JP5138195B2 - Heat transfer gas supply mechanism, heat transfer gas supply method, substrate processing apparatus, and substrate processing method - Google Patents

Heat transfer gas supply mechanism, heat transfer gas supply method, substrate processing apparatus, and substrate processing method Download PDF

Info

Publication number
JP5138195B2
JP5138195B2 JP2006260397A JP2006260397A JP5138195B2 JP 5138195 B2 JP5138195 B2 JP 5138195B2 JP 2006260397 A JP2006260397 A JP 2006260397A JP 2006260397 A JP2006260397 A JP 2006260397A JP 5138195 B2 JP5138195 B2 JP 5138195B2
Authority
JP
Japan
Prior art keywords
heat transfer
transfer gas
substrate
flow path
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006260397A
Other languages
Japanese (ja)
Other versions
JP2008084924A (en
Inventor
亮 佐藤
均 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2006260397A priority Critical patent/JP5138195B2/en
Priority to CN200710154403A priority patent/CN100580870C/en
Priority to KR1020070096276A priority patent/KR100884851B1/en
Priority to TW096135499A priority patent/TWI413164B/en
Publication of JP2008084924A publication Critical patent/JP2008084924A/en
Application granted granted Critical
Publication of JP5138195B2 publication Critical patent/JP5138195B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02252Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by plasma treatment, e.g. plasma oxidation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching

Description

本発明は、処理容器内の載置台に載置された状態で所定の処理が施されるフラットパネルディスプレイ(FPD)用ガラス基板等の被処理基板の温度調節が可能なように載置台と被処理基板との間の空間に伝熱ガスを供給する伝熱ガス供給機構および伝熱ガス供給方法、ならびにこのような伝熱ガス供給機構および伝熱ガス供給方法を含む基板処理装置および基板処理方法に関する。   The present invention relates to a mounting table and a substrate so that the temperature of a substrate to be processed such as a glass substrate for a flat panel display (FPD) that is subjected to a predetermined process in a state of being mounted on a mounting table in a processing container can be adjusted. Heat transfer gas supply mechanism and heat transfer gas supply method for supplying heat transfer gas to a space between process substrates, and substrate processing apparatus and substrate processing method including such a heat transfer gas supply mechanism and heat transfer gas supply method About.

FPDの製造プロセスにおいては、被処理基板であるFPD用のガラス基板に対してエッチング処理や成膜処理等の所定の処理を施すために、プラズマエッチング装置やプラズマCVD成膜装置等のプラズマ処理装置が用いられている。プラズマ処理装置では一般的に、ガラス基板が、処理容器内の載置台上に載置された状態で、処理容器内に処理ガスを供給しつつ高周波電界を発生させることにより生成された処理ガスのプラズマによって処理される。   In an FPD manufacturing process, a plasma processing apparatus such as a plasma etching apparatus or a plasma CVD film forming apparatus is used to perform a predetermined process such as an etching process or a film forming process on an FPD glass substrate that is a substrate to be processed. Is used. Generally in a plasma processing apparatus, a glass substrate is placed on a mounting table in a processing container, and a processing gas generated by generating a high-frequency electric field while supplying the processing gas into the processing container. Processed by plasma.

このような処理の際には、生成されたプラズマ等によるガラス基板の温度変化、例えば温度上昇を回避するため、載置台に設けられた温調機構によってガラス基板を温度調節、例えば冷却することが行われており、温調機構とガラス基板との熱伝達が確実に行われてガラス基板の面内温度が均一に保たれるように、載置台とガラス基板との間の空間にHeガス等の伝熱ガスを供給することが行われている。伝熱ガスは一般的に、一端が伝熱ガス供給源に、他端が載置台とガラス基板との空間に接続された配管等の流路を介し、圧力制御バルブ(PCV)等の圧力検出部および流量調整弁によって所定の圧力、例えば200〜1330Pa(1.5〜10Torr)に保持されるように供給される。   In such a process, in order to avoid a temperature change of the glass substrate due to the generated plasma or the like, for example, a temperature rise, the glass substrate may be temperature-controlled, for example, cooled by a temperature control mechanism provided on the mounting table. He gas or the like is placed in the space between the mounting table and the glass substrate so that heat transfer between the temperature control mechanism and the glass substrate is reliably performed and the in-plane temperature of the glass substrate is kept uniform. The heat transfer gas is supplied. In general, the heat transfer gas is detected by a pressure control valve (PCV) or the like through a flow path such as a pipe having one end connected to the heat transfer gas supply source and the other end connected to the space between the mounting table and the glass substrate. And a flow rate adjusting valve so as to be maintained at a predetermined pressure, for example, 200 to 1330 Pa (1.5 to 10 Torr).

ところで、近時、FPDの大型化が指向され、一辺が2mを超えるような巨大なガラス基板も出現するに至っており、これに伴って載置台とガラス基板との間の空間や流路等の伝熱ガスで満たされる空間容量(以下、伝熱ガス充満空間と記す)が大きくなってきている。また、伝熱ガスによるガラス基板の面内温度の均一性をより向上させるために、上面がエンボス加工された載置台も用いられており、載置台とガラス基板との間の空間がさらに大きくなる傾向にある。このため、伝熱ガスの供給を開始してから設定圧力に達するまでに長い時間を要し、装置のスループットが低下してしまうという問題を有している。   By the way, recently, the enlargement of FPD has been aimed at, and a huge glass substrate with one side exceeding 2 m has also appeared. Along with this, the space between the mounting table and the glass substrate, the flow path, etc. The space capacity filled with heat transfer gas (hereinafter referred to as heat transfer gas full space) is increasing. Moreover, in order to further improve the uniformity of the in-plane temperature of the glass substrate due to the heat transfer gas, a mounting table whose upper surface is embossed is also used, and the space between the mounting table and the glass substrate is further increased. There is a tendency. For this reason, it takes a long time from the start of the supply of the heat transfer gas until the set pressure is reached, resulting in a problem that the throughput of the apparatus is lowered.

そこで、伝熱ガスの供給開始から設定圧力に速やかに到達させるため、流路の中間部に伝熱ガスを一時的に充填可能なタンクを設け、このタンクに供給源からの伝熱ガスを設定圧力に対応する圧力で充填しておき、タンクを開放することにより伝熱ガス充満空間が瞬時に設定圧力または設定圧力に近似した圧力の伝熱ガスで満たされるように構成した技術が提案されている(例えば特許文献1参照)。   Therefore, in order to quickly reach the set pressure from the start of supply of heat transfer gas, a tank that can be temporarily filled with heat transfer gas is provided in the middle of the flow path, and heat transfer gas from the supply source is set in this tank A technology has been proposed in which the heat transfer gas filling space is filled with a heat transfer gas at a set pressure or a pressure close to the set pressure instantly by filling with a pressure corresponding to the pressure and opening the tank. (For example, refer to Patent Document 1).

このような技術では通常、載置台とガラス基板との隙間から伝熱ガスが漏出するなどして圧力損失が生じるため、タンクを開放して充填された伝熱ガスを放出するだけでは伝熱ガス充満空間を設定圧力に調整することが難しく、不足圧力分の伝熱ガスを供給源から新たに補填する必要がある。したがって、流路の圧力を測定しつつ供給源からの伝熱ガスの供給を調整することができるように、PCVを流路の供給源とタンクとの間に設ける場合が多い。ところが、この場合には、PCVの下流側に大きな空間となるタンクが存在するため、伝熱ガス充満空間に伝熱ガスを満たした際に、PCVがガラス基板の載置状態に異常がある場合等に生じる微妙な圧力変化を検知することができず、PCVの圧力応答性が損なわれて実際の圧力にばらつきが生じるおそれがある。載置台とガラス基板との間の空間を含む伝熱ガス充満空間の圧力にばらつきが生じると、ガラス基板の処理品質の低下につながる。
特開平7−321184号公報
In such a technique, a heat loss is usually caused by leakage of heat transfer gas from the gap between the mounting table and the glass substrate. Therefore, it is only necessary to release the filled heat transfer gas by opening the tank. It is difficult to adjust the filling space to the set pressure, and it is necessary to supplement the heat transfer gas for the insufficient pressure from the supply source. Therefore, in many cases, the PCV is provided between the supply source of the flow path and the tank so that the supply of the heat transfer gas from the supply source can be adjusted while measuring the pressure of the flow path. However, in this case, since there is a tank that becomes a large space on the downstream side of the PCV, when the heat transfer gas is filled in the heat transfer gas filled space, the PCV has an abnormality in the mounting state of the glass substrate. It is impossible to detect a subtle pressure change that occurs, and the pressure responsiveness of the PCV may be impaired, resulting in variations in actual pressure. If the pressure in the heat transfer gas filled space including the space between the mounting table and the glass substrate varies, the processing quality of the glass substrate will deteriorate.
Japanese Patent Laid-Open No. 7-32184

本発明は、このような事情に鑑みてなされたものであって、載置台と被処理基板との間の空間が設定圧力となるような量の伝熱ガスを短時間で供給することができ、しかも、この空間を設定圧力に正確に保持することができる伝熱ガス供給機構および伝熱ガス供給方法、このような伝熱ガス供給機構を備えた基板処理装置、このような伝熱ガス供給方法を含む基板処理方法、ならびにこのような基板処理方法を実行させるための制御プログラムを記憶したコンピュータ読取可能な記憶媒体を提供することを目的とする。   The present invention has been made in view of such circumstances, and can supply a heat transfer gas in such an amount that the space between the mounting table and the substrate to be processed becomes a set pressure in a short time. In addition, a heat transfer gas supply mechanism and a heat transfer gas supply method capable of accurately maintaining this space at a set pressure, a substrate processing apparatus equipped with such a heat transfer gas supply mechanism, and such a heat transfer gas supply An object of the present invention is to provide a substrate processing method including the method, and a computer-readable storage medium storing a control program for executing the substrate processing method.

上記課題を解決するために、本発明の第1の観点では、処理容器内の載置台に載置された状態で所定の処理が施される被処理基板の温度調節が可能なように前記載置台と被処理基板との間の空間に伝熱ガスを供給する伝熱ガス供給機構であって、伝熱ガスを前記空間に供給するための伝熱ガス供給源と、前記伝熱ガス供給源からの伝熱ガスを一時的に貯留するための伝熱ガスタンクと、一端が前記伝熱ガス供給源に、他端が前記空間に接続され、前記伝熱ガス供給源からの伝熱ガスを前記空間に導く第1の伝熱ガス流路と、前記第1の伝熱ガス流路から分岐して前記伝熱ガスタンクに接続され、前記第1の伝熱ガス流路の伝熱ガスを前記伝熱ガスタンクに導き、前記伝熱ガスタンクに貯留された伝熱ガスを前記第1の伝熱ガス流路に導く第2の伝熱ガス流路と、前記第1の伝熱ガス流路に設けられた、前記空間および前記伝熱ガス流路内の圧力を検出する圧力検出部とを具備し、伝熱ガスが前記伝熱ガス供給源から前記伝熱ガスタンクに一旦貯留され、前記伝熱ガスタンクに貯留された前記伝熱ガスタンクから供給可能な全ての伝熱ガスが前記空間に供給された後は、前記伝熱ガス供給源から前記空間に伝熱ガスを供給する際に、前記伝熱ガスタンクを経由せずに供給され、前記伝熱ガスタンクは2つ設けられており、前記所定の処理前に、前記一方の伝熱ガスタンクに貯留された伝熱ガスを供給させて、前記圧力検出部による検出値から基板の前記載置台への載置状態が正常であるか否かを判断し、載置状態が正常であると判断した場合に、前記圧力検出部による検出値が所定値となるように、前記他方の伝熱ガスタンクに貯留された伝熱ガスを供給させ、必要に応じて前記伝熱ガス供給源からの伝熱ガスを供給させることを特徴とする伝熱ガス供給機構を提供する。 In order to solve the above-described problem, in the first aspect of the present invention, the above description is made so that the temperature of a substrate to be processed on which a predetermined process is performed in a state of being mounted on a mounting table in a processing container is possible. A heat transfer gas supply mechanism for supplying a heat transfer gas to a space between a table and a substrate to be processed, the heat transfer gas supply source for supplying the heat transfer gas to the space, and the heat transfer gas supply source A heat transfer gas tank for temporarily storing the heat transfer gas from, and one end connected to the heat transfer gas supply source, the other end connected to the space, and the heat transfer gas from the heat transfer gas supply source A first heat transfer gas flow path that leads to the space, and is branched from the first heat transfer gas flow path and connected to the heat transfer gas tank, and the heat transfer gas in the first heat transfer gas flow path is transferred to the heat transfer gas tank. A second gas which is led to the hot gas tank and guides the heat transfer gas stored in the heat transfer gas tank to the first heat transfer gas flow path; A heat transfer gas flow path, provided in the first thermal transfer gas flow path, said comprising a pressure detector for detecting a pressure in the space and the heat transfer gas flow path, the heat transfer is the heat transfer gas After all the heat transfer gas that has been temporarily stored in the heat transfer gas tank from the hot gas supply source and supplied from the heat transfer gas tank stored in the heat transfer gas tank is supplied to the space, the heat transfer gas supply When the heat transfer gas is supplied from the source to the space, the heat transfer gas tank is supplied without going through the heat transfer gas tank, and the two heat transfer gas tanks are provided. When the heat transfer gas stored in the gas tank is supplied, it is determined whether or not the mounting state of the substrate on the mounting table is normal from the detection value by the pressure detection unit, and the mounting state is normal. When it is determined, the detection value by the pressure detection unit is a predetermined value. Composed manner, the to the other supply heat transfer gas tank to the reservoir by heat transfer gas, a heat transfer gas supply mechanism, characterized in that to supply the heat transfer gas from the heat transfer gas supply source optionally provide.

本発明の第1の観点において、前記圧力検出部は、前記第1の伝熱ガス流路の前記第2の伝熱ガス流路との分岐部よりも上流側に設けられていることがなお好ましい。 In a first aspect of the present invention, before Symbol pressure detection unit that is provided on the upstream side of the branch portion between the second heat transfer gas flow path of the first heat transfer gas passages Further preferred.

また、本発明の第2の観点では、被処理基板を収容する処理容器と、前記処理容器内に設けられた、被処理基板が載置される載置台と、前記載置台に載置された被処理基板に対して所定の処理を施す処理機構と、少なくとも前記処理機構による処理時に、被処理基板の温度が調節されるように前記載置台と被処理基板との間に形成された空間に伝熱ガスを供給する伝熱ガス供給機構とを具備する基板処理装置であって、前記伝熱ガス供給機構は、伝熱ガスを前記空間に供給するための伝熱ガス供給源と、前記伝熱ガス供給源からの伝熱ガスを一時的に貯留するための伝熱ガスタンクと、一端が前記伝熱ガス供給源に、他端が前記空間に接続され、前記伝熱ガス供給源からの伝熱ガスを前記空間に導く第1の伝熱ガス流路と、前記第1の伝熱ガス流路から分岐して前記伝熱ガスタンクに接続され、前記第1の伝熱ガス流路の伝熱ガスを前記伝熱ガスタンクに導き、前記伝熱ガスタンクに貯留された伝熱ガスを前記第1の伝熱ガス流路に導く第2の伝熱ガス流路と、前記第1の伝熱ガス流路に設けられた、前記空間および前記伝熱ガス流路内の圧力を検出する圧力検出部とを具備し、前記圧力検出部による検出値に基づいて前記処理機構および前記伝熱ガス供給機構を制御する制御部を備え、伝熱ガスが前記伝熱ガス供給源から前記伝熱ガスタンクに一旦貯留され、前記伝熱ガスタンクに貯留された前記伝熱ガスタンクから供給可能な全ての伝熱ガスが前記空間に供給された後は、前記伝熱ガス供給源から前記空間に伝熱ガスを供給する際に、前記伝熱ガスタンクを経由せずに供給され、前記伝熱ガスタンクは2つ設けられており、前記制御部は、前記処理機構による処理前に、前記一方の伝熱ガスタンクに貯留された伝熱ガスを供給させて、前記圧力検出部による検出値から基板の前記載置台への載置状態が正常であるか否かを判断し、載置状態が正常であると判断した場合に、前記圧力検出部による検出値が所定値となるように、前記他方の伝熱ガスタンクに貯留された伝熱ガスを供給させ、必要に応じて前記伝熱ガス供給源からの伝熱ガスを供給させるとともに、前記処理機構によって被処理基板を処理させることを特徴とする基板処理装置を提供する。
また、本発明の第3の観点では、被処理基板を収容する処理容器と、前記処理容器内に設けられた、被処理基板が載置される載置台と、前記載置台に載置された被処理基板に対して所定の処理を施す処理機構と、少なくとも前記処理機構による処理時に、被処理基板の温度が調節されるように前記載置台と被処理基板との間に形成された空間に伝熱ガスを供給する伝熱ガス供給機構とを具備する基板処理装置であって、前記伝熱ガス供給機構は、伝熱ガスを前記空間に供給するための伝熱ガス供給源と、前記伝熱ガス供給源からの伝熱ガスを一時的に貯留するための伝熱ガスタンクと、一端が前記伝熱ガス供給源に、他端が前記空間に接続され、前記伝熱ガス供給源からの伝熱ガスを前記空間に導く第1の伝熱ガス流路と、前記第1の伝熱ガス流路から分岐して前記伝熱ガスタンクに接続され、前記第1の伝熱ガス流路の伝熱ガスを前記伝熱ガスタンクに導き、前記伝熱ガスタンクに貯留された伝熱ガスを前記第1の伝熱ガス流路に導く第2の伝熱ガス流路と、前記第1の伝熱ガス流路に設けられた、前記空間および前記伝熱ガス流路内の圧力を検出する圧力検出部とを具備し、前記圧力検出部による検出値に基づいて前記処理機構および前記伝熱ガス供給機構を制御する制御部を備え、伝熱ガスが前記伝熱ガス供給源から前記伝熱ガスタンクに一旦貯留され、前記伝熱ガスタンクに貯留された前記伝熱ガスタンクから供給可能な全ての伝熱ガスが前記空間に供給された後は、前記伝熱ガス供給源から前記空間に伝熱ガスを供給する際に、前記伝熱ガスタンクを経由せずに供給され、前記第2の伝熱ガス流路は、前記第1の伝熱ガス流路の伝熱ガスを前記伝熱ガスタンクに導くための流路と、前記伝熱ガスタンクに貯留された伝熱ガスを前記第1の伝熱ガス流路に導くための流路とを別個に有しており、前記制御部は、前記処理機構による処理前に、前記伝熱ガスタンクに貯留された伝熱ガスを供給させて、前記圧力検出部による検出値から基板の前記載置台への載置状態が正常であるか否かを判断するとともに、前記伝熱ガス供給源からの伝熱ガスを前記伝熱ガスタンクに再び貯留させ、載置状態が正常であると判断した場合に、前記伝熱ガスタンクに再び貯留された伝熱ガスを供給させ、必要に応じて前記伝熱ガス供給源からの伝熱ガスを供給させるとともに、前記処理機構によって被処理基板を処理させることを特徴とする基板処理装置を提供する。
Moreover, in the 2nd viewpoint of this invention, it mounted in the processing table which accommodates the to-be-processed substrate, the mounting base in which the to-be-processed substrate was provided provided in the said processing container, and the said mounting base. a processing mechanism for performing predetermined processing for a substrate to be processed, during the processing by at least the processing mechanism, between air formed between the mounting table and the substrate to be processed before such that the temperature of the substrate is adjusted A heat transfer gas supply mechanism for supplying heat transfer gas to the heat transfer gas supply mechanism, the heat transfer gas supply mechanism for supplying heat transfer gas to the space, and A heat transfer gas tank for temporarily storing the heat transfer gas from the heat transfer gas supply source, one end connected to the heat transfer gas supply source, and the other end connected to the space, from the heat transfer gas supply source A first heat transfer gas channel for guiding the heat transfer gas to the space; and the first heat transfer gas. Branched from the flow path and connected to the heat transfer gas tank, the heat transfer gas in the first heat transfer gas flow path is led to the heat transfer gas tank, and the heat transfer gas stored in the heat transfer gas tank is transferred to the first heat transfer gas tank. A second heat transfer gas flow path that leads to the heat transfer gas flow path, and a pressure detection unit that is provided in the first heat transfer gas flow path and detects the pressure in the space and the heat transfer gas flow path And a control unit that controls the processing mechanism and the heat transfer gas supply mechanism based on a detection value by the pressure detection unit, and the heat transfer gas is temporarily transferred from the heat transfer gas supply source to the heat transfer gas tank. After all the heat transfer gas that has been stored and can be supplied from the heat transfer gas tank stored in the heat transfer gas tank is supplied to the space, the heat transfer gas is supplied from the heat transfer gas supply source to the space. when supplied without passing through the heat transfer gas tank Two heat transfer gas tanks are provided, and the control unit supplies the heat transfer gas stored in the one heat transfer gas tank before the processing by the processing mechanism, and the detected value by the pressure detection unit. Determining whether or not the mounting state of the substrate on the mounting table is normal, and determining that the mounting state is normal, so that the detection value by the pressure detection unit becomes a predetermined value, The heat transfer gas stored in the other heat transfer gas tank is supplied, the heat transfer gas from the heat transfer gas supply source is supplied as necessary, and the substrate to be processed is processed by the processing mechanism. A substrate processing apparatus is provided.
Moreover, in the 3rd viewpoint of this invention, the processing container which accommodates a to-be-processed substrate, the mounting base in which the to-be-processed substrate was mounted provided in the said processing container, and it mounted on the mounting table mentioned above. A processing mechanism for performing predetermined processing on the substrate to be processed, and at least a space formed between the mounting table and the substrate to be processed so that the temperature of the substrate to be processed is adjusted at least during processing by the processing mechanism; A substrate processing apparatus comprising a heat transfer gas supply mechanism for supplying a heat transfer gas, wherein the heat transfer gas supply mechanism includes a heat transfer gas supply source for supplying the heat transfer gas to the space, and the heat transfer gas supply mechanism. A heat transfer gas tank for temporarily storing heat transfer gas from the hot gas supply source, one end connected to the heat transfer gas supply source, and the other end connected to the space, and the heat transfer gas supply from the heat transfer gas supply source. A first heat transfer gas flow path for guiding the hot gas to the space; and the first heat transfer gas. Branched from the flow path and connected to the heat transfer gas tank, the heat transfer gas in the first heat transfer gas flow path is led to the heat transfer gas tank, and the heat transfer gas stored in the heat transfer gas tank is transferred to the first heat transfer gas tank. A second heat transfer gas flow path that leads to the heat transfer gas flow path, and a pressure detection unit that is provided in the first heat transfer gas flow path and detects the pressure in the space and the heat transfer gas flow path And a control unit that controls the processing mechanism and the heat transfer gas supply mechanism based on a detection value by the pressure detection unit, and the heat transfer gas is temporarily transferred from the heat transfer gas supply source to the heat transfer gas tank. After all the heat transfer gas that has been stored and can be supplied from the heat transfer gas tank stored in the heat transfer gas tank is supplied to the space, the heat transfer gas is supplied from the heat transfer gas supply source to the space. Is supplied without going through the heat transfer gas tank. The second thermal transfer gas flow path, wherein a first flow channel for guiding the heat transfer gas in the heat transfer gas flow path to said heat transfer gas tank, a heat transfer gas stored in the heat transfer gas tank the A flow path for guiding to the first heat transfer gas flow path, and the control unit supplies the heat transfer gas stored in the heat transfer gas tank before the processing by the processing mechanism. And determining whether or not the mounting state of the substrate on the mounting table is normal from the detection value by the pressure detection unit, and again transferring the heat transfer gas from the heat transfer gas supply source to the heat transfer gas tank. When it is determined that the mounted state is normal, the heat transfer gas stored again in the heat transfer gas tank is supplied, and the heat transfer gas from the heat transfer gas supply source is supplied as necessary. And processing the substrate to be processed by the processing mechanism. Providing board processor shall be the.

本発明の第2の観点または第3の観点において、前記圧力検出部は、前記第1の伝熱ガス流路の前記第2の伝熱ガス流路との分岐部よりも上流側に設けられていることがなお好ましい。 In the second aspect or the third aspect of the present invention, the pre-Symbol pressure detecting unit is provided on the upstream side of the branch portion between the second heat transfer gas flow path of the first heat transfer gas passages It is still preferred that

また、この場合に、前記制御部は、前記処理機構による処理前に、前記圧力検出部による検出値が前記所定値よりも低い値となるように設定された量の伝熱ガスを前記伝熱ガス供給機構によって供給させて、前記圧力検出部による検出値から基板の前記載置台への載置状態が正常であるか否かを判断させることができる。 Further, in this case, before Symbol controller, to pretreatment with the processing mechanism, wherein the heat transfer gas quantity value detected by the pressure detecting portion is set to a value lower than the predetermined value Den by supplying the hot gas supply mechanism, placement state to the mounting table of the substrate from the value detected by the pressure detecting unit it can be judged whether it is normal.

また、以上の本発明の第2の観点または第3の観点において、前記処理機構は、前記処理容器内に処理ガスを供給する処理ガス供給機構と、前記処理容器内を排気する排気機構と、前記処理容器内に前記処理ガスのプラズマを生成するプラズマ生成機構とを有し、被処理基板に対してプラズマ処理を施すことが好適である。 In the second or third aspect of the present invention described above, the processing mechanism includes a processing gas supply mechanism for supplying a processing gas into the processing container, an exhaust mechanism for exhausting the processing container, It is preferable to have a plasma generation mechanism for generating plasma of the processing gas in the processing container, and to perform plasma processing on the substrate to be processed.

また、本発明の第の観点では、処理容器内の載置台に載置された状態で所定の処理が施される被処理基板の温度調節が可能なように前記載置台と被処理基板との間の空間に伝熱ガスを供給する伝熱ガス供給方法であって、伝熱ガスを前記空間に供給するための伝熱ガス供給源と、前記伝熱ガス供給源からの伝熱ガスを一時的に貯留するための伝熱ガスタンクと、一端が前記伝熱ガス供給源に、他端が前記空間に接続され、前記伝熱ガス供給源からの伝熱ガスを前記空間に導く第1の伝熱ガス流路と、前記第1の伝熱ガス流路から分岐して前記伝熱ガスタンクに接続され、前記第1の伝熱ガス流路の伝熱ガスを前記伝熱ガスタンクに導き、前記伝熱ガスタンクに貯留された伝熱ガスを前記第1の伝熱ガス流路に導く第2の伝熱ガス流路と、前記第1の伝熱ガス流路に設けられた、前記空間および前記伝熱ガス流路内の圧力を検出する圧力検出部とを準備し、伝熱ガスを前記伝熱ガス供給源から前記伝熱ガスタンクに一旦貯留し、前記伝熱ガスタンクに貯留された前記伝熱ガスタンクから供給可能な全ての伝熱ガスを前記空間に供給した後は、前記伝熱ガス供給源から前記空間に伝熱ガスを供給する際に、前記伝熱ガスタンクを経由せずに供給し、前記伝熱ガスタンクを2つ設け、前記所定の処理前に、前記一方の伝熱ガスタンクに貯留された伝熱ガスを供給させて、前記圧力検出部による検出値から基板の前記載置台への載置状態が正常であるか否かを判断し、載置状態が正常であると判断した場合に、前記圧力検出部による検出値が所定値となるように、前記他方の伝熱ガスタンクに貯留された伝熱ガスを供給させ、必要に応じて前記伝熱ガス供給源からの伝熱ガスを供給させることを特徴とする伝熱ガス供給方法を提供する。 According to a fourth aspect of the present invention, the mounting table and the substrate to be processed are provided so that the temperature of the substrate to be processed on which the predetermined processing is performed while being mounted on the mounting table in the processing container is possible. A heat transfer gas supply method for supplying a heat transfer gas to a space between the heat transfer gas supply source for supplying the heat transfer gas to the space, and the heat transfer gas from the heat transfer gas supply source. A heat transfer gas tank for temporarily storing, and a first end connected to the heat transfer gas supply source, the other end connected to the space, and a first heat transfer gas from the heat transfer gas supply source to the space A heat transfer gas flow path, and branched from the first heat transfer gas flow path and connected to the heat transfer gas tank, the heat transfer gas in the first heat transfer gas flow path is led to the heat transfer gas tank, and a second heat transfer gas flow path for guiding the to heat transfer gas accumulated in the heat transfer gas tank to the first heat transfer gas flow path, before Provided in the first heat transfer gas flow path, wherein preparing a pressure detection unit for detecting a pressure in the space and the heat transfer gas flow path, the heat transfer to the heat transfer gas from the heat transfer gas supply source After all the heat transfer gas that has been temporarily stored in the gas tank and can be supplied from the heat transfer gas tank stored in the heat transfer gas tank is supplied to the space, the heat transfer gas is supplied from the heat transfer gas supply source to the space. When supplying, supply without passing through the heat transfer gas tank, two heat transfer gas tanks are provided, and the heat transfer gas stored in the one heat transfer gas tank is supplied before the predetermined processing. , It is determined whether or not the mounting state of the substrate on the mounting table is normal from the detection value by the pressure detection unit, and when the mounting state is determined to be normal, the detection value by the pressure detection unit The other heat transfer gas tank so that To supply the pooled heat transfer gas, providing a heat transfer gas supply method characterized in that to supply the heat transfer gas from the heat transfer gas supply as needed.

また、本発明の第の観点では、被処理基板を処理容器内に収容し、この処理容器内に設けられた載置台に載置する工程と、前記載置台に載置された被処理基板に対して所定の処理を施す工程と、少なくとも前記所定の処理工程に、被処理基板の温度調節が可能なように前記載置台と被処理基板との間の空間に伝熱ガスを供給する工程とを含む基板処理方法であって、前記伝熱ガス供給工程では、伝熱ガスを前記空間に供給するための伝熱ガス供給源と、前記伝熱ガス供給源からの伝熱ガスを一時的に貯留するための伝熱ガスタンクと、一端が前記伝熱ガス供給源に、他端が前記空間に接続され、前記伝熱ガス供給源からの伝熱ガスを前記空間に導く第1の伝熱ガス流路と、前記第1の伝熱ガス流路から分岐して前記伝熱ガスタンクに接続され、前記第1の伝熱ガス流路の伝熱ガスを前記伝熱ガスタンクに導き、前記伝熱ガスタンクに貯留された伝熱ガスを前記第1の伝熱ガス流路に導く第2の伝熱ガス流路と、前記第1の伝熱ガス流路に、前記空間および前記伝熱ガス流路内の圧力を検出する圧力検出部とを準備し、伝熱ガスを前記伝熱ガス供給源から前記伝熱ガスタンクに一旦貯留し、前記伝熱ガスタンクに貯留された伝熱ガスを前記伝熱ガスタンクから供給可能な全ての前記空間に供給した後は、前記伝熱ガス供給源から前記空間に伝熱ガスを供給する際に、前記伝熱ガスタンクを経由せずに供給し、前記伝熱ガスタンクを2つ設けておき、前記所定の処理工程前に、前記一方の伝熱ガスタンクに貯留された伝熱ガスを供給して、前記圧力検出部による検出値から基板の前記載置台への載置状態が正常であるか否かを判断し、載置状態が正常であると判断した場合に、前記所定の処理工程時に、前記他方の伝熱ガスタンクに貯留された伝熱ガスを供給し、必要に応じて前記伝熱ガス供給源からの伝熱ガスを供給することを特徴とする基板処理方法を提供する。
また、本発明の第6の観点では、被処理基板を処理容器内に収容し、この処理容器内に設けられた載置台に載置する工程と、前記載置台に載置された被処理基板に対して所定の処理を施す工程と、少なくとも前記所定の処理工程に、被処理基板の温度調節が可能なように前記載置台と被処理基板との間の空間に伝熱ガスを供給する工程とを含む基板処理方法であって、前記伝熱ガス供給工程では、伝熱ガスを前記空間に供給するための伝熱ガス供給源と、前記伝熱ガス供給源からの伝熱ガスを一時的に貯留するための伝熱ガスタンクと、一端が前記伝熱ガス供給源に、他端が前記空間に接続され、前記伝熱ガス供給源からの伝熱ガスを前記空間に導く第1の伝熱ガス流路と、前記第1の伝熱ガス流路から分岐して前記伝熱ガスタンクに接続され、前記第1の伝熱ガス流路の伝熱ガスを前記伝熱ガスタンクに導き、前記伝熱ガスタンクに貯留された伝熱ガスを前記第1の伝熱ガス流路に導く第2の伝熱ガス流路と、前記第1の伝熱ガス流路に、前記空間および前記伝熱ガス流路内の圧力を検出する圧力検出部とを準備し、前記第2の伝熱ガス流路を、前記第1の伝熱ガス流路の伝熱ガスを前記伝熱ガスタンクに導くための流路と、前記伝熱ガスタンクに貯留された伝熱ガスを前記第1の伝熱ガス流路に導くための流路とを別個に設けて構成しておき、前記所定の処理工程前に、前記伝熱ガスタンクに貯留された伝熱ガスを供給して、前記圧力検出部の検出値から基板の前記載置台への載置状態が正常であるか否かを判断するとともに、前記伝熱ガス供給源の伝熱ガスを前記伝熱ガスタンクに再び貯留し、載置状態が正常であると判断した場合に、前記所定の処理工程時に、前記伝熱ガスタンクに再び貯留された伝熱ガスを供給し、必要に応じて前記伝熱ガス供給源からの伝熱ガスを供給することを特徴とする基板処理方法を提供する。
Moreover, in the 5th viewpoint of this invention, the process substrate accommodated in a processing container, and it mounts on the mounting base provided in this processing container, The to-be-processed substrate mounted on the mounting base mentioned above And a step of supplying a heat transfer gas to a space between the mounting table and the substrate to be processed so that the temperature of the substrate to be processed can be adjusted at least in the predetermined processing step. In the heat transfer gas supply step, the heat transfer gas supply source for supplying the heat transfer gas to the space and the heat transfer gas from the heat transfer gas supply source are temporarily provided. A heat transfer gas tank for storing in the first heat transfer gas tank; one end connected to the heat transfer gas supply source; the other end connected to the space; and a first heat transfer for guiding the heat transfer gas from the heat transfer gas supply source to the space A gas flow path and a branch from the first heat transfer gas flow path are connected to the heat transfer gas tank. The second heat transfer gas that guides the heat transfer gas in the first heat transfer gas channel to the heat transfer gas tank and guides the heat transfer gas stored in the heat transfer gas tank to the first heat transfer gas channel. A gas flow path and a pressure detector for detecting the pressure in the space and the heat transfer gas flow path are prepared in the first heat transfer gas flow path, and the heat transfer gas is supplied from the heat transfer gas supply source. After temporarily storing in the heat transfer gas tank and supplying the heat transfer gas stored in the heat transfer gas tank to all the spaces that can be supplied from the heat transfer gas tank, the heat transfer gas is transferred from the heat transfer gas supply source to the space. When supplying the hot gas, it is supplied without going through the heat transfer gas tank, two heat transfer gas tanks are provided, and the heat transfer gas stored in the one heat transfer gas tank is provided before the predetermined processing step. Supply hot gas, from the detection value by the pressure detection unit, the substrate of the Heat transfer gas stored in the other heat transfer gas tank at the time of the predetermined processing step when it is determined whether or not the mounting state on the mounting table is normal and the mounting state is determined to be normal Is provided, and a heat transfer gas from the heat transfer gas supply source is supplied as necessary .
Moreover, in the 6th viewpoint of this invention, the process substrate is accommodated in the processing container, and it mounts on the mounting base provided in this processing container, The to-be-processed substrate mounted on the mounting base mentioned above And a step of supplying a heat transfer gas to a space between the mounting table and the substrate to be processed so that the temperature of the substrate to be processed can be adjusted at least in the predetermined processing step. In the heat transfer gas supply step, the heat transfer gas supply source for supplying the heat transfer gas to the space and the heat transfer gas from the heat transfer gas supply source are temporarily provided. A heat transfer gas tank for storing in the first heat transfer gas tank; one end connected to the heat transfer gas supply source; the other end connected to the space; and a first heat transfer for guiding the heat transfer gas from the heat transfer gas supply source to the space A gas flow path and a branch from the first heat transfer gas flow path are connected to the heat transfer gas tank. The second heat transfer gas that guides the heat transfer gas in the first heat transfer gas channel to the heat transfer gas tank and guides the heat transfer gas stored in the heat transfer gas tank to the first heat transfer gas channel. A gas flow path and a pressure detection unit for detecting a pressure in the space and the heat transfer gas flow path are prepared in the first heat transfer gas flow path, and the second heat transfer gas flow path is A flow path for guiding the heat transfer gas in the first heat transfer gas flow path to the heat transfer gas tank, and a flow of heat transfer gas stored in the heat transfer gas tank to the first heat transfer gas flow path. The flow path is separately provided, and the heat transfer gas stored in the heat transfer gas tank is supplied before the predetermined processing step, and the detection value of the pressure detection unit is used to describe the substrate. It is determined whether the mounting state on the mounting table is normal, and the heat transfer gas of the heat transfer gas supply source is changed to the heat transfer gas tank. When it is determined that the mounting state is normal, the heat transfer gas stored again in the heat transfer gas tank is supplied during the predetermined processing step, and the heat transfer gas is supplied as necessary. Provided is a substrate processing method characterized by supplying a heat transfer gas from a supply source.

さらに、本発明の第の観点では、コンピュータ上で動作する制御プログラムが記憶されたコンピュータ読取可能な記憶媒体であって、前記制御プログラムは、実行時に前記の基板処理方法が行われるように、コンピュータに処理装置を制御させることを特徴とするコンピュータ読取可能な記憶媒体を提供する。 Further, according to a seventh aspect of the present invention, there is provided a computer-readable storage medium storing a control program that operates on a computer, and the control program performs the substrate processing method at the time of execution. A computer-readable storage medium characterized by causing a computer to control a processing device is provided.

本発明によれば、一端が伝熱ガス供給源に、他端が載置台と被処理基板との間の空間に接続され、伝熱ガス供給源からの伝熱ガスをこの空間に導く第1の伝熱ガス流路と、第1の伝熱ガス流路から分岐して伝熱ガスタンクに接続され、第1の伝熱ガス流路の伝熱ガスを伝熱ガスタンクに導き、伝熱ガスタンクに貯留された伝熱ガスを第1の伝熱ガス流路に導く第2の伝熱ガス流路とを設けておき、伝熱ガスを伝熱ガス供給源から伝熱ガスタンクに一旦貯留し、伝熱ガスタンクに貯留された伝熱ガスを載置台と被処理基板との間の空間に供給するため、載置台と被処理基板との間の空間が設定圧力となるような量の伝熱ガスを短時間で供給することができ、しかも、伝熱ガスタンクから供給可能な全ての伝熱ガス供給後には、大きな空間である伝熱ガスタンクを第1の伝熱ガス流路から分離することができるため、第1の伝熱ガス流路にPCV等の圧力検出部を設けることにより、載置台と被処理基板との間の空間を設定圧力に迅速かつ正確に保持することができる。
さらに、前記伝熱ガスタンクを2つ設け、前記所定の処理前に、前記一方の伝熱ガスタンクに貯留された伝熱ガスを供給させて、前記圧力検出部による検出値から基板の前記載置台への載置状態が正常であるか否かを判断し、載置状態が正常であると判断した場合に、前記圧力検出部による検出値が所定値となるように、前記他方の伝熱ガスタンクに貯留された伝熱ガスを供給させ、必要に応じて前記伝熱ガス供給源からの伝熱ガスを供給させる。
または、前記第2の伝熱ガス流路を、前記第1の伝熱ガス流路の伝熱ガスを前記伝熱ガスタンクに導くための流路と、前記伝熱ガスタンクに貯留された伝熱ガスを前記第1の伝熱ガス流路に導くための流路とを別個に設けて構成しておき、前記所定の処理工程前に、前記伝熱ガスタンクに貯留された伝熱ガスを供給して、前記圧力検出部の検出値から基板の前記載置台への載置状態が正常であるか否かを判断するとともに、前記伝熱ガス供給源の伝熱ガスを前記伝熱ガスタンクに再び貯留し、載置状態が正常であると判断した場合に、前記所定の処理工程時に、前記伝熱ガスタンクに再び貯留された伝熱ガスを供給し、必要に応じて前記伝熱ガス供給源からの伝熱ガスを供給する。
したがって、被処理基板の処理時間の短縮および処理品質の向上を図ることが可能となる。
According to the present invention, the first end is connected to the heat transfer gas supply source, the other end is connected to the space between the mounting table and the substrate to be processed, and the heat transfer gas from the heat transfer gas supply source is guided to the space. a heat transfer gas flow path branches from the first heat transfer gas flow path is connected to a heat transfer gas tank, the heat transfer gas in the first heat transfer gas passages leading to the heat transfer gas tank, the heat transfer gas tank A second heat transfer gas flow path is provided for guiding the stored heat transfer gas to the first heat transfer gas flow path, and the heat transfer gas is temporarily stored in the heat transfer gas tank from the heat transfer gas supply source. In order to supply the heat transfer gas stored in the hot gas tank to the space between the mounting table and the substrate to be processed, an amount of heat transfer gas such that the space between the mounting table and the substrate to be processed becomes a set pressure. can be supplied in a short time, moreover, after all the heat transfer gas supply capable of supplying from the heat transfer gas tank is a large space Since the hot gas tank can be separated from the first heat transfer gas flow path, a space between the mounting table and the substrate to be processed is provided by providing a pressure detection unit such as PCV in the first heat transfer gas flow path. The set pressure can be quickly and accurately held.
Further, two heat transfer gas tanks are provided, and the heat transfer gas stored in the one heat transfer gas tank is supplied before the predetermined processing, and the detected value by the pressure detection unit is transferred to the mounting table on the substrate. Is determined to be normal, and when it is determined that the mounting state is normal, the other heat transfer gas tank is set so that the detection value by the pressure detection unit becomes a predetermined value. The stored heat transfer gas is supplied, and the heat transfer gas from the heat transfer gas supply source is supplied as necessary.
Alternatively, the second heat transfer gas flow path, the flow path for guiding the heat transfer gas of the first heat transfer gas flow path to the heat transfer gas tank, and the heat transfer gas stored in the heat transfer gas tank Is provided separately from the flow path for guiding the first heat transfer gas flow path, and before the predetermined processing step, the heat transfer gas stored in the heat transfer gas tank is supplied. Determining whether or not the mounting state of the substrate on the mounting table is normal from the detection value of the pressure detection unit, and storing the heat transfer gas of the heat transfer gas supply source in the heat transfer gas tank again. When it is determined that the mounting state is normal, the heat transfer gas stored again in the heat transfer gas tank is supplied during the predetermined processing step, and the heat transfer gas supply source transfers the heat transfer gas as necessary. Supply hot gas.
Accordingly, it is possible to shorten the processing time of the substrate to be processed and improve the processing quality.

以下、添付図面を参照しながら本発明の実施の形態について説明する。
図1は本発明に係る基板処理装置の一実施形態であるプラズマエッチング装置の概略断面図であり、図2はプラズマエッチング装置を構成する伝熱ガス供給機構の概略図である。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a schematic sectional view of a plasma etching apparatus as an embodiment of a substrate processing apparatus according to the present invention, and FIG. 2 is a schematic view of a heat transfer gas supply mechanism constituting the plasma etching apparatus.

このプラズマエッチング装置1は、FPD用のガラス基板(以下、単に「基板」と記す)Gに対してエッチングを行う容量結合型平行平板プラズマエッチング装置として構成されている。FPDとしては、液晶ディスプレイ(LCD)、エレクトロルミネセンス(Electro Luminescence;EL)ディスプレイ、プラズマディスプレイパネル(PDP)等が例示される。プラズマエッチング装置1は、基板Gを収容する処理容器としてのチャンバー2を備えている。チャンバー2は、例えば、表面がアルマイト処理(陽極酸化処理)されたアルミニウムからなり、基板Gの形状に対応して四角筒形状に形成されている。   The plasma etching apparatus 1 is configured as a capacitively coupled parallel plate plasma etching apparatus that performs etching on an FPD glass substrate (hereinafter simply referred to as “substrate”) G. Examples of the FPD include a liquid crystal display (LCD), an electroluminescence (EL) display, a plasma display panel (PDP), and the like. The plasma etching apparatus 1 includes a chamber 2 as a processing container that accommodates the substrate G. The chamber 2 is made of, for example, aluminum whose surface is anodized (anodized), and is formed in a square tube shape corresponding to the shape of the substrate G.

チャンバー2内の底壁には、基板Gを載置する載置台としてのサセプタ4が設けられている。サセプタ4は、基板Gの形状に対応して四角板状または柱状に形成されており、金属等の導電性材料からなる基材4aと、基材4aの周縁を覆う絶縁材料からなる絶縁部材4bと、基材4aおよび絶縁部材4bの底部を覆うように設けられてこれらを支持する絶縁材料からなる絶縁部材4cとを有している。基材4aには、高周波電力を供給するための給電線23が接続されており、この給電線23には整合器24および高周波電源25が接続されている。高周波電源25からは例えば13.56MHzの高周波電力がサセプタ4に供給され、これにより、サセプタ4が下部電極として機能するように構成されている。また、基材4aには、載置された基板Gを吸着するための静電吸着機構と、載置された基板Gの温度を調節するための冷媒流路等の冷却手段などからなる温度調節機構とが内蔵されている(いずれも図示せず)。   A susceptor 4 as a mounting table on which the substrate G is mounted is provided on the bottom wall in the chamber 2. The susceptor 4 is formed in a square plate shape or a column shape corresponding to the shape of the substrate G, and a base material 4a made of a conductive material such as metal and an insulating member 4b made of an insulating material covering the periphery of the base material 4a. And an insulating member 4c made of an insulating material provided so as to cover the bottoms of the base member 4a and the insulating member 4b and supporting them. A power supply line 23 for supplying high-frequency power is connected to the base material 4a, and a matching unit 24 and a high-frequency power source 25 are connected to the power supply line 23. For example, high frequency power of 13.56 MHz is supplied from the high frequency power supply 25 to the susceptor 4, whereby the susceptor 4 functions as a lower electrode. In addition, the base material 4a has a temperature adjustment composed of an electrostatic adsorption mechanism for adsorbing the mounted substrate G, and a cooling means such as a refrigerant channel for adjusting the temperature of the mounted substrate G. Mechanism (both not shown).

基材4aの表面には、誘電体材料からなる複数の凸部4dが突起状に形成されており、これら凸部4dは、絶縁部材4bに周囲を囲まれた状態になっている。絶縁部材4bの上面と凸部4dの上端部とは同じ高さとなっており、ガラス基板Gは、サセプタ4上に載置された際に、絶縁部材4bの上面および凸部4dの上端部に接触した状態となる。これにより、基板Gがサセプタ4上に載置された際には、基板Gとサセプタ4との間に空間Dが形成される。   A plurality of convex portions 4d made of a dielectric material are formed in a protruding shape on the surface of the base material 4a, and the convex portions 4d are surrounded by an insulating member 4b. The upper surface of the insulating member 4b and the upper end portion of the convex portion 4d have the same height, and the glass substrate G is placed on the upper surface of the insulating member 4b and the upper end portion of the convex portion 4d when placed on the susceptor 4. It comes into contact. Thereby, when the substrate G is placed on the susceptor 4, a space D is formed between the substrate G and the susceptor 4.

チャンバー2の上部または上壁には、チャンバー2内に処理ガスを供給するとともに上部電極として機能するシャワーヘッド11が、サセプタ4と対向するように設けられている。シャワーヘッド11は、内部に処理ガスを拡散させるガス拡散空間12が形成されているとともに、下面またはサセプタ4との対向面に処理ガスを吐出する複数の吐出孔13が形成されている。このシャワーヘッド11は接地されており、サセプタ4とともに一対の平行平板電極を構成している。   A shower head 11 that supplies a processing gas into the chamber 2 and functions as an upper electrode is provided on the upper or upper wall of the chamber 2 so as to face the susceptor 4. In the shower head 11, a gas diffusion space 12 for diffusing the processing gas is formed therein, and a plurality of discharge holes 13 for discharging the processing gas are formed on the lower surface or the surface facing the susceptor 4. The shower head 11 is grounded and forms a pair of parallel plate electrodes together with the susceptor 4.

シャワーヘッド11の上面にはガス導入口14が設けられ、このガス導入口14には、処理ガス供給管15が接続されており、この処理ガス供給管15には、バルブ16およびマスフローコントローラ17を介して、処理ガス供給源18が接続されている。処理ガス供給源18からは、エッチングのための処理ガスが供給される。処理ガスとしては、ハロゲン系のガス、Oガス、Arガス等、通常この分野で用いられるガスを用いることができる。 A gas inlet 14 is provided on the upper surface of the shower head 11, and a processing gas supply pipe 15 is connected to the gas inlet 14. A valve 16 and a mass flow controller 17 are connected to the processing gas supply pipe 15. A processing gas supply source 18 is connected to the via. A processing gas for etching is supplied from the processing gas supply source 18. As the processing gas, a gas usually used in this field, such as a halogen-based gas, an O 2 gas, or an Ar gas, can be used.

チャンバー2の底壁には排気管19が接続されており、この排気管19には排気装置20が接続され、図示しない圧力調整弁が設けられている。排気装置20はターボ分子ポンプなどの真空ポンプを備えており、これによりチャンバー2内を排気して所定の減圧雰囲気まで真空引き可能なように構成されている。チャンバー2の側壁には、基板Gを搬入出するための搬入出口21が形成されているとともに、この搬入出口21を開閉するゲートバルブ22が設けられており、搬入出口21の開放時に、図示しない搬送手段によって基板Gがチャンバー2内外に搬入出されるように構成されている。   An exhaust pipe 19 is connected to the bottom wall of the chamber 2, an exhaust device 20 is connected to the exhaust pipe 19, and a pressure adjusting valve (not shown) is provided. The exhaust device 20 includes a vacuum pump such as a turbo molecular pump, and is configured to be able to evacuate the chamber 2 to a predetermined reduced pressure atmosphere. A loading / unloading port 21 for loading / unloading the substrate G is formed on the side wall of the chamber 2, and a gate valve 22 for opening / closing the loading / unloading port 21 is provided. The substrate G is carried in and out of the chamber 2 by the transfer means.

チャンバー2の底壁およびサセプタ4には、これらを貫通する挿通孔7が、例えばサセプタ4の周縁部位置に間隔をあけて複数形成されている。各挿通孔7には、基板Gを下方から支持して昇降させるリフターピン8がサセプタ4の基板載置面に対して突没可能に挿入されている。各リフターピン8の下部にはフランジ26が形成されており、各フランジ26には、リフターピン8を囲繞するように設けられた伸縮可能なベローズ27の一端部(下端部)が接続され、このベローズ27の他端部(上端部)は、チャンバー2の底壁に接続されている。これにより、ベローズ27は、リフターピン8の昇降に追従して伸縮するとともに、挿通孔7とリフターピン8との隙間を密封している。   In the bottom wall of the chamber 2 and the susceptor 4, a plurality of insertion holes 7 penetrating them are formed, for example, at a peripheral edge position of the susceptor 4 with a gap. In each insertion hole 7, a lifter pin 8 that supports and lifts the substrate G from below is inserted so as to protrude and retract with respect to the substrate placement surface of the susceptor 4. A flange 26 is formed at the lower portion of each lifter pin 8, and one end (lower end) of an extendable bellows 27 provided so as to surround the lifter pin 8 is connected to each flange 26. The other end (upper end) of the bellows 27 is connected to the bottom wall of the chamber 2. Accordingly, the bellows 27 expands and contracts following the lifting and lowering of the lifter pin 8 and seals the gap between the insertion hole 7 and the lifter pin 8.

サセプタ4には、載置された基板Gと温調機構との間で確実に熱伝達が行われて基板Gが所望の温度に調節されるように、基板Gとサセプタ4との空間Dに伝熱ガスを供給する伝熱ガス供給機構3が接続されている。伝熱ガス供給機構3は、伝熱ガスを空間Dに供給するための伝熱ガス供給源30と、伝熱ガス供給源30からの伝熱ガスを一時的に貯留または充填するための2つの伝熱ガスタンク31、32と、伝熱ガス供給源30の伝熱ガスを伝熱ガスタンク31、32に導くとともに、伝熱ガス供給源30の伝熱ガスおよび伝熱ガスタンク31、32の伝熱ガスを空間Dに導くための伝熱ガスライン33(伝熱ガス流路)とを備えている。伝熱ガス供給源30および伝熱ガスタンク31、32は、チャンバー2外に配置され、伝熱ガスライン33は、空間Dと連通するようにチャンバー2の底壁およびサセプタ4を貫通してこれらに接続されている。   The susceptor 4 has a space D between the substrate G and the susceptor 4 so that heat transfer is reliably performed between the mounted substrate G and the temperature control mechanism so that the substrate G is adjusted to a desired temperature. A heat transfer gas supply mechanism 3 for supplying the heat transfer gas is connected. The heat transfer gas supply mechanism 3 includes two heat transfer gas supply sources 30 for supplying the heat transfer gas to the space D, and two for temporarily storing or filling the heat transfer gas from the heat transfer gas supply source 30. The heat transfer gas tanks 31 and 32 and the heat transfer gas of the heat transfer gas supply source 30 are led to the heat transfer gas tanks 31 and 32, and the heat transfer gas of the heat transfer gas supply source 30 and the heat transfer gas of the heat transfer gas tanks 31 and 32 are also shown. Is provided with a heat transfer gas line 33 (heat transfer gas flow path). The heat transfer gas supply source 30 and the heat transfer gas tanks 31 and 32 are disposed outside the chamber 2, and the heat transfer gas line 33 passes through the bottom wall of the chamber 2 and the susceptor 4 so as to communicate with the space D. It is connected.

伝熱ガスライン33は、一端部が伝熱ガス供給源30に接続され、他端部が空間Dに連通する第1の伝熱ガスライン34(第1の伝熱ガス流路)と、第1の伝熱ガスライン34から分岐して伝熱ガスタンク31、32にそれぞれ接続された第2の伝熱ガスライン35、36(第2の伝熱ガス流路)と、第1の伝熱ガスライン34から分岐する、第1の伝熱ガスライン34内の伝熱ガスを排出するための伝熱ガス排出ライン37とを有している。伝熱ガス排出ライン37は、例えば、排気管19に接続され、第1の伝熱ガスライン34内の伝熱ガスを排気管19内に送るように構成されている。   The heat transfer gas line 33 has one end connected to the heat transfer gas supply source 30 and the other end connected to the space D, the first heat transfer gas line 34 (first heat transfer gas flow path), Second heat transfer gas lines 35 and 36 (second heat transfer gas flow paths) branched from one heat transfer gas line 34 and connected to the heat transfer gas tanks 31 and 32, respectively, and the first heat transfer gas A heat transfer gas discharge line 37 for discharging the heat transfer gas in the first heat transfer gas line 34 branched from the line 34 is provided. The heat transfer gas discharge line 37 is connected to, for example, the exhaust pipe 19 and is configured to send the heat transfer gas in the first heat transfer gas line 34 into the exhaust pipe 19.

第1の伝熱ガスライン34には、第2の伝熱ガスライン35、36との接続部(分岐部)よりも上流側に圧力制御バルブ(PCV)38が設けられ、第2の伝熱ガスライン35、36との接続部よりも下流側にバルブ34aが設けられている。また、第2の伝熱ガスライン35、36および伝熱ガス排出ライン37にもそれぞれバルブ35a、36a、37aが設けられている。圧力制御バルブ38は、空間Dおよび伝熱ガスライン33内の圧力を検出する圧力検出部を有し、この圧力検出部による検出値に基づいて伝熱ガスの流量を調整するように構成されている。   The first heat transfer gas line 34 is provided with a pressure control valve (PCV) 38 on the upstream side of the connection portion (branch portion) with the second heat transfer gas lines 35, 36, and the second heat transfer gas line 34. A valve 34 a is provided on the downstream side of the connection with the gas lines 35 and 36. The second heat transfer gas lines 35 and 36 and the heat transfer gas discharge line 37 are also provided with valves 35a, 36a and 37a, respectively. The pressure control valve 38 has a pressure detection unit that detects the pressure in the space D and the heat transfer gas line 33, and is configured to adjust the flow rate of the heat transfer gas based on the detection value by the pressure detection unit. Yes.

プラズマエッチング装置1の各構成部は、マイクロプロセッサ(コンピュータ)を備えたプロセスコントローラ50によって制御される。このプロセスコントローラ50には、工程管理者がプラズマエッチング装置1を管理するためにコマンドの入力操作等を行うキーボードやプラズマエッチング装置1の稼働状況を可視化して表示するディスプレイ等からなるユーザーインターフェイス51と、プラズマエッチング装置1で実行される処理をプロセスコントローラ50の制御にて実現するための制御プログラムや処理条件データ等が記録されたレシピが格納された記憶部52とが接続されている。そして、必要に応じて、ユーザーインターフェイス51からの指示等にて任意のレシピを記憶部52から呼び出してプロセスコントローラ50に実行させることで、プロセスコントローラ50の制御下でプラズマエッチング装置1での処理が行われる。また、前記レシピは、例えば、CD−ROM、ハードディスク、フラッシュメモリなどのコンピュータ読み取り可能な記憶媒体に格納された状態のものを利用したり、あるいは、他の装置から、例えば専用回線を介して随時伝送させて利用したりすることも可能である。   Each component of the plasma etching apparatus 1 is controlled by a process controller 50 having a microprocessor (computer). The process controller 50 includes a user interface 51 including a keyboard that allows a process manager to input commands to manage the plasma etching apparatus 1, a display that visualizes and displays the operating status of the plasma etching apparatus 1, and the like. A storage unit 52 storing a recipe in which a control program for realizing the processing executed by the plasma etching apparatus 1 under the control of the process controller 50 and processing condition data is stored is connected. Then, if necessary, an arbitrary recipe is called from the storage unit 52 by an instruction from the user interface 51 and is executed by the process controller 50, so that the process in the plasma etching apparatus 1 can be performed under the control of the process controller 50. Done. The recipe may be stored in a computer-readable storage medium such as a CD-ROM, a hard disk, or a flash memory, or may be received from another device, for example, via a dedicated line as needed. It is also possible to transmit and use.

また、より具体的に、伝熱ガス供給機構3の圧力制御バルブ38および各バルブ34a、35a、36a、37aは、図2に示すように、プロセスコントローラ50に接続されたユニットコントローラ53によって制御される構成となっている。そして、必要に応じて、ユーザーインターフェイス51からの指示等にてプロセスコントローラ50が任意のレシピを記憶部52から呼び出してユニットコントローラ53に制御させる。   More specifically, the pressure control valve 38 and the valves 34a, 35a, 36a, 37a of the heat transfer gas supply mechanism 3 are controlled by a unit controller 53 connected to the process controller 50 as shown in FIG. It is the composition which becomes. If necessary, the process controller 50 calls an arbitrary recipe from the storage unit 52 and controls the unit controller 53 according to an instruction from the user interface 51 or the like.

このように構成されたプラズマエッチング装置1においては、まず、排気装置20によってチャンバー2内を排気して減圧した状態で、基板Gが開放された搬入出口21から図示しない搬送手段によって搬入されたら、各リフターピン8を上昇させ、各リフターピン8によって基板Gを搬送手段から受け取って支持させる。搬送手段が搬入出口21からチャンバー2外に退出したら、ゲートバルブ22によって搬入出口21を閉塞するとともに、各リフターピン8を下降させてサセプタ4の基板載置面に没入させ、基板Gをサセプタ4に載置させる。   In the plasma etching apparatus 1 configured in this way, first, when the substrate G is carried in by the carrying means (not shown) from the carrying-in / out opening 21 opened in the state where the inside of the chamber 2 is evacuated and decompressed by the evacuating apparatus 20, Each lifter pin 8 is raised, and the substrate G is received from the transfer means and supported by each lifter pin 8. When the transfer means exits from the loading / unloading port 21 to the outside of the chamber 2, the loading / unloading port 21 is closed by the gate valve 22 and the lifter pins 8 are lowered to be immersed in the substrate mounting surface of the susceptor 4. To be placed.

搬入出口21を閉塞して基板Gをサセプタ4に載置したら、処理ガス供給源18からの処理ガスを、マスフローコントローラ17によって流量調整しつつ、処理ガス供給管15、ガス導入口14およびシャワーヘッド11を介してチャンバー2内に供給するとともに、排気管19に設けられた圧力調整弁によってチャンバー2内の所定の圧力に調整し、この状態で、静電吸着機構に直流電圧を印加して基板Gをサセプタ4に吸着させる。   When the loading / unloading port 21 is closed and the substrate G is placed on the susceptor 4, the processing gas from the processing gas supply source 18 is adjusted by the mass flow controller 17 while the processing gas supply pipe 15, the gas inlet 14 and the shower head are adjusted. 11 is supplied into the chamber 2 via the pressure adjusting valve 11 and adjusted to a predetermined pressure in the chamber 2 by a pressure adjusting valve provided in the exhaust pipe 19. In this state, a DC voltage is applied to the electrostatic adsorption mechanism to apply the substrate. G is adsorbed on the susceptor 4.

この際に、あらかじめ作動している、サセプタ4に内蔵された温調機構による温度調節が基板Gに対して効率よく行われるように、伝熱ガス供給機構3によって基板Gとサセプタ4との空間Dに伝熱ガスを供給する。ここでの伝熱ガスの供給は、バルブ34aおよびバルブ35aを開き、基板Gの搬入出時にあらかじめ伝熱ガス供給源30から伝熱ガスタンク31に充填させておいた伝熱ガスを放出することによって行う。あらかじめ伝熱ガスタンク31に充填される伝熱ガスの圧力Pは、伝熱ガスタンク31の容量をa、空間Dおよび伝熱ガス供給時に伝熱ガスライン33において空間Dと同圧になる部分(主に第1の伝熱ガス供給ライン34)からなる伝熱ガス充満空間の容量をx、供給される伝熱ガスの設定圧力をPとすると、P×a=P×(x+a)の関係式を満たす値であることが好ましい。これにより、バルブ34aおよびバルブ35aを開いた際に、空間Dを含む伝熱ガス充満空間の伝熱ガスの圧力を瞬時に設定圧力Pまたは設定圧力P近傍に到達させることが可能となる。ここでの伝熱ガスの設定圧力Pは、後述するプラズマエッチング処理時に供給される伝熱ガスの設定圧力P、例えば400Pa(3Torr)よりも低い圧力、例えば200Pa(1.5Torr)に設定することができる。この場合の具体例として、伝熱ガス充満空間の容量xが0.9l弱であり、伝熱ガスタンク31の容量aが0.1lであるとすると、伝熱ガスタンク31に充填される伝熱ガスの圧力Pは1870Pa(14Torr)程度に設定することができる。なお、伝熱ガスタンク31に充填された伝熱ガスのみでは設定圧力Pに達しない場合には、伝熱ガス供給源30から伝熱ガスを供給して補填してもよい。空間Dを含む伝熱ガス充満空間の伝熱ガスの圧力および伝熱ガスタンク31に充填される伝熱ガスの圧力は、圧力制御バルブ38によって検出することができる。伝熱ガスタンク31に充填させておいた伝熱ガスを放出後、バルブ35aを閉じることにより、圧力制御バルブ38が設けられた第1の伝熱ガスライン34上には伝熱ガスタンク31、32のような大きな空間が存在しないため、圧力制御バルブ38は、伝熱ガスの圧力の微妙な変化を正確に検出することができ、しかも、この検出値に基づいて伝熱ガス供給源30からの伝熱ガスの供給量を即座に調整することができる。 At this time, the space between the substrate G and the susceptor 4 is moved by the heat transfer gas supply mechanism 3 so that the temperature adjustment by the temperature adjustment mechanism built in the susceptor 4 operating in advance is efficiently performed on the substrate G. Heat transfer gas is supplied to D. The heat transfer gas is supplied by opening the valve 34a and the valve 35a and releasing the heat transfer gas previously filled in the heat transfer gas tank 31 from the heat transfer gas supply source 30 when the substrate G is loaded / unloaded. Do. The pressure P 1 of the heat transfer gas previously charged in the heat transfer gas tank 31 is a portion where the capacity of the heat transfer gas tank 31 is a, the space D and the same pressure as the space D in the heat transfer gas line 33 when the heat transfer gas is supplied ( P 1 × a = P 0 × (x + a) where x is the capacity of the heat transfer gas filling space mainly composed of the first heat transfer gas supply line 34) and P 0 is the set pressure of the supplied heat transfer gas. A value satisfying the relational expression is preferable. As a result, when the valve 34a and the valve 35a are opened, the pressure of the heat transfer gas in the heat transfer gas filled space including the space D can be instantaneously reached the set pressure P 0 or the vicinity of the set pressure P 0. . Here, the set pressure P 0 of the heat transfer gas is set to a pressure lower than 400 Pa (3 Torr), for example, 200 Pa (1.5 Torr), which is lower than the set pressure P 3 of the heat transfer gas supplied during the plasma etching process described later. can do. As a specific example in this case, assuming that the capacity x of the heat transfer gas filling space is less than 0.9 l and the capacity a of the heat transfer gas tank 31 is 0.1 l, the heat transfer gas filled in the heat transfer gas tank 31. The pressure P 1 can be set to about 1870 Pa (14 Torr). If the set pressure P 0 cannot be reached only with the heat transfer gas filled in the heat transfer gas tank 31, the heat transfer gas may be supplied from the heat transfer gas supply source 30 to make up for it. The pressure of the heat transfer gas in the heat transfer gas filled space including the space D and the pressure of the heat transfer gas filled in the heat transfer gas tank 31 can be detected by the pressure control valve 38. After releasing the heat transfer gas filled in the heat transfer gas tank 31, the valve 35a is closed, so that the heat transfer gas tanks 31, 32 are placed on the first heat transfer gas line 34 provided with the pressure control valve 38. Since such a large space does not exist, the pressure control valve 38 can accurately detect a subtle change in the pressure of the heat transfer gas, and based on this detection value, the pressure transfer from the heat transfer gas supply source 30 can be detected. The supply amount of hot gas can be adjusted immediately.

伝熱ガスタンク31の伝熱ガスを空間Dに供給した後、基板Gが欠損していたり位置ずれを起こしたりしていてサセプタ4に正常に載置されていない場合には、基板Gとサセプタ4との隙間から伝熱ガスが漏出するため、圧力検出部の検出値は設定圧力、例えば200Pa(1.5Torr)よりも低くなり、あるいは、伝熱ガス供給源30からの伝熱ガスの補填供給量が正常時よりも多くなる。そこで、伝熱ガスタンク31からの伝熱ガスの供給後、圧力制御バルブ38の圧力検出部の検出値から基板Gのサセプタ4への載置状態が正常であるか否かを判断することができる。   After supplying the heat transfer gas from the heat transfer gas tank 31 to the space D, if the substrate G is missing or misaligned and is not normally placed on the susceptor 4, the substrate G and the susceptor 4 Since the heat transfer gas leaks from the gap, the detected value of the pressure detection unit is lower than the set pressure, for example, 200 Pa (1.5 Torr), or the heat transfer gas supply from the heat transfer gas supply source 30 is supplemented. The amount is higher than normal. Therefore, after the heat transfer gas is supplied from the heat transfer gas tank 31, it can be determined whether or not the mounting state of the substrate G on the susceptor 4 is normal based on the detection value of the pressure detection unit of the pressure control valve 38. .

そして、例えば、圧力検出部の検出値が設定圧力または設定圧力近傍で安定し、基板Gのサセプタ4への載置状態が正常であると判断した場合に、高周波電源25から整合器24を介してサセプタ4に高周波電力を印加し、下部電極としてのサセプタ4と上部電極としてのシャワーヘッド11との間に高周波電界を生じさせてチャンバー2内の処理ガスをプラズマ化させる。また、この際に、バルブ36aを開き、あらかじめ伝熱ガス供給源30から伝熱ガスタンク32に充填させておいた伝熱ガスをさらに放出する。あらかじめ伝熱ガスタンク32に充填される伝熱ガスの圧力Pは、伝熱ガスタンク32の容量をb、伝熱ガスの設定圧力をPとすると、P×b=(P−P)×(x+b)の関係式を満たす値であることが好ましい。これにより、バルブ36aを開いた際に、空間Dを含む伝熱ガス充満空間の伝熱ガスの圧力を瞬時に設定圧力P、例えば400Pa(3Torr)、または設定圧力P近傍に到達させることが可能となる。具体例として、空間Dを含む伝熱ガス充満空間の容量xが0.9l弱であり、伝熱ガスタンク32の容量bが0.1lであるとすると、伝熱ガスタンク32に充填される伝熱ガスの圧力Pは1870Pa(14Torr)程度に設定することができる。なお、伝熱ガスタンク32に充填させておいた伝熱ガスを放出し、バルブ36aを閉じた後、空間Dを含む伝熱ガス充満空間の伝熱ガスの圧力が設定圧力Pに達しない場合には、設定圧力Pとなるように伝熱ガス供給源30から伝熱ガスを供給する。この状態で、処理ガスのプラズマによって基板Gにエッチング処理が施されることとなる。 For example, when it is determined that the detected value of the pressure detection unit is stable at or near the set pressure and the mounting state of the substrate G on the susceptor 4 is normal, the high-frequency power supply 25 passes through the matching unit 24. Then, high frequency power is applied to the susceptor 4 to generate a high frequency electric field between the susceptor 4 serving as the lower electrode and the shower head 11 serving as the upper electrode, so that the processing gas in the chamber 2 is turned into plasma. At this time, the valve 36a is opened, and the heat transfer gas previously filled in the heat transfer gas tank 32 from the heat transfer gas supply source 30 is further discharged. The pressure P 2 of the heat transfer gas previously charged in the heat transfer gas tank 32 is P 2 × b = (P 3 −P 0 ), where b is the capacity of the heat transfer gas tank 32 and P 3 is the set pressure of the heat transfer gas. ) × (x + b) is preferable to satisfy the relational expression. Thereby, when the valve 36a is opened, the pressure of the heat transfer gas in the heat transfer gas filled space including the space D is instantaneously made to reach the set pressure P 3 , for example, 400 Pa (3 Torr), or near the set pressure P 3. Is possible. As a specific example, assuming that the capacity x of the heat transfer gas-filled space including the space D is less than 0.9 l and the capacity b of the heat transfer gas tank 32 is 0.1 l, the heat transfer filled in the heat transfer gas tank 32. the pressure P 2 of the gas can be set to about 1870Pa (14Torr). Incidentally, the heat transfer gas tank 32 heat transfer gas which had been filled in the release, after closing the valves 36a, if the pressure of the heat transfer gas in the heat transfer gas plenum containing space D does not reach the set pressure P 3 to supply the heat transfer gas from the heat transfer gas supply source 30 so as to set the pressure P 3. In this state, the substrate G is etched by the processing gas plasma.

一方、例えば、圧力検出部の検出値が徐々に低下して設定圧力よりも低くなり、あるいは、伝熱ガス供給源30からの伝熱ガスの補填供給量が正常時よりも多くなり、基板Gのサセプタ4への載置状態が異常であると判断された場合には、ユーザーインターフェイス51を介して警告等のメッセージを出した上で、基板Gのサセプタ4への載置状態を正常に修正した後、サセプタ4への高周波電力の印加および伝熱ガスタンク32から伝熱ガスの供給を行う。   On the other hand, for example, the detection value of the pressure detector gradually decreases and becomes lower than the set pressure, or the supplementary supply amount of the heat transfer gas from the heat transfer gas supply source 30 becomes larger than normal, and the substrate G When it is determined that the mounting state of the substrate G on the susceptor 4 is abnormal, a warning message or the like is issued via the user interface 51, and the mounting state of the substrate G on the susceptor 4 is corrected normally. After that, application of high frequency power to the susceptor 4 and supply of heat transfer gas from the heat transfer gas tank 32 are performed.

基板Gにエッチング処理を施したら、高周波電源25からの高周波電力の印加を停止するとともに、処理ガスおよび伝熱ガスの供給を停止し、バルブ37aを開いて伝熱ガスを伝熱ガス排出ライン37を介して排出する。さらに、静電吸着機構による基板Gの吸着を解除し、基板Gに除電処理を施す。次に、ゲートバルブ22によって搬入出口21を開放するとともに、リフターピン8を上昇させ、基板Gをサセプタ4から上方に離間させる。その後、図示しない搬送機構が搬入出口21からチャンバー2内に進入してきたら、リフターピン8を下降させ、基板Gを搬送機構に移し換える。その後、基板Gは、搬送機構によって搬入出口21からチャンバー2外に搬出される。基板Gの搬入出の際には、伝熱ガス供給源30からの伝熱ガスを伝熱ガスタンク31、32に所定の圧力で充填しておく。   When the substrate G is etched, the application of the high frequency power from the high frequency power supply 25 is stopped, the supply of the processing gas and the heat transfer gas is stopped, the valve 37a is opened, and the heat transfer gas is transferred to the heat transfer gas discharge line 37. To discharge through. Furthermore, the adsorption | suction of the board | substrate G by an electrostatic attraction mechanism is cancelled | released, and the static elimination process is performed to the board | substrate G. FIG. Next, the loading / unloading port 21 is opened by the gate valve 22 and the lifter pin 8 is raised to separate the substrate G from the susceptor 4 upward. Thereafter, when a transport mechanism (not shown) enters the chamber 2 from the loading / unloading port 21, the lifter pin 8 is lowered to transfer the substrate G to the transport mechanism. Thereafter, the substrate G is carried out of the chamber 2 from the carry-in / out port 21 by the carrying mechanism. When the substrate G is loaded and unloaded, the heat transfer gas from the heat transfer gas supply source 30 is filled in the heat transfer gas tanks 31 and 32 at a predetermined pressure.

なお、本実施形態では、プラズマエッチング処理前に空間Dに所望する設定圧力よりも低い圧力の伝熱ガスを供給するのに用いられる伝熱ガスタンクを符号31とし、次いで、プラズマエッチング処理時に空間Dに所望する設定圧力の伝熱ガスを供給するのに用いられる伝熱ガスタンクを符号32としたが、これらは入れ替えて用いてもよい。   In the present embodiment, the heat transfer gas tank used for supplying the heat transfer gas having a pressure lower than the desired set pressure to the space D before the plasma etching process is denoted by reference numeral 31, and then the space D during the plasma etching process. Although the heat transfer gas tank used to supply the heat transfer gas having a desired set pressure is designated by reference numeral 32, these may be used interchangeably.

本実施形態では、伝熱ガス供給源30からの伝熱ガスをあらかじめ貯留させておくための伝熱ガスタンク31、32に導くとともに、伝熱ガス供給源30からの伝熱ガスおよび伝熱ガスタンク31、32に貯留された伝熱ガスをサセプタ4と基板Gとの間の空間Dに導く伝熱ガスライン33を、一端が伝熱ガス供給源30に、他端が空間Dに接続された第1の伝熱ガスライン34と、第1の伝熱ガスライン34から分岐して伝熱ガスタンク31、32にそれぞれ接続された第2の伝熱ガスライン35、36とから構成し、第1の伝熱ガスライン34および第2の伝熱ガスライン35、36を介し、伝熱ガス供給源30から伝熱ガスタンク31、32に充填された伝熱ガスを空間Dに供給し、必要に応じ、第1の伝熱ガスライン34を介して伝熱ガス供給源30からの伝熱ガスを空間Dに供給するため、サセプタ4の上面に設けられた凸部4dによってサセプタ4と基板Gとの間に大きな空間Dが形成されている場合であっても、この空間Dが設定圧力となるような量の伝熱ガスを短時間で供給することができる。しかも、第2の伝熱ガスライン35、36に設けられたバルブ35a、36aを閉じて、大きな空間である伝熱ガスタンク31、32を第1の伝熱ガスライン34から隔絶することができるため、第1の伝熱ガスラインに設けられた圧力制御バルブ38によって伝熱ガスの圧力を正確に保持することができる。したがって、基板Gの処理時間を短縮するとともに、基板Gの処理品質を高めることが可能となる。   In the present embodiment, the heat transfer gas from the heat transfer gas supply source 30 is guided to the heat transfer gas tanks 31 and 32 for storing in advance, and the heat transfer gas and the heat transfer gas tank 31 from the heat transfer gas supply source 30 are stored. The heat transfer gas line 33 that guides the heat transfer gas stored in 32 to the space D between the susceptor 4 and the substrate G is connected to the heat transfer gas supply source 30 and the other end is connected to the space D. The first heat transfer gas line 34 and the second heat transfer gas lines 35 and 36 branched from the first heat transfer gas line 34 and connected to the heat transfer gas tanks 31 and 32, respectively, The heat transfer gas filled in the heat transfer gas tanks 31 and 32 is supplied to the space D from the heat transfer gas supply source 30 via the heat transfer gas line 34 and the second heat transfer gas lines 35 and 36, and if necessary, The heat transfer through the first heat transfer gas line 34 In order to supply the heat transfer gas from the gas supply source 30 to the space D, a large space D is formed between the susceptor 4 and the substrate G by the convex portion 4d provided on the upper surface of the susceptor 4. However, it is possible to supply the heat transfer gas in such a short amount that the space D becomes the set pressure. In addition, since the valves 35 a and 36 a provided in the second heat transfer gas lines 35 and 36 are closed, the heat transfer gas tanks 31 and 32, which are large spaces, can be isolated from the first heat transfer gas line 34. The pressure of the heat transfer gas can be accurately maintained by the pressure control valve 38 provided in the first heat transfer gas line. Therefore, the processing time of the substrate G can be shortened and the processing quality of the substrate G can be improved.

また、本実施形態では、圧力制御バルブ38を第1の伝熱ガスライン34の第2の伝熱ガスライン35、36との接続部よりも上流側に設けたため、この圧力制御バルブ38により、空間Dおよび第1の伝熱ガスライン34を含む伝熱ガス充満空間の圧力とともに、伝熱ガスタンク31、32にあらかじめ充填される伝熱ガスの圧力も検出することができる。   Further, in the present embodiment, the pressure control valve 38 is provided on the upstream side of the connection portion of the first heat transfer gas line 34 with the second heat transfer gas lines 35, 36. In addition to the pressure in the heat transfer gas filling space including the space D and the first heat transfer gas line 34, the pressure of the heat transfer gas preliminarily filled in the heat transfer gas tanks 31 and 32 can also be detected.

また、本実施形態では、プラズマエッチング処理前に、圧力制御バルブ38の圧力検出部による検出値が、プラズマエッチング処理時の設定圧力値、例えば400Pa(3Torr)よりも低い値、例えば200Pa(1.5Torr)となるような量の伝熱ガスを供給して、圧力検出部による検出値から基板Gのサセプタ4への載置状態が正常であるか否かを判断し、載置状態が正常であると判断した場合に、圧力検出部による検出値が設定圧力値、例えば400Pa(3Torr)となるような量の伝熱ガスを供給するとともに、プラズマエッチング処理を行うため、基板Gのサセプタ4への載置状態が異常のまま、基板Gをプラズマエッチング処理するような事態を防ぐことが可能となり、装置内部品、例えばサセプタ4の破損を防止しつつ、基板Gの処理効率を高めることが可能となる。さらに、本実施形態では、2つの伝熱ガスタンク31、32を設け、プラズマエッチング処理前の基板Gの載置状態を判断するための伝熱ガスの供給を伝熱ガスタンク31を用いて行い、プラズマエッチング処理時の伝熱ガスの供給を伝熱ガスタンク32を用いて行うため、プラズマエッチング処理前の伝熱ガスの供給およびプラズマエッチング処理時の伝熱ガスの供給をいずれも迅速に行うことができる。   Further, in the present embodiment, before the plasma etching process, the value detected by the pressure detection unit of the pressure control valve 38 is lower than a set pressure value during the plasma etching process, for example, 400 Pa (3 Torr), for example, 200 Pa (1. 5 Torr) is supplied, and it is determined whether or not the mounting state of the substrate G on the susceptor 4 is normal based on the value detected by the pressure detector, and the mounting state is normal. When it is determined that there is a heat transfer gas in such an amount that the detected value by the pressure detector becomes a set pressure value, for example, 400 Pa (3 Torr), and plasma etching is performed, the susceptor 4 of the substrate G is supplied. It is possible to prevent a situation in which the substrate G is subjected to plasma etching processing while the mounting state of the substrate is abnormal, thereby preventing damage to internal components such as the susceptor 4 While, it is possible to enhance the processing efficiency of the substrate G. Furthermore, in this embodiment, two heat transfer gas tanks 31 and 32 are provided, and the heat transfer gas is supplied using the heat transfer gas tank 31 to determine the mounting state of the substrate G before the plasma etching process, and the plasma Since the heat transfer gas is supplied using the heat transfer gas tank 32 during the etching process, both the heat transfer gas supply before the plasma etching process and the heat transfer gas supply during the plasma etching process can be performed quickly. .

次に、本実施形態のプラズマエッチング装置1を用い、基板Gがサセプタ4に載置された状態で、サセプタ4に内蔵された静電吸着機構に直流電圧が印加された時点から、基板Gとサセプタ4との間の空間Dに伝熱ガス供給機構3の伝熱ガスタンク31に充填した伝熱ガスを供給し、供給された伝熱ガスの圧力が設定圧力程度に安定する時点までの時間(以下、安定時間と記す)を測定した。伝熱ガス供給時に伝熱ガスの満たされる空間Dおよび伝熱ガスライン33内の合計容量xは0.9l弱とし、伝熱ガスの設定圧力Pは200Pa(1.5Torr)とした。そして、P×a=P×(x+a)の関係式を基に、伝熱ガスタンク31の容量aを0.25lとし、かつ伝熱ガスタンク31の伝熱ガスの充填圧Pを930Pa(7Torr)とした場合と、伝熱ガスタンク31の容量aを0.1lとし、かつ伝熱ガスタンク31の伝熱ガスの充填圧Pを1870Pa(14Torr)とした場合とについてそれぞれ測定を行った。また、比較例として、図3に示すように、伝熱ガス供給源30からの伝熱ガスを、供給ラインAを介して空間Dに供給する伝熱ガス供給機構Bを用いて計測を行った。なお、供給ラインAは、第1の供給ライン34とほぼ等しい容量とした。測定結果を図4(a)〜(c)にそれぞれ示す。 Next, using the plasma etching apparatus 1 of the present embodiment, the substrate G and the substrate G from the time when a DC voltage is applied to the electrostatic adsorption mechanism built in the susceptor 4 while the substrate G is placed on the susceptor 4. Time until the heat transfer gas filled in the heat transfer gas tank 31 of the heat transfer gas supply mechanism 3 is supplied to the space D between the susceptor 4 and the pressure of the supplied heat transfer gas is stabilized to a set pressure ( Hereinafter, the stability time) was measured. The total capacity x in the space D filled with the heat transfer gas and the heat transfer gas line 33 when supplying the heat transfer gas was set to a little less than 0.9 l, and the set pressure P 1 of the heat transfer gas was set to 200 Pa (1.5 Torr). And based on the relational expression of P 1 × a = P 0 × (x + a), the capacity a of the heat transfer gas tank 31 is set to 0.25 l, and the heat transfer gas filling pressure P 1 of the heat transfer gas tank 31 is set to 930 Pa ( a case of a 7 Torr), the capacity a of the heat transfer gas tank 31 and 0.1 l, and were measured respectively for the case where the filling pressure P 1 of the heat transfer gas in the heat transfer gas tank 31 was set to 1870Pa (14Torr). As a comparative example, as shown in FIG. 3, measurement was performed using a heat transfer gas supply mechanism B that supplies the heat transfer gas from the heat transfer gas supply source 30 to the space D via the supply line A. . The supply line A has a capacity substantially equal to that of the first supply line 34. The measurement results are shown in FIGS.

本実施形態のプラズマエッチング装置1に設けられた伝熱ガス供給機構3では、伝熱ガスタンク31の容量aを0.25lとし、かつ伝熱ガスタンク31の伝熱ガスの充填圧Pを930Pa(7Torr)とした場合に、図4(a)に示すように安定時間が約10.5秒であり、伝熱ガスタンク31の容量aを0.1lとし、かつ伝熱ガスタンク31の伝熱ガスの充填圧Pを1870Pa(14Torr)とした場合に、図4(b)に示すように安定時間が約8.5秒であった。これに対して、比較例の伝熱ガス供給機構Bでは、図4(c)に示すように安定時間が16秒であった。すなわち、伝熱ガス供給機構3を用いることにより、従来型の伝熱ガス供給機構Bを用いた場合と比較して、伝熱ガスの供給圧が設定圧力に保持されるまでの時間、すなわち基板Gの処理時間を大幅に短縮できることが確認された。また、伝熱ガスタンク31の容量をより小さくして伝熱ガスの充填圧力を高めることにより、伝熱ガスの供給圧が設定圧力に保持されるまでの時間を一層短縮できることが確認された。 In the heat transfer gas supply mechanism 3 provided in the plasma etching apparatus 1 of the present embodiment, the capacity a of the heat transfer gas tank 31 is set to 0.25 l, and the heat transfer gas filling pressure P 1 of the heat transfer gas tank 31 is set to 930 Pa ( 7 Torr), the stabilization time is about 10.5 seconds as shown in FIG. 4A, the capacity a of the heat transfer gas tank 31 is 0.1 l, and the heat transfer gas of the heat transfer gas tank 31 is when the filling pressure P 1 was 1870Pa (14Torr), the stabilization time as shown in FIG. 4 (b) was about 8.5 seconds. On the other hand, in the heat transfer gas supply mechanism B of the comparative example, the stabilization time was 16 seconds as shown in FIG. That is, by using the heat transfer gas supply mechanism 3, as compared with the case of using the conventional heat transfer gas supply mechanism B, the time until the supply pressure of the heat transfer gas is maintained at the set pressure, that is, the substrate. It was confirmed that the processing time of G can be greatly shortened. Moreover, it was confirmed that the time until the supply pressure of the heat transfer gas is maintained at the set pressure can be further shortened by reducing the capacity of the heat transfer gas tank 31 and increasing the filling pressure of the heat transfer gas.

次に、伝熱ガス供給機構3の変形例について説明する。   Next, a modified example of the heat transfer gas supply mechanism 3 will be described.

図5は伝熱ガス供給機構3の第1の変形例を示す図である。
伝熱ガス供給機構3においては、前述のように、第1の伝熱ガスライン34から分岐する第2の伝熱ガスライン35、36を、一端が伝熱ガスタンク31、32に接続されるように設けることができるが、これに限らず、図5に示すように、第2の伝熱ガスライン35、36を、両端部が第1の伝熱ガスライン34から分岐し、中間部に伝熱ガスタンク31、32が接続されるように設けてもよい。この場合には、第2の伝熱ガスライン35(36)の伝熱ガスタンク31よりも上流側におよび下流側にそれぞれバルブ35d(36d)、35e(36e)が設けられ、伝熱ガスタンク31、32にはそれぞれ、この伝熱ガスタンク31、32に充填される伝熱ガスの圧力を計測する圧力計等の圧力検出手段31a、32aが設けられる。また、圧力制御バルブ38は、第2の伝熱ガスライン35、36の上流側端部と下流側端部との間に位置するように、第1の伝熱ガスライン34に設けることができる。この場合には、第2の伝熱ガスライン35、36がそれぞれ、第1の伝熱ガスライン34の伝熱ガスを伝熱ガスタンク31、32に導く上流側ライン35b、36b(上流側流路)と、伝熱ガスタンク31、32に充填された伝熱ガスを第1の伝熱ガスライン34に導く下流側ライン35c、36c(下流側流路)とを別個に有するため、伝熱ガスタンク31、32に充填された伝熱ガスを下流側ライン35c、36cを介して空間Dに供給した後、バルブ35e、36eを閉じ、圧力制御バルブ38によって空間Dの圧力を保持している間に、伝熱ガス供給源30からの伝熱ガスを上流側ライン35b、36bを介して伝熱ガスタンク31、32に充填することができる。すなわち、基板Gの処理時であっても、伝熱ガスタンク31、32に伝熱ガスを再充填することができる。したがって、基板Gの搬入出時に伝熱ガスタンク31、32への伝熱ガスの充填を行う必要がなく、基板を処理する間のインターバルを短縮してスループットを一層高めることが可能となる。なお、ここでは、上流側ライン35b、36bを合流させて第1の伝熱ガスライン34に接続したが、別々に第1の伝熱ガスライン34に接続してもよい。また、下流側ライン35c、36cを合流させて第1の伝熱ガスライン34に接続してもよい。
FIG. 5 is a view showing a first modification of the heat transfer gas supply mechanism 3.
In the heat transfer gas supply mechanism 3, as described above, one end of the second heat transfer gas lines 35 and 36 branched from the first heat transfer gas line 34 is connected to the heat transfer gas tanks 31 and 32. However, the present invention is not limited to this, and as shown in FIG. 5, the second heat transfer gas lines 35 and 36 are branched at both ends from the first heat transfer gas line 34 and transferred to the intermediate portion. You may provide so that the hot gas tanks 31 and 32 may be connected. In this case, valves 35d (36d) and 35e (36e) are provided upstream and downstream of the heat transfer gas tank 31 of the second heat transfer gas line 35 (36), respectively. 32 are provided with pressure detection means 31a, 32a such as a pressure gauge for measuring the pressure of the heat transfer gas filled in the heat transfer gas tanks 31, 32, respectively. Further, the pressure control valve 38 can be provided in the first heat transfer gas line 34 so as to be positioned between the upstream end and the downstream end of the second heat transfer gas lines 35, 36. . In this case, the second heat transfer gas lines 35 and 36 respectively have upstream lines 35b and 36b (upstream flow paths) for guiding the heat transfer gas of the first heat transfer gas line 34 to the heat transfer gas tanks 31 and 32, respectively. ) And downstream lines 35c and 36c (downstream flow paths) for guiding the heat transfer gas filled in the heat transfer gas tanks 31 and 32 to the first heat transfer gas line 34, respectively. , 32 is supplied to the space D via the downstream lines 35c, 36c, and then the valves 35e, 36e are closed, and the pressure in the space D is maintained by the pressure control valve 38. The heat transfer gas from the heat transfer gas supply source 30 can be filled into the heat transfer gas tanks 31 and 32 via the upstream lines 35b and 36b. That is, even when the substrate G is processed, the heat transfer gas tanks 31 and 32 can be refilled with the heat transfer gas. Therefore, it is not necessary to fill the heat transfer gas tanks 31 and 32 with the heat transfer gas when the substrate G is carried in and out, and the interval between the processing of the substrates can be shortened to further increase the throughput. Here, the upstream lines 35b and 36b are joined and connected to the first heat transfer gas line 34, but may be connected to the first heat transfer gas line 34 separately. Further, the downstream lines 35 c and 36 c may be joined and connected to the first heat transfer gas line 34.

図6は伝熱ガス供給機構3の第2の変形例を示す図である。
また、伝熱ガス供給機構3においては、図6に示すように、1つの伝熱ガスタンク31および一本の第2の伝熱ガスライン35のみとし、第2の伝熱ガスライン35を、両端部が第1の伝熱ガスライン34から分岐し、中間部に伝熱ガスタンク31が接続されるように設けてもよい。この場合にも、第1の伝熱ガスライン34の伝熱ガスを伝熱ガスタンク31に導く上流側ライン35bと、伝熱ガスタンク31に充填された伝熱ガスを第1の伝熱ガスライン34に導く下流側ライン35cとを別個に有する。したがって、1つの伝熱ガスタンク31によってプラズマエッチング処理前の伝熱ガスの供給およびプラズマエッチング処理時の伝熱ガスの供給を行うことができ、これにより、装置の簡略化を図りつつ、スループットを一層高めることが可能となる。
FIG. 6 is a view showing a second modification of the heat transfer gas supply mechanism 3.
Further, in the heat transfer gas supply mechanism 3, as shown in FIG. 6, only one heat transfer gas tank 31 and one second heat transfer gas line 35 are provided, and the second heat transfer gas line 35 is connected to both ends. A part may branch from the 1st heat-transfer gas line 34, and you may provide so that the heat-transfer gas tank 31 may be connected to an intermediate part. Also in this case, the upstream line 35 b that guides the heat transfer gas from the first heat transfer gas line 34 to the heat transfer gas tank 31, and the heat transfer gas filled in the heat transfer gas tank 31 to the first heat transfer gas line 34. And a downstream line 35c leading to Therefore, the heat transfer gas before the plasma etching process and the heat transfer gas at the time of the plasma etching process can be supplied by one heat transfer gas tank 31, thereby further improving the throughput while simplifying the apparatus. It becomes possible to raise.

以上、本発明の好適な実施の形態を説明したが、本発明は、上記実施の形態に限定されるものではなく、種々の変更が可能である。上記実施形態では、基板とサセプタとの間の空間および伝熱ガスライン内の圧力を検出する圧力検出部を第1の伝熱ガスラインの第2の伝熱ガスラインまたは下流側ラインとの分岐部よりも上流側に設けたが、これに限らず、圧力検出部を第1の伝熱ガスラインの第2の伝熱ガスラインまたは下流側ラインとの分岐部よりも下流側に設けてもよい。また、上記実施形態では、下部電極に高周波電力を印加するRIEタイプの容量結合型平行平板プラズマエッチング装置に適用した例について説明したが、これに限らず、アッシング、CVD成膜等の他のプラズマ処理装置に適用可能であり、さらに、基板を載置台に載置して処理する、プラズマ処理装置以外の基板処理装置全般にも適用可能である。また、上記実施形態ではFPD用のガラス基板に適用した例について説明したが、これに限らず、半導体基板等の基板全般に適用可能である。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment, and various modifications can be made. In the above embodiment, the pressure detection unit that detects the pressure between the space between the substrate and the susceptor and the heat transfer gas line is branched from the second heat transfer gas line or the downstream line of the first heat transfer gas line. However, the present invention is not limited to this, and the pressure detection unit may be provided downstream of the second heat transfer gas line of the first heat transfer gas line or the branching part with the downstream line. Good. In the above-described embodiment, an example in which the present invention is applied to an RIE type capacitively coupled parallel plate plasma etching apparatus that applies high-frequency power to the lower electrode has been described. However, the present invention is not limited thereto, and other plasmas such as ashing and CVD film formation are used. The present invention can be applied to a processing apparatus, and can also be applied to any substrate processing apparatus other than a plasma processing apparatus that processes a substrate placed on a mounting table. Moreover, although the said embodiment demonstrated the example applied to the glass substrate for FPD, it is applicable not only to this but general substrates, such as a semiconductor substrate.

本発明に係る基板処理装置の一実施形態であるプラズマエッチング装置の概略断面図である。It is a schematic sectional drawing of the plasma etching apparatus which is one Embodiment of the substrate processing apparatus which concerns on this invention. プラズマエッチング装置を構成する伝熱ガス供給機構の概略図である。It is the schematic of the heat transfer gas supply mechanism which comprises a plasma etching apparatus. 従来型の伝熱ガス供給機構の概略図である。It is the schematic of a conventional heat transfer gas supply mechanism. 本実施形態の伝熱ガス供給機構および従来型の伝熱ガス供給機構によって伝熱ガスを供給した際に所定の圧力に保持されるまでの時間の計測結果を示す図である。It is a figure which shows the measurement result of time until it hold | maintains to a predetermined pressure when heat transfer gas is supplied by the heat transfer gas supply mechanism of this embodiment, and the conventional heat transfer gas supply mechanism. 伝熱ガス供給機構の第1の変形例を示す図である。It is a figure which shows the 1st modification of a heat transfer gas supply mechanism. 伝熱ガス供給機構の第2の変形例を示す図である。It is a figure which shows the 2nd modification of a heat transfer gas supply mechanism.

符号の説明Explanation of symbols

1:プラズマエッチング装置(基板処理装置:プラズマ処理装置)
2:チャンバー(処理容器)
3:伝熱ガス供給機構
4:サセプタ(載置台)
15:処理ガス供給管
18:処理ガス供給源
19:排気管
20:排気装置
25:高周波電源
30:伝熱ガス供給源
31、32:伝熱ガスタンク
33:伝熱ガスライン(伝熱ガス流路)
34:第1の伝熱ガスライン(第1の伝熱ガス流路)
35、36:第2の伝熱ガスライン(第2の伝熱ガス流路)
35b、36b:上流側ライン(上流側流路)
35c、36c:下流側ライン(下流側流路)
38:圧力制御バルブ
50:プロセスコントローラ
51:ユーザーインターフェイス
52:記憶部
53:ユニットコントローラ
G:ガラス基板(被処理基板)
1: Plasma etching equipment (substrate processing equipment: plasma processing equipment)
2: Chamber (processing container)
3: Heat transfer gas supply mechanism 4: Susceptor (mounting table)
15: Process gas supply pipe 18: Process gas supply source 19: Exhaust pipe 20: Exhaust device 25: High frequency power supply 30: Heat transfer gas supply source 31, 32: Heat transfer gas tank 33: Heat transfer gas line (heat transfer gas flow path )
34: 1st heat transfer gas line (1st heat transfer gas flow path)
35, 36: second heat transfer gas line (second heat transfer gas flow path)
35b, 36b: upstream line (upstream flow path)
35c, 36c: Downstream line (downstream channel)
38: Pressure control valve 50: Process controller 51: User interface 52: Storage unit 53: Unit controller G: Glass substrate (substrate to be processed)

Claims (12)

処理容器内の載置台に載置された状態で所定の処理が施される被処理基板の温度調節が可能なように前記載置台と被処理基板との間の空間に伝熱ガスを供給する伝熱ガス供給機構であって、
伝熱ガスを前記空間に供給するための伝熱ガス供給源と、
前記伝熱ガス供給源からの伝熱ガスを一時的に貯留するための伝熱ガスタンクと、
一端が前記伝熱ガス供給源に、他端が前記空間に接続され、前記伝熱ガス供給源からの伝熱ガスを前記空間に導く第1の伝熱ガス流路と、
前記第1の伝熱ガス流路から分岐して前記伝熱ガスタンクに接続され、前記第1の伝熱ガス流路の伝熱ガスを前記伝熱ガスタンクに導き、前記伝熱ガスタンクに貯留された伝熱ガスを前記第1の伝熱ガス流路に導く第2の伝熱ガス流路と
前記第1の伝熱ガス流路に設けられた、前記空間および前記伝熱ガス流路内の圧力を検出する圧力検出部と
を具備し、
伝熱ガスが前記伝熱ガス供給源から前記伝熱ガスタンクに一旦貯留され、前記伝熱ガスタンクに貯留された前記伝熱ガスタンクから供給可能な全ての伝熱ガスが前記空間に供給された後は、前記伝熱ガス供給源から前記空間に伝熱ガスを供給する際に、前記伝熱ガスタンクを経由せずに供給され
前記伝熱ガスタンクは2つ設けられており、
前記所定の処理前に、前記一方の伝熱ガスタンクに貯留された伝熱ガスを供給させて、前記圧力検出部による検出値から基板の前記載置台への載置状態が正常であるか否かを判断し、
載置状態が正常であると判断した場合に、前記圧力検出部による検出値が所定値となるように、前記他方の伝熱ガスタンクに貯留された伝熱ガスを供給させ、必要に応じて前記伝熱ガス供給源からの伝熱ガスを供給させることを特徴とする伝熱ガス供給機構。
Heat transfer gas is supplied to the space between the mounting table and the substrate to be processed so that the temperature of the substrate to be processed on which the predetermined processing is performed while being mounted on the mounting table in the processing container is possible. A heat transfer gas supply mechanism,
A heat transfer gas supply source for supplying heat transfer gas to the space;
A heat transfer gas tank for temporarily storing the heat transfer gas from the heat transfer gas supply source;
A first heat transfer gas flow path having one end connected to the heat transfer gas supply source and the other end connected to the space, and guiding the heat transfer gas from the heat transfer gas supply source to the space;
Branched from the first heat transfer gas flow path and connected to the heat transfer gas tank, the heat transfer gas in the first heat transfer gas flow path was led to the heat transfer gas tank, and stored in the heat transfer gas tank A second heat transfer gas channel that guides the heat transfer gas to the first heat transfer gas channel ;
A pressure detector provided in the first heat transfer gas flow path for detecting pressure in the space and the heat transfer gas flow path ;
After the heat transfer gas is temporarily stored in the heat transfer gas tank from the heat transfer gas supply source, and all the heat transfer gases that can be supplied from the heat transfer gas tank stored in the heat transfer gas tank are supplied to the space When supplying the heat transfer gas from the heat transfer gas supply source to the space, it is supplied without going through the heat transfer gas tank ,
Two heat transfer gas tanks are provided,
Before the predetermined treatment, whether the heat transfer gas stored in the one heat transfer gas tank is supplied, and whether or not the mounting state of the substrate on the mounting table from the detection value by the pressure detection unit is normal Judging
When it is determined that the mounting state is normal, the heat transfer gas stored in the other heat transfer gas tank is supplied so that the detection value by the pressure detection unit becomes a predetermined value, and if necessary, the A heat transfer gas supply mechanism that supplies heat transfer gas from a heat transfer gas supply source .
前記圧力検出部は、前記第1の伝熱ガス流路の前記第2の伝熱ガス流路との分岐部よりも上流側に設けられていることを特徴とする請求項1に記載の伝熱ガス供給機構。 The said pressure detection part is provided in the upstream from the branch part with the said 2nd heat transfer gas flow path of the said 1st heat transfer gas flow path, The heat transfer of Claim 1 characterized by the above-mentioned. Hot gas supply mechanism. 被処理基板を収容する処理容器と、
前記処理容器内に設けられた、被処理基板が載置される載置台と、
前記載置台に載置された被処理基板に対して所定の処理を施す処理機構と、
少なくとも前記処理機構による処理時に、被処理基板の温度が調節されるように前記載置台と被処理基板との間に形成された空間に伝熱ガスを供給する伝熱ガス供給機構と
を具備する基板処理装置であって、
前記伝熱ガス供給機構は、
伝熱ガスを前記空間に供給するための伝熱ガス供給源と、
前記伝熱ガス供給源からの伝熱ガスを一時的に貯留するための伝熱ガスタンクと、
一端が前記伝熱ガス供給源に、他端が前記空間に接続され、前記伝熱ガス供給源からの伝熱ガスを前記空間に導く第1の伝熱ガス流路と、
前記第1の伝熱ガス流路から分岐して前記伝熱ガスタンクに接続され、前記第1の伝熱ガス流路の伝熱ガスを前記伝熱ガスタンクに導き、前記伝熱ガスタンクに貯留された伝熱ガスを前記第1の伝熱ガス流路に導く第2の伝熱ガス流路と
前記第1の伝熱ガス流路に設けられた、前記空間および前記伝熱ガス流路内の圧力を検出する圧力検出部と
を具備し、
前記圧力検出部による検出値に基づいて前記処理機構および前記伝熱ガス供給機構を制御する制御部を備え、
伝熱ガスが前記伝熱ガス供給源から前記伝熱ガスタンクに一旦貯留され、前記伝熱ガスタンクに貯留された前記伝熱ガスタンクから供給可能な全ての伝熱ガスが前記空間に供給された後は、前記伝熱ガス供給源から前記空間に伝熱ガスを供給する際に、前記伝熱ガスタンクを経由せずに供給され
前記伝熱ガスタンクは2つ設けられており、
前記制御部は、
前記処理機構による処理前に、前記一方の伝熱ガスタンクに貯留された伝熱ガスを供給させて、前記圧力検出部による検出値から基板の前記載置台への載置状態が正常であるか否かを判断し、
載置状態が正常であると判断した場合に、前記圧力検出部による検出値が所定値となるように、前記他方の伝熱ガスタンクに貯留された伝熱ガスを供給させ、必要に応じて前記伝熱ガス供給源からの伝熱ガスを供給させるとともに、前記処理機構によって被処理基板を処理させることを特徴とする基板処理装置。
A processing container for storing a substrate to be processed;
A mounting table provided in the processing container on which a substrate to be processed is mounted;
A processing mechanism for performing a predetermined process on the target substrate placed on the mounting table;
During treatment with at least said processing mechanism, and a heat transfer gas supply mechanism for supplying a heat transfer gas between air formed between the mounting table and the substrate to be processed before such that the temperature of the substrate is adjusted A substrate processing apparatus,
The heat transfer gas supply mechanism includes:
A heat transfer gas supply source for supplying heat transfer gas to the space;
A heat transfer gas tank for temporarily storing the heat transfer gas from the heat transfer gas supply source;
A first heat transfer gas flow path having one end connected to the heat transfer gas supply source and the other end connected to the space, and guiding the heat transfer gas from the heat transfer gas supply source to the space;
Branched from the first heat transfer gas flow path and connected to the heat transfer gas tank, the heat transfer gas in the first heat transfer gas flow path was led to the heat transfer gas tank, and stored in the heat transfer gas tank A second heat transfer gas channel that guides the heat transfer gas to the first heat transfer gas channel ;
A pressure detector provided in the first heat transfer gas flow path for detecting pressure in the space and the heat transfer gas flow path ;
A control unit for controlling the processing mechanism and the heat transfer gas supply mechanism based on a detection value by the pressure detection unit;
After the heat transfer gas is temporarily stored in the heat transfer gas tank from the heat transfer gas supply source, and all the heat transfer gases that can be supplied from the heat transfer gas tank stored in the heat transfer gas tank are supplied to the space When supplying the heat transfer gas from the heat transfer gas supply source to the space, it is supplied without going through the heat transfer gas tank ,
Two heat transfer gas tanks are provided,
The controller is
Before the processing by the processing mechanism, the heat transfer gas stored in the one heat transfer gas tank is supplied, and whether or not the mounting state of the substrate on the mounting table from the detection value by the pressure detection unit is normal Determine whether
When it is determined that the mounting state is normal, the heat transfer gas stored in the other heat transfer gas tank is supplied so that the detection value by the pressure detection unit becomes a predetermined value, and if necessary, the A substrate processing apparatus characterized in that a heat transfer gas is supplied from a heat transfer gas supply source and a substrate to be processed is processed by the processing mechanism.
被処理基板を収容する処理容器と、
前記処理容器内に設けられた、被処理基板が載置される載置台と、
前記載置台に載置された被処理基板に対して所定の処理を施す処理機構と、
少なくとも前記処理機構による処理時に、被処理基板の温度が調節されるように前記載置台と被処理基板との間に形成された空間に伝熱ガスを供給する伝熱ガス供給機構と
を具備する基板処理装置であって、
前記伝熱ガス供給機構は、
伝熱ガスを前記空間に供給するための伝熱ガス供給源と、
前記伝熱ガス供給源からの伝熱ガスを一時的に貯留するための伝熱ガスタンクと、
一端が前記伝熱ガス供給源に、他端が前記空間に接続され、前記伝熱ガス供給源からの伝熱ガスを前記空間に導く第1の伝熱ガス流路と、
前記第1の伝熱ガス流路から分岐して前記伝熱ガスタンクに接続され、前記第1の伝熱ガス流路の伝熱ガスを前記伝熱ガスタンクに導き、前記伝熱ガスタンクに貯留された伝熱ガスを前記第1の伝熱ガス流路に導く第2の伝熱ガス流路と、
前記第1の伝熱ガス流路に設けられた、前記空間および前記伝熱ガス流路内の圧力を検出する圧力検出部と
を具備し、
前記圧力検出部による検出値に基づいて前記処理機構および前記伝熱ガス供給機構を制御する制御部を備え、
伝熱ガスが前記伝熱ガス供給源から前記伝熱ガスタンクに一旦貯留され、前記伝熱ガスタンクに貯留された前記伝熱ガスタンクから供給可能な全ての伝熱ガスが前記空間に供給された後は、前記伝熱ガス供給源から前記空間に伝熱ガスを供給する際に、前記伝熱ガスタンクを経由せずに供給され、
前記第2の伝熱ガス流路は、前記第1の伝熱ガス流路の伝熱ガスを前記伝熱ガスタンクに導くための流路と、前記伝熱ガスタンクに貯留された伝熱ガスを前記第1の伝熱ガス流路に導くための流路とを別個に有しており、
前記制御部は、
前記処理機構による処理前に、前記伝熱ガスタンクに貯留された伝熱ガスを供給させて、前記圧力検出部による検出値から基板の前記載置台への載置状態が正常であるか否かを判断するとともに、前記伝熱ガス供給源からの伝熱ガスを前記伝熱ガスタンクに再び貯留させ、
載置状態が正常であると判断した場合に、前記伝熱ガスタンクに再び貯留された伝熱ガスを供給させ、必要に応じて前記伝熱ガス供給源からの伝熱ガスを供給させるとともに、前記処理機構によって被処理基板を処理させることを特徴とする基板処理装置。
A processing container for storing a substrate to be processed;
A mounting table provided in the processing container on which a substrate to be processed is mounted;
A processing mechanism for performing a predetermined process on the target substrate placed on the mounting table;
A heat transfer gas supply mechanism for supplying a heat transfer gas to a space formed between the mounting table and the substrate to be processed so that the temperature of the substrate to be processed is adjusted at least during processing by the processing mechanism;
A substrate processing apparatus comprising:
The heat transfer gas supply mechanism includes:
A heat transfer gas supply source for supplying heat transfer gas to the space;
A heat transfer gas tank for temporarily storing the heat transfer gas from the heat transfer gas supply source;
A first heat transfer gas flow path having one end connected to the heat transfer gas supply source and the other end connected to the space, and guiding the heat transfer gas from the heat transfer gas supply source to the space;
Branched from the first heat transfer gas flow path and connected to the heat transfer gas tank, the heat transfer gas in the first heat transfer gas flow path was led to the heat transfer gas tank, and stored in the heat transfer gas tank A second heat transfer gas channel that guides the heat transfer gas to the first heat transfer gas channel;
A pressure detector provided in the first heat transfer gas flow path for detecting pressure in the space and the heat transfer gas flow path;
Comprising
A control unit for controlling the processing mechanism and the heat transfer gas supply mechanism based on a detection value by the pressure detection unit;
After the heat transfer gas is temporarily stored in the heat transfer gas tank from the heat transfer gas supply source, and all the heat transfer gases that can be supplied from the heat transfer gas tank stored in the heat transfer gas tank are supplied to the space When supplying the heat transfer gas from the heat transfer gas supply source to the space, it is supplied without going through the heat transfer gas tank,
The second heat transfer gas channel includes a channel for guiding the heat transfer gas in the first heat transfer gas channel to the heat transfer gas tank, and the heat transfer gas stored in the heat transfer gas tank. Separately having a flow path for guiding to the first heat transfer gas flow path,
The controller is
Before processing by the processing mechanism, the heat transfer gas stored in the heat transfer gas tank is supplied, and whether or not the mounting state of the substrate on the mounting table is normal from the detection value by the pressure detection unit. Judgment and re-storing the heat transfer gas from the heat transfer gas supply source in the heat transfer gas tank,
When it is determined that the mounting state is normal, the heat transfer gas stored again in the heat transfer gas tank is supplied, and the heat transfer gas from the heat transfer gas supply source is supplied as necessary. board processor it characterized thereby treating the target substrate by the processing mechanism.
前記圧力検出部は、前記第1の伝熱ガス流路の前記第2の伝熱ガス流路との分岐部よりも上流側に設けられていることを特徴とする請求項3または請求項4に記載の基板処理装置。 The said pressure detection part is provided in the upstream of the branch part with the said 2nd heat transfer gas flow path of the said 1st heat transfer gas flow path, The Claim 3 or Claim 4 characterized by the above-mentioned. 2. The substrate processing apparatus according to 1. 記制御部は、
前記処理機構による処理前に、前記圧力検出部による検出値が前記所定値よりも低い値となるように設定された量の伝熱ガスを前記伝熱ガス供給機構によって供給させて、前記圧力検出部による検出値から基板の前記載置台への載置状態が正常であるか否かを判断することを特徴とする請求項3から請求項5のいずれか1項に記載の基板処理装置。
Before Symbol control unit,
Before the processing by the processing mechanism, the amount of heat transfer gas set so that the value detected by the pressure detection unit is lower than the predetermined value is supplied by the heat transfer gas supply mechanism, and the pressure detection the substrate processing apparatus according to any one of the preceding claims 3 to placement state is characterized by determining whether a normal from the detection value by the part to the mounting table of the substrate.
前記処理機構は、前記処理容器内に処理ガスを供給する処理ガス供給機構と、前記処理容器内を排気する排気機構と、前記処理容器内に前記処理ガスのプラズマを生成するプラズマ生成機構とを有し、被処理基板に対してプラズマ処理を施すことを特徴とする請求項3から請求項6のいずれか1項に記載の基板処理装置。 The processing mechanism includes a processing gas supply mechanism for supplying a processing gas into the processing container, an exhaust mechanism for exhausting the processing container, and a plasma generation mechanism for generating plasma of the processing gas in the processing container. The substrate processing apparatus according to claim 3 , wherein the substrate processing apparatus performs plasma processing on the substrate to be processed. 処理容器内の載置台に載置された状態で所定の処理が施される被処理基板の温度調節が可能なように前記載置台と被処理基板との間の空間に伝熱ガスを供給する伝熱ガス供給方法であって、
伝熱ガスを前記空間に供給するための伝熱ガス供給源と、
前記伝熱ガス供給源からの伝熱ガスを一時的に貯留するための伝熱ガスタンクと、
一端が前記伝熱ガス供給源に、他端が前記空間に接続され、前記伝熱ガス供給源からの伝熱ガスを前記空間に導く第1の伝熱ガス流路と、
前記第1の伝熱ガス流路から分岐して前記伝熱ガスタンクに接続され、前記第1の伝熱ガス流路の伝熱ガスを前記伝熱ガスタンクに導き、前記伝熱ガスタンクに貯留された伝熱ガスを前記第1の伝熱ガス流路に導く第2の伝熱ガス流路と
前記第1の伝熱ガス流路に設けられた、前記空間および前記伝熱ガス流路内の圧力を検出する圧力検出部と
を準備し、
伝熱ガスを前記伝熱ガス供給源から前記伝熱ガスタンクに一旦貯留し、前記伝熱ガスタンクに貯留された前記伝熱ガスタンクから供給可能な全ての伝熱ガスを前記空間に供給した後は、前記伝熱ガス供給源から前記空間に伝熱ガスを供給する際に、前記伝熱ガスタンクを経由せずに供給し、
前記伝熱ガスタンクを2つ設け、
前記所定の処理前に、前記一方の伝熱ガスタンクに貯留された伝熱ガスを供給させて、前記圧力検出部による検出値から基板の前記載置台への載置状態が正常であるか否かを判断し、
載置状態が正常であると判断した場合に、前記圧力検出部による検出値が所定値となるように、前記他方の伝熱ガスタンクに貯留された伝熱ガスを供給させ、必要に応じて前記伝熱ガス供給源からの伝熱ガスを供給させることを特徴とする伝熱ガス供給方法。
Heat transfer gas is supplied to the space between the mounting table and the substrate to be processed so that the temperature of the substrate to be processed on which the predetermined processing is performed while being mounted on the mounting table in the processing container is possible. A heat transfer gas supply method,
A heat transfer gas supply source for supplying heat transfer gas to the space;
A heat transfer gas tank for temporarily storing the heat transfer gas from the heat transfer gas supply source;
A first heat transfer gas flow path having one end connected to the heat transfer gas supply source and the other end connected to the space, and guiding the heat transfer gas from the heat transfer gas supply source to the space;
Branched from the first heat transfer gas flow path and connected to the heat transfer gas tank, the heat transfer gas in the first heat transfer gas flow path was led to the heat transfer gas tank, and stored in the heat transfer gas tank A second heat transfer gas channel that guides the heat transfer gas to the first heat transfer gas channel ;
A pressure detector provided in the first heat transfer gas flow path for detecting pressure in the space and the heat transfer gas flow path ;
After temporarily storing the heat transfer gas in the heat transfer gas tank from the heat transfer gas supply source and supplying all the heat transfer gas that can be supplied from the heat transfer gas tank stored in the heat transfer gas tank to the space, When supplying heat transfer gas from the heat transfer gas supply source to the space, supply without passing through the heat transfer gas tank ,
Two heat transfer gas tanks are provided,
Before the predetermined treatment, whether the heat transfer gas stored in the one heat transfer gas tank is supplied, and whether or not the mounting state of the substrate on the mounting table from the detection value by the pressure detection unit is normal Judging
When it is determined that the mounting state is normal, the heat transfer gas stored in the other heat transfer gas tank is supplied so that the detection value by the pressure detection unit becomes a predetermined value, and if necessary, the A heat transfer gas supply method comprising supplying a heat transfer gas from a heat transfer gas supply source .
被処理基板を処理容器内に収容し、この処理容器内に設けられた載置台に載置する工程と、
前記載置台に載置された被処理基板に対して所定の処理を施す工程と、
少なくとも前記所定の処理工程に、被処理基板の温度調節が可能なように前記載置台と被処理基板との間の空間に伝熱ガスを供給する工程と
を含む基板処理方法であって、
前記伝熱ガス供給工程では、
伝熱ガスを前記空間に供給するための伝熱ガス供給源と、前記伝熱ガス供給源からの伝熱ガスを一時的に貯留するための伝熱ガスタンクと、一端が前記伝熱ガス供給源に、他端が前記空間に接続され、前記伝熱ガス供給源からの伝熱ガスを前記空間に導く第1の伝熱ガス流路と、前記第1の伝熱ガス流路から分岐して前記伝熱ガスタンクに接続され、前記第1の伝熱ガス流路の伝熱ガスを前記伝熱ガスタンクに導き、前記伝熱ガスタンクに貯留された伝熱ガスを前記第1の伝熱ガス流路に導く第2の伝熱ガス流路と、前記第1の伝熱ガス流路に、前記空間および前記伝熱ガス流路内の圧力を検出する圧力検出部とを準備し、
伝熱ガスを前記伝熱ガス供給源から前記伝熱ガスタンクに一旦貯留し、前記伝熱ガスタンクに貯留された伝熱ガスを前記伝熱ガスタンクから供給可能な全ての前記空間に供給した後は、前記伝熱ガス供給源から前記空間に伝熱ガスを供給する際に、前記伝熱ガスタンクを経由せずに供給し、
前記伝熱ガスタンクを2つ設けておき、
前記所定の処理工程前に、前記一方の伝熱ガスタンクに貯留された伝熱ガスを供給して、前記圧力検出部による検出値から基板の前記載置台への載置状態が正常であるか否かを判断し、
載置状態が正常であると判断した場合に、前記所定の処理工程時に、前記他方の伝熱ガスタンクに貯留された伝熱ガスを供給し、必要に応じて前記伝熱ガス供給源からの伝熱ガスを供給することを特徴とする基板処理方法。
Storing a substrate to be processed in a processing container and placing the substrate on a mounting table provided in the processing container;
Performing a predetermined process on the substrate to be processed placed on the mounting table;
Supplying the heat transfer gas to the space between the mounting table and the substrate to be processed so that the temperature of the substrate to be processed can be adjusted at least in the predetermined processing step,
In the heat transfer gas supply step,
A heat transfer gas supply source for supplying heat transfer gas to the space, a heat transfer gas tank for temporarily storing the heat transfer gas from the heat transfer gas supply source, and one end of the heat transfer gas supply source The other end is connected to the space, and branches from the first heat transfer gas flow path for guiding the heat transfer gas from the heat transfer gas supply source to the space, and the first heat transfer gas flow path. The heat transfer gas tank is connected to the heat transfer gas tank, guides the heat transfer gas in the first heat transfer gas channel to the heat transfer gas tank, and transfers the heat transfer gas stored in the heat transfer gas tank to the first heat transfer gas channel. Preparing a second heat transfer gas flow path leading to the first heat transfer gas flow path and a pressure detection unit for detecting the pressure in the space and the heat transfer gas flow path ,
After temporarily storing the heat transfer gas from the heat transfer gas supply source in the heat transfer gas tank and supplying the heat transfer gas stored in the heat transfer gas tank to all the spaces that can be supplied from the heat transfer gas tank , When supplying heat transfer gas from the heat transfer gas supply source to the space, supply without passing through the heat transfer gas tank ,
Two heat transfer gas tanks are provided,
Before the predetermined processing step, the heat transfer gas stored in the one heat transfer gas tank is supplied, and whether or not the mounting state of the substrate on the mounting table from the detection value by the pressure detection unit is normal Determine whether
When it is determined that the mounting state is normal, the heat transfer gas stored in the other heat transfer gas tank is supplied during the predetermined processing step, and the heat transfer gas supply source transfers the heat transfer gas as necessary. A substrate processing method comprising supplying a hot gas .
被処理基板を処理容器内に収容し、この処理容器内に設けられた載置台に載置する工程と、
前記載置台に載置された被処理基板に対して所定の処理を施す工程と、
少なくとも前記所定の処理工程に、被処理基板の温度調節が可能なように前記載置台と被処理基板との間の空間に伝熱ガスを供給する工程と
を含む基板処理方法であって、
前記伝熱ガス供給工程では、
伝熱ガスを前記空間に供給するための伝熱ガス供給源と、前記伝熱ガス供給源からの伝熱ガスを一時的に貯留するための伝熱ガスタンクと、一端が前記伝熱ガス供給源に、他端が前記空間に接続され、前記伝熱ガス供給源からの伝熱ガスを前記空間に導く第1の伝熱ガス流路と、前記第1の伝熱ガス流路から分岐して前記伝熱ガスタンクに接続され、前記第1の伝熱ガス流路の伝熱ガスを前記伝熱ガスタンクに導き、前記伝熱ガスタンクに貯留された伝熱ガスを前記第1の伝熱ガス流路に導く第2の伝熱ガス流路と、前記第1の伝熱ガス流路に、前記空間および前記伝熱ガス流路内の圧力を検出する圧力検出部とを準備し、
前記第2の伝熱ガス流路を、前記第1の伝熱ガス流路の伝熱ガスを前記伝熱ガスタンクに導くための流路と、前記伝熱ガスタンクに貯留された伝熱ガスを前記第1の伝熱ガス流路に導くための流路とを別個に設けて構成しておき、
前記所定の処理工程前に、前記伝熱ガスタンクに貯留された伝熱ガスを供給して、前記圧力検出部の検出値から基板の前記載置台への載置状態が正常であるか否かを判断するとともに、前記伝熱ガス供給源の伝熱ガスを前記伝熱ガスタンクに再び貯留し、
載置状態が正常であると判断した場合に、前記所定の処理工程時に、前記伝熱ガスタンクに再び貯留された伝熱ガスを供給し、必要に応じて前記伝熱ガス供給源からの伝熱ガスを供給することを特徴とする基板処理方法。
Storing a substrate to be processed in a processing container and placing the substrate on a mounting table provided in the processing container;
Performing a predetermined process on the substrate to be processed placed on the mounting table;
Supplying heat transfer gas to a space between the mounting table and the substrate to be processed so that the temperature of the substrate to be processed can be adjusted at least in the predetermined processing step;
A substrate processing method comprising:
In the heat transfer gas supply step,
A heat transfer gas supply source for supplying heat transfer gas to the space, a heat transfer gas tank for temporarily storing the heat transfer gas from the heat transfer gas supply source, and one end of the heat transfer gas supply source The other end is connected to the space, and branches from the first heat transfer gas flow path for guiding the heat transfer gas from the heat transfer gas supply source to the space, and the first heat transfer gas flow path. The heat transfer gas tank is connected to the heat transfer gas tank, guides the heat transfer gas in the first heat transfer gas channel to the heat transfer gas tank, and transfers the heat transfer gas stored in the heat transfer gas tank to the first heat transfer gas channel. Preparing a second heat transfer gas flow path leading to the first heat transfer gas flow path and a pressure detection unit for detecting the pressure in the space and the heat transfer gas flow path,
The second heat transfer gas flow path, the flow path for guiding the heat transfer gas of the first heat transfer gas flow path to the heat transfer gas tank, and the heat transfer gas stored in the heat transfer gas tank are A flow path for guiding to the first heat transfer gas flow path is separately provided and configured.
Before the predetermined processing step, the heat transfer gas stored in the heat transfer gas tank is supplied, and whether or not the mounting state of the substrate on the mounting table is normal from the detection value of the pressure detection unit. And determining the heat transfer gas from the heat transfer gas supply source in the heat transfer gas tank again,
When it is determined that the mounting state is normal, the heat transfer gas stored again in the heat transfer gas tank is supplied during the predetermined processing step, and heat transfer from the heat transfer gas supply source is performed as necessary. board processing how to and supplying the gas.
前記所定の処理工程前に、前記圧力検出部による検出値が前記所定値よりも低い値となるように設定された量の伝熱ガスを供給して、前記圧力検出部による検出値から基板の前記載置台への載置状態が正常であるか否かを判断することを特徴とする請求項9または請求項10に記載の基板処理方法。 Before the predetermined processing step, an amount of heat transfer gas set so that the detection value by the pressure detection unit is lower than the predetermined value is supplied, and the detection value of the substrate is determined from the detection value by the pressure detection unit. the substrate processing method according to claim 9 or claim 10 placement state to the mounting table is characterized judgment to Rukoto whether it is normal. コンピュータ上で動作する制御プログラムが記憶されたコンピュータ読取可能な記憶媒体であって、
前記制御プログラムは、実行時に請求項9から請求項11のいずれか1項に記載の基板処理方法が行われるように、コンピュータに処理装置を制御させることを特徴とするコンピュータ読取可能な記憶媒体。
A computer-readable storage medium storing a control program that runs on a computer,
A computer-readable storage medium characterized in that the control program causes a computer to control a processing apparatus so that the substrate processing method according to any one of claims 9 to 11 is performed at the time of execution.
JP2006260397A 2006-09-26 2006-09-26 Heat transfer gas supply mechanism, heat transfer gas supply method, substrate processing apparatus, and substrate processing method Active JP5138195B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006260397A JP5138195B2 (en) 2006-09-26 2006-09-26 Heat transfer gas supply mechanism, heat transfer gas supply method, substrate processing apparatus, and substrate processing method
CN200710154403A CN100580870C (en) 2006-09-26 2007-09-11 Heat-conducting gas supply mechanism, supply method and substrate processing device and method
KR1020070096276A KR100884851B1 (en) 2006-09-26 2007-09-21 Mechanism and method for supplying thermal conduction gas, and substrate processing apparatus and method, and computer readable storage medium
TW096135499A TWI413164B (en) 2006-09-26 2007-09-21 Heat transfer gas supply means and heat transfer gas supply method, and substrate processing apparatus and substrate processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006260397A JP5138195B2 (en) 2006-09-26 2006-09-26 Heat transfer gas supply mechanism, heat transfer gas supply method, substrate processing apparatus, and substrate processing method

Publications (2)

Publication Number Publication Date
JP2008084924A JP2008084924A (en) 2008-04-10
JP5138195B2 true JP5138195B2 (en) 2013-02-06

Family

ID=39256128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006260397A Active JP5138195B2 (en) 2006-09-26 2006-09-26 Heat transfer gas supply mechanism, heat transfer gas supply method, substrate processing apparatus, and substrate processing method

Country Status (4)

Country Link
JP (1) JP5138195B2 (en)
KR (1) KR100884851B1 (en)
CN (1) CN100580870C (en)
TW (1) TWI413164B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101029778B1 (en) * 2008-12-30 2011-04-19 엘아이지에이디피 주식회사 apparatus for processing substrate
JP5993568B2 (en) * 2011-11-09 2016-09-14 東京エレクトロン株式会社 Substrate mounting system, substrate processing apparatus, electrostatic chuck, and substrate cooling method
JP6570894B2 (en) * 2015-06-24 2019-09-04 東京エレクトロン株式会社 Temperature control method
KR102370471B1 (en) * 2019-02-08 2022-03-03 주식회사 히타치하이테크 plasma processing unit

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10240356A (en) * 1997-02-21 1998-09-11 Anelva Corp Method for controlling substrate temperature and discriminating substrate temperature controllability for substrate processor
JP3274640B2 (en) * 1997-11-14 2002-04-15 山口日本電気株式会社 Wafer processing apparatus and wafer floating detection method
JP2002177854A (en) 2000-12-14 2002-06-25 Dainippon Screen Mfg Co Ltd Substrate treatment apparatus
CN101038863B (en) * 2001-02-15 2011-07-06 东京毅力科创株式会社 Method and apparatus for processing workpiece
JP3966735B2 (en) * 2002-02-06 2007-08-29 東京エレクトロン株式会社 Gas introduction mechanism, gas introduction method, and plasma processing apparatus
JP4352783B2 (en) * 2002-08-23 2009-10-28 東京エレクトロン株式会社 Gas supply system and processing system

Also Published As

Publication number Publication date
KR100884851B1 (en) 2009-02-23
JP2008084924A (en) 2008-04-10
KR20080028303A (en) 2008-03-31
CN100580870C (en) 2010-01-13
CN101154565A (en) 2008-04-02
TW200832519A (en) 2008-08-01
TWI413164B (en) 2013-10-21

Similar Documents

Publication Publication Date Title
JP5235293B2 (en) Process gas supply mechanism, process gas supply method, and gas processing apparatus
US9607855B2 (en) Etching method and storage medium
JP4593381B2 (en) Upper electrode, plasma processing apparatus, and plasma processing method
JP4795899B2 (en) Substrate mounting mechanism and substrate delivery method
JP6541374B2 (en) Substrate processing equipment
KR102002216B1 (en) Substrate lifting mechanism, substrate mounting table, and substrate processing apparatus
JP6184760B2 (en) Substrate processing method and substrate processing apparatus
JP2008192644A (en) Method and equipment for treating substrate
US20170183775A1 (en) Substrate processing apparatus
US10312079B2 (en) Etching method
JP5138195B2 (en) Heat transfer gas supply mechanism, heat transfer gas supply method, substrate processing apparatus, and substrate processing method
JP2008251991A (en) Load-lock device and boosting method
JP2010059483A (en) Gas treatment apparatus, gas treatment method, and storage medium
WO2013183437A1 (en) Gas treatment method
JP6861570B2 (en) Board processing equipment
JPWO2019053869A1 (en) Substrate processing equipment, semiconductor equipment manufacturing methods and programs
KR102517603B1 (en) Substrate transporting method and substrate processing apparatus
JP2012184461A (en) Abnormality detection method for vacuum device, vacuum device and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121114

R150 Certificate of patent or registration of utility model

Ref document number: 5138195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250