JP5152083B2 - Spectrofluorometer - Google Patents

Spectrofluorometer Download PDF

Info

Publication number
JP5152083B2
JP5152083B2 JP2009097180A JP2009097180A JP5152083B2 JP 5152083 B2 JP5152083 B2 JP 5152083B2 JP 2009097180 A JP2009097180 A JP 2009097180A JP 2009097180 A JP2009097180 A JP 2009097180A JP 5152083 B2 JP5152083 B2 JP 5152083B2
Authority
JP
Japan
Prior art keywords
fluorescence
sample
excitation light
light
spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009097180A
Other languages
Japanese (ja)
Other versions
JP2010249575A5 (en
JP2010249575A (en
Inventor
康之 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2009097180A priority Critical patent/JP5152083B2/en
Publication of JP2010249575A publication Critical patent/JP2010249575A/en
Publication of JP2010249575A5 publication Critical patent/JP2010249575A5/ja
Application granted granted Critical
Publication of JP5152083B2 publication Critical patent/JP5152083B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

本発明は、試料に励起光を照射し該試料から放出される蛍光を高感度で検出する分光蛍光光度計に関する。   The present invention relates to a spectrofluorometer that irradiates a sample with excitation light and detects fluorescence emitted from the sample with high sensitivity.

一般的な分光蛍光光度計は、励起側分光器で取り出した特定波長の励起光を測定対象の試料溶液が収容された試料セルに照射し、試料溶液から放出された蛍光を蛍光側分光器を通して波長分散させて検出器に導入して検出する、という構成を有する。試料セルとしては、通常、石英ガラスなどから成る角型セルが用いられるが、液体クロマトグラフの検出器として用いられる場合にはフローセルが用いられる。   A general spectrofluorometer irradiates a sample cell containing a sample solution to be measured with excitation light of a specific wavelength extracted by the excitation side spectrometer, and the fluorescence emitted from the sample solution passes through the fluorescence side spectrometer. It has a configuration in which it is wavelength-dispersed and introduced into a detector for detection. As the sample cell, a square cell made of quartz glass or the like is usually used, but when used as a detector of a liquid chromatograph, a flow cell is used.

こうした分光蛍光光度計において測定感度を向上させるためには、試料セル内の試料溶液に対してできるだけ多くの励起光を効率的に入射させる必要があり、また発生した蛍光をできるだけ効率的に収集して検出器へ導入する必要がある。こうした目的のため、励起光照射軸上及び蛍光検出軸上にそれぞれ反射ミラーを備えた高感度セルホルダが従来知られている(特許文献1参照)。   In order to improve measurement sensitivity in such a spectrofluorometer, it is necessary to efficiently make as much excitation light as possible incident on the sample solution in the sample cell, and to collect the generated fluorescence as efficiently as possible. Must be introduced into the detector. For this purpose, a high-sensitivity cell holder having reflection mirrors on the excitation light irradiation axis and the fluorescence detection axis has been conventionally known (see Patent Document 1).

蛍光は角型セル内の励起光焦点位置付近を中心としてその周囲360°のあらゆる方向に放出されるが、高感度セルホルダを使用しない場合には、そのうちの蛍光分光器の入射スリットへ入射する蛍光成分のみが検出値に反映される。それに対し、高感度セルホルダを用いた場合には、一旦試料に照射された励起光が反射ミラーで反射されて再度試料を励起する。また、試料から蛍光分光器と正反対方向に放出された蛍光は反射ミラーで折り返されて蛍光分光器の入射スリットに入射される。これによって、通常のセルホルダよりも2〜3倍の強度の蛍光を検出することができる。   Fluorescence is emitted in all directions around 360 ° around the focal position of the excitation light in the square cell. If a high-sensitivity cell holder is not used, the fluorescence incident on the entrance slit of the fluorescence spectrometer is used. Only the component is reflected in the detected value. On the other hand, when a high sensitivity cell holder is used, the excitation light once irradiated on the sample is reflected by the reflection mirror to excite the sample again. Further, the fluorescence emitted from the sample in the direction opposite to the fluorescence spectrometer is folded by the reflection mirror and is incident on the entrance slit of the fluorescence spectrometer. As a result, it is possible to detect fluorescence that is two to three times stronger than a normal cell holder.

高感度セルホルダを用いることで上述したように検出される蛍光の強度は増加するが、反射ミラーを用いているためにその反射波長特性が蛍光スペクトルに含まれることになる。そのため、得られた蛍光スペクトルは必ずしも真の蛍光スペクトルとは言えない。一般的に使用されている反射ミラーは、紫外・可視の波長領域では比較的平坦な反射波長特性を示す。そのため、紫外・可視波長領域の測定を行う場合には反射ミラーの反射波長特性は問題とならないことが多い。   Although the intensity of the fluorescence detected as described above is increased by using the high sensitivity cell holder, the reflection wavelength characteristic is included in the fluorescence spectrum because the reflection mirror is used. For this reason, the obtained fluorescence spectrum is not necessarily a true fluorescence spectrum. A reflection mirror that is generally used exhibits a relatively flat reflection wavelength characteristic in an ultraviolet / visible wavelength region. For this reason, the reflection wavelength characteristics of the reflection mirror are often not a problem when measuring in the ultraviolet / visible wavelength region.

これに対し、例えば特許文献2に開示されているように、カーボンナノチューブの分散評価などのために分光蛍光光度計でフォトルミネッセンスを測定する場合、測定対象のフォトルミネッセンスの波長領域は800〜1600[nm]程度の赤外〜近赤外波長領域に及ぶ。こうした波長領域では反射ミラーの反射波長特性の変動が大きくなる傾向にあるため、試料に対して得られた蛍光スペクトルは真の蛍光スペクトルから大きく乖離することがあり得る。また、高感度セルホルダに使用される反射ミラーとして、耐久性を増すために酸化防止膜のコーティングがなされているミラーを使用する場合には、そうしたコーティングの影響で紫外波長領域でも反射波長特性の変動が大きくなり、真の蛍光スペクトルからの乖離が大きくなることがある。   On the other hand, for example, as disclosed in Patent Document 2, when measuring photoluminescence with a spectrofluorometer for evaluating dispersion of carbon nanotubes, the wavelength region of the photoluminescence to be measured is 800 to 1600 [ nm] in the infrared to near-infrared wavelength region. In such a wavelength region, the reflection wavelength characteristic of the reflection mirror tends to vary greatly, so that the fluorescence spectrum obtained for the sample can deviate greatly from the true fluorescence spectrum. In addition, when using a mirror that is coated with an anti-oxidation film to increase durability as a reflection mirror used in high-sensitivity cell holders, the reflection wavelength characteristics fluctuate even in the ultraviolet wavelength region due to the effect of such coating. May increase and the deviation from the true fluorescence spectrum may increase.

実開平7−23242号公報Japanese Utility Model Publication No. 7-23242 特開2009−31114号公報JP 2009-31114 A

本発明は上記課題を解決するためになされたものであり、その目的とするところは、高感度で且つ試料の真の波長特性に近い蛍光スペクトルを得ることができる分光蛍光光度計を提供することにある。   The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a spectrofluorometer capable of obtaining a fluorescence spectrum with high sensitivity and close to the true wavelength characteristic of a sample. It is in.

上記課題を解決するために成された本発明は、試料に励起光を照射する励起光照射手段と、励起光を受けて試料から放出される蛍光を分光・検出する検出手段と、前記励起光照射手段により試料へ照射され該試料を透過した励起光を試料側へ折り返す第1反射鏡と、試料から蛍光の取り出し方向と逆方向に放出された蛍光を試料側へ折り返す第2反射鏡と、を具備する分光蛍光光度計において、
a)前記第1及び第2反射鏡で反射されて試料に戻される励起光及び蛍光の戻りを阻止する遮光手段と、
b)前記検出手段で得られる検出信号に基づいて、同一試料に対し、前記遮光手段により遮光がなされた状態における所定波長範囲の蛍光スペクトルと、前記遮光手段により遮光がなされない状態における所定波長範囲の蛍光スペクトルとをそれぞれ取得する測定実行手段と、
c)前記測定実行手段により得られる遮光の有無に対応した2つの蛍光スペクトルから、前記第1及び第2反射鏡の影響を反映した補正情報を算出して記憶しておく補正情報取得手段と、
d)目的試料に対し前記遮光手段により遮光がなされない状態における所定波長範囲の蛍光スペクトルを取得したときに、前記補正情報を用いてスペクトルを補正する補正処理手段と、
を備えることを特徴としている。
In order to solve the above problems, the present invention includes an excitation light irradiating means for irradiating a sample with excitation light, a detection means for detecting and analyzing fluorescence emitted from the sample upon receiving the excitation light, and the excitation light. A first reflecting mirror that irradiates the sample by the irradiation means and passes through the sample and returns the excitation light to the sample side; a second reflecting mirror that returns the fluorescence emitted from the sample in the direction opposite to the direction of taking out the fluorescence to the sample side; In a spectrofluorometer comprising:
a) a light shielding means for preventing return of excitation light and fluorescence reflected by the first and second reflecting mirrors and returned to the sample;
b) Based on the detection signal obtained by the detection means, the same spectrum, a fluorescence spectrum in a predetermined wavelength range in a state where light is shielded by the light shielding means, and a predetermined wavelength range in a state where light is not shielded by the light shielding means Measurement execution means for acquiring each of the fluorescence spectra of
c) correction information acquisition means for calculating and storing correction information reflecting the influence of the first and second reflecting mirrors from two fluorescence spectra corresponding to the presence or absence of light shielding obtained by the measurement execution means;
d) correction processing means for correcting the spectrum using the correction information when obtaining a fluorescence spectrum in a predetermined wavelength range in a state where the target sample is not shielded by the light shielding means;
It is characterized by having.

上記遮光手段は、例えば、試料と第1及び第2反射鏡との間のそれぞれの光路中に退避可能に挿入されるシャッタ(遮光板)などとすることができる。また、第1及び第2反射鏡の位置を移動させたりその姿勢を変更したりすることにより、試料から到来する励起光や蛍光がそれら反射鏡に当たらないようにする、或いは、それら反射鏡に当たった励起光や蛍光が試料に戻らないようにする、駆動機構であってもよい。   The light shielding means can be, for example, a shutter (light shielding plate) that is removably inserted into each optical path between the sample and the first and second reflecting mirrors. Also, by moving the positions of the first and second reflecting mirrors or changing their postures, the excitation light and fluorescence coming from the sample are prevented from hitting the reflecting mirrors, or It may be a drive mechanism that prevents the excitation light or fluorescence that hits from returning to the sample.

遮光手段により遮光がなされた状態における所定波長範囲の蛍光スペクトルには、第1及び第2反射鏡の影響、つまりそれら反射鏡自体の波長特性は含まれない。一方、遮光手段により遮光がなされない状態における所定波長範囲の蛍光スペクトルには、第1及び第2反射鏡自体の波長特性が含まれる。そこで補正情報取得手段は、遮光の有無に対応した2つの蛍光スペクトルから、第1及び第2反射鏡の波長特性を反映した補正情報を算出し、これを不揮発性メモリなどに記憶しておく。   The fluorescence spectrum in the predetermined wavelength range in a state where light is shielded by the light shielding means does not include the influence of the first and second reflecting mirrors, that is, the wavelength characteristics of the reflecting mirrors themselves. On the other hand, the fluorescence spectrum in a predetermined wavelength range in a state where light is not shielded by the light shielding means includes the wavelength characteristics of the first and second reflecting mirrors themselves. Therefore, the correction information acquisition means calculates correction information reflecting the wavelength characteristics of the first and second reflecting mirrors from the two fluorescence spectra corresponding to the presence or absence of light shielding, and stores this in a nonvolatile memory or the like.

なお、反射鏡自体が交換されたような場合には補正情報を更新する(即ち、測定実行手段による所定試料の測定を実行し、その結果に基づいて新たな補正情報を算出する)必要があるが、そのほかに、反射鏡が汚れてきた場合、反射鏡が劣化してきた場合、又は反射鏡を洗浄した場合などのように、反射鏡の反射波長特性が変化する可能性がある場合にも補正情報の更新を行うことが好ましい。   When the reflecting mirror itself is exchanged, it is necessary to update the correction information (that is, measure a predetermined sample by the measurement execution unit and calculate new correction information based on the result). In addition to this, it is also corrected if the reflection wavelength characteristics of the reflector may change, such as when the reflector becomes dirty, when the reflector deteriorates, or when the reflector is washed. It is preferable to update the information.

上述したように補正情報には第1及び第2反射鏡の波長特性が反映されているから、目的試料に対し遮光手段により遮光がなされない状態における所定波長範囲の蛍光スペクトルが得られたときに、補正処理手段が補正情報を用いてスペクトルを補正することにより、第1及び第2反射鏡の波長特性の影響を除去したスペクトルを得ることができる。当然、遮光手段による遮光の有無により検出手段で検出される蛍光強度は相違するが、波長特性の差異のみを反映した情報を補正情報としておくことで、反射鏡を用いたときの感度の高さを活かしつつ、反射鏡の波長特性の影響を除去することができる。   As described above, the correction information reflects the wavelength characteristics of the first and second reflecting mirrors. Therefore, when a fluorescence spectrum in a predetermined wavelength range is obtained in a state where the target sample is not shielded by the light shielding means. By correcting the spectrum using the correction information by the correction processing means, it is possible to obtain a spectrum from which the influence of the wavelength characteristics of the first and second reflecting mirrors has been removed. Naturally, the fluorescence intensity detected by the detection means differs depending on whether or not the light is shielded by the light shielding means. However, by making information reflecting only the difference in wavelength characteristics as correction information, the sensitivity when using a reflecting mirror is high. The influence of the wavelength characteristic of the reflecting mirror can be removed while taking advantage of the above.

本発明に係る分光蛍光光度計によれば、検出感度を上げるために配設された反射鏡自体の反射波長特性の影響を除去し、試料の真の、又はそれに近い蛍光スペクトルを得ることができる。それにより、高い感度で正確な蛍光スペクトルを得ることが可能となる。   According to the spectrofluorometer according to the present invention, it is possible to remove the influence of the reflection wavelength characteristic of the reflector itself arranged to increase the detection sensitivity, and to obtain a true or near fluorescence spectrum of the sample. . Thereby, it is possible to obtain an accurate fluorescence spectrum with high sensitivity.

本発明の一実施例による分光蛍光光度計の概略構成図。1 is a schematic configuration diagram of a spectrofluorometer according to an embodiment of the present invention. 本実施例による分光蛍光光度計における測定状態を示す概略図。Schematic which shows the measurement state in the spectrofluorometer by a present Example. 本実施例による分光蛍光光度計における測定手順を示すフローチャート。The flowchart which shows the measurement procedure in the spectrofluorometer by a present Example. 本実施例による分光蛍光光度計で得られる蛍光スペクトルの実測例。An actual measurement example of a fluorescence spectrum obtained with the spectrofluorometer according to this example. 本実施例による分光蛍光光度計で得られる補正関数の実例。The example of the correction function obtained with the spectrofluorometer by a present Example.

以下、本発明の一実施例である分光蛍光光度計について、添付図面を参照して説明する。図1は本実施例による分光蛍光光度計の概略構成図、図2はこの実施例による分光蛍光光度計における測定状態を示す概略図である。   Hereinafter, a spectrofluorometer which is an embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic configuration diagram of a spectrofluorometer according to this embodiment, and FIG. 2 is a schematic diagram showing a measurement state in the spectrofluorometer according to this embodiment.

図1において、光源部1から出射された光は励起側分光器2に導入され、分析制御部10により設定された特定波長の単色光が取り出され、励起光として試料溶液Sが収容された試料セル3に照射される。励起光により励起されて放出された蛍光は蛍光側分光器6に導入され、分析制御部10により設定された特定波長の蛍光が取り出されて検出器7に導入される。検出器7は入射した蛍光の強度に応じた検出信号を出力し、この検出信号がA/D変換器8でデジタル値に変換され、データ処理部9に送られて所定のデータ処理が行われることで蛍光スペクトルが作成される。   In FIG. 1, light emitted from the light source unit 1 is introduced into the excitation-side spectroscope 2, monochromatic light having a specific wavelength set by the analysis control unit 10 is extracted, and a sample solution S is stored as excitation light. The cell 3 is irradiated. The fluorescence excited and emitted by the excitation light is introduced into the fluorescence spectrometer 6, and the fluorescence having a specific wavelength set by the analysis controller 10 is taken out and introduced into the detector 7. The detector 7 outputs a detection signal corresponding to the intensity of the incident fluorescence, and this detection signal is converted into a digital value by the A / D converter 8 and sent to the data processing unit 9 for predetermined data processing. Thus, a fluorescence spectrum is created.

データ処理部9は本発明に特徴的な機能ブロックとして、補正関数演算部91、補正関数記憶部92、を備える。これらの具体的な機能については後述する。分析制御部10は上述したように、励起光の波長、検出対象の蛍光の波長などを設定する等、測定を実行するために各部の動作を制御する。中央制御部11には操作部12及び表示部13が接続され、操作部12による測定条件の入力設定などの受け付けや、表示部13への測定結果の表示制御などを実行する。なお、中央制御部11、分析制御部10、データ処理部9の全て又は一部の機能は、パーソナルコンピュータにインストールされた専用の制御・処理ソフトウエアを実行することにより達成されるようにすることができる。   The data processing unit 9 includes a correction function calculation unit 91 and a correction function storage unit 92 as functional blocks characteristic of the present invention. These specific functions will be described later. As described above, the analysis control unit 10 controls the operation of each unit to perform measurement, such as setting the wavelength of excitation light and the wavelength of fluorescence to be detected. An operation unit 12 and a display unit 13 are connected to the central control unit 11, and reception of measurement condition input settings by the operation unit 12 and display control of measurement results on the display unit 13 are executed. All or part of the functions of the central control unit 11, the analysis control unit 10, and the data processing unit 9 should be achieved by executing dedicated control / processing software installed in the personal computer. Can do.

試料セル3は例えば10mm角の角型セルであり、励起光照射口と反対側には凹面鏡(本発明の第1反射鏡に相当)4が配置され、蛍光側分光器6への蛍光の出射口と反対側には平面鏡(本発明の第2反射鏡に相当)5が配置されている。図2(a)に示すように通常の測定状態では、試料セル3に照射されて該試料セル3を透過した励起光は凹面鏡4に当たって折り返され(且つ集光され)、再び試料セル3に入射する。したがって、凹面鏡4がない場合に比べて試料溶液Sにはより多くの励起光が当たり、それだけ発生する蛍光量が増加する。一方、試料溶液Sから放出された蛍光のうち、蛍光出射口と反対方向に放出された蛍光は平面鏡5に当たって折り返され、もともと蛍光出射口方向へと放出された蛍光とともに出射する。したがって、平面鏡5がない場合に比べて、より多くの蛍光が蛍光側分光器6に導入される。   The sample cell 3 is a square cell of 10 mm square, for example, and a concave mirror (corresponding to the first reflecting mirror of the present invention) 4 is arranged on the side opposite to the excitation light irradiation port, and emission of fluorescence to the fluorescence side spectroscope 6 is performed. A plane mirror (corresponding to the second reflecting mirror of the present invention) 5 is disposed on the side opposite to the mouth. As shown in FIG. 2A, in a normal measurement state, the excitation light irradiated on the sample cell 3 and transmitted through the sample cell 3 strikes the concave mirror 4 and is folded (and collected), and then enters the sample cell 3 again. To do. Therefore, as compared with the case where the concave mirror 4 is not provided, more excitation light hits the sample solution S, and the amount of fluorescence generated accordingly increases. On the other hand, of the fluorescence emitted from the sample solution S, the fluorescence emitted in the direction opposite to the fluorescence emission port is reflected by the plane mirror 5 and emitted together with the fluorescence originally emitted toward the fluorescence emission port. Therefore, more fluorescence is introduced into the fluorescence side spectroscope 6 than when the plane mirror 5 is not provided.

試料セル3と凹面鏡4との間の光路上、及び、試料セル3と平面鏡5との間の光路上には、それぞれシャッタ21、22が挿入自在となっている。シャッタ21、22が挿入された状態(図2(b)参照)では、シャッタは21、22はそれぞれ励起光、蛍光を完全に遮断する。シャッタ21、22自体による反射はないか、或いは無視できる程度に抑えられている。なお、各シャッタ21、22はそれぞれ測定者が設置及び取り外しするものでもよいし、シャッタ開閉機構により測定者の操作に応じて又は後述する測定実行に伴って自動的に開閉するものでもよい。   Shutters 21 and 22 can be inserted on the optical path between the sample cell 3 and the concave mirror 4 and on the optical path between the sample cell 3 and the plane mirror 5, respectively. When the shutters 21 and 22 are inserted (see FIG. 2B), the shutters 21 and 22 completely block excitation light and fluorescence, respectively. There is no reflection by the shutters 21 and 22 themselves, or they are suppressed to a level that can be ignored. Each of the shutters 21 and 22 may be installed and removed by the measurer, or may be automatically opened and closed according to the operation of the measurer by the shutter opening / closing mechanism or in accordance with the measurement execution described later.

図3に示すフローチャートに従って、本実施例の分光蛍光光度計に特徴的な測定動作について説明する。   A characteristic measurement operation of the spectrofluorometer of the present embodiment will be described with reference to the flowchart shown in FIG.

測定者は測定したい試料(目的試料)と同じ波長領域に蛍光を持つ標準試料を用意し、その標準試料を収容した試料セル3を所定位置にセットする(ステップS1)。そのあと測定者が操作部12から補正関数取得処理開始の指示を行うと(ステップS2)、中央制御部11を介してこの指示を受けた分析制御部10は、まず両シャッタ21、22を閉じた、つまり遮光がなされた状態での測定を実行するように各部を制御する(ステップS3)。なお、前述のようにシャッタ21、22の開閉を測定者が手動で行う構成の場合には、シャッタを閉じる操作を行うことを促す表示を表示部13に行い、それがなされたことが例えば測定者によるキー操作で確認されると、実際に測定を開始するようにすればよい。   The measurer prepares a standard sample having fluorescence in the same wavelength region as the sample (target sample) to be measured, and sets the sample cell 3 containing the standard sample at a predetermined position (step S1). After that, when the measurer gives an instruction to start the correction function acquisition process from the operation unit 12 (step S2), the analysis control unit 10 that has received this instruction via the central control unit 11 first closes both shutters 21 and 22. That is, each part is controlled to execute measurement in a state where light is shielded (step S3). In the case where the operator manually opens and closes the shutters 21 and 22 as described above, a display that prompts the user to perform an operation of closing the shutter is performed on the display unit 13 and, for example, the measurement is performed. When it is confirmed by the key operation by the person, the measurement may be actually started.

シャッタ21、22による遮光がなされた状態において、励起側分光器2により励起光の波長が所定波長範囲λEX1〜λEX2で順次設定されるとともに、蛍光側分光器6で1つの励起光波長λEXa,λEXb,…毎に蛍光の波長が所定波長範囲λEM1〜λEM2で走査され、検出器7で得られた検出信号に基づくデータがデータ処理部9に入力される。したがって、データ処理部9では、所定波長範囲に亘る蛍光スペクトルが異なる励起光波長λEXa,λEXb,…毎に得られる。但し、測定に使用する励起光波長、蛍光波長のペアが予め決まっている場合には、その波長ペアのみについて蛍光強度を求めれば十分である。こうして、シャッタ21、22による遮光がなされた状態で、必要な蛍光スペクトルデータFclose(λEX,λEM)が取得される(ステップS4)。 In the state where the light is blocked by the shutters 21 and 22, the excitation side spectroscope 2 sequentially sets the wavelength of the excitation light in a predetermined wavelength range λEX1 to λEX2, and the fluorescence side spectroscope 6 sets one excitation light wavelength λEXa, λEXb. ,... Are scanned in the predetermined wavelength range λEM1 to λEM2, and data based on the detection signal obtained by the detector 7 is input to the data processing unit 9. Therefore, in the data processing unit 9, the fluorescence spectrum over a predetermined wavelength range is obtained for each different excitation light wavelength λEXa, λEXb,. However, when a pair of excitation light wavelength and fluorescence wavelength used for measurement is determined in advance, it is sufficient to obtain the fluorescence intensity for only that wavelength pair. In this way, necessary fluorescence spectrum data Fclose (λEX, λEM) is obtained in a state where the light is blocked by the shutters 21 and 22 (step S4).

次に分析制御部10は、両シャッタ21、22を開いた、つまり遮光がなされていない状態での測定を実行するように各部を制御する(ステップS5)。シャッタ21、22の開閉を測定者が手動で行う構成の場合に シャッタを開ける操作を行うことを促す表示を表示部13に行い、それがなされたことが例えば測定者によるキー操作で確認されると、実際に測定を開始するようにすればよい。シャッタ21、22による遮光がなされない状態で、必要な蛍光スペクトルデータFopen(λEX,λEM)が取得される(ステップS6)。 Next, the analysis control unit 10 controls each unit to perform measurement in a state where both the shutters 21 and 22 are opened, that is, not shielded from light (step S5). In a configuration in which the measurer manually opens and closes the shutters 21 and 22, a display for prompting the user to open the shutter is displayed on the display unit 13, and it is confirmed, for example, by a key operation by the measurer. And actually start the measurement. Necessary fluorescence spectrum data Fopen (λEX, λEM) is acquired in a state where light is not blocked by the shutters 21 and 22 (step S6).

蛍光スペクトルデータFclose(λEX,λEM)取得時には励起光及び蛍光の光路上に凹面鏡4及び平面鏡5が存在しないから、それら鏡4、5の反射波長特性を含まない。一方、蛍光スペクトルデータFopen(λEX,λEM)取得時には励起光及び蛍光の光路上に凹面鏡4及び平面鏡5が存在するから、それら鏡4、5の反射波長特性を含む。補正関数演算部91は蛍光スペクトルデータFclose(λEX,λEM)及び蛍光スペクトルデータFopen(λEX,λEM)から凹面鏡4及び平面鏡5の反射波長特性を反映した補正関数を算出する(ステップS7)。具体的には、Fopen(λEX,λEM)/Fclose(λEX,λEM)を計算し、その関数内の最大値が1になるように規格化して補正関数Q(λEX,λEM)を求める。なお、Fopen(λEX,λEM)/Fclose(λEX,λEM)は同一の励起光波長、蛍光波長における比を求める演算である。上記のように規格化した補正関数を求めることで感度の差異に依存する強度差の影響がなくなり、補正関数Q(λEX,λEM)は基本的に凹面鏡4及び平面鏡5の反射波長特性のみを反映したものとなる。こうして求めた補正関数Q(λEX,λEM)が補正関数記憶部92に保存される。   When the fluorescence spectrum data Fclose (λEX, λEM) is acquired, the concave mirror 4 and the plane mirror 5 are not present on the optical paths of the excitation light and the fluorescence, and thus the reflection wavelength characteristics of the mirrors 4 and 5 are not included. On the other hand, when the fluorescence spectrum data Fopen (λEX, λEM) is acquired, the concave mirror 4 and the plane mirror 5 exist on the optical paths of the excitation light and the fluorescence, and therefore the reflection wavelength characteristics of the mirrors 4 and 5 are included. The correction function calculator 91 calculates a correction function reflecting the reflection wavelength characteristics of the concave mirror 4 and the plane mirror 5 from the fluorescence spectrum data Fclose (λEX, λEM) and the fluorescence spectrum data Fopen (λEX, λEM) (step S7). Specifically, Fopen (λEX, λEM) / Fclose (λEX, λEM) is calculated and normalized so that the maximum value in the function becomes 1, and the correction function Q (λEX, λEM) is obtained. Note that Fopen (λEX, λEM) / Fclose (λEX, λEM) is an operation for obtaining a ratio at the same excitation light wavelength and fluorescence wavelength. By obtaining the normalized correction function as described above, the influence of the intensity difference depending on the sensitivity difference is eliminated, and the correction function Q (λEX, λEM) basically reflects only the reflection wavelength characteristics of the concave mirror 4 and the plane mirror 5. Will be. The correction function Q (λEX, λEM) thus determined is stored in the correction function storage unit 92.

上記のように補正関数Q(λEX,λEM)が補正関数記憶部92に保存されている状態の下で、目的試料の蛍光スペクトルを測定する場合にはステップS8以降のようにする。即ち、目的試料を収容した試料セル3を所定位置にセットし、シャッタ21、22を開放した状態、つまりシャッタ21、22による遮光をしない状態での測定を実行する(ステップS8)。この測定により、蛍光スペクトルデータFunk(λEX,λEM)が取得される(ステップS9)。その後、データ処理部9では補正関数記憶部92から読み出された補正関数を用いて、Funk(λEX,λEM)/Q(λEX,λEM)の演算が実行され、それにより凹面鏡4及び平面鏡5の反射波長特性の影響を除いた、真の蛍光スペクトルが得られる(ステップS10)。   When measuring the fluorescence spectrum of the target sample under the condition where the correction function Q (λEX, λEM) is stored in the correction function storage unit 92 as described above, the process is performed from step S8. That is, the sample cell 3 containing the target sample is set at a predetermined position, and measurement is performed in a state where the shutters 21 and 22 are opened, that is, a state where the shutters 21 and 22 are not shielded (step S8). By this measurement, fluorescence spectrum data Funk (λEX, λEM) is acquired (step S9). Thereafter, the data processing unit 9 uses the correction function read from the correction function storage unit 92 to calculate Funk (λEX, λEM) / Q (λEX, λEM), and thereby the concave mirror 4 and the plane mirror 5 are operated. A true fluorescence spectrum excluding the influence of the reflection wavelength characteristic is obtained (step S10).

例えば凹面鏡4及び平面鏡5の波長毎の反射率、つまりは理論的な(或いは設計上の)反射波長特性が既知であれば、それから理論的な補正関数を求めることは可能である。しかしながら、実際の装置では、使用する鏡の鏡面形状が理想的な状態からズレていたり(歪み等)、鏡を設置する際の位置ズレがあったりするため、多くの場合、上記のような理論的に求まる状態の通りにはならない。その結果、こうした補正関数を用いて、測定された蛍光スペクトルの補正処理を実行しても、真の蛍光スペクトルが求まらない。それに対し、本実施例による蛍光分光光度計では、実際の装置で測定された結果に基づいて凹面鏡4及び平面鏡5の反射波長特性の影響を除去するための補正関数を算出している。このため、この補正関数を用いて、測定された蛍光スペクトルの補正処理を実行することにより、真の蛍光スペクトル又はそれにきわめて近い蛍光スペクトルを得ることができる。   For example, if the reflectivity for each wavelength of the concave mirror 4 and the plane mirror 5, that is, the theoretical (or design) reflection wavelength characteristic, is known, the theoretical correction function can be obtained therefrom. However, in actual devices, the mirror surface shape of the mirror to be used is deviated from an ideal state (distortion, etc.), and there is a positional deviation when the mirror is installed. It does not follow the desired condition. As a result, even if correction processing of the measured fluorescence spectrum is executed using such a correction function, a true fluorescence spectrum cannot be obtained. On the other hand, in the fluorescence spectrophotometer according to the present embodiment, a correction function for removing the influence of the reflection wavelength characteristics of the concave mirror 4 and the plane mirror 5 is calculated based on the result measured by an actual apparatus. For this reason, it is possible to obtain a true fluorescence spectrum or a fluorescence spectrum very close to it by executing correction processing of the measured fluorescence spectrum using this correction function.

図4は本実施例による分光蛍光光度計で得られる蛍光スペクトルの実測例であり、(a)はシャッタ21、22を開放した状態における蛍光スペクトル、(b)はシャッタ21、22を閉鎖した状態における蛍光スペクトルである。これは、界面活性剤を用いて単層カーボンナノチューブ(以下、SWNTと称す)を孤立分散させた水溶液を試料とし、励起光を可視光(波長:644nm)として赤外〜近赤外の波長領域の蛍光スペクトルを測定した結果である。図中、蛍光スペクトル上のそれぞれのピークトップはSWNTの直径分布(カイラリティ)を示している。   4A and 4B are actual measurement examples of the fluorescence spectrum obtained by the spectrofluorophotometer according to the present embodiment. FIG. 4A is a fluorescence spectrum when the shutters 21 and 22 are opened, and FIG. 4B is a state where the shutters 21 and 22 are closed. Is a fluorescence spectrum. This sample uses an aqueous solution in which single-walled carbon nanotubes (hereinafter referred to as SWNTs) are isolated and dispersed using a surfactant as a sample, and the excitation light is visible light (wavelength: 644 nm), and the infrared to near-infrared wavelength region. It is the result of having measured the fluorescence spectrum. In the figure, each peak top on the fluorescence spectrum indicates the SWNT diameter distribution (chirality).

溶液中に分散している異なる直径のSWNTの分散比率は、ピークトップの高さの比較で評価することができる。図4(a)と(b)とを比較すると、SWNTのカイラリティ(7,5)、(7,6)のピークトップの高さが逆転していることが分かる。これは、図4(a)では鏡4、5の反射波長特性が測定値に含まれてしまっているためであり、この状態ではSWNTの直径分布を定量的に正確に考察することはできない。これに対し、本実施例のように実測結果に基づいて求めた補正関数を適用して蛍光スペクトルを補正することで、図4(b)に示すような形状で、且つ図4(a)に示す程度の強度を有する、高感度な真の蛍光スペクトルを求めることができる。   The dispersion ratio of SWNTs of different diameters dispersed in the solution can be evaluated by comparing the peak top height. Comparing FIGS. 4A and 4B, it can be seen that the peak top heights of SWNT chiralities (7, 5) and (7, 6) are reversed. This is because in FIG. 4A, the reflection wavelength characteristics of the mirrors 4 and 5 are included in the measured values, and in this state, the SWNT diameter distribution cannot be considered quantitatively and accurately. On the other hand, by correcting the fluorescence spectrum by applying the correction function obtained based on the actual measurement result as in this embodiment, the shape as shown in FIG. 4B and the shape shown in FIG. A highly sensitive true fluorescence spectrum having the intensity shown can be obtained.

図5(a)は、使用した鏡の反射率(公称値)と蛍光出射側光路中に挿入した励起波長を通過させない可視光カットフィルタ(励起波長の2次光が近赤外波長領域のスペクトルに重ならないようにするためのフィルタ)の透過率とを併せた理論的な補正関数を示す図であり、図5(b)は実測例である図4(a)及び(b)に示す蛍光スペクトルを用いて算出した補正関数と測定に使用した可視光カットフィルタの透過率とを併せた補正関数を示す図である。両者の形状にはかなりの相違があることが分かる。即ち、本実施例の分光蛍光光度計では、図5(b)に示したような実測値に基づいて作成される、実体に即した補正関数を用いることで、蛍光スペクトルを真に補正することができる。   FIG. 5A shows the reflectance (nominal value) of the mirror used and a visible light cut filter that does not allow the excitation wavelength inserted in the fluorescence emission side optical path to pass (the spectrum of the secondary wavelength of the excitation wavelength is in the near infrared wavelength region). FIG. 5B is a diagram showing a theoretical correction function that combines the transmittance of a filter for preventing the light from overlapping with FIG. 5B, and FIG. 5B shows the fluorescence shown in FIGS. 4A and 4B, which are actual measurement examples. It is a figure which shows the correction function which combined the correction function calculated using the spectrum, and the transmittance | permeability of the visible light cut filter used for the measurement. It can be seen that there is a considerable difference between the two shapes. That is, in the spectrofluorometer of the present embodiment, the fluorescence spectrum is truly corrected by using a correction function that is based on the actual value as shown in FIG. Can do.

上記実施例では、シャッタ21、22を試料セル3と凹面鏡4、平面鏡5との間の光路上に挿入することで、折り返される励起光及び蛍光の遮光を行うようにしていたが、試料セル3を透過した励起光が試料セル3側に戻らず、試料溶液Sから平面鏡5の方向に放出された蛍光が試料セル3側に戻らないような構成であれば、シャッタ21、22に代えて様々な構成を採用し得る。例えば、凹面鏡4及び平面鏡5を起立・倒伏自在の構成としておき、凹面鏡4及び平面鏡5が倒伏状態であるときに励起光及び蛍光がそれら鏡4、5に当たらずに例えばその後方に設置された吸光体に当たって吸収されてしまうようにすればよい。   In the above embodiment, the shutters 21 and 22 are inserted on the optical path between the sample cell 3 and the concave mirror 4 and the plane mirror 5 so as to shield the excitation light and fluorescence that are turned back. If the configuration does not return the excitation light transmitted through the sample cell 3 side and the fluorescence emitted from the sample solution S in the direction of the plane mirror 5 does not return to the sample cell 3 side, various configurations can be used instead of the shutters 21 and 22. Can be adopted. For example, the concave mirror 4 and the plane mirror 5 are configured to be able to stand up and fall, and when the concave mirror 4 and the plane mirror 5 are in the fallen state, the excitation light and the fluorescent light are not placed on the mirrors 4 and 5 and are installed, for example, behind them. What is necessary is just to make it strike and absorb a light absorber.

また、上記実施例は本発明の一例であり、本発明の趣旨の範囲で適宜変形、修正、追加を行っても本願特許請求の範囲に包含されることは当然である。   Moreover, the said Example is an example of this invention, Even if it changes suitably, amends, and is added in the range of the meaning of this invention, it is naturally included in the claim of this application.

1…光源部
2…励起側分光器
3…試料セル
4…凹面鏡
5…平面鏡
6…蛍光側分光器
7…検出器
8…A/D変換器
9…データ処理部
91…補正関数演算部
92…補正関数記憶部
10…分析制御部
S…試料溶液
DESCRIPTION OF SYMBOLS 1 ... Light source part 2 ... Excitation side spectroscope 3 ... Sample cell 4 ... Concave mirror 5 ... Plane mirror 6 ... Fluorescence side spectroscope 7 ... Detector 8 ... A / D converter 9 ... Data processing part 91 ... Correction function calculating part 92 ... Correction function storage unit 10 ... analysis control unit S ... sample solution

Claims (1)

試料に励起光を照射する励起光照射手段と、励起光を受けて試料から放出される蛍光を分光・検出する検出手段と、前記励起光照射手段により試料へ照射され該試料を透過した励起光を試料側へ折り返す第1反射鏡と、試料から蛍光の取り出し方向と逆方向に放出された蛍光を試料側へ折り返す第2反射鏡と、を具備する分光蛍光光度計において、
a)前記第1及び第2反射鏡で反射されて試料に戻される励起光及び蛍光の戻りを阻止する遮光手段と、
b)前記検出手段で得られる検出信号に基づいて、同一試料に対し、前記遮光手段により遮光がなされた状態における所定波長範囲の蛍光スペクトルと、前記遮光手段により遮光がなされない状態における所定波長範囲の蛍光スペクトルとをそれぞれ取得する測定実行手段と、
c)前記測定実行手段により得られる遮光の有無に対応した2つの蛍光スペクトルから、前記第1及び第2反射鏡の影響を反映した補正情報を算出して記憶しておく補正情報取得手段と、
d)目的試料に対し前記遮光手段により遮光がなされない状態における所定波長範囲の蛍光スペクトルを取得したときに、前記補正情報を用いてスペクトルを補正する補正処理手段と、
を備えることを特徴とする分光蛍光光度計。
Excitation light irradiation means for irradiating the sample with excitation light, detection means for spectroscopic detection of fluorescence emitted from the sample upon receiving the excitation light, and excitation light that is irradiated to the sample by the excitation light irradiation means and transmitted through the sample A spectrofluorometer comprising: a first reflecting mirror that folds back to the sample side; and a second reflecting mirror that folds the fluorescence emitted from the sample in the direction opposite to the direction of taking out the fluorescence to the sample side.
a) a light shielding means for preventing return of excitation light and fluorescence reflected by the first and second reflecting mirrors and returned to the sample;
b) Based on the detection signal obtained by the detection means, the same spectrum, a fluorescence spectrum in a predetermined wavelength range in a state where light is shielded by the light shielding means, and a predetermined wavelength range in a state where light is not shielded by the light shielding means Measurement execution means for acquiring each of the fluorescence spectra of
c) correction information acquisition means for calculating and storing correction information reflecting the influence of the first and second reflecting mirrors from two fluorescence spectra corresponding to the presence or absence of light shielding obtained by the measurement execution means;
d) correction processing means for correcting the spectrum using the correction information when obtaining a fluorescence spectrum in a predetermined wavelength range in a state where the target sample is not shielded by the light shielding means;
A spectrofluorometer characterized by comprising:
JP2009097180A 2009-04-13 2009-04-13 Spectrofluorometer Expired - Fee Related JP5152083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009097180A JP5152083B2 (en) 2009-04-13 2009-04-13 Spectrofluorometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009097180A JP5152083B2 (en) 2009-04-13 2009-04-13 Spectrofluorometer

Publications (3)

Publication Number Publication Date
JP2010249575A JP2010249575A (en) 2010-11-04
JP2010249575A5 JP2010249575A5 (en) 2011-08-04
JP5152083B2 true JP5152083B2 (en) 2013-02-27

Family

ID=43312089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009097180A Expired - Fee Related JP5152083B2 (en) 2009-04-13 2009-04-13 Spectrofluorometer

Country Status (1)

Country Link
JP (1) JP5152083B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6221210B2 (en) * 2012-09-11 2017-11-01 株式会社サタケ Microorganism testing method and apparatus
TWI619809B (en) 2012-08-24 2018-04-01 佐竹股份有限公司 Method and device for inspecting microorganisms
JP6201285B2 (en) * 2012-08-24 2017-09-27 株式会社サタケ Microorganism testing method and apparatus
JP6477205B2 (en) * 2015-04-28 2019-03-06 株式会社島津製作所 Analysis system, spectrofluorometer, arithmetic processing unit, and program for arithmetic processing unit
CN105334195A (en) * 2015-05-20 2016-02-17 北京航空航天大学 Method for determining detector position with atomic maximum fluorescence collection efficiency

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5450394A (en) * 1977-09-28 1979-04-20 Shimadzu Corp Fluorescence detector for liquid chromatography
JPS62235548A (en) * 1986-04-07 1987-10-15 Hitachi Ltd Fluorescence absorption analysis method and apparatus
US4750837A (en) * 1986-04-11 1988-06-14 Sclavo Inc. Fluorometer with reference light source
JP2001116698A (en) * 1999-10-18 2001-04-27 Bunshi Biophotonics Kenkyusho:Kk Photoreagent evaluating device
JP4141985B2 (en) * 2004-05-19 2008-08-27 株式会社日立ハイテクノロジーズ Spectrofluorometer and sample cell
JP4661768B2 (en) * 2006-11-08 2011-03-30 株式会社島津製作所 Cell device for fluorescence measurement and fluorescence detector

Also Published As

Publication number Publication date
JP2010249575A (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP5152083B2 (en) Spectrofluorometer
JP7229935B2 (en) Surface sensing system and method for imaging a scanned surface of a sample by sum frequency vibrational spectroscopy
CN112292065A (en) Diagnostic method using laser induced breakdown spectroscopy and diagnostic apparatus for performing the same
US10436641B2 (en) Shutter assembly for calibration
JP6259816B2 (en) Spectrometer with built-in ATR and accessory compartment
JPH0643030A (en) Portable spectrophotometer
AU2002243137B2 (en) New measuring technique
JP4710393B2 (en) Excitation spectrum correction method in fluorescence spectrophotometer
US20130276509A1 (en) Optical gas analyzer device having means for calibrating the frequency spectrum
Burgess The basis for good spectrophotometric UV–visible measurements
CN113720825B (en) Optical instant detector and detection method and application
CN108398421A (en) A kind of enhanced laser induced breakdown spectrograph of distinguishable carbon isotope
JP5296723B2 (en) Spectrophotometer and performance measurement method thereof
JP5086958B2 (en) Particle property measuring device
CN111380838A (en) Handheld device for in-situ determination of soil nitrate nitrogen and detection method thereof
US20140190243A1 (en) Fluorescence spectrophotometer
JP6328530B2 (en) Blood coagulation detection apparatus, blood coagulation detection method, and blood coagulation detection program
CN207557111U (en) A kind of Raman system
CN108604288A (en) Optical pickup
JPH1164217A (en) Component quantity detecting device for spectral analyzer
WO2018103487A1 (en) Non-contact type security inspection system and method
JPH0829412A (en) Taste value measuring device
JP3422725B2 (en) An analyzer that simultaneously performs Raman spectroscopy and particle size distribution measurement
JPWO2014196363A1 (en) Spectroscopic analysis system and method
CN208140588U (en) A kind of enhanced laser induced breakdown spectrograph of distinguishable carbon isotope

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110620

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110620

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5152083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees