JP7194613B2 - Substrate manufacturing method - Google Patents
Substrate manufacturing method Download PDFInfo
- Publication number
- JP7194613B2 JP7194613B2 JP2019036966A JP2019036966A JP7194613B2 JP 7194613 B2 JP7194613 B2 JP 7194613B2 JP 2019036966 A JP2019036966 A JP 2019036966A JP 2019036966 A JP2019036966 A JP 2019036966A JP 7194613 B2 JP7194613 B2 JP 7194613B2
- Authority
- JP
- Japan
- Prior art keywords
- board
- substrate
- abnormality
- processing
- post
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Description
本発明は、基板の製造方法に関する。 The present invention relates to a substrate manufacturing method.
基板製造プロセスにおいて、製造された基板の欠陥を検出するための検査工程が含まれる。例えば、下記特許文献1には、検査画像撮像部で撮像された画像(基板の画像)の中から検査に必要な部分を切り出して検査画像とし、当該検査画像を基準画像や隣接画像と比較することで、その基板の検査を行うことが開示されている。 A substrate manufacturing process includes an inspection step for detecting defects in the manufactured substrate. For example, in Japanese Patent Laid-Open No. 2002-200001, a portion necessary for inspection is cut out from an image (image of a board) captured by an inspection image capturing unit to be used as an inspection image, and the inspection image is compared with a reference image and an adjacent image. It is disclosed that the substrate is inspected by
基板を製造している現場において、基板製品の迅速かつ正確な検査を実現することが求められている。 2. Description of the Related Art At the site where printed circuit boards are manufactured, it is required to realize quick and accurate inspection of printed circuit board products.
本発明は、上述の課題に鑑みてなされたものである。本発明の目的の一つは、基板製品の迅速かつ正確な検査を行うことによって、生産性を向上させる技術を提供することである。 The present invention has been made in view of the above problems. One of the objects of the present invention is to provide a technique for improving productivity by performing rapid and accurate inspection of circuit board products.
本発明によれば、
所定の原料に加工処理を行って検査対象基板を得る工程と、
検査装置が、機械学習によって生成された識別器を用いて処理することにより、前記検査対象基板の異常の有無を判断する工程と、
前記異常有基板に対し、当該異常有基板が分類された前記グループに応じた後処理を実行して、製品基板を得る工程と、
を備える基板の製造方法が提供される。
According to the invention,
a step of processing a predetermined raw material to obtain a substrate to be inspected;
a step in which an inspection apparatus determines whether or not there is an abnormality in the substrate to be inspected by processing using a discriminator generated by machine learning;
obtaining a product substrate by performing post-processing on the abnormal substrate according to the group into which the abnormal substrate is classified;
There is provided a method of manufacturing a substrate comprising:
本発明によれば、基板製品の生産性を向上させることができる。 ADVANTAGE OF THE INVENTION According to this invention, productivity of a board|substrate product can be improved.
本発明は、基板の製造方法に関する。以下の説明では、セラミックス基板およびセラミックス回路基板の製造方法について例示するが、本発明は、その他の種類の基板の製造方法についても適用できる。その場合、以下に説明する内容を、当業者の知識に基づいて、種々の変更、改良等を行うことが許容される。ここで、セラミックス基板は、原料粉を形成および焼結することによって生成されるセラミックスの板である。セラミックス回路基板とは、先述のセラミックス基板と金属板(例えば銅版やアルミ板など)とをろう材などを用いて接合した複合体(セラミックス金属複合体)に、レジスト塗布、エッチング、メッキ処理を行って、所望の回路パターンを形成したものである。 The present invention relates to a substrate manufacturing method. In the following description, the methods for manufacturing ceramic substrates and ceramic circuit substrates are exemplified, but the present invention can also be applied to methods for manufacturing other types of substrates. In that case, it is permissible to make various changes, improvements, etc. to the contents described below based on the knowledge of those skilled in the art. Here, the ceramic substrate is a ceramic plate produced by forming and sintering raw material powder. A ceramic circuit board is a composite (ceramic-metal composite) in which the aforementioned ceramic board and metal plate (e.g., copper plate, aluminum plate, etc.) are bonded using brazing material, etc., and then subjected to resist coating, etching, and plating. Then, a desired circuit pattern is formed.
以下、本発明の実施の形態について、図面を用いて説明するが、本発明はこれらに限定されて解釈されるべきものではなく、本発明の要旨を逸脱しない限りにおいて、当業者の知識に基づいて、種々の変更、改良等を行うことができる。実施形態に開示されている複数の構成要素は、適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素からいくつかの構成要素を削除してもよいし、異なる実施形態の構成要素を適宜組み合わせてもよい。 Embodiments of the present invention will be described below with reference to the drawings. Various modifications, improvements, etc. may be made. A plurality of constituent elements disclosed in the embodiments can be appropriately combined to form various inventions. For example, some constituent elements may be omitted from all the constituent elements shown in the embodiments, or constituent elements of different embodiments may be combined as appropriate.
[第1実施形態]
図1は、本発明に係る基板の製造方法の流れを概略的に示すフローチャートである。図1に示されるように、本発明に係る基板の製造方法は、検査対象の基板を製造する基板製造工程(S10)、検査対象基板の異常の有無を検査する検査工程(S20)、異常が検出された基板に対して後処理を行う後処理工程(S30)、および、合格品と認定された基板を梱包する出荷工程(S40)を含む。図示されるように、S30の後処理工程は、S20の検査工程で検査対象基板に異常が見つかった場合に実行される。S20の検査工程で検査対象基板に異常が見つからなかった場合、S30の後処理工程はスキップされ、S40の出荷工程に遷移する。以下、各工程の詳細について説明する。
[First embodiment]
FIG. 1 is a flow chart schematically showing the flow of the substrate manufacturing method according to the present invention. As shown in FIG. 1, the substrate manufacturing method according to the present invention includes a substrate manufacturing step (S10) for manufacturing a substrate to be inspected, an inspection step (S20) for inspecting whether or not there is an abnormality in the inspection target substrate, It includes a post-processing step (S30) in which post-processing is performed on the detected substrates, and a shipping step (S40) in which substrates certified as acceptable products are packed. As shown, the post-processing step of S30 is executed when an abnormality is found in the inspection target substrate in the inspection step of S20. If no abnormality is found in the inspection target board in the inspection process of S20, the post-processing process of S30 is skipped, and the process proceeds to the shipping process of S40. Details of each step will be described below.
<S10:基板製造工程>
本工程では、所定の基板原料に様々な加工処理を行うことによって、検査対象基板が製造される。検査対象基板がセラミックス基板である場合、特に限定されないが、例えば以下に示すような加工処理が行われる。まず、セラミック原料粉と様々な添加剤(焼結助剤、有機バインダー、可塑剤、分散剤、および離型剤など)とを混ぜ合わせたものを、押出成形法やテープ成形法といった成形方法を利用してシート状に成形する(成形処理)。これにより、シート状のセラミックス成形体が得られる。成形処理で得られたシート状のセラミックス成形体は、所定のワークサイズに打ち抜かれる(打抜処理)。そして、セラミックス成形体を、空気中、または、窒素ガスや炭酸ガスなど不活性ガス雰囲気中で加熱して有機バインダーを脱脂する(脱脂処理)。その後、セラミックス成形体を高温度の非酸化性雰囲気中で所定時間かけて焼結させる(焼結処理)。これらの加工処理を経て、検査対象のセラミックス基板が得られる。また、検査対象基板がセラミック回路基板である場合、特に限定されないが、例えば以下に示すような加工処理が行われる。まず、上述の成形処理~焼結処理によって得られたセラミックス基板に、金属板(例えば、銅板やアルミ板など)をろう材などを用いて接合する(金属板接合処理)。これにより、セラミックス金属複合体が得られる。そして、セラミックス金属複合体の金属版の表面にレジストを塗布して所望の回路パターンを描き(レジスト塗布処理)、エッチング剤によって金属版の表面を侵食させる(エッチング処理)。これにより、金属板の表面に所望の回路パターンが形成される。さらに、形成された回路パターンに保護メッキを施す(メッキ処理)。これらの加工処理を経て、検査対象のセラミックス回路基板が得られる。
<S10: Substrate manufacturing process>
In this step, a substrate to be inspected is manufactured by subjecting a predetermined substrate raw material to various processing treatments. If the substrate to be inspected is a ceramics substrate, the processing is performed as follows, for example, although it is not particularly limited. First, a mixture of ceramic raw powder and various additives (sintering aids, organic binders, plasticizers, dispersants, mold release agents, etc.) is molded by a molding method such as extrusion molding or tape molding. It is used to form a sheet (forming process). Thereby, a sheet-like ceramic compact is obtained. A sheet-shaped ceramic molded body obtained by the molding process is punched into a predetermined work size (punching process). Then, the ceramic compact is heated in the air or in an inert gas atmosphere such as nitrogen gas or carbon dioxide gas to remove the organic binder (degreasing treatment). After that, the ceramic compact is sintered in a non-oxidizing atmosphere at a high temperature over a predetermined period of time (sintering process). Through these processing treatments, a ceramic substrate to be inspected is obtained. Further, when the substrate to be inspected is a ceramic circuit substrate, although not particularly limited, for example, processing such as the following is performed. First, a metal plate (for example, a copper plate, an aluminum plate, etc.) is joined to the ceramic substrate obtained by the above-described molding process to sintering process using a brazing material or the like (metal plate joining process). A ceramic-metal composite is thus obtained. Then, a resist is applied to the surface of the metal plate of the ceramic-metal composite to draw a desired circuit pattern (resist coating process), and the surface of the metal plate is eroded by an etchant (etching process). Thereby, a desired circuit pattern is formed on the surface of the metal plate. Furthermore, protective plating is applied to the formed circuit pattern (plating process). Through these processing treatments, a ceramic circuit board to be inspected is obtained.
<S20:検査工程>
本工程では、基板検査用の装置(以下、「基板検査装置」と表記)が、上述の基板製造工程で得られた基板に異常があるか否かを検査する。
<S20: Inspection step>
In this step, a substrate inspection device (hereinafter referred to as a “substrate inspection device”) inspects whether or not there is an abnormality in the substrate obtained in the substrate manufacturing process described above.
<<基板検査装置の機能構成例>>
図2は、第1実施形態の基板検査装置の機能構成を例示する図である。図2に示されるように、本実施形態の基板検査装置10は、画像取得部110、異常判断部120を備える。
<<Example of functional configuration of circuit board inspection device>>
FIG. 2 is a diagram illustrating the functional configuration of the board inspection apparatus of the first embodiment. As shown in FIG. 2 , the
画像取得部110は、検査対象基板を異なる条件下で撮影することによって生成された、複数の画像を取得する。検査対象基板の画像は、図示しない撮像装置を用いて生成される。一例として、複数の撮像装置を用いて検査対象基板を様々な角度から撮影することによって、その検査対象基板の複数の画像が生成される。他の一例として、検査対象基板に照射される光の特徴(光の波長や光量など)を変えながら、1つ以上の撮像装置を用いて検査対象基板を複数回撮影することによって、その検査対象基板の複数の画像が生成される。画像取得部110は、生成された複数の画像の一部または全部を取得する。
The
異常判断部120は、画像取得部110により取得された複数の画像を、機械学習によって生成された識別器122を用いて処理することにより、検査対象基板の異常の有無を判断する。また、異常判断部120は、さらに、異常があると判断された検査対象基板を複数のグループに分類するように構成されていてもよい。以下では、異常判断部120が、検査対象基板に異常があるか否かを判断し、更に、異常があると判断された検査対象基板をその異常に基づいて複数のグループに分類する例について主に説明する。なお、以下の説明において、「異常があると判断された検査対象基板」を「異常有基板」とも表記する。
The
ここで、識別器122は、既知の機械学習アルゴリズム(例えば、ディープラーニングやSVM(Support Vector Machine)など)を利用して、検査対象基板上の異常を検出可能に構築された学習モデルである。例えば、学習用のデータセット(基板に生じ得る異常の画像データと、その異常の種類を識別する情報との組み合わせ)を用いて学習を行うことにより、画像の特徴量から、基板上に異常が存在するか否か、および、基板上に異常が存在する場合にはその異常の種類は何かを判定可能な識別器122が構築される。なお、識別器122を構築するために利用される機械学習アルゴリズムは、検査対象基板が有する各種異常を識別または分類できるものであれば、特に限定されない。識別器122は、画像取得部110により取得された検査対象基板の画像を入力として受け付けると、機械学習により構築されたモデルに基づいて、当該画像に写っている検査対象基板が異常を有する基板(異常有基板)であるか否かを判定する。また、識別器122は、検査対象基板が異常有基板と判定される場合には、当該基板が有する異常の種類を示す情報を更に出力する。異常判断部120は、識別器122から出力される情報を基に、検査対象基板が異常有基板か否かを判別できる。また、検査対象基板が異常有基板と判断された場合、異常判断部120は、識別器122から出力される情報を基に当該基板が有する異常の種類を識別することができる。
Here, the
一例として、検査対象基板がセラミックス基板である場合、識別器122は、入力された検査対象基板の画像について、例えば当該セラミックス基板に生じたクラック、基板表面の汚れや異物の存在、傷、欠けまたは凹凸などを「異常」として検出するように構築される。この場合、異常判断部120は、識別器122から出力される情報を基に、セラミックス基板に生じたクラック、基板表面の汚れや異物の存在、傷、欠けまたは凹凸を、基板の異常として判別することができる。他の一例として、検査対象基板が回路基板である場合、識別器122は、入力された検査対象基板の画像について、例えば基板表面の汚れや異物の存在、傷、または凹凸などを「異常」として検出するように構築される。この場合、異常判断部120は、識別器122から出力される情報を基に、セラミックス基板に生じたクラック、少なくとも、基板表面の汚れや異物の存在、傷、または凹凸を、基板の異常として判別することができる。また、識別器122は、上述したような基板に実在する異常のほか、基板に実在しない異常(例えばハレーションといった、撮影時の環境や撮像装置の構造などに起因して画像データ上でのみ生じる異常)を識別可能に学習されていてもよい。
As an example, when the substrate to be inspected is a ceramic substrate, the
ここで、異常有基板が有する異常の種類によって、その基板の取り扱い(後処理)は異なってくる。例えば、異常有基板として判断された検査対象基板について、識別器122の出力情報が「基板に実在しない異常」のみを異常の種類として含んでいる場合、その基板には実質的な異常はないと言える。この場合、その基板は、特別な後処理を必要とせず、そのままの状態で合格品として出荷ことができる。また例えば、異常有基板として判断された検査対象基板について、識別器122の出力情報が「基板に実在する異常」を異常の種類として含んでいる場合、その基板に対しては何らかの後処理が必要となる。そして、基板に対して行うべき後処理は、その基板が有する異常に応じて変わる。例えば、異常有基板として判断された検査対象基板の異常が、基板表面上に付着した汚れや異物である場合、その基板は、所定の洗浄処理を行った後、合格品として出荷することができる。また例えば、異常有基板として判断された検査対象基板の異常が軽度の傷などである場合、その基板は、所定の修復処理を行った後、合格品として出荷することができる。また例えば、異常有基板として判断された検査対象基板の異常が修復の見込みがないほど重度のクラックや傷などである場合、その基板は、例えば廃棄処分される。
Here, the handling (post-processing) of the abnormal substrate differs depending on the type of abnormality that the abnormal substrate has. For example, if the output information of the
このように、異常有基板と判断された検査対象基板は、その基板が有する異常の種類に応じてその後の取り扱いが変わる。そこで、異常判断部120は、異常有基板として判断された基板が有する異常の種類に基づいて、その基板が属するグループ(すなわち、異常の種類に基づいて分類されるグループ)を判別する。例えば、識別器122に検査対象基板の画像を入力した結果、その検査対象基板が異常有基板と判断され、当該基板が有する異常の種類として「基板に実在しない異常」および「基板表面の汚れや異物による異常」を示す出力が得られたとする。この場合、異常判断部120は、識別器122の出力に基づいて、異常有基板が「基板に実在しない異常」に対応するグループ、および、「基板表面の汚れや異物による異常」に対応するグループに属すると判断する。
In this way, a substrate to be inspected that is determined to have an abnormality is handled differently depending on the type of abnormality that the substrate has. Therefore, the
<<基板検査装置のハードウエア構成例>>
基板検査装置10の各機能構成部は、各機能構成部を実現するハードウエア(例:ハードワイヤードされた電子回路など)で実現されてもよいし、ハードウエアとソフトウエアとの組み合わせ(例:電子回路とそれを制御するプログラムの組み合わせなど)で実現されてもよい。以下、基板検査装置10の各機能構成部がハードウエアとソフトウエアとの組み合わせで実現される場合について、さらに説明する。
<<Example of Hardware Configuration of Circuit Board Inspection Device>>
Each functional component of the
図3は、基板検査装置10のハードウエア構成を例示するブロック図である。なお、図3に示される基板検査装置10のハードウエア構成はあくまで一例であり、基板検査装置10のハードウエア構成は図2の構成に限定されない。
FIG. 3 is a block diagram illustrating the hardware configuration of the
図3に示されるように、基板検査装置10は、バス1010、プロセッサ1020、メモリ1030、ストレージデバイス1040、入出力インタフェース1050、及びネットワークインタフェース1060を有する。
As shown in FIG. 3,
バス1010は、プロセッサ1020、メモリ1030、ストレージデバイス1040、入出力インタフェース1050、及びネットワークインタフェース1060が、相互にデータを送受信するためのデータ伝送路である。ただし、プロセッサ1020などを互いに接続する方法は、バス接続に限定されない。
A
プロセッサ1020は、CPU(Central Processing Unit) やGPU(Graphics Processing Unit)などで実現されるプロセッサである。
The
メモリ1030は、RAM(Random Access Memory)などで実現される主記憶装置である。
The
ストレージデバイス1040は、HDD(Hard Disk Drive)、SSD(Solid State Drive)、メモリカード、又はROM(Read Only Memory)などで実現される補助記憶装置である。ストレージデバイス1040は基板検査装置10の各機能(画像取得部110、異常判断部120など)を実現するプログラムモジュールを記憶している。プロセッサ1020がこれら各プログラムモジュールをメモリ1030上に読み込んで実行することで、そのプログラムモジュールに対応する各機能が実現される。
The
入出力インタフェース1050は、基板検査装置10と周辺機器とを接続するためのインタフェースである。図3の例では、撮像装置1052および入出力用機器1054が、入出力インタフェース1050を介して基板検査装置10に接続されている。撮像装置1052は、CCD(Charge Coupled Device)イメージセンサやCMOS(Complementary Metal-Oxide-Semiconductor)イメージセンサなどを用いて、検査対象基板の画像を生成する装置である。本図の例では、1台の撮像装置1052が、検査台に載置される検査対象基板Sを撮像範囲に含むように、入出力インタフェース1050を介して基板検査装置10に接続されている。本図の例に限らず、複数台の撮像装置1052が、入出力インタフェース1050を介して基板検査装置10に接続されていてもよい。また、入出力用機器1054は、検査対象基板を撮影するための撮像装置15例えば、マウス、キーボード、スピーカー、ディスプレイ(タッチパネルディスプレイ)などの入出力用機器1054を含む。
The input/
ネットワークインタフェース1060は、基板検査装置10をネットワークに接続するためのインタフェースである。このネットワークは、例えばLAN(Local Area Network)やWAN(Wide Area Network)である。ネットワークインタフェース1060がネットワークに接続する方法は、無線接続であってもよいし、有線接続であってもよい。
A
<<基板検査装置により実行される処理の流れ>>
図4を用いて、本実施形態の基板検査装置10により実行される処理について説明する。図4は、第1実施形態の基板検査装置10により実行される処理の流れを例示するフローチャートである。
<<Flow of Processing Executed by Board Inspection Apparatus>>
Processing executed by the
まず、画像取得部110が、入出力インタフェース1050等を介して接続された撮像装置1052から、検査対象基板の画像を取得する(S202)。異常判断部120は、画像取得部110により取得された検査対象基板の画像を、機械学習によって予め構築された識別器122に入力する(S204)。そして、異常判断部120は、検査対象基板の画像を入力することで識別器122から得られる出力結果に基づいて、異常判断部120は、検査対象基板が異常有基板か否かを判別する(S206)。検査対象基板について異常が検出された場合(S206:YES)、異常判断部120は、異常があると判断された検査対象基板(異常有基板)について、その基板の分類先のグループを識別器122の出力結果(異常の種類)に基づいて特定する(S208)。そして、異常判断部120は、S208の処理で特定したグループに関する情報を、例えば基板検査装置10に接続されたディスプレイやランプなどを介して、製品基板の検査業務を行う人物に通知する(S210)。製品基板の検査業務を行う人物は、この通知に応じて、異常有基板と判断された検査対象基板を後処理工程に送る。一方、検査対象基板について異常が検出されなかった場合(S206:NO)、異常判断部120は、検査対象基板を合格品として判定する(S212)。製品基板の検査業務を行う人物は、異常判断部120により合格品と判定された基板を、後述の出荷工程に送る。
First, the
<<変形例>>
ここで、異常判断部120は、異常有基板を異常に基づいて分類する処理を行わなくてもよい。図12は、第1実施形態の変形例の基板検査装置10により実行される処理の流れを例示するフローチャートである。
<<Modification>>
Here, the
図12のS502~S506、およびS510の処理は、それぞれ、図4のS202~S206およびS210の処理と同様である。S506の処理において、検査対象基板について異常が検出された場合(S506:YES)、本変形例の異常判断部120は、基板検査装置10に接続されたディスプレイなどの出力用機器を介して、検査対象基板の異常を通知する(S508)。例えば、異常判断部120は、検査対象基板が異常有基板か否かを示す情報、検査対象基板において検出された異常の種類(汚れや異物の付着、クラック、傷、欠けまたは凹凸など)を示す情報、または、異常の検出位置を示す情報などを、出力用機器を介して通知する。この情報は、製品基板の検査業務に携わる人物が、検査対象基板に異常があるか否かを判断したり、検査対象基板で検出された異常の種類やその検出位置などを把握したりする際の手助けとなる。このような情報により、異常のある検査対象基板に対する後処理を円滑に進める効果が見込める。
The processes of S502-S506 and S510 in FIG. 12 are the same as the processes of S202-S206 and S210 in FIG. 4, respectively. In the process of S506, if an abnormality is detected in the inspection target board (S506: YES), the
<S30:後処理工程>
本工程では、S20の検査工程で基板検査装置10により「異常有基板」として判定された検査対象基板に対して、その基板の異常に基づく後処理を実行する。例えば、異常判断部120により判断された異常の種類が「異物の付着」である場合、当該異物を除去するための後処理(例えば、エアブローや洗浄液による洗浄処理)が実行される。後処理を実行することによって異常が解消された検査対象基板は、製品基板(合格品)として、後述の出荷工程に送られる。
<S30: Post-processing step>
In this step, post-processing is performed based on the abnormality of the board to be inspected, which has been determined by the
ここで、異常有基板に対して実行すべき後処理は、例えば、以下に分類されるような処理の少なくともいずれか1つを含む。
(a)異常有基板をそのまま製品基板とする
(b)異常有基板に付着する異物を除去して製品基板とする
(c)異常有基板の異常(傷や反りなど)を修復して製品基板とする
Here, the post-processing to be performed on the abnormal substrate includes, for example, at least one of the following types of processing.
(a) Use the abnormal board as it is as the product board (b) Remove the foreign matter adhering to the abnormal board and use it as the product board (c) Repair the abnormalities (scratches, warping, etc.) of the abnormal board and use it as the product board to be
上記(a)の後処理は、異常があると判断された検査対象基板を、後処理を行わずに、そのまま合格品として出荷工程に進める処理である。上記(b)の後処理は、検査対象基板の異常を解消する処理の1つであり、例えば、所定のガス(窒素ガスや炭酸ガスなど)または液体(純水など)による、基板に付着した汚れや異物の洗浄除去工程を含む。上記(c)の後処理は、検査対象基板の異常を解消する処理の1つであり、例えば、加熱または研磨による修復工程を含む。例えば、洗浄では取れない、セラミックス基板上のこびりついた汚れや異物、軽度の傷、乾燥シミ等は、研磨処理によって修復することが可能である。また、セラミックス基板などに生じた反りは、軽度のものであれば、加熱処理によって修復することが可能である。また、基板表面上に生じた傷、欠け、または凹凸は、軽度のものであれば、研磨処理によって修復することが可能である。また、上記(c)の後処理として、上述の加熱処理や研磨処理のほか、形成された回路パターンの保護メッキを剥離した上で再度メッキを施す処理が含まれていてもよい。この場合、識別器122は、例えば、メッキの密着不良、膜厚バラツキ、メッキ面の面荒れ、メッキ液残渣のシミ不良といったメッキ部位の異常に関する学習用データセットを用いて機械学習を行い、メッキ部位の異常を検出可能に構築される。そして、識別器122に検査対象基板の画像を入力した結果、その検査対象基板が異常有基板と判断され、当該基板が有する異常の種類として「メッキ部位の異常」を示す出力が得られた場合、異常判断部120はその基板を「基板表面に生じた修復可能な異常」に対応するグループに分類する。
The post-processing of (a) is a process in which a board to be inspected that has been determined to have an abnormality is sent to the shipping process as an acceptable product without being subjected to post-processing. The above (b) post-treatment is one of the treatments for resolving the abnormality of the substrate to be inspected. It includes a process of cleaning and removing dirt and foreign matter. The above (c) post-processing is one of the processes for resolving the abnormality of the substrate to be inspected, and includes, for example, a repair process by heating or polishing. For example, stains, foreign matter, minor scratches, dried stains, etc. on the ceramic substrate that cannot be removed by washing can be repaired by polishing. Moreover, if the warp that occurs in the ceramic substrate or the like is mild, it can be repaired by heat treatment. In addition, minor scratches, chips, or irregularities on the substrate surface can be repaired by polishing. In addition to the heat treatment and polishing treatment described above, the post-treatment (c) may include a treatment of stripping the protective plating of the formed circuit pattern and then plating it again. In this case, the
例えば、S20の検査工程において「異常有基板」と判断された検査対象基板について、その基板が「基板に実在しない異常」に対応するグループのみに分類されたことを示す通知を、基板検査装置10が出力したとする。この場合、製品基板の検査業務を行う人物は、当該異常有基板と判断された検査対象基板そのものに実体的な異常はないとして、上記(a)の後処理を実行すべきと判断することができる。このとき、製品基板の検査業務を行う人物は、念のために、検査対象基板の表面を簡単に確認する等してもよい。
For example, the
また例えば、S20の検査工程において「異常有基板」と判断された検査対象基板について、その基板が「基板表面の汚れや異物による異常」に対応するグループに分類されたことを示す通知を、基板検査装置10が出力したとする。この場合、製品基板の検査業務を行う人物は、当該検査対象基板の表面の汚れや異物を除去するために、上記(b)の後処理を実行すべきと判断できる。
Further, for example, for a board to be inspected that has been determined to be an "abnormal board" in the inspection process of S20, a notification indicating that the board has been classified into a group corresponding to "abnormality due to dirt or foreign matter on the board surface" may be sent to the board. Suppose that the
また例えば、S20の検査工程において「異常有基板」と判断された検査対象基板について、その基板が「基板表面に生じた修復可能な異常」に対応するグループに分類されたことを示す通知を、基板検査装置10が出力したとする。この場合、製品基板の検査業務を行う人物は、当該検査対象基板の表面に生じた異常を修復するために、上記(c)の後処理を実行すべきと判断できる。
Further, for example, for a board to be inspected that has been determined to be an "abnormal board" in the inspection process of S20, a notification indicating that the board has been classified into a group corresponding to "a repairable abnormality occurring on the board surface" Assume that the
また、異常有基板に対して実行すべき後処理は、上記(a)乃至(c)の処理に限定されない。例えば、異常有基板を不合格品として廃棄処分とする処理、または、異常有基板を他の基板の原料として再利用する処理が、異常有基板に対して実行すべき後処理として含まれていてもよい。ここで、異常有基板を他の基板の原料として再利用する処理とは、具体的には、セラミックス基盤部分を解砕して回収したセラミックス骨材を、別のセラミックス基板の材料として再利用する処理や、セラミックス回路基板の金属部分を溶解させて回収した金属を用いて、新たな金属板を生成する処理などである。例えば、S20の検査工程において「異常有基板」と判断された検査対象基板について、その基板が「基板表面に生じた修復不可能な異常」に対応するグループに分類されたことを示す通知を、基板検査装置10が出力した場合に、製品基板の検査業務を行う人物は、異常有基板を不合格品として廃棄処分とする処理、または、異常有基板を他の基板の原料として再利用する処理を実行すべきと判断できる。
Further, post-processing to be performed on an abnormal substrate is not limited to the above-described processing (a) to (c). For example, post-processing to be performed on an abnormal board includes a process of discarding the abnormal board as a rejected product, or a process of reusing the abnormal board as a raw material for another board. good too. Here, the process of reusing the abnormal substrate as a raw material for another substrate specifically means reusing the ceramic aggregate collected by crushing the ceramic base portion as a material for another ceramic substrate. processing, and processing to generate a new metal plate using the metal recovered by dissolving the metal portion of the ceramic circuit board. For example, for a board to be inspected that has been determined to be an "abnormal board" in the inspection process of S20, a notification indicating that the board has been classified into a group corresponding to "an unrecoverable abnormality occurring on the board surface" When the
<S40:出荷工程>
本工程では、S20の検査工程で合格品(製品基板)と判定された検査対象基板、または、S30の後処理工程を経て製品基板として認定された検査対象基板の出荷作業が行われる。製品基板は、梱包された後、所定の配送先へ向けて出荷される。
<S40: Shipping process>
In this step, the inspection target board determined as a passing product (product board) in the inspection process of S20 or the inspection target board certified as a product board through the post-processing process of S30 is shipped. After being packed, the product substrate is shipped to a predetermined delivery destination.
以上で説明した本発明に係る基板の製造方法において、特に検査対象基板を検査する工程(S20の検査工程)では、異常があると判断された検査対象基板(異常有基板)について、その基板が有する異常の種類に基づいてグループが特定される。そして、異常有基板について特定されたグループに関する情報が、製品基板の検査業務に携わる人物に対して通知される。このように基板検査装置10から出力される情報を確認することによって、業務経験の浅い人物(業務に関して習熟度の低い人物)であっても、異常有と判断された検査対象基板がどのような異常を有しているかを正確にかつ迅速に判断し、後の工程を的確に進めることができるようになる。これにより、製品基板の生産性を向上させる効果が見込める。また、本実施形態の基板検査装置10では、製品基板上の異常の有無を検出するために、機械学習が利用されている。これにより、人が画像を確認する場合と比べて、基板の異常の有無に関する判断の偏りが小さくなり、業務にあたる人物に依らず、業務の品質を一定以上に保つ効果も見込める。
In the substrate manufacturing method according to the present invention described above, particularly in the step of inspecting the inspection target substrate (inspection step of S20), the inspection target substrate (abnormal substrate) determined to have an abnormality is A group is identified based on the type of anomaly it has. Then, information about the group identified for the abnormal board is notified to the person involved in the product board inspection work. By confirming the information output from the
また、本実施形態の変形例においては、S20の検査工程において基板検査装置10が検査対象基板の異常を検出した場合、当該検出された異常に関する情報が出力用機器を介して通知される。出力用機器を介して通知される情報は、製品基板の検査業務に携わる人物が、検査対象基板に異常があるか否かを判断したり、検査対象基板で検出された異常の種類やその検出位置などを把握したりする際の手助けとなる。このような情報により、異常のある検査対象基板に対する後処理を円滑に進める効果が見込める。
Further, in the modified example of the present embodiment, when the
[第2実施形態]
本実施形態は、以下で説明する点を除き、上述の第1実施形態と同様である。
[Second embodiment]
This embodiment is similar to the first embodiment described above, except for the points described below.
<機能構成例>
図5は、第2実施形態に係る基板検査装置10の機能構成を示す図である。図5に示されるように、本実施形態の基板検査装置10は、第1実施形態の構成に加えて、後処理特定部130を更に備える。後処理特定部130は、異常有基板に対して実行すべき後処理を、異常判断部120において分類されたグループを用いて特定する。
<Example of functional configuration>
FIG. 5 is a diagram showing the functional configuration of the
<基板検査装置の処理の流れ>
図6を用いて、本実施形態の基板検査装置10により実行される処理について説明する。図6は、第2実施形態に係る基板の製造方法の検査工程(S20)において、基板検査装置10により実行される処理の流れを例示するフローチャートである。図6に示される処理は、図4のS208の処理の後に実行される。
<Processing flow of substrate inspection device>
Processing executed by the
後処理特定部130は、S208の処理で特定された異常有基板のグループに関する情報に基づいて、当該異常有基板に対して実行すべき後処理を決定する(S302)。
The
後処理特定部130は、例えば、図7に示されるような情報を用いて、異常有と判断された検査対象基板に対して実行すべき後処理を決定することができる。図7は、異常有と判断された検査対象基板に対して実行すべき後処理を決定する際に用いられる情報の一例を示す図である。図7には、異常判断部120の処理結果に応じて実行すべき後処理を定義するテーブルが描かれている。具体的には、異常判断部120の処理結果として、分類されたグループを示す情報毎に、実行すべき後処理を示す情報(後処理情報)が紐付けられている。例えば、異常判断部120が、S208の処理において、異常有基板をグループBに分類した場合、後処理特定部130は、図7に例示される情報を用いて、「洗浄除去処理」を当該異常有基板に対して実行すべき後処理として決定することができる。
The
そして、後処理特定部130は、異常有基板に対して実行すべき後処理を示す情報を、例えば基板検査装置10に接続されたディスプレイやランプなどを介して、製品基板の検査業務に携わる人物に通知する(S304)。例えば、後処理特定部130は、検査対象基板に対して実行すべき後処理を通知するメッセージ(例:「洗浄除去処理を行ってください」など)をディスプレイに表示させる。
Then, the
以上、本実施形態では、異常判断部120による異常有基板のグループの分類結果に基づいて、その異常有基板に対して実行すべき後処理が決定される。そして、異常有基板に対して実行すべき後処理を示す情報が、製品基板の検査業務に携わる人物に対して通知される。製品基板の検査業務に携わる人物は、本実施形態の基板検査装置10から出力される情報を確認することによって、異常有と判断された検査対象基板に対してどのような後処理を行なえばよいかを即座に判断することができる。その結果として、製品基板の検査業務の効率化が図れる。
As described above, in the present embodiment, the post-processing to be executed for the abnormal substrate is determined based on the classification result of the abnormal substrate group by the
<第1の変形例>
ここで、検査対象基板に複数種類の異常が存在する場合、その基板に存在する異常の種類によって、当該基板が複数のグループに分類されることもある。例えば、識別器122に検査対象基板の画像を入力した結果、その検査対象基板が異常有基板と判断され、当該基板が有する異常の種類として「基板の汚れや異物による異常」および「基板表面に生じた修復可能な異常」を示す出力が得られたとする。この場合、異常判断部120は、識別器122の出力に基づいて、異常有基板を「基板の汚れや異物による異常」に対応するグループ、および、「基板表面に生じた修復可能な異常」に対応するグループに分類する。そして、後処理特定部130は、「基板の汚れや異物による異常」に対応するグループに対応する上記(b)の後処理と、「基板表面に生じた修復可能な異常」に対応するグループに対応する上記(c)の後処理を、異常有基板に対して実行すべき後処理として決定する。
<First modification>
Here, when a board to be inspected has a plurality of types of abnormalities, the board may be classified into a plurality of groups depending on the type of abnormality present in the board. For example, as a result of inputting an image of a board to be inspected to the
この場合において、各グループに優先順位を示す情報を紐付けておくことで、後処理特定部130は、複数の後処理の実行順序を決定することができる。後処理特定部130は、例えば図8に示すような情報を用いて、異常有と判断された検査対象基板に対して実行すべき後処理の実行銃所を特定することができる。図8は、異常有と判断された検査対象基板に対して実行すべき後処理を決定する際に用いられる情報の一例を示す図である。例えば、検査対象基板の画像を識別器122に入力した結果、当該基板が「グループB」および「グループC」に分類された場合、後処理特定部130は、図8に例示される情報に基づいて、「洗浄除去処理」および「修復処理」を、異常有と判断された検査対象基板に対して実行すべき後処理として決定することができる。更に、後処理特定部130は、図8に例示される情報のうち、グループBおよびグループCに対して紐付けられている優先順位を示す情報に基づいて、後処理の実行順序を決定することができる。この場合、後処理特定部130は、「洗浄除去処理」、「修復処理」の順序を、後処理の実行順序として決定する。そして、後処理特定部130は、異常有と判断された検査対象基板に対して実行すべき後処理を示す情報に、実行順序を示す情報を付加して、製品基板の検査業務に携わる人物に通知する。例えば、後処理特定部130は、検査対象基板に対して実行すべき後処理と後処理の実行順序を通知するメッセージ(例:「洗浄除去処理の後、修復処理を行ってください」など)をディスプレイに表示させる。
In this case, the
本変形例の構成によれば、製品基板の検査業務にあたる人物が、異常ありと判断された検査対象基板に対してどのような順序で後処理を行なえばよいかを、容易に判断することができる。これにより、製品検査業務の更なる効率化が見込める。 According to the configuration of this modified example, a person who is in charge of inspecting a product board can easily determine in what order post-processing should be performed on a board to be inspected that has been determined to have an abnormality. can. This is expected to further improve the efficiency of product inspection operations.
<第2の変形例>
本実施形態において、例えば、複数のグループ各々に優先順位が設定されており、後処理特定部130は、グループ毎に設定された優先順位に基づいて、異常有基板に対して実行すべき後処理として、一の後処理を特定するように構成されていてもよい。例えば、ある特定の後処理が他の後処理を包含する関係にある場合には、前者の後処理の優先順位が後者の後処理の優先順位よりも高くなる。具体的な例として、検査対象基板が「修復処理」に対応するグループと「洗浄処理」に対応するグループとに分類されるケースを挙げる。ここで、研磨や再メッキなどの修復処理では、作業時に汚れやカス等が別途付着する可能性があるため、そのような汚れやカスを除去するために必ず基板の洗浄作業をセットで行うことになる。この場合、修復処理の中に洗浄処理が含まれているとも言える。そのため、異常判断部120が検査対象基板の画像を基に異常を判断した結果、当該検査対象基板が「修復処理」に対応するグループと「洗浄処理」に対応するグループに分類された場合、少なくとも修復処理を実行すれば、結果的に、洗浄処理も実行できることになる。このような場合に、例えば図7に示すように、修復処理に対応するグループの優先順位を、洗浄処理に対応するグループの優先順位よりも高く設定しておくことで、後処理特定部130は、当該図7に示される情報を用いて、「修復処理」と「洗浄処理」のうち、より優先順位の高い「修復処理」を実行すべきと判断することができる。図7に例示されるような情報は、例えば、メモリ1030やストレージデバイス1040など、後処理特定部130がアクセス可能な記憶領域に予め記憶される。このような構成により、後処理を含む作業の効率を向上させる効果が見込める。
<Second modification>
In the present embodiment, for example, a priority is set for each of a plurality of groups, and the
[第3実施形態]
本実施形態は、以下で説明する点を除き、上述の第1実施形態と同様である。
[Third embodiment]
This embodiment is similar to the first embodiment described above, except for the points described below.
<機能構成例>
図9は、第3実施形態に係る基板検査装置10の機能構成を例示する図である。図9に示されるように、本実施形態において、異常判断部120は、複数の識別器122を有する。これら複数の識別器122の各々は、属性別に収集された複数の学習用のデータセット(基板に生じた異常の画像とその異常の種類を識別する情報の組み合わせ)を用いて、属性別に構築されている。
<Example of functional configuration>
FIG. 9 is a diagram illustrating the functional configuration of the
ここで、基板の属性は、例えば、基板の種類(例えば基板材料に基づく種類や、セラミックス基板やセラミックス回路基板といった基板の構成に基づく種類など)、または、その基板を製造した場所(例えば、工場または工場内のラインなど)である。但し、基板の属性は、基板に生じる異常の種類に影響を及ぼし得るものであれば、特に限定されない。 Here, the attributes of the board are, for example, the type of the board (for example, the type based on the board material, the type based on the configuration of the board such as a ceramic board or a ceramic circuit board), or the place where the board was manufactured (for example, factory or a line in a factory). However, the attribute of the board is not particularly limited as long as it can affect the type of abnormality that occurs on the board.
本実施形態において、異常判断部120は、検査対象基板の属性を示す情報(以下、「基板属性情報」とも表記)を取得する。そして、異常判断部120は、当該基板属性情報が示す属性に対応する識別器122を、「検査対象基板の異常の有無を判断する際に利用する識別器」として特定する。そして、異常判断部120は、特定した識別器122を用いて、検査対象基板の異常の有無を判断する。
In the present embodiment, the
<処理の流れ>
図10を用いて、本実施形態の基板検査装置10により実行される処理の流れについて説明する。図10は、第3実施形態に係る基板の製造方法の検査工程(S20)において、基板検査装置10により実行される処理の流れを示すフローチャートである。
<Process flow>
The flow of processing executed by the
まず、異常判断部120は、検査対象基板のデータ(基板属性情報)を取得する(S402)。例えば、異常判断部120は、基板検査装置10に接続された入力装置(キーボードやタッチパネル)を介して、検査対象基板の種類や製造場所を示す情報(基板属性情報)の入力を受け付ける。
First, the
異常判断部120は、入力された基板属性情報が示す属性に対応する識別器を、複数の識別器122の中から選択する(S404)。例えば、異常判断部120は、識別器毎に対応する属性を記憶するテーブル(例:図11)を用いて、S402の処理で取得した基板属性情報が示す属性に対応する識別器を選択することができる。図11は、識別器とその識別器に対応する属性とを紐付ける情報の一例を示す図である。図11に例示される情報は、例えば、メモリ1030やストレージデバイス1040などの記憶領域に予め記憶されている。例えば、基板属性情報によって示される属性が「セラミックス基板」である場合、異常判断部120は、図11に例示されるような情報に基づいて、異常判断部120は、セラミックス基板の検査用に構築された識別器Aを選択する。また、基板属性情報によって示される属性が「セラミックス回路基板」である場合、異常判断部120は、図11に例示されるような情報に基づいて、セラミックス回路基板の検査用に構築された識別器Bを選択する。また、基板属性情報によって示される属性が「セラミックス基板」でも「セラミックス回路基板」でもない場合、異常判断部120は、図11に例示されるような情報に基づいて、汎用的に構築された識別器Cを選択する。
The
その後、画像取得部110により検査対象基板の画像が取得されると(S406)、異常判断部120は、当該検査対象基板の画像をS304の処理で選択された識別器122に入力する(S408)。そして、異常判断部120は、検査対象基板の画像を入力することで識別器122から得られる出力結果に基づいて、異常判断部120は、検査対象基板が異常有基板か否かを判別する(S410)。検査対象基板について異常が検出された場合(S410:YES)、異常判断部120は、異常があると判断された検査対象基板(異常有基板)について、その基板の分類先のグループを識別器122の出力結果(異常の種類)に基づいて特定する(S412)。そして、異常判断部120は、S412の処理で特定したグループに関する情報を、例えば基板検査装置10に接続されたディスプレイやランプなどを介して、製品基板の検査業務に携わる人物に通知する(S414)。一方、検査対象基板について異常が検出されなかった場合(S410:NO)、異常判断部120は、検査対象基板を合格品として判定する(S416)。合格品と判定された基板は、梱包作業を経て、製品として出荷される。S406からS416までの処理の流れは、図4のS202からS212までの処理の流れと同様である。
After that, when the image of the substrate to be inspected is acquired by the image acquisition unit 110 (S406), the
以上、本実施形態では、検査対象基板の属性毎に識別器を切り替えて、その基板の異常の有無が判断される。ここで、基板の属性は、その基板に生じ得る異常の種類に影響を与え得る。例えば、基板の材料や構成によって、生じる異常の種類や傾向は変わってくる。また、製造場所で使用している製造用機械には個体差が少なからずあり、基板に生じる異常の種類や傾向は、製造用機械毎に異なる可能性がある。そこで、本実施形態で説明したように、検査対象基板の属性に合った識別器を適宜選択することにより、その基板の異常の有無を判別する精度を向上させる効果が見込める。 As described above, in this embodiment, the discriminator is switched for each attribute of the board to be inspected, and the presence or absence of an abnormality in the board is determined. Here, the attributes of a substrate can affect the types of anomalies that can occur on that substrate. For example, the types and tendencies of abnormalities that occur vary depending on the material and configuration of the substrate. In addition, there are considerable individual differences in the manufacturing machines used at the manufacturing site, and the types and tendencies of abnormalities occurring in substrates may differ from one manufacturing machine to another. Therefore, as described in the present embodiment, by appropriately selecting a discriminator that matches the attributes of the board to be inspected, an effect of improving the accuracy of discriminating whether or not there is an abnormality in the board can be expected.
10 基板検査装置
110 画像取得部
120 異常判断部
122 識別器
130 後処理特定部
1010 バス
1020 プロセッサ
1030 メモリ
1040 ストレージデバイス
1050 入出力インタフェース
1052 撮像装置
1054 入出力用機器
1060 ネットワークインタフェース
10
Claims (13)
検査装置が、機械学習によって生成された識別器を用いて前記検査対象基板の画像を処理することにより、前記検査対象基板の異常の有無を判断し、異常があると判断された前記検査対象基板である異常有基板を、複数のグループに分類する工程と、
前記検査対象基板に異常がある場合、当該検査対象基板の異常に基づく後処理を実行して、製品基板を得る工程と、
を備え、
前記複数のグループは、基板に実在する異常を示すグループと、基板に実在しない異常を示すグループとを含む、基板の製造方法。 a step of processing a predetermined raw material to obtain a substrate to be inspected;
An inspection apparatus determines whether or not there is an abnormality in the inspection target board by processing an image of the inspection target board using a discriminator generated by machine learning, and determining whether the inspection target board has an abnormality. a step of classifying the abnormal substrates into a plurality of groups ;
a step of obtaining a product substrate by performing post-processing based on the abnormality of the inspection target board when the inspection target board has an abnormality;
with
The substrate manufacturing method , wherein the plurality of groups includes a group indicating an abnormality that actually exists in the substrate and a group indicating an abnormality that does not actually exist in the substrate.
請求項1に記載の基板の製造方法。 The abnormality that does not actually exist in the substrate is an abnormality that occurs only in the image due to the environment in which the image is captured or the structure of an imaging device that captures the image.
A method of manufacturing a substrate according to claim 1 .
前記検査装置が、前記優先順位に基づいて、前記異常有基板に対して実行すべき後処理として、一の後処理を特定する、
ことを含む請求項3に記載の基板の製造方法。 A priority is set for each of the plurality of groups,
The inspection device specifies one post-processing as a post-processing to be performed on the abnormal board based on the priority order;
4. The method of manufacturing a substrate according to claim 3, comprising:
前記検査装置が、前記優先順位に基づいて、前記基板に対して実行すべき後処理の実行順序を決定する、
ことを含む請求項3に記載の基板の製造方法。 A priority is set for each of the plurality of groups,
The inspection apparatus determines an execution order of post-processing to be performed on the substrate based on the priority.
4. The method of manufacturing a substrate according to claim 3, comprising:
前記異常有基板が有する異常の種類を識別し、
当該異常の種類に基づいて前記異常有基板が属するグループを判別する、
ことを含む、請求項1から5のいずれか1項に記載の基板の製造方法。 The inspection device
Identifying the type of abnormality that the abnormal board has,
determining a group to which the abnormal board belongs based on the type of the abnormality;
The method of manufacturing a substrate according to any one of claims 1 to 5, comprising:
前記基板がセラミックス基板である場合、クラック、汚れ・異物の存在、傷、欠けまたは凹凸を、前記基板の異常として判別し、
前記基板が回路基板である場合、表面の汚れ、傷、または凹凸を、前記基板の異常として判別する、
ことを含む請求項1から5のいずれか1項に記載の基板の製造方法。 The inspection device
when the substrate is a ceramic substrate, identifying cracks, presence of dirt/foreign matter, flaws, chipping or irregularities as abnormalities of the substrate;
When the substrate is a circuit substrate, discriminating dirt, scratches, or unevenness on the surface as an abnormality of the substrate;
The method for manufacturing a substrate according to any one of claims 1 to 5, comprising:
請求項1から7のいずれか1項に記載の基板の製造方法。
(a)前記異常有基板を製品基板とする
(b)前記異常有基板に付着する異物を除去して製品基板とする
(c)前記異常有基板の異常を修復して製品基板とする The post-processing to be performed on the board with abnormality, which is the board to be inspected that has been determined to have an abnormality, includes at least one of the following (a) to (c):
A method for manufacturing a substrate according to any one of claims 1 to 7.
(a) Use the board with abnormality as a product board (b) Remove foreign matter adhering to the board with abnormality and use it as a product board (c) Repair the abnormality in the board with abnormality and use it as a product board
請求項8に記載の基板の製造方法。 The post-treatment of (b) includes a step of cleaning and removing foreign matter with a predetermined gas or liquid.
A method of manufacturing a substrate according to claim 8 .
請求項8または9に記載の基板の製造方法。 The post-treatment of (c) includes a repair process by heat or polishing,
10. A method for manufacturing a substrate according to claim 8 or 9.
請求項8から10のいずれか1項に記載の基板の製造方法。 The post-processing to be performed on the board with abnormality, which is the board to be inspected that has been determined to have an abnormality, further includes a process of discarding the board with abnormality as a rejected product.
A method for manufacturing a substrate according to any one of claims 8 to 10.
前記検査装置が、
前記基板の属性を示す基板属性情報を取得し、当該基盤属性情報が示す属性に対応する識別器を用いて、前記基板の異常の有無を判断する、
ことを含む請求項1から11のいずれか1項に記載の基板の製造方法。 The discriminator is constructed for each attribute using learning data corresponding to the attribute of the substrate,
The inspection device
Acquiring board attribute information indicating an attribute of the board, and using an identifier corresponding to the attribute indicated by the board attribute information, determining whether or not the board has an abnormality;
12. The method of manufacturing a substrate according to any one of claims 1 to 11, comprising:
請求項1から12のいずれか1項に記載の基板の製造方法。 The attributes of the substrate include at least one of the substrate type and the location where the substrate was manufactured,
A method for manufacturing a substrate according to any one of claims 1 to 12.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019036966A JP7194613B2 (en) | 2019-02-28 | 2019-02-28 | Substrate manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019036966A JP7194613B2 (en) | 2019-02-28 | 2019-02-28 | Substrate manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020139887A JP2020139887A (en) | 2020-09-03 |
JP7194613B2 true JP7194613B2 (en) | 2022-12-22 |
Family
ID=72280265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019036966A Active JP7194613B2 (en) | 2019-02-28 | 2019-02-28 | Substrate manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7194613B2 (en) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020050591A1 (en) | 1999-04-15 | 2002-05-02 | Tandy Patrick W. | Apparatus and method for marking defective sections of laminate substrates |
JP2004502250A (en) | 2000-06-28 | 2004-01-22 | テラダイン・インコーポレーテッド | Image processing system for use with an inspection system |
JP2004354250A (en) | 2003-05-29 | 2004-12-16 | Nidek Co Ltd | Defect inspection device |
JP2007500841A (en) | 2003-08-01 | 2007-01-18 | アーエスユプシロンエス アウトマチジールンクスジステーメ ゲーエムべーハー | Generation of inspection patterns for audit inspection |
WO2009119314A1 (en) | 2008-03-27 | 2009-10-01 | 東京エレクトロン株式会社 | Method for classifying defects, computer storage medium, and device for classifying defects |
JP2010102050A (en) | 2008-10-22 | 2010-05-06 | Sony Corp | Defect correction device and defect correction method |
US20110032348A1 (en) | 2009-08-07 | 2011-02-10 | Chartered Semiconductor Manufacturing, Ltd. | Defect monitoring in semiconductor device fabrication |
JP2013117490A (en) | 2011-12-05 | 2013-06-13 | Olympus Corp | Inspection system and method for setting recipe |
JP2013156082A (en) | 2012-01-27 | 2013-08-15 | Showa Denko Kk | Surface inspection method and surface inspection device |
JP2018120373A (en) | 2017-01-24 | 2018-08-02 | 株式会社安川電機 | Image recognition apparatus and image recognition method for industrial equipment |
JP2018152063A (en) | 2017-03-14 | 2018-09-27 | オムロン株式会社 | Device, method, and program for evaluating learning results |
-
2019
- 2019-02-28 JP JP2019036966A patent/JP7194613B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020050591A1 (en) | 1999-04-15 | 2002-05-02 | Tandy Patrick W. | Apparatus and method for marking defective sections of laminate substrates |
JP2004502250A (en) | 2000-06-28 | 2004-01-22 | テラダイン・インコーポレーテッド | Image processing system for use with an inspection system |
JP2004354250A (en) | 2003-05-29 | 2004-12-16 | Nidek Co Ltd | Defect inspection device |
JP2007500841A (en) | 2003-08-01 | 2007-01-18 | アーエスユプシロンエス アウトマチジールンクスジステーメ ゲーエムべーハー | Generation of inspection patterns for audit inspection |
WO2009119314A1 (en) | 2008-03-27 | 2009-10-01 | 東京エレクトロン株式会社 | Method for classifying defects, computer storage medium, and device for classifying defects |
JP2010102050A (en) | 2008-10-22 | 2010-05-06 | Sony Corp | Defect correction device and defect correction method |
US20110032348A1 (en) | 2009-08-07 | 2011-02-10 | Chartered Semiconductor Manufacturing, Ltd. | Defect monitoring in semiconductor device fabrication |
JP2013117490A (en) | 2011-12-05 | 2013-06-13 | Olympus Corp | Inspection system and method for setting recipe |
JP2013156082A (en) | 2012-01-27 | 2013-08-15 | Showa Denko Kk | Surface inspection method and surface inspection device |
JP2018120373A (en) | 2017-01-24 | 2018-08-02 | 株式会社安川電機 | Image recognition apparatus and image recognition method for industrial equipment |
JP2018152063A (en) | 2017-03-14 | 2018-09-27 | オムロン株式会社 | Device, method, and program for evaluating learning results |
Also Published As
Publication number | Publication date |
---|---|
JP2020139887A (en) | 2020-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7054450B2 (en) | Work inspection method | |
KR101372995B1 (en) | Defect Inspection Method | |
TW201734460A (en) | Linear inspection system | |
JP2006317266A (en) | Inspection standard setting system, inspection standard setting method and process inspection device | |
Fan et al. | Development of auto defect classification system on porosity powder metallurgy products | |
JP6696323B2 (en) | Pattern inspection apparatus and pattern inspection method | |
JPH1151622A (en) | Method and device for foreign matter inspection | |
JP7194613B2 (en) | Substrate manufacturing method | |
JP2008002935A (en) | Visual inspection method and visual inspection device | |
JP5615076B2 (en) | Component presence / absence determination apparatus and component presence / absence determination method | |
JP7195977B2 (en) | Board inspection device, board inspection method, and program | |
JP2009139133A (en) | Flaw detection method and flaw detector | |
CN115511768A (en) | Wafer defect diagnosis method and diagnosis device | |
JP2013145171A (en) | Appearance inspection device | |
JP2006266943A (en) | Apparatus and method for inspecting defect | |
KR102380099B1 (en) | Range-Based Real-Time Scanning Electron Microscopy Non-Visual Wiener | |
JP2018091771A (en) | Method for inspection, preliminary image selection device, and inspection system | |
JP2010019730A (en) | Critical flaw detecting method | |
JP2002310937A (en) | Method and apparatus for inspection of defect | |
JP2013205320A (en) | Inspection condition determination method, inspection method, and inspection device | |
KR100685726B1 (en) | Method of classifying defects and apparatus for performing the method | |
CN109727887B (en) | Wafer edge defect monitoring method | |
JP2012083128A (en) | Learning type defect discrimination processing system, method, and program | |
JP2006086154A (en) | Macro inspection method | |
JP4474006B2 (en) | Inspection device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211022 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220824 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220830 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221020 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221206 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221212 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7194613 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |