JP5086958B2 - Particle property measuring device - Google Patents

Particle property measuring device Download PDF

Info

Publication number
JP5086958B2
JP5086958B2 JP2008247415A JP2008247415A JP5086958B2 JP 5086958 B2 JP5086958 B2 JP 5086958B2 JP 2008247415 A JP2008247415 A JP 2008247415A JP 2008247415 A JP2008247415 A JP 2008247415A JP 5086958 B2 JP5086958 B2 JP 5086958B2
Authority
JP
Japan
Prior art keywords
light
cell
measurement
optical system
physical property
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008247415A
Other languages
Japanese (ja)
Other versions
JP2010078470A (en
Inventor
哲司 山口
拓司 黒住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2008247415A priority Critical patent/JP5086958B2/en
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to US13/121,170 priority patent/US8625093B2/en
Priority to PCT/JP2009/066628 priority patent/WO2010035775A1/en
Priority to CN2011101371344A priority patent/CN102323191B/en
Priority to GB1104774.3A priority patent/GB2475458B/en
Priority to CN2009801370287A priority patent/CN102159934A/en
Priority to EP09816190.4A priority patent/EP2333516A4/en
Publication of JP2010078470A publication Critical patent/JP2010078470A/en
Application granted granted Critical
Publication of JP5086958B2 publication Critical patent/JP5086958B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

この発明は、セル中に分散させた粒子(又は粒子群)のアスペクト比や凝集度など粒子の形状に係る物性を測定することができる粒子物性測定装置に関するものである。   The present invention relates to a particle physical property measuring apparatus capable of measuring physical properties related to the shape of particles such as the aspect ratio and the degree of aggregation of particles (or particle groups) dispersed in a cell.

近時、多様な形状を有する微小粒子に対する産業界の需要が高まり、微小粒子の粒径や形状など物性を詳細に計測することへの市場のニーズが高まっている。   Recently, the demand of the industry for fine particles having various shapes is increasing, and the market needs to measure the physical properties such as the particle size and shape of the fine particles in detail.

例えば、特許文献1には、偏光を利用した散乱光測定によって微小粒子に係る特定の物性を測定するものが提案されている。この特許文献1記載の装置は、セル中に分散させた粒子に対してレーザ光などの偏光させた一次光を照射し、その散乱光の偏光を受光側で検出することによって、粒子の形状を測定するものである。   For example, Patent Document 1 proposes a technique for measuring specific physical properties of fine particles by measuring scattered light using polarized light. The apparatus described in Patent Document 1 irradiates particles dispersed in a cell with polarized primary light such as laser light, and detects the polarization of the scattered light on the light receiving side, thereby changing the shape of the particles. Measure.

特にこの特許文献1では、受光光学系機構がセルを中心に回転可能な構成になっており、単一の受光素子で角度の異なる散乱光強度を検出できるようにしてある。このような構成であれば、部品点数の削減を促進できるとともに、受光素子での器差がそもそも発生しないという利点がある。   In particular, in Patent Document 1, the light receiving optical system mechanism is configured to be rotatable around a cell, so that scattered light intensities having different angles can be detected by a single light receiving element. With such a configuration, there is an advantage that reduction of the number of parts can be promoted and an instrumental difference in the light receiving element does not occur in the first place.

ところで、セルの中央で一次光が照射する光束と受光側の検出角度の光束との交わりの部分が散乱体積と呼ばれる部分で、この散乱体積に相当する径のピンホールを検出器前に配置して散乱光のみを受光することが、この種の粒子物性装置では行われている。これは、高いS/N比での測定を可能とするためである。   By the way, the intersection of the light beam irradiated by the primary light at the center of the cell and the light beam at the detection angle on the light receiving side is called the scattering volume, and a pinhole with a diameter corresponding to this scattering volume is placed in front of the detector. In this type of particle physical property apparatus, only scattered light is received. This is to enable measurement with a high S / N ratio.

前述の特許文献1を例に挙げれば、受光素子の前に、ピンホール19、1/2波長板35、偏光子36、凸レンズ17、ピンホール31の順に光学素子が配設されている。   Taking the above-mentioned Patent Document 1 as an example, optical elements are arranged in the order of a pinhole 19, a half-wave plate 35, a polarizer 36, a convex lens 17, and a pinhole 31 before the light receiving element.

ところで、通常の散乱光測定では、異なる角度で散乱する複数の散乱光の強度を検出するために複数の受光素子を設けるが、この特許文献1では、受光光学系機構がセルを中心に回転可能な構成になっており、単一の受光素子で角度の異なる散乱光強度を検出できるようにしてある。このような構成であれば、部品点数の削減を促進できるとともに、受光素子での器差がそもそも発生しないという利点がある。
US6,721,051
By the way, in ordinary scattered light measurement, a plurality of light receiving elements are provided to detect the intensity of a plurality of scattered lights scattered at different angles. In Patent Document 1, the light receiving optical system mechanism can be rotated around a cell. Thus, the scattered light intensity at different angles can be detected by a single light receiving element. With such a configuration, there is an advantage that reduction of the number of parts can be promoted and an instrumental difference in the light receiving element does not occur in the first place.
US 6,721,051

しかしながら、受光光学系機構を回転可能とするには、実際にはレールや回転板などの機械的な機構支持部品が必要となり、多少はあるにせよ、受光光学系機構そのものが機械的な誤差の影響を受けざるを得ない。   However, in order to be able to rotate the light receiving optical system mechanism, a mechanical mechanism supporting part such as a rail or a rotating plate is actually required, and the light receiving optical system mechanism itself has a mechanical error. I have to be affected.

そのために、受光系光学系機構を回転させて測定したときに、各測定角度位置において、ピンホールに対する二次光の光束の位置がそれぞれ異なってしまい、各測定角度位置での検出光量がばらつくという問題点がある。   Therefore, when the light receiving system optical system mechanism is rotated and measured, the position of the secondary light beam with respect to the pinhole differs at each measurement angle position, and the detected light quantity at each measurement angle position varies. There is a problem.

そこで本発明は、単一の受光素子(光検出手段)を回転させて測定する構成でありながらも、各測定角度位置での光量ばらつきを抑えることができ、S/N比を高く保って測定精度を担保できる粒子物性測定装置を提供すべく図ったものである。   Therefore, although the present invention is configured to measure by rotating a single light receiving element (light detection means), it is possible to suppress variation in the amount of light at each measurement angle position, and keep the S / N ratio high. The present invention is intended to provide a particle property measuring apparatus that can ensure accuracy.

すなわち本発明に係る粒子物性測定装置は、分散媒中に微小な粒子を分散させた試料を収容する透明セルと、光源、並びにこの光源から射出された一次光が前記セルに至るまでの光路上に順に設けられた入射側偏光子及び入射側1/4波長板を有する照射光学系機構と、受光した光の強度を検出する光検出手段、並びに前記セル中の粒子で散乱した二次光が前記光強度検出手段に至るまでの光路上に順に設けられた出射側1/4波長板及び出射側偏光子を有し、前記セルを中心に回転可能に支持された受光光学系機構と、前記受光光学系機構をセルを中心に回転させて複数の測定角度位置に制御するとともに、各測定角度位置において前記出射側偏光子の偏光角度を複数の角度に制御する角度制御部と、前記各測定角度位置での検出光強度の補正パラメータをそれぞれ記憶している補正パラメータ記憶部と、前記各測定角度位置での各偏光角度それぞれにおける検出光強度である試料検出光強度及び前記補正パラメータに基づいて前記粒子の形状に係る物性を算出する物性算出部とを具備していることを特徴とする。   That is, the particle property measuring apparatus according to the present invention includes a transparent cell that contains a sample in which fine particles are dispersed in a dispersion medium, a light source, and an optical path from the primary light emitted from the light source to the cell. , An irradiation optical system mechanism having an incident side polarizer and an incident side quarter wave plate provided in order, a light detection means for detecting the intensity of received light, and secondary light scattered by particles in the cell A light-receiving optical system mechanism having an emission-side quarter-wave plate and an emission-side polarizer provided in order on an optical path leading to the light intensity detection means, and supported rotatably around the cell; The light receiving optical system mechanism is rotated around the cell and controlled to a plurality of measurement angle positions, and at each measurement angle position, an angle control unit that controls the polarization angle of the exit side polarizer to a plurality of angles, and each measurement Of detected light intensity at angular position A correction parameter storage unit that stores positive parameters, a sample detection light intensity that is a detection light intensity at each polarization angle at each measurement angle position, and a physical property related to the shape of the particle based on the correction parameter. And a physical property calculation unit for calculating.

このようなものであれば、各測定角度位置ごとに補正パラメータをそれぞれ定めていることから、各測定角度位置の機械的な誤差による光量ばらつき等を前記各補正パラメータを用いてそれぞれ修正することができるため、粒子の形状に係る物性を精度良く測定することができる。また、特に複雑な機構を必要とせず、簡単な構成での実現が可能となる。   In such a case, since the correction parameter is determined for each measurement angle position, it is possible to correct the variation in the amount of light due to the mechanical error at each measurement angle position by using each correction parameter. Therefore, the physical properties related to the shape of the particles can be accurately measured. In addition, it is possible to realize a simple configuration without requiring a particularly complicated mechanism.

補正パラメータとしては、無粒子状態にしたセルに一次光を照射して、前記各測定角度位置で取得した検出光強度を用いればよい。このようなものであれば、試料測定の都度、補正パラメータを更新するようにして、経時変化等にも対応できるようにすることも容易にできる。   As the correction parameter, the detection light intensity obtained by irradiating the primary light to the cell in the particle-free state and acquired at each measurement angle position may be used. In such a case, the correction parameter is updated every time the sample is measured, so that it is possible to easily cope with a change with time.

一方、ピンホールに対する二次光の光束の位置ずれを可及的に小さくして各測定角度位置での検出光量のばらつきをそもそも抑制するには、受光光学系機構において、その回転面と垂直な方向に延びるスリットを光検出手段の前方に設けておけばよい。前述した各測定角度位置での実際の機械的なずれは、受光光学系機構の回転面と垂直な方向に現れることから、上述したスリットであれば機械的なずれによっても確実に散乱光を通過させることができるからである。   On the other hand, in order to reduce the positional deviation of the light beam of the secondary light with respect to the pinhole as much as possible and to suppress the variation in the detected light quantity at each measurement angle position, in the light receiving optical system mechanism, it is perpendicular to the rotation plane. A slit extending in the direction may be provided in front of the light detection means. Since the actual mechanical deviation at each measurement angle position described above appears in a direction perpendicular to the rotation surface of the light receiving optical system mechanism, the above-described slit can reliably pass scattered light even by mechanical deviation. It is because it can be made.

単一の光検出手段を用いながらも広いレンジに亘って粒子の物性を精度よく測定できるようにするには、前記一次光又は二次光を偏光状態を変化させることなくかつ光量を変更可能に減光する減光手段と、前記各測定角度位置での各偏光角度それぞれにおける検出光強度が前記光検出手段の測定レンジ内に収まるように、前記減光手段による減光率を制御する減光率制御部とをさらに具備しているものが望ましい。   In order to be able to accurately measure the physical properties of particles over a wide range while using a single light detection means, the amount of light can be changed without changing the polarization state of the primary light or secondary light. Dimming means for dimming, and dimming for controlling the dimming rate by the dimming means so that the detected light intensity at each polarization angle at each measurement angle position is within the measurement range of the photodetecting means. It is desirable to further include a rate control unit.

透過光強度をも前記受光光学系機構で測定できるようにして、光学系機構の簡単化を図るには、前記受光光学系機構を、セルを透過する一次光の延長線上に配置可能にして、セルを透過した透過光の強度を、前記光検出手段によって測定できるようにしたものが望ましい。   In order to be able to measure the transmitted light intensity with the light receiving optical system mechanism and to simplify the optical system mechanism, the light receiving optical system mechanism can be arranged on the extension line of the primary light transmitted through the cell, It is desirable that the intensity of the transmitted light transmitted through the cell can be measured by the light detection means.

