生成することを特徴とする、請求項11に記載の欠陥分類装置。 The defect classification apparatus according to claim 11, wherein the model generation unit generates a defect model by combining a teaching image of a substrate having no defect and a plurality of the defect templates. 前記設計手段は、前記記憶部内の前記欠陥の特徴量及び前記分類クラスを、前記基板が有する固有の情報とリンクさせて記憶させる記憶部履歴管理機能を有することを特徴とする、請求項11又は12に記載の欠陥分類装置。 The design unit has a storage unit history management function for storing the feature quantity and the classification class of the defect in the storage unit in a linked manner with unique information of the substrate. 12. The defect classification apparatus according to 12. 前記設計手段は、前記記憶部内において、同一の前記欠陥の特徴量に対して、当該欠陥が異なる分類クラスに設定されている場合には、いずれか一方の分類クラスを削除するか、又は両方の分類クラスを削除する記憶部チェック機能を有することを特徴とする、請求項11〜13のいずれかに記載の欠陥分類装置。 In the storage unit, when the defect is set to a different classification class for the same feature quantity of the defect , the design unit deletes one of the classification classes or both The defect classification apparatus according to claim 11, further comprising a storage unit check function for deleting a classification class. 前記設計手段は、欠陥のある基板の教示用画像から欠陥の特徴量を算出し、当該欠陥の特徴量に対して欠陥の分類クラスを設定する他の分類クラス設定部を有し、
前記欠陥の特徴量と前記分類クラスとの関係をさらに前記記憶部に記憶させることを特徴とする、請求項11〜14のいずれかに記載の欠陥分類装置。
The design means includes another classification class setting unit that calculates a feature amount of a defect from a teaching image of a substrate having a defect, and sets a classification class of the defect with respect to the feature amount of the defect,
The defect classification apparatus according to any one of claims 11 to 14, wherein a relationship between the feature quantity of the defect and the classification class is further stored in the storage unit.
前記診断手段において、前記基板を複数の検査領域に分割する前処理部を有し、
前記特徴量算出部は、前記各検査領域の欠陥の特徴量を算出し、
前記分類部は、前記各検査領域を前記分類クラスに分類することを特徴とする、請求項11〜15のいずれかに記載の欠陥分類装置。
In the diagnostic means, a pre-processing unit that divides the substrate into a plurality of inspection regions,
The feature amount calculation unit calculates a feature amount of a defect in each inspection region,
The defect classification apparatus according to claim 11, wherein the classification unit classifies each inspection region into the classification class.
前記診断手段は、前記分類部で分類された基板の欠陥の前記分類クラスを確認する確認部を有し、
前記確認部において前記分類クラスが誤分類であると判断された場合には、前記記憶部内の前記欠陥の特徴量と前記分類クラスとの関係が補正されることを特徴とする、請求項11〜16のいずれかに記載の欠陥分類装置。
The diagnostic means has a confirmation unit for confirming the classification class of the defect of the substrate classified by the classification unit,
The relationship between the feature quantity of the defect in the storage unit and the classification class is corrected when the classification unit determines that the classification class is a misclassification. The defect classification apparatus according to any one of 16.
前記診断手段は、複数の分類クラスと単一の分類カテゴリとの対応付けを行う後処理部を有し、
前記後処理部は、前記対応付けに基づいて、前記基板の欠陥を複数の分類カテゴリに分類することを特徴とする、請求項11〜17のいずれかに記載の欠陥分類装置。
The diagnostic means includes a post-processing unit that associates a plurality of classification classes with a single classification category,
The defect classification apparatus according to claim 11, wherein the post-processing unit classifies the defect of the substrate into a plurality of classification categories based on the association.
JP2008082740A 2008-03-27 2008-03-27 Defect classification method, program, computer storage medium, and defect classification apparatus Active JP5156452B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2008082740A JP5156452B2 (en) 2008-03-27 2008-03-27 Defect classification method, program, computer storage medium, and defect classification apparatus
CN2009801111102A CN101981683B (en) 2008-03-27 2009-03-11 Method for classifying defects and device for classifying defects
US12/736,204 US8379965B2 (en) 2008-03-27 2009-03-11 Defect classification method, computer storage medium, and defect classification apparatus
KR1020107023895A KR101396907B1 (en) 2008-03-27 2009-03-11 Method for classifying defects, computer storage medium, and device for classifying defects
PCT/JP2009/054646 WO2009119314A1 (en) 2008-03-27 2009-03-11 Method for classifying defects, computer storage medium, and device for classifying defects
TW098109955A TWI476847B (en) 2008-03-27 2009-03-26 Defect classification method and defect classification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008082740A JP5156452B2 (en) 2008-03-27 2008-03-27 Defect classification method, program, computer storage medium, and defect classification apparatus

Publications (2)

Publication Number Publication Date
JP2009238992A JP2009238992A (en) 2009-10-15
JP5156452B2 true JP5156452B2 (en) 2013-03-06

Family

ID=41113512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008082740A Active JP5156452B2 (en) 2008-03-27 2008-03-27 Defect classification method, program, computer storage medium, and defect classification apparatus

Country Status (6)

Country Link
US (1) US8379965B2 (en)
JP (1) JP5156452B2 (en)
KR (1) KR101396907B1 (en)
CN (1) CN101981683B (en)
TW (1) TWI476847B (en)
WO (1) WO2009119314A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220067617A (en) 2020-11-17 2022-05-25 (주)자비스 System, method and program for creating tranining data using x-ray attenuation equation and method for detecting foreighn material using thereof

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026982A (en) * 2010-07-27 2012-02-09 Panasonic Electric Works Sunx Co Ltd Inspection device
JP5566265B2 (en) 2010-11-09 2014-08-06 東京エレクトロン株式会社 Substrate processing apparatus, program, computer storage medium, and substrate transfer method
JP5719760B2 (en) * 2011-12-28 2015-05-20 株式会社日立ハイテクノロジーズ Defect classification device
US9405289B2 (en) * 2012-12-06 2016-08-02 Tokyo Electron Limited Method and apparatus for autonomous identification of particle contamination due to isolated process events and systematic trends
JP5764592B2 (en) * 2013-02-22 2015-08-19 東京エレクトロン株式会社 Substrate processing apparatus, substrate processing apparatus monitoring apparatus, and substrate processing apparatus monitoring method
DE102013109915B4 (en) * 2013-09-10 2015-04-02 Thyssenkrupp Steel Europe Ag Method and device for checking an inspection system for detecting surface defects
CN105849643B (en) * 2013-12-17 2019-07-19 Asml荷兰有限公司 Yields estimation and control
US9613411B2 (en) * 2014-03-17 2017-04-04 Kla-Tencor Corp. Creating defect classifiers and nuisance filters
WO2016083897A2 (en) 2014-11-24 2016-06-02 Kitov Systems Ltd. Automated inspection
US10650508B2 (en) 2014-12-03 2020-05-12 Kla-Tencor Corporation Automatic defect classification without sampling and feature selection
KR101733018B1 (en) * 2015-02-25 2017-05-24 동우 화인켐 주식회사 Apparatus and method for detecting defect of optical film
JP6244329B2 (en) * 2015-05-12 2017-12-06 東京エレクトロン株式会社 Substrate inspection method, substrate processing system, and computer storage medium
KR102380099B1 (en) * 2015-08-05 2022-03-28 케이엘에이 코포레이션 Range-Based Real-Time Scanning Electron Microscopy Non-Visual Wiener
JP2017049974A (en) * 2015-09-04 2017-03-09 キヤノン株式会社 Discriminator generator, quality determine method, and program
JP6572979B2 (en) * 2016-02-03 2019-09-11 東芝三菱電機産業システム株式会社 Manufacturing facility diagnosis support apparatus and manufacturing facility diagnosis support method
US10810733B2 (en) * 2016-05-24 2020-10-20 Hitachi High-Tech Corporation Defect classification apparatus and defect classification method
US10402688B2 (en) * 2016-12-07 2019-09-03 Kla-Tencor Corporation Data augmentation for convolutional neural network-based defect inspection
US10395362B2 (en) * 2017-04-07 2019-08-27 Kla-Tencor Corp. Contour based defect detection
US10713534B2 (en) * 2017-09-01 2020-07-14 Kla-Tencor Corp. Training a learning based defect classifier
CN107729635B (en) * 2017-09-30 2018-12-21 英特尔产品(成都)有限公司 Semiconductor chip qualification inspection method and device
CN109685756A (en) * 2017-10-16 2019-04-26 乐达创意科技有限公司 Image feature automatic identifier, system and method
CN107729540B (en) * 2017-10-31 2021-04-16 努比亚技术有限公司 Method, apparatus and computer-readable storage medium for photo classification
JP6936957B2 (en) * 2017-11-07 2021-09-22 オムロン株式会社 Inspection device, data generation device, data generation method and data generation program
JP7087397B2 (en) 2018-01-17 2022-06-21 東京エレクトロン株式会社 Substrate defect inspection equipment, substrate defect inspection method and storage medium
CN108734700B (en) * 2018-04-24 2021-06-11 信利(惠州)智能显示有限公司 Method and device for detecting defects of blind area of substrate, computer and storage medium
US10922833B2 (en) * 2018-05-15 2021-02-16 Apical Ltd. Image processing
CN108765389A (en) * 2018-05-18 2018-11-06 浙江大学 A kind of microcosmic wafer surface defects image detecting method
JP2020027424A (en) * 2018-08-10 2020-02-20 東京エレクトロンデバイス株式会社 Learning data generating device, discrimination model generating device, and program
JP7105135B2 (en) * 2018-08-17 2022-07-22 東京エレクトロン株式会社 PROCESSING CONDITIONS CORRECTION METHOD AND SUBSTRATE PROCESSING SYSTEM
CN109596638B (en) * 2018-10-26 2022-05-06 中国科学院光电研究院 Defect detection method and device for patterned wafer and mask
CN109543720B (en) * 2018-10-30 2023-10-27 东华大学 Wafer map defect mode identification method based on countermeasure generation network
WO2020095909A1 (en) * 2018-11-07 2020-05-14 株式会社 東芝 Image processing device, image processing method, and program
US11321633B2 (en) * 2018-12-20 2022-05-03 Applied Materials Israel Ltd. Method of classifying defects in a specimen semiconductor examination and system thereof
CN113366390B (en) * 2019-01-29 2024-02-20 Asml荷兰有限公司 Determination method in semiconductor manufacturing process
JP7166189B2 (en) 2019-02-15 2022-11-07 東京エレクトロン株式会社 Image generation device, inspection device and image generation method
JP7125576B2 (en) * 2019-02-21 2022-08-25 株式会社 エフケー光学研究所 Foreign matter inspection device and foreign matter inspection method
JP7195977B2 (en) * 2019-02-28 2022-12-26 デンカ株式会社 Board inspection device, board inspection method, and program
JP7194613B2 (en) * 2019-02-28 2022-12-22 デンカ株式会社 Substrate manufacturing method
CN113743535B (en) * 2019-05-21 2024-05-24 北京市商汤科技开发有限公司 Neural network training method and device and image processing method and device
JP7390851B2 (en) * 2019-10-18 2023-12-04 株式会社日立ハイテク Defect classification device, defect classification program
KR20210057518A (en) * 2019-11-12 2021-05-21 라온피플 주식회사 Apparatus and method for generating a defect image
KR102486230B1 (en) * 2020-03-20 2023-01-10 라온피플 주식회사 Method and system for quality inspection of new product using deep learning
JP7442939B2 (en) 2020-07-02 2024-03-05 株式会社ディスコ Wafer inspection method
CN111912897A (en) * 2020-08-11 2020-11-10 中国石油大学(北京) Method, device and equipment for acquiring pipeline defect information and storage medium
KR102632831B1 (en) * 2023-06-16 2024-02-06 주식회사 애플티 AI system for wafer defect detection
CN118464914B (en) * 2024-07-12 2024-09-13 常州华旋传感技术有限公司 Product quality detection equipment and detection method based on visual detection

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6092059A (en) * 1996-12-27 2000-07-18 Cognex Corporation Automatic classifier for real time inspection and classification
AU1553601A (en) * 1999-11-29 2001-06-12 Olympus Optical Co., Ltd. Defect inspecting system
TW577995B (en) 2001-05-11 2004-03-01 Orbotech Ltd An image searching defect detector
US7127099B2 (en) * 2001-05-11 2006-10-24 Orbotech Ltd. Image searching defect detector
JP4516253B2 (en) * 2001-12-04 2010-08-04 オリンパス株式会社 Defect classification device
JP4154156B2 (en) * 2002-02-08 2008-09-24 ソニーマニュファクチュアリングシステムズ株式会社 Defect classification inspection system
JP3978098B2 (en) * 2002-08-12 2007-09-19 株式会社日立製作所 Defect classification method and apparatus
JP4253522B2 (en) * 2003-03-28 2009-04-15 株式会社日立ハイテクノロジーズ Defect classification method and apparatus
CN100371939C (en) * 2003-08-27 2008-02-27 上海宏力半导体制造有限公司 Method of defect management system
KR100574648B1 (en) * 2003-09-25 2006-04-27 동부일렉트로닉스 주식회사 Method and system for classification of defect
KR100567896B1 (en) * 2003-12-29 2006-04-04 동부아남반도체 주식회사 Automatic defect classification method
JP4418272B2 (en) * 2004-03-24 2010-02-17 オリンパス株式会社 Defect classification dictionary teaching device
JP2007240519A (en) 2006-02-08 2007-09-20 Tokyo Electron Ltd Method and apparatus for defect inspecting, and computer program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220067617A (en) 2020-11-17 2022-05-25 (주)자비스 System, method and program for creating tranining data using x-ray attenuation equation and method for detecting foreighn material using thereof
KR20230090302A (en) 2020-11-17 2023-06-21 (주)자비스 Method for building training data for generating image of defective product based on deep learning, device and program

Also Published As

Publication number Publication date
KR101396907B1 (en) 2014-05-19
CN101981683B (en) 2012-09-19
JP2009238992A (en) 2009-10-15
TWI476847B (en) 2015-03-11
US20110007961A1 (en) 2011-01-13
US8379965B2 (en) 2013-02-19
TW200947580A (en) 2009-11-16
WO2009119314A1 (en) 2009-10-01
CN101981683A (en) 2011-02-23
KR20100135846A (en) 2010-12-27

Similar Documents

Publication Publication Date Title
JP5156452B2 (en) Defect classification method, program, computer storage medium, and defect classification apparatus
TWI676799B (en) Substrate inspection method, substrate processing system, and computer storage medium
JP5566265B2 (en) Substrate processing apparatus, program, computer storage medium, and substrate transfer method
CN110168446B (en) Lithographic process and apparatus and inspection process and apparatus
JP5591675B2 (en) Inspection apparatus and inspection method
US20200019067A1 (en) Methods of determining corrections for a patterning process
KR20220010588A (en) Method of obtaining measurements, apparatus for performing a process step and metrology apparatus
JP2011174757A (en) Defect inspection method, program, computer storage medium, and defect inspection device
JP5717711B2 (en) Substrate reference image creation method, substrate defect inspection method, substrate reference image creation apparatus, substrate defect inspection unit, program, and computer storage medium
TW201629905A (en) Critical dimension uniformity enhancement techniques and apparatus
TW202024777A (en) Measurement method and apparatus
JP2015141411A (en) Inspection device
JP5837649B2 (en) Substrate processing apparatus, abnormality processing unit determination method, program, and computer storage medium
JP4914854B2 (en) Defect inspection method, program, and computer storage medium
JP2002093697A (en) Device and method for setting exposure conditions, and processor
US20240036479A1 (en) Method of determining at least a target layout and associated metrology apparatus
JP6524185B2 (en) Substrate processing system
JP5859039B2 (en) Inspection device
JP6423064B2 (en) Substrate processing system
JP2016035539A (en) Position measurement method, method for creating map of positional deviation, and inspection system
JP2005209886A (en) Management method for substrate treatment in substrate treatment system and treatment substrate treatment system
JP2006147627A (en) Method of detecting synchronous precision of exposure device and method of detecting aberration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5156452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250