減光手段は、減光率を無段階連続的に変えうるものでも構わないが、実際には複数段階に減光率を変更可能であればよい。そのためには、前記減光手段が、それぞれ異なる減光率の複数のNDフィルタと、これらNDフィルタのいずれかを前記一次光又は二次光の光路上に選択的に挿入するフィルタ変更機構とを具備したものであることが好ましい。   The dimming means may be capable of continuously changing the dimming rate in a stepless manner, but actually only needs to be able to change the dimming rate in a plurality of steps. For this purpose, the dimming means includes a plurality of ND filters having different dimming rates, and a filter changing mechanism for selectively inserting one of these ND filters on the optical path of the primary light or the secondary light. It is preferable that it is equipped.

このような構成の本発明によれば、各測定角度位置ごとに補正パラメータをそれぞれ定めていることから、各測定角度位置の機械的な誤差による光量ばらつき等を前記各補正パラメータを用いてそれぞれ修正することができるため、粒子の形状に係る物性を精度良く測定することができる。また、特に複雑な機構を必要とせず、簡単な構成での実現が可能となる。   According to the present invention having such a configuration, since the correction parameter is determined for each measurement angle position, the variation in the amount of light due to a mechanical error at each measurement angle position is corrected using each correction parameter. Therefore, the physical properties related to the shape of the particles can be measured with high accuracy. In addition, it is possible to realize a simple configuration without requiring a particularly complicated mechanism.

以下、本発明の一実施形態を図面を参照して説明する。
本実施形態に係る粒子物性測定装置は、分散媒中に分散させた微小粒子に偏光させた光を照射し、その散乱光における強度の角度分布や偏光の保存度を計測することによって、粒子の縦横比、凝集度等の形状に係る物性を測定するものである。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
The particle physical property measuring apparatus according to the present embodiment irradiates the microscopic particles dispersed in the dispersion medium with polarized light, and measures the angular distribution of the intensity and the degree of conservation of polarization in the scattered light, thereby The physical properties related to the shape such as the aspect ratio and the degree of aggregation are measured.

図1に、この粒子物性測定装置1の全体概要を模式図にして示す。同図中、符号2は、試料を収容した透明セル4に一次光であるレーザ光L1を照射する照射光学系機構であり、符号3は、微小粒子Sからの二次光、すなわち散乱光L2を受光する受光光学系機構である。   In FIG. 1, the whole outline | summary of this particle | grain physical property measuring apparatus 1 is shown with a schematic diagram. In the figure, reference numeral 2 denotes an irradiation optical system mechanism that irradiates a transparent cell 4 containing a sample with laser light L1 as primary light, and reference numeral 3 denotes secondary light from the microparticles S, that is, scattered light L2. Is a light receiving optical system mechanism for receiving light.

セル4は、図2に示すように、分散媒中に微小粒子Sを分散させた試料を内部に収容することができる、例えば中空円柱体状をなすものである。なお、この実施形態ではこのセル4を一定温度に保つことのできる温度調整機構(図示しない)を設けている。   As shown in FIG. 2, the cell 4 has, for example, a hollow cylindrical shape that can accommodate therein a sample in which the microparticles S are dispersed in a dispersion medium. In this embodiment, a temperature adjusting mechanism (not shown) that can maintain the cell 4 at a constant temperature is provided.

照射光学系機構2は、光源たる半導体レーザ21と、この半導体レーザ21から射出されたレーザ光L1を通過させてセル4に導く複数の光学素子からなる。しかしてこの実施形態では、前記光学素子として、凸レンズ22、減光手段23、偏光子24(以下、入射側偏光子24とも言う)、1/4波長板25(以下、入射側1/4波長板25とも言う)、凸レンズ26を、半導体レーザ21から見てこの順で並び設けている。   The irradiation optical system mechanism 2 includes a semiconductor laser 21 that is a light source and a plurality of optical elements that guide the laser beam L1 emitted from the semiconductor laser 21 to the cell 4. In this embodiment, however, as the optical element, the convex lens 22, the dimming means 23, the polarizer 24 (hereinafter also referred to as the incident-side polarizer 24), the quarter wavelength plate 25 (hereinafter referred to as the incident-side quarter wavelength). The convex lens 26 is also arranged in this order as viewed from the semiconductor laser 21.

前記減光手段23は、図2に示すように、減光率の異なる複数枚のNDフィルタ231と、該NDフィルタ231を保持するフィルタ変更機構232とから構成してある。NDフィルタ231は、偏光状態を変化させることなく光を減衰させる板状のものである。フィルタ変更機構232は、前記複数のNDフィルタ231を周縁部に保持する回転保持板232aと、この回転保持板232aを回転駆動する図示しないモータとからなるものである。そして、前記回転保持板232aをその中心周りに回転させることによって、いずれかのNDフィルタ231がレーザ光L1の光路上に位置するように設定してある。   As shown in FIG. 2, the dimming means 23 is composed of a plurality of ND filters 231 having different dimming rates and a filter changing mechanism 232 that holds the ND filters 231. The ND filter 231 has a plate shape that attenuates light without changing the polarization state. The filter changing mechanism 232 includes a rotation holding plate 232a that holds the plurality of ND filters 231 at the peripheral edge, and a motor (not shown) that rotationally drives the rotation holding plate 232a. Then, by rotating the rotation holding plate 232a around its center, one of the ND filters 231 is set to be positioned on the optical path of the laser light L1.

また、この照射光学系機構2には、光路を曲げるための複数の反射ミラー27が偏光子よりも半導体レーザ21側に設けてある。これは、反射ミラー27が光の偏光方向を変化させるからであり、偏光方向が確定した後、つまり、入射側偏光子24からセル4に至るまでのレーザ光L1の光路上には、反射ミラー27などの偏光方向を変化させうる部材は設けないようにしている。   The irradiation optical system mechanism 2 is provided with a plurality of reflecting mirrors 27 for bending the optical path closer to the semiconductor laser 21 than the polarizer. This is because the reflection mirror 27 changes the polarization direction of the light. After the polarization direction is determined, that is, on the optical path of the laser light L1 from the incident side polarizer 24 to the cell 4, the reflection mirror A member such as 27 that can change the polarization direction is not provided.

一方、受光光学系機構3は、図1、図2に示すように、受光した光の強度を検出する光検出手段31と、微小粒子Sで散乱した二次光である散乱光L2をセル4から前記光検出手段31に導く複数の光学素子とからなるものであり、セル4を中心に回転可能な構造にしてある。具体的には、前記光検出手段31や各光学素子を基板36によって一体的に支持させ、この基板36を、図示しない支軸や円弧状レールからなる回転支持機構によって、セル4を中心に回転可能に支持させている。   On the other hand, as shown in FIGS. 1 and 2, the light-receiving optical system mechanism 3 receives light detection means 31 that detects the intensity of received light and scattered light L <b> 2 that is secondary light scattered by the microparticles S. And a plurality of optical elements led to the light detecting means 31 and having a structure rotatable around the cell 4. Specifically, the light detection means 31 and each optical element are integrally supported by a substrate 36, and the substrate 36 is rotated around the cell 4 by a rotation support mechanism including a support shaft and an arcuate rail (not shown). I support it as possible.

この実施形態での前記光学素子は、セル4から見てこの順で並び設けた凸レンズ32、1/4波長板33(以下、出射側1/4波長板33とも言う)、偏光子34(以下、出射側偏光子34とも言う)、凸レンズ35、スリット37である。   The optical element in this embodiment includes a convex lens 32, a quarter-wave plate 33 (hereinafter also referred to as an output-side quarter-wave plate 33), and a polarizer 34 (hereinafter referred to as the cell 4). , Also referred to as an output side polarizer 34), a convex lens 35, and a slit 37.

前記光検出手段31は、受光した光のフォトン数を出力するタイプのものであり、例えば光電子倍増管をここでは用いている。   The light detection means 31 is of a type that outputs the number of photons of received light, and for example, a photomultiplier tube is used here.

前記出射側偏光子34は、光軸を中心に図示しないモータ等によって回転可能に構成してあり、1/4波長板33を通過した散乱光L2の異なる偏光方向成分を複数抽出できるようにしてある。   The exit-side polarizer 34 is configured to be rotatable by a motor or the like (not shown) around the optical axis so that a plurality of different polarization direction components of the scattered light L2 that has passed through the quarter-wave plate 33 can be extracted. is there.

前記スリット37は、当該受光光学系機構3の回転面と垂直に延びる帯状のものであり、このスリット37の幅は、前述した散乱体積に相当する寸法に設定してある。また、その長さは幅寸法よりも大きく、機械的な誤差等によって生じる散乱光の位置ずれを吸収して散乱光がスリット37をほぼ通過できる最小限の寸法に設定してある。   The slit 37 has a belt-like shape extending perpendicularly to the rotation surface of the light receiving optical system mechanism 3, and the width of the slit 37 is set to a dimension corresponding to the scattering volume described above. Further, the length is larger than the width dimension, and is set to a minimum dimension that allows the scattered light to almost pass through the slit 37 by absorbing the positional deviation of the scattered light caused by a mechanical error or the like.

図1における符号5は、前記受光光学系機構3の測定角度位置や、出射側偏光子34の光軸周りの回転角度、すなわち偏光角度を制御するとともに、光検出手段31による検出光強度に基づいて形状の解析等を行う情報処理装置である。この情報処理装置5は、CPUやメモリ、A/Dコンバータ等を具備したものであり、前記メモリに記憶させたプログラムに従ってCPUやその周辺機器を協働させることによって、後述する角度制御部51、減光率制御部52、物性算出部53、粒子径分布算出部54等としての機能を発揮するように構成している。   Reference numeral 5 in FIG. 1 controls the measurement angle position of the light receiving optical system mechanism 3 and the rotation angle around the optical axis of the output side polarizer 34, that is, the polarization angle, and is based on the detected light intensity by the light detection means 31. It is an information processing apparatus that performs shape analysis and the like. The information processing apparatus 5 includes a CPU, a memory, an A / D converter, and the like. By causing the CPU and its peripheral devices to cooperate in accordance with a program stored in the memory, an angle control unit 51, which will be described later, The light attenuation rate control unit 52, the physical property calculation unit 53, the particle size distribution calculation unit 54, and the like are configured to exhibit functions.

次に、この粒子物性測定装置1の動作を、図3のフローチャートを参照しながら、前記情報処理装置5における各部の動作説明を兼ねて詳述する。   Next, the operation of the particle property measuring apparatus 1 will be described in detail with reference to the flowchart of FIG.

まず最初は、この情報処理装置5により、ダーク測定が行われる(ステップS1)。ダーク測定とは無光状態での光検出器による光強度検出値を取得することである。ここでは、前記回転保持板232aを駆動してNDフィルタ231の無い領域をレーザ光L1の光路上に位置づけることにより、この回転保持板232aを遮光板として機能させる。そして、この状態で、光検出手段31からの信号を受信して、無光状態での光強度検出値を取得する。なお、この実施形態では、一定ゲート時間内にカウントされるフォトン数を計測することによって光強度を検出するようにしている。   First, dark measurement is performed by the information processing apparatus 5 (step S1). Dark measurement refers to obtaining a light intensity detection value by a photodetector in a non-light state. Here, the rotation holding plate 232a is driven to position the region without the ND filter 231 on the optical path of the laser light L1, so that the rotation holding plate 232a functions as a light shielding plate. In this state, a signal from the light detection means 31 is received, and a light intensity detection value in a non-light state is acquired. In this embodiment, the light intensity is detected by measuring the number of photons counted within a certain gate time.

次に、オペレータによる分散媒セットを確認した後(ステップS2)、情報処理装置5は、ブランク測定を行う(ステップS3〜S8)。ブランク測定とは、試料と分散媒は同じであるが粒子が存在しないサンプルをセル4に収容し、その状態で、光検出器による光強度検出値を取得することである。ここでは、受光光学系機構3を複数の角度位置(例えば10°〜162°まで4°刻み)に設定するとともに、各角度位置において、それぞれ出射側偏光子34を複数の角度(例えば15°刻みで6角度。なお、予め定めた基準角度を0°とする。この基準角度は、半導体レーザ21の元来の偏光角度とほぼ合致させてある。)に設定し、それら各角度でのブランク測定を行う。つまり、受光光学系機構3及び出射側偏光子34の段階的な回転によって、複数角度の散乱光における複数の偏光成分の光強度をそれぞれ測定する。このブランク測定での各検出光強度が、後述する試料測定での検出光強度を補正するための補正パラメータである。このブランク測定による検出光強度はメモリに設定した補正パラメータ記憶部55に格納される。   Next, after confirming the dispersion medium set by the operator (step S2), the information processing apparatus 5 performs blank measurement (steps S3 to S8). In the blank measurement, a sample in which the sample and the dispersion medium are the same but no particles are contained in the cell 4, and in this state, the light intensity detection value by the photodetector is acquired. Here, the light-receiving optical system mechanism 3 is set at a plurality of angular positions (for example, in increments of 4 ° from 10 ° to 162 °), and at each angular position, the output-side polarizer 34 is set at a plurality of angles (for example, in increments of 15 °). In addition, the predetermined reference angle is set to 0 °, which is substantially matched with the original polarization angle of the semiconductor laser 21), and blank measurement at each of these angles is performed. I do. That is, by stepwise rotation of the light receiving optical system mechanism 3 and the exit side polarizer 34, the light intensities of a plurality of polarization components in the scattered light at a plurality of angles are measured. Each detected light intensity in the blank measurement is a correction parameter for correcting the detected light intensity in the sample measurement described later. The detected light intensity by the blank measurement is stored in the correction parameter storage unit 55 set in the memory.

また、前記受光光学系機構3は、図1に示すように、照射光学系機構2と正対してレーザ光L1の光軸と重なる位置、つまり受光光学系機構3がセル4を透過したレーザ光L1を測定できる位置(この角度位置を0°とする)まで回転できるようにしてあり、ブランク測定では、受光光学系機構3の角度位置を0°にすることで、透過光強度をも測定する。   Further, as shown in FIG. 1, the light receiving optical system mechanism 3 faces the irradiation optical system mechanism 2 and overlaps the optical axis of the laser light L1, that is, the laser light transmitted through the cell 4 by the light receiving optical system mechanism 3. It can be rotated to a position where L1 can be measured (this angular position is set to 0 °). In the blank measurement, the transmitted light intensity is also measured by setting the angular position of the light receiving optical system mechanism 3 to 0 °. .

なお、これら各光強度の測定においては、前述したように、一定ゲート時間内にカウントされるフォトン数(あるいはフォトン数に比例した電圧値等のフォトン数関連値)を計測するが、そのフォトン数が光検出手段31の測定レンジを超えて飽和していると判断された場合には、前記回転保持板232aを回転させて、フォトン数が光検出手段31の測定レンジ内に収まるように、より減光率の高いNDフィルタ231をレーザ光L1の光路上に位置づける。   In the measurement of each light intensity, as described above, the number of photons counted within a certain gate time (or a value related to the number of photons such as a voltage value proportional to the number of photons) is measured. Is determined to be saturated beyond the measurement range of the light detection means 31, the rotation holding plate 232 a is rotated so that the number of photons is within the measurement range of the light detection means 31. The ND filter 231 having a high attenuation rate is positioned on the optical path of the laser light L1.

次に、試料測定が行われる。すなわち、オペレータ等が、粒子を分散させた試料をセル4に入れ、スタートのボタンを押す等すると(ステップS10)、情報処理装置5はレーザをONする(ステップS11)とともに、検出光強度が光検出手段31の測定レンジ内に収まるように、前記回転保持板232aを回転させて、NDフィルタ231のいずれかをレーザ光L1の光路上に位置づける(ステップS12)。そして偏光子を基準角度に設定するとともに前記受光光学系機構3を0°の角度位置に設定する(ステップS13、S14)。そして、そのときの透過率を以下の式に基づいて算出する(ステップS15)。
透過率=(1/NDフィルタ231の減光率)×試料での検出光強度/ブランクでの検出光強度
Next, sample measurement is performed. That is, when an operator or the like places a sample in which particles are dispersed into the cell 4 and presses a start button (step S10), the information processing apparatus 5 turns on the laser (step S11) and the detected light intensity is light. The rotation holding plate 232a is rotated so that it falls within the measurement range of the detection means 31, and any one of the ND filters 231 is positioned on the optical path of the laser light L1 (step S12). Then, the polarizer is set to a reference angle, and the light receiving optical system mechanism 3 is set to an angular position of 0 ° (steps S13 and S14). And the transmittance | permeability at that time is calculated based on the following formula | equation (step S15).
Transmittance = (1 / light attenuation of ND filter 231) × detection light intensity at sample / detection light intensity at blank

この透過率から、測定可能濃度を超えた濃度であると判断した場合(ステップS16)には、濃度が高すぎる旨を表示出力し、オペレータに濃度調整を促す。   If it is determined from this transmittance that the concentration exceeds the measurable concentration (step S16), a message indicating that the concentration is too high is displayed and the operator is prompted to adjust the concentration.

一方、測定可能濃度であると判断した場合(ステップS16)には、ブランク測定と同様に、受光光学系機構3及び出射側偏光子34の段階的な回転によって、複数角度の散乱光における複数の偏光成分の光強度を、ブランク測定時と同様、光検出手段の測定レンジ内となるように、適宜減光率を制御調整しながらそれぞれ測定する(角度制御部51及び減光率制御部52としての機能、ステップS17〜S21)。   On the other hand, when it is determined that the concentration is measurable (step S16), similarly to the blank measurement, a plurality of angles of scattered light at a plurality of angles are obtained by the stepwise rotation of the light receiving optical system mechanism 3 and the output side polarizer 34. As with the blank measurement, the light intensity of the polarization component is measured while appropriately adjusting the light attenuation rate so as to be within the measurement range of the light detection means (as the angle control unit 51 and the light attenuation rate control unit 52). Function, steps S17 to S21).

そして、レーザ21をオフするなど各部を初期状態に戻す(ステップS22、S23)とともに、受光光学系機構3の各測定角度位置及び出射側偏光子34の各偏光角度でそれぞれ測定されたブランク測定での検出光強度、試料測定時における検出光強度、減光率等に基づいて、粒子の形状、特に縦横比(アスペクト比乃至凝集度)に係る分布を算出する(物性算出部53としての機能、ステップS24)。   Then, each part is returned to the initial state such as turning off the laser 21 (steps S22 and S23), and at the blank measurement measured at each measurement angle position of the light receiving optical system mechanism 3 and each polarization angle of the output side polarizer 34, respectively. Based on the detected light intensity, the detected light intensity at the time of sample measurement, the light attenuation rate, etc., the distribution relating to the shape of the particles, particularly the aspect ratio (aspect ratio or aggregation degree) is calculated (function as the physical property calculating unit 53, Step S24).

ここで、ブランク測定における検出光強度に基づいて、試料測定時における検出光強度を補正する演算の一例につき述べておく。本来は全て同じ値が見込まれるべきブランク測定での各検出光強度にばらつきがある場合、その要因は受光光学系機構3の回転によるスリット37と散乱光との各測定角度位置ごとのずれに起因すると考えられる。したがって、ブランク測定での各検出光強度のうちから最大値を抽出しておき、その最大値に対するブランク測定での各検出光強度の比率を、試料測定時において対応する検出光強度に対して乗算することで補正する。   Here, an example of calculation for correcting the detected light intensity at the time of sample measurement based on the detected light intensity in the blank measurement will be described. In the case where there is a variation in the detected light intensity in the blank measurement where all the same values should be expected, the cause is caused by the shift of the slit 37 and the scattered light due to the rotation of the light receiving optical system mechanism 3 at each measurement angle position. I think that. Therefore, the maximum value is extracted from each detected light intensity in the blank measurement, and the ratio of each detected light intensity in the blank measurement to the maximum value is multiplied by the corresponding detected light intensity in the sample measurement. To correct it.

加えて本実施形態では、同一の光学系機構を用いて動的光散乱法による粒子径分布をも測定できるように構成してある。粒子径分布の算出は前記情報処理装置5が行う(粒子径分布算出部54としての機能)。ここでは、光子相関法、すなわち受光したフォトン数の時系列データから自己相関データを生成し、当該自己相関データに基づいて所定の演算処理を行うことにより前記粒子群の粒径分布を算出するようにしているが、散乱光をDC値で測定するなど、その他の方法でも構わない。   In addition, in this embodiment, the same optical system mechanism is used to measure the particle size distribution by the dynamic light scattering method. The calculation of the particle size distribution is performed by the information processing apparatus 5 (function as the particle size distribution calculating unit 54). Here, the photon correlation method, that is, the autocorrelation data is generated from the time-series data of the number of received photons, and the particle size distribution of the particle group is calculated by performing a predetermined calculation process based on the autocorrelation data. However, other methods such as measuring scattered light with a DC value may be used.

なお、粒子径(粒子径分布)を測定する際の散乱光の好適な位置(角度)は試料の濃度によって変わることから、アスペクト比及び/又は凝集度を測定する際に算出された試料の光透過率に従い、透過率が高い(試料の濃度が低い)ときはレーザ光L1と直交する光路、つまり90°の散乱光を受光し、透過率が低い(試料の濃度が高い)ときは、それよりも後方、つまり90°を超えた角度の散乱光を受光するように、情報処理装置5が受光光学系機構3の角度位置を制御する。   In addition, since the suitable position (angle) of the scattered light at the time of measuring a particle diameter (particle diameter distribution) changes with the density | concentration of a sample, the light of the sample calculated when measuring an aspect ratio and / or aggregation degree According to the transmittance, when the transmittance is high (the sample concentration is low), an optical path perpendicular to the laser beam L1, that is, 90 ° scattered light is received, and when the transmittance is low (the sample concentration is high), Further, the information processing device 5 controls the angular position of the light receiving optical system mechanism 3 so as to receive scattered light at an angle rearward, that is, at an angle exceeding 90 °.

しかして、このように構成した粒子物性測定装置1によれば、各測定角度位置における各偏光角度ごとに補正のためのブランク測定を行い、その測定結果から各測定角度位置での機械的な誤差による光量ばらつき等をそれぞれ修正するようにしているため、単一の光検出手段31であっても、粒子の形状に係る物性を精度良く測定することができる。   Thus, according to the particle property measuring apparatus 1 configured as described above, a blank measurement for correction is performed for each polarization angle at each measurement angle position, and a mechanical error at each measurement angle position is determined from the measurement result. Therefore, even with the single light detection means 31, the physical properties related to the shape of the particles can be measured with high accuracy.

また、フォトンをカウントすることから測定感度が向上するので、微量、微小粒子の測定精度を向上させることができる。一方、測定感度が向上する分、高い強度の光を検出できず、測定レンジが小さくなりがちであるが、NDフィルタによって、減光することで広い測定レンジを確保でき、この点からも精度良い測定に寄与し得る。   Moreover, since the measurement sensitivity is improved by counting photons, it is possible to improve the measurement accuracy of trace amounts and minute particles. On the other hand, as the measurement sensitivity is improved, high intensity light cannot be detected, and the measurement range tends to be small. However, the ND filter can reduce the light and ensure a wide measurement range. Can contribute to measurement.

加えて、単一の光検出手段31で測定できることから、コスト削減にも資するうえ、前記形状測定と光学的ハードウェアを共用しながら、例えば100nm以下の粒子のように散乱光の角度分布では粒子径測定が難しい粒子でも、動的光散乱法によって粒子径を測定することができるという大変顕著な効果をも奏する。   In addition, since it can be measured by a single light detection means 31, it contributes to cost reduction and, while sharing the shape measurement and optical hardware, the angular distribution of scattered light such as particles of 100 nm or less, for example, Even for particles that are difficult to measure, the particle size can be measured by the dynamic light scattering method.

さらに、セル4を温度調整できるので、生体物質やポリマーなど、温度によって大きさや形状が変化する粒子を、安定して測定することができる。   Furthermore, since the temperature of the cell 4 can be adjusted, particles that change in size and shape depending on temperature, such as biological materials and polymers, can be stably measured.

なお、本発明は前記実施形態に限られるものではない。
例えば、前記実施形態では、各測定角度位置における各偏光角度ごとに補正のためのブランク測定を行ったが、偏光角度ごとにブランク測定はせずに、各測定角度位置だけブランク測定するようにしてもよい。
また、試料測定の都度ブランク測定をする必要はなく、同種の試料あるいは分散媒であれば、予めブランク測定したデータを補正パラメータ記憶部に登録しておき、その補正パラメータ記憶部に登録された値を用いて試料測定時の各検出光強度を補正するようにしても良い。
The present invention is not limited to the above embodiment.
For example, in the embodiment, blank measurement for correction is performed for each polarization angle at each measurement angle position, but blank measurement is performed only for each measurement angle position without performing blank measurement for each polarization angle. Also good.
In addition, it is not necessary to perform blank measurement every time the sample is measured. If the sample or dispersion medium is the same type, the blank measurement data is registered in advance in the correction parameter storage unit, and the value registered in the correction parameter storage unit. May be used to correct each detected light intensity at the time of sample measurement.

さらに、補正の演算手法は他にも考えられるのはもちろんである。
その他、本発明はその趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。
Furthermore, it is needless to say that other correction calculation methods can be considered.
In addition, it goes without saying that the present invention can be variously modified without departing from the spirit of the present invention.

本発明の一実施形態に係る粒子物性測定装置の概要を示す模式的全体図。1 is a schematic overall view showing an outline of a particle physical property measuring apparatus according to an embodiment of the present invention. 同実施形態における減光手段を特に示す模式的斜視図。The typical perspective view which shows especially the light reduction means in the same embodiment. 同実施形態における粒子物性測定装置の動作を示すフローチャート。The flowchart which shows operation | movement of the particle physical property measuring apparatus in the embodiment.

符号の説明Explanation of symbols

1・・・粒子物性測定装置
L1・・・一次光(レーザ光)
L2・・・二次光(散乱光)
2・・・照射光学系機構
21・・・光源(半導体レーザ)
23・・・減光手段
231・・・NDフィルタ
232・・・フィルタ変更機構
24・・・入射側偏光子
25・・・入射側1/4波長板
3・・・受光光学系機構
31・・・光検出手段
33・・・出射側1/4波長板
34・・・出射側偏光子
4・・・セル
51・・・角度制御部
52・・・減光率制御部
53・・・物性算出部
54・・・粒子径分布算出部
55・・・補正パラメータ記憶部
1 ... Particle property measuring apparatus L1 ... Primary light (laser light)
L2 ... Secondary light (scattered light)
2 ... Irradiation optical system mechanism 21 ... Light source (semiconductor laser)
23... Dimming means 231... ND filter 232... Filter changing mechanism 24... Incident side polarizer 25... Incident side quarter wave plate 3.・ Light detection means 33... Exit side quarter wavelength plate 34... Exit side polarizer 4... Cell 51... Angle control unit 52 .. dimming rate control unit 53. Unit 54... Particle diameter distribution calculation unit 55... Correction parameter storage unit

Claims (5)

分散媒中に微小な粒子を分散させた試料を収容する透明セルと、
光源、並びにこの光源から射出された一次光が前記セルに至るまでの光路上に順に設けられた入射側偏光子及び入射側1/4波長板を有する照射光学系機構と、
受光した光の強度を検出する光検出手段、並びに前記セル中の粒子で散乱した二次光が前記光強度検出手段に至るまでの光路上に順に設けられた出射側1/4波長板及び出射側偏光子を有し、前記セルを中心に回転可能に支持された受光光学系機構と、
前記受光光学系機構をセルを中心に回転させて複数の測定角度位置に制御するとともに、各測定角度位置において前記出射側偏光子の偏光角度を複数の角度に制御する角度制御部と、
前記各測定角度位置において、前記出射側偏光子の偏光角度を複数の角度としたときの検出光強度の補正パラメータをそれぞれ記憶している補正パラメータ記憶部と、
前記各測定角度位置での各偏光角度それぞれにおける検出光強度である試料検出光強度及び前記補正パラメータに基づいて前記粒子の形状に係る物性を算出する物性算出部とを具備していることを特徴とする粒子物性測定装置。
A transparent cell containing a sample in which fine particles are dispersed in a dispersion medium;
An irradiation optical system mechanism having a light source, and an incident-side polarizer and an incident-side quarter-wave plate provided in order on an optical path from the light source to the cell where the primary light emitted from the light source reaches the cell;
Photodetection means for detecting the intensity of the received light, and an emission-side quarter-wave plate and an emission side sequentially provided on the optical path from the secondary light scattered by the particles in the cell to the light intensity detection means A light receiving optical system mechanism having a side polarizer and supported rotatably about the cell;
An angle control unit that rotates the light receiving optical system mechanism around a cell to control a plurality of measurement angle positions, and controls a polarization angle of the output-side polarizer to a plurality of angles at each measurement angle position;
At each measurement angle position , a correction parameter storage unit that stores correction parameters for detected light intensity when the polarization angle of the output-side polarizer is a plurality of angles, and
A physical property calculation unit that calculates a physical property related to the shape of the particle based on the sample detection light intensity, which is the detection light intensity at each polarization angle at each measurement angle position, and the correction parameter. A particle physical property measuring apparatus.
無粒子状態にしたセルに一次光を照射して、前記各測定角度位置において、前記出射側偏光子の偏光角度を複数の角度としたときの検出光強度をそれぞれ取得するとともに、該検出光強度を前記補正パラメータとして用いるようにしている請求項1記載の粒子物性測定装置。 By irradiating the primary light in the cell in which the particle-free state, in each of the measurement angular position, the detection light intensity when the polarization angle of the exit side polarizer to a plurality of angles acquires each detection light intensity The particle physical property measuring apparatus according to claim 1, wherein: is used as the correction parameter. 前記受光光学系機構が、光検出手段の前方に配置したスリットをさらに具備し、該スリットを通過した二次光を前記光検出手段によって受光するように構成したものであって、前記スリットが、当該受光光学系機構の回転面と垂直な方向に延びるものである請求項1又は2記載の粒子物性測定装置。   The light receiving optical system mechanism further comprises a slit disposed in front of the light detection means, and is configured to receive secondary light that has passed through the slit by the light detection means, wherein the slit is 3. The particle physical property measuring apparatus according to claim 1, wherein the particle physical property measuring apparatus extends in a direction perpendicular to a rotation surface of the light receiving optical system mechanism. 前記一次光又は二次光を偏光状態を変化させることなくかつ光量を変更可能に減光する減光手段と、
前記各測定角度位置での各偏光角度それぞれにおける検出光強度が前記光検出手段の測定レンジ内に収まるように、前記減光手段による減光率を制御する減光率制御部とをさらに具備している請求項1乃至3いずれか記載の粒子物性測定装置。
A dimming means for dimming the primary light or the secondary light so as to change the light amount without changing the polarization state;
A dimming rate control unit for controlling the dimming rate by the dimming means so that the detected light intensity at each polarization angle at each measurement angle position is within the measurement range of the photodetecting means. The particle physical property measuring apparatus according to any one of claims 1 to 3.
前記受光光学系機構を、セルを透過する一次光の延長線上に配置可能にして、セルを透過した透過光の強度を前記光検出手段によって測定できるように構成している請求項1乃至4いずれか記載の粒子物性測定装置。   5. The structure according to claim 1, wherein the light receiving optical system mechanism can be arranged on an extension line of primary light transmitted through the cell, and the intensity of the transmitted light transmitted through the cell can be measured by the light detection means. Or a particle physical property measuring apparatus.
JP2008247415A 2008-09-26 2008-09-26 Particle property measuring device Expired - Fee Related JP5086958B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2008247415A JP5086958B2 (en) 2008-09-26 2008-09-26 Particle property measuring device
PCT/JP2009/066628 WO2010035775A1 (en) 2008-09-26 2009-09-25 Device for measuring physical property of particle
CN2011101371344A CN102323191B (en) 2008-09-26 2009-09-25 Device for measuring physical property of particle
GB1104774.3A GB2475458B (en) 2008-09-26 2009-09-25 Particle characterization instrument
US13/121,170 US8625093B2 (en) 2008-09-26 2009-09-25 Particle characterization device
CN2009801370287A CN102159934A (en) 2008-09-26 2009-09-25 Device for measuring physical property of particle
EP09816190.4A EP2333516A4 (en) 2008-09-26 2009-09-25 Device for measuring physical property of particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008247415A JP5086958B2 (en) 2008-09-26 2008-09-26 Particle property measuring device

Publications (2)

Publication Number Publication Date
JP2010078470A JP2010078470A (en) 2010-04-08
JP5086958B2 true JP5086958B2 (en) 2012-11-28

Family

ID=42209092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008247415A Expired - Fee Related JP5086958B2 (en) 2008-09-26 2008-09-26 Particle property measuring device

Country Status (1)

Country Link
JP (1) JP5086958B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251875A (en) * 2011-06-03 2012-12-20 Utsunomiya Univ Light intensity measuring device
JP2016133435A (en) * 2015-01-20 2016-07-25 株式会社リコー Optical device and information processing system
JP2016048263A (en) * 2015-12-22 2016-04-07 国立大学法人宇都宮大学 Light intensity measuring device
JP7498093B2 (en) 2020-11-17 2024-06-11 大塚電子株式会社 Light scattering measuring device and measuring tool

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0190628B1 (en) * 1985-02-08 1990-11-07 The Regents Of The University Of California Virus identification apparatus and method
JPS6370148A (en) * 1986-09-11 1988-03-30 Shimadzu Corp Apparatus for measuring size distribution of fine particle
JP2859971B2 (en) * 1991-03-06 1999-02-24 株式会社小野測器 Particle size distribution measuring device
JPH08128942A (en) * 1994-10-31 1996-05-21 Shimadzu Corp Particle size distribution measuring equipment
US6721051B2 (en) * 2000-09-20 2004-04-13 Synergetic Technologies, Inc. Non-intrusive method and apparatus for characterizing particles based on scattering matrix elements measurements using elliptically polarized radiation
JP2008032548A (en) * 2006-07-28 2008-02-14 Shimadzu Corp Light scattering detection device
JP2008039477A (en) * 2006-08-02 2008-02-21 Furukawa Electric Co Ltd:The Light detecting device

Also Published As

Publication number Publication date
JP2010078470A (en) 2010-04-08

Similar Documents

Publication Publication Date Title
WO2010035775A1 (en) Device for measuring physical property of particle
KR100917912B1 (en) Single-Polarizer Focused-Beam Ellipsometer
JP4921090B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
CN102435418B (en) Comprehensive polarization measuring device and method of argon fluoride (ArF) laser optical thin film elements
JP2008032548A (en) Light scattering detection device
US20180286643A1 (en) Advanced optical sensor, system, and methodologies for etch processing monitoring
JP2004138519A (en) Film thickness measuring device, reflectivity measuring device, foreign matter inspection device, reflectivity measuring method and foreign matter inspection method
KR102260929B1 (en) Apparatus for detecting spot shape
JP5086958B2 (en) Particle property measuring device
US9651478B2 (en) Analyzer
EP3023770A1 (en) Determination of a refractive index of a sample and of a particle size of particles in said sample by means of a dynamic light scattering apparatus
JP5605399B2 (en) Polarization measurement method and polarization measurement system
JP5002564B2 (en) Particle property measuring device
JP5514490B2 (en) Particle property measuring device
US10648928B1 (en) Scattered radiation optical scanner
WO2002014842A1 (en) Liquid-containing substance analyzing device and liquid-containing substance analyzing method
CN112557321A (en) Method, device and system for measuring light energy absorption rate of substance
JP6696642B2 (en) 0 degree incidence absolute reflectance measuring device
JP2006300808A (en) Raman spectrometry system
US10641713B1 (en) Phase retardance optical scanner
JPH06273330A (en) Turbidimeter
JP5065119B2 (en) Surface plasmon sensor
JP2005164255A (en) Spectroscopic analysis apparatus
JPS5839915A (en) Measuring apparatus of spectral sensitivity of optical sensor
JP2023031589A (en) Photothermal conversion analyzer and initial deterioration analysis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5086958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees