JP5137823B2 - Reactive carboxylate compound, curable resin composition using the same, and use thereof - Google Patents

Reactive carboxylate compound, curable resin composition using the same, and use thereof Download PDF

Info

Publication number
JP5137823B2
JP5137823B2 JP2008515507A JP2008515507A JP5137823B2 JP 5137823 B2 JP5137823 B2 JP 5137823B2 JP 2008515507 A JP2008515507 A JP 2008515507A JP 2008515507 A JP2008515507 A JP 2008515507A JP 5137823 B2 JP5137823 B2 JP 5137823B2
Authority
JP
Japan
Prior art keywords
compound
active energy
reactive
resin composition
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008515507A
Other languages
Japanese (ja)
Other versions
JPWO2007132724A1 (en
Inventor
透 栗橋
和義 山本
政隆 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2008515507A priority Critical patent/JP5137823B2/en
Publication of JPWO2007132724A1 publication Critical patent/JPWO2007132724A1/en
Application granted granted Critical
Publication of JP5137823B2 publication Critical patent/JP5137823B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1438Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing oxygen
    • C08G59/1455Monocarboxylic acids, anhydrides, halides, or low-molecular-weight esters thereof
    • C08G59/1461Unsaturated monoacids
    • C08G59/1466Acrylic or methacrylic acids
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Emergency Medicine (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Epoxy Resins (AREA)

Description

本発明は分子配向性の高いエポキシ樹脂に活性エネルギー線への反応性を付与し、その硬化物において耐熱性、強靭性、熱伝導率性に優れた特性を有するカルボキシレート化合物、及びその酸変性物、それらを含有する活性エネルギー線樹脂組成物、およびその用途に関する。   The present invention imparts reactivity to active energy rays to an epoxy resin having a high molecular orientation, and a carboxylate compound having properties excellent in heat resistance, toughness, and thermal conductivity in the cured product, and acid modification thereof Products, active energy ray resin compositions containing them, and uses thereof.

近年、回路基板の高密度化や半導体素子の実装方法の進歩に伴い、鉛フリーハンダ等の使用に伴いより高い耐熱性や強靭性、耐薬品性、さらには熱に対して弱い電子素子を保護する観点から高い熱伝導性をもった皮膜形成用材料が求められている。   In recent years, with the increase in circuit board density and progress in semiconductor device mounting methods, the use of lead-free solder, etc. protects higher heat resistance, toughness, chemical resistance, and even electronic devices that are vulnerable to heat Therefore, a film-forming material having high thermal conductivity is required.

これら皮膜形成用材料の一例としては、ソルダーレジストインキ等が挙げられる。これは、プリント配線回路基板に部品をハンダ付けする時に目的の部位以外の所へのハンダの付着を避けること及びプリント配線回路基板上の回路の保護を目的とし、電気絶縁性、耐熱性、密着性、耐化学薬品性等の諸特性が要求される。現在のところエポキシアクリレート系ソルダーレジストインキがその主流となっている。   An example of these film forming materials is solder resist ink. The purpose of this is to avoid adhesion of solder to parts other than the target part when soldering parts to the printed wiring circuit board and to protect the circuit on the printed wiring circuit board. And various properties such as chemical resistance are required. At present, epoxy acrylate solder resist ink is the mainstream.

これらエポキシアクリレート系ソルダーレジストインキは、エポキシ樹脂をアクリレート化し反応性を付与させる、若しくはアルカリ水現像によるパターニングが必要な場合には、アクリレート化の後に酸変性させ、これらを紫外線硬化型のソルダーレジストインキとして用いることが一般的である。最近のエレクトロニクス機器類の小型化、高機能化、省資源化、低コスト化などにより、回路パターン密度の精度向上要求からアルカリ水現像型のソルダーレジストが一般的である。これらの例として、フェノールノボラック型エポキシ樹脂、もしくはクレゾール型エポキシ樹脂と不飽和一塩基酸との反応物に酸無水物を反応させて得られた樹脂を使用した組成物が、広く用いられている(特公平7−67008号公報、特公平7−17737号公報、特許第2598346号公報)。   These epoxy acrylate solder resist inks acrylate the epoxy resin to provide reactivity, or when patterning by alkaline water development is required, acid-modify after acrylate formation, and these are UV curable solder resist inks It is common to use as. Alkali water development type solder resists are generally used due to demands for improving the accuracy of circuit pattern density due to recent downsizing, high functionality, resource saving, and cost reduction of electronic devices. As these examples, a composition using a phenol novolac type epoxy resin or a resin obtained by reacting an acid anhydride with a reaction product of a cresol type epoxy resin and an unsaturated monobasic acid is widely used. (Japanese Patent Publication No. 7-67008, Japanese Patent Publication No. 7-17737, Japanese Patent No. 2598346).

また、ビフェニル骨格を有するエポキシアクリレートから誘導されるエポキシアクリレート化合物とその酸無水物より誘導される酸変性エポキシアクリレート、及びその用途についても公知である(特開平11−140144号公報)。   Further, an epoxy acrylate compound derived from an epoxy acrylate having a biphenyl skeleton, an acid-modified epoxy acrylate derived from its acid anhydride, and its use are also known (Japanese Patent Laid-Open No. 11-140144).

近年、回路基板の高密度化や半導体素子の実装方法の進歩に伴い、放熱という課題があらわれてきている。例えば、エポキシ樹脂等において分子内にメソゲン基を有するエポキシ樹脂が、その硬化物において高い熱伝導率を示すことが記されている(特開2003−268070号公報)。
しかしながらこれらメソゲン基を有するエポキシ樹脂は、一般に分子構造が複雑であり、製造が困難であるという欠点を有しており、安価に、かつ大量に提供することが困難であった。
In recent years, the problem of heat dissipation has been raised with the progress of high-density circuit boards and semiconductor device mounting methods. For example, it is described that an epoxy resin having a mesogenic group in a molecule in an epoxy resin or the like exhibits high thermal conductivity in the cured product (Japanese Patent Laid-Open No. 2003-268070).
However, these epoxy resins having a mesogenic group generally have a disadvantage that they have a complicated molecular structure and are difficult to produce, and are difficult to provide at low cost and in large quantities.

さらに、一般的に熱伝導性の高い無機材料を組成物内に配合することでより高い熱伝導性を付与させることは公知である(特開平10−242637号公報)。しかしながら、放熱に劣る樹脂材料中にこれら無機材料を配合してもその効果は限定的である。   Furthermore, it is known that a higher thermal conductivity is generally imparted by blending an inorganic material having a high thermal conductivity into the composition (Japanese Patent Laid-Open No. 10-242637). However, even if these inorganic materials are blended in a resin material that is inferior in heat dissipation, the effect is limited.

ビスフェノールF構造を有するエポキシ樹脂、ビフェノール構造を有するエポキシ樹脂については、既に公知である(特開平9−227653号公報)。しかしながら、これらには活性エネルギー線への反応性付与については、なんら開示はない。さらに、ビスフェノールF型に由来する構造とビフェノール構造の比率により、優れた熱伝導性を示すことについては、なんら触れられていない。   An epoxy resin having a bisphenol F structure and an epoxy resin having a biphenol structure are already known (Japanese Patent Laid-Open No. 9-227653). However, these do not disclose anything about imparting reactivity to active energy rays. Furthermore, no mention is made of showing excellent thermal conductivity by the ratio of the structure derived from the bisphenol F type and the biphenol structure.

本発明は、強靭性、耐熱性、電気特性といった基本的な性能に優れているだけではなく、さらなる放熱、即ち熱伝導性を高めた材料を提供することを課題としている。   An object of the present invention is to provide a material that not only excels in basic performances such as toughness, heat resistance, and electrical characteristics, but also has improved heat dissipation, that is, thermal conductivity.

本発明者らはこうした実状に鑑み、鋭意研究を行った結果、製造が容易であり、しかも簡単に分子が配向した状態を実現することが可能なエポキシ樹脂に活性エネルギー線で硬化可能な反応性基を導入することで、高い熱伝導性を付与した硬化物を得ることができることを見出した。   In light of these circumstances, the present inventors have conducted intensive research, and as a result, they are easy to manufacture and can react with an epoxy resin that can easily realize a state in which molecules are oriented, and can be cured with active energy rays. It has been found that a cured product imparted with high thermal conductivity can be obtained by introducing a group.

すなわち本発明は、   That is, the present invention

Figure 0005137823
Figure 0005137823

上記式(I)、(II)で表される構造単位を共に有し、式(I)と式(II)の繰り返し数の総和の平均値が1.1〜20であり、式(I)の繰り返し数÷式(II)の繰り返し数で示される値が0.5以上50以下であることを特徴とするエポキシ樹脂(a)と、分子中に一個以上の重合可能なエチレン性不飽和基と一個以上のカルボキシル基を併せ持つ化合物(b)を反応せしめて得られる反応性カルボキシレート化合物(A)に関する。
さらに、式(I)と式(II)の繰り返し数の総和の平均値が1.3〜5であり、式(I)の繰り返し数÷式(II)の繰り返し数で示される値が0.5以上10以下であって、両末端がエポキシ基である請求項1に記載の反応性カルボキシレート化合物(A)に関する。
さらに、上記カルボキシレート化合物(A)に多塩基酸無水物(c)を反応せしめて得られる反応性ポリカルボン酸化合物(B)に関する。
さらに、上記カルボキシレート化合物(A)ないし反応性ポリカルボン酸化合物(B)を含むことを特徴とする活性エネルギー線硬化型樹脂組成物に関する。
さらに、上記カルボキシレート化合物(A)ないし反応性ポリカルボン酸化合物(B)と、その他の反応性化合物(C)を含むことを特徴とする活性エネルギー線硬化型樹脂組成物に関する。
さらに、上記活性エネルギー線硬化型樹脂組成物において、その他の反応性化合物(C)がラジカル反応型のアクリレート類である活性エネルギー線硬化型樹脂組成物に関する。
さらに、上記活性エネルギー線硬化型樹脂組成物に熱伝導性無機フィラーを含有させることを特徴とする活性エネルギー線硬化型樹脂組成物に関する。
さらに、成形用材料である上記活性エネルギー線硬化型樹脂組成物に関する。
さらに、皮膜形成用材料である上記活性エネルギー線硬化型樹脂組成物に関する。
さらに、レジスト材料である上記活性エネルギー線硬化型樹脂組成物に関する。
さらに、熱伝導材料である上記活性エネルギー線硬化型樹脂組成物に関する。
さらに、活性エネルギー線硬化型樹脂組成物の硬化物に関する。
さらに、硬化物の層を有する多層材料に関する。
Both of the structural units represented by the above formulas (I) and (II) have an average value of the total number of repetitions of the formulas (I) and (II) of 1.1 to 20, and the formula (I) The epoxy resin (a), wherein the value represented by the number of repetitions of ÷ the number of repetitions of formula (II) is 0.5 to 50, and one or more polymerizable ethylenically unsaturated groups in the molecule And a reactive carboxylate compound (A) obtained by reacting a compound (b) having at least one carboxyl group.
Furthermore, the average value of the sum of the number of repetitions of formula (I) and formula (II) is 1.3 to 5, and the value represented by the number of repetitions of formula (I) ÷ the number of repetitions of formula (II) is 0. It relates to the reactive carboxylate compound (A) according to claim 1, which is 5 or more and 10 or less and both ends are epoxy groups.
Furthermore, it is related with the reactive polycarboxylic acid compound (B) obtained by making a polybasic acid anhydride (c) react with the said carboxylate compound (A).
Furthermore, the present invention relates to an active energy ray-curable resin composition comprising the carboxylate compound (A) or the reactive polycarboxylic acid compound (B).
Furthermore, the present invention relates to an active energy ray-curable resin composition comprising the carboxylate compound (A) or the reactive polycarboxylic acid compound (B) and another reactive compound (C).
Furthermore, in the said active energy ray curable resin composition, it is related with the active energy ray curable resin composition whose other reactive compound (C) is radical reaction type acrylates.
Furthermore, the present invention relates to an active energy ray-curable resin composition comprising a thermal conductive inorganic filler in the active energy ray-curable resin composition.
Furthermore, it is related with the said active energy ray hardening-type resin composition which is a molding material.
Furthermore, it is related with the said active energy ray hardening-type resin composition which is a film forming material.
Furthermore, it is related with the said active energy ray hardening-type resin composition which is a resist material.
Furthermore, it is related with the said active energy ray hardening-type resin composition which is a heat conductive material.
Furthermore, it is related with the hardened | cured material of an active energy ray curable resin composition.
Furthermore, it is related with the multilayer material which has a layer of hardened | cured material.

本発明の反応性カルボキシレート化合物を用いることで、高い熱伝導性を持った硬化物を得ることができる。さらに放熱性に優れた熱伝導性無機フィラーを合わせて用いることで、より高い放熱性が発揮される。これにより特に放熱が求められる皮膜形成用材料、特にはソルダーレジスト等の用途に好適に用いることができる。   By using the reactive carboxylate compound of the present invention, a cured product having high thermal conductivity can be obtained. Furthermore, higher heat dissipation is demonstrated by using together the heat conductive inorganic filler excellent in heat dissipation. Thereby, it can use suitably for uses, such as a film formation material in which especially heat dissipation is calculated | required, especially a soldering resist.

本発明で用いられる前記式(I)、(II)で表される構造単位を共に有するエポキシ樹脂(a)は、下記式(2)または下記式(3)で表されるフェノール化合物をエピハロヒドリンとアルカリ金属水酸化物の存在下で反応させて得られる低分子量のエポキシ樹脂(a´)に、さらに式(2)又は式(3)で表されるフェノール化合物を反応させ、溶剤中で結晶を析出させることにより得ることができる。本発明において、前記式(I)、(II)で表される構造単位を共に有するエポキシ樹脂(a)としては、下記式(I’)、(II’)で表される構造単位を共に有するものが好ましい。   The epoxy resin (a) having both the structural units represented by the above formulas (I) and (II) used in the present invention is a phenol compound represented by the following formula (2) or the following formula (3) as an epihalohydrin. The low molecular weight epoxy resin (a ′) obtained by reacting in the presence of an alkali metal hydroxide is further reacted with a phenol compound represented by formula (2) or formula (3), and crystals are formed in a solvent. It can be obtained by precipitation. In the present invention, the epoxy resin (a) having both the structural units represented by the formulas (I) and (II) has both the structural units represented by the following formulas (I ′) and (II ′). Those are preferred.

Figure 0005137823
Figure 0005137823

Figure 0005137823
Figure 0005137823

Figure 0005137823
Figure 0005137823

式(2)のフェノール系化合物の水酸基の芳香環への置換位置については、特に限定されないが、本発明の効果である強靭性、耐熱性、電気特性、放熱性への影響を考慮すると4,4´−体である場合及び/又は2,2´−体である場合が好ましく、4,4´−体である場合もしくは2,2´−体である場合がより好ましく、4,4´−体である場合がさらに好ましい。これらフェノール系化合物の融点はそれぞれ163℃前後、118℃の結晶であり、4,4´−体である方が高融点、即ち高結晶性であると考えられる。このことはエポキシ樹脂にした場合の結晶性にも好影響を与えると考えられ、4,4´−体であるフェノール系化合物を材料とするエポキシ樹脂のほうが高い結晶性、即ち熱伝導性が期待できる。式(2)のフェノール系化合物は、それぞれp,p´−BPF、o,o´−BPF(いずれも本州化学株式会社製)として市販品が購入できる。   The position of substitution of the hydroxyl group of the phenolic compound of formula (2) to the aromatic ring is not particularly limited, but considering the effects of the present invention on toughness, heat resistance, electrical properties, and heat dissipation, 4, The case where it is 4′-form and / or the case where it is 2,2′-form is preferred, the case where it is 4,4′-form or the case where it is 2,2′-form is more preferred, and 4,4′-form. More preferably, it is a body. The melting points of these phenolic compounds are crystals of around 163 ° C. and 118 ° C., respectively, and the 4,4′-form is considered to have a higher melting point, that is, higher crystallinity. This is considered to have a positive effect on the crystallinity when an epoxy resin is used, and an epoxy resin composed of a 4,4′-phenol compound is expected to have higher crystallinity, that is, thermal conductivity. it can. The phenolic compound of the formula (2) is commercially available as p, p′-BPF and o, o′-BPF (all manufactured by Honshu Chemical Co., Ltd.).

前記式(I)、(II)で表される構造単位を共に有するエポキシ樹脂の製法としては、(i):式(2)の化合物とエピハロヒドリンの反応生成物を式(3)の化合物で鎖延長する方法、(ii):式(3)の化合物とエピハロヒドリンの反応生成物を式(2)の化合物で鎖延長する方法のいずれも採用できるが、本発明においては、(i)の方法が好ましい。なお、以下に(i)の方法について説明するが、(ii)の方法は(i)の方法において式(2)のフェノール化合物と式(3)のフェノール化合物を入れ替えたものである。なお、式(I)、(II)で表される構造単位はランダムにつながっていても、構造単位毎にブロックを構成してつながっていてもよい。   As a method for producing an epoxy resin having both the structural units represented by the formulas (I) and (II), (i): a reaction product of a compound of formula (2) and an epihalohydrin is chained with a compound of formula (3). (Ii): Any of the methods of chain extending the reaction product of the compound of formula (3) and epihalohydrin with the compound of formula (2) can be adopted. In the present invention, the method of (i) preferable. The method (i) will be described below. The method (ii) is obtained by replacing the phenol compound of the formula (2) and the phenol compound of the formula (3) in the method (i). The structural units represented by the formulas (I) and (II) may be connected at random or may be connected by constituting a block for each structural unit.

式(I)、(II)で表される構造単位を共に有するエポキシ樹脂において、式(I)の繰り返し数÷式(II)の繰り返し数で示される値が0.5以上50以下である場合に、その熱伝導に関する効果が発揮され、好ましくは0.5以上10以下であり、より好ましくは1.2以上5未満であることが好ましい。この値が大きい場合は二種のフェノール化合物をエポキシ樹脂の構成単位に持つ特徴が薄れ、またこの値が小さい場合には、樹脂骨格が剛直になりすぎエポキシ樹脂を得ることができない。   In the epoxy resin having both the structural units represented by the formulas (I) and (II), the value represented by the number of repetitions of the formula (I) ÷ the number of repetitions of the formula (II) is 0.5 or more and 50 or less Moreover, the effect regarding the heat conduction is exhibited, preferably 0.5 or more and 10 or less, more preferably 1.2 or more and less than 5. When this value is large, the characteristic of having two phenolic compounds in the structural unit of the epoxy resin is thin, and when this value is small, the resin skeleton becomes too rigid to obtain an epoxy resin.

式(I)、(II)で表される構造単位を共に有するエポキシ樹脂の製法においてエピハロヒドリンとしてはエピクロルヒドリンやエピブロムヒドリンを用いることが出来る。エピハロヒドリンの量は式(2)の化合物の水酸基1モルに対し通常2〜15モル、好ましくは3〜12モルである。   Epichlorohydrin or epibromohydrin can be used as the epihalohydrin in the method for producing an epoxy resin having both the structural units represented by the formulas (I) and (II). The amount of epihalohydrin is usually 2 to 15 mol, preferably 3 to 12 mol, per 1 mol of the hydroxyl group of the compound of formula (2).

アルカリ金属水酸化物としては水酸化ナトリウム、水酸化カリウム等が挙げられ、固体でも、その水溶液を使用しても良く、水溶液を使用する場合は連続的に反応系内に添加すると同時に減圧下、または常圧下水及びエピハロヒドリンを留出させ更に分液し、水は除去しエピハロヒドリンは反応系内に連続的に戻す方法でもよい。アルカリ金属水酸化物の使用量は式(2)の化合物の水酸基1当量に対して、通常0.9〜1.2モル、好ましくは0.95〜1.15モルである。反応温度は通常20〜110℃、好ましくは25〜100℃である。反応時間は通常0.5〜15時間、好ましくは1〜10時間である。   Examples of the alkali metal hydroxide include sodium hydroxide, potassium hydroxide, and the like. Solid or an aqueous solution thereof may be used. When an aqueous solution is used, it is continuously added to the reaction system and simultaneously under reduced pressure. Alternatively, a method may be employed in which normal pressure sewage and epihalohydrin are distilled and further separated, water is removed, and epihalohydrin is continuously returned to the reaction system. The usage-amount of an alkali metal hydroxide is 0.9-1.2 mol normally with respect to 1 equivalent of hydroxyl groups of the compound of Formula (2), Preferably it is 0.95-1.15 mol. The reaction temperature is usually 20 to 110 ° C, preferably 25 to 100 ° C. The reaction time is usually 0.5 to 15 hours, preferably 1 to 10 hours.

メタノール、エタノール、プロパノール、ブタノールなどのアルコール類、或いはジメチルスルホキシド、ジメチルスルホンなどの非プロトン性極性溶媒を添加することは反応を促進させる上で好ましい。   Addition of alcohols such as methanol, ethanol, propanol and butanol, or aprotic polar solvents such as dimethyl sulfoxide and dimethyl sulfone is preferable for promoting the reaction.

アルコール類を使用する場合、その使用量はエピハロヒドリンの量に対し通常3〜30重量%、好ましくは5〜20重量%である。非プロトン性極性溶媒を使用する場合、その使用量はエピハロヒドリンの量に対して通常10〜150重量%、好ましくは15〜120重量%である。   When using alcohol, the amount of its use is 3-30 weight% normally with respect to the quantity of epihalohydrin, Preferably it is 5-20 weight%. When an aprotic polar solvent is used, the amount used is usually 10 to 150% by weight, preferably 15 to 120% by weight, based on the amount of epihalohydrin.

また、エピハロヒドリンと式(2)の化合物の反応は、両者の混合物にテトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、トリメチルベンジルアンモニウムクロライドなどの4級アンモニウム塩触媒として添加し30〜110℃で0.5〜8時間反応させて得られる、式(2)の化合物のハロヒドリンエーテル化合物にアルカリ金属水酸化物の固体または水溶液を加え20〜100℃で1〜10時間反応させ脱ハロゲン化水素(閉環)させる方法でもよい。   In addition, the reaction between the epihalohydrin and the compound of the formula (2) was added to the mixture of both as a quaternary ammonium salt catalyst such as tetramethylammonium chloride, tetramethylammonium bromide, trimethylbenzylammonium chloride and the like at 0.5 to 30 ° C. Hydrogen halide solid or aqueous solution of halohydrin ether compound of the formula (2) obtained by reacting for ˜8 hours is added and reacted at 20-100 ° C. for 1-10 hours for dehydrohalogenation (ring closure) ).

次いで、これらのエポキシ化反応の反応物を水洗後、或いは水洗無しに加熱減圧下で過剰のエピハロヒドリン及び溶剤などを除去する。また更に加水分解性ハロゲンの少ないエポキシ樹脂とするために、回収したエポキシ樹脂をトルエン、メチルイソブチルケトンなどに溶解させ、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物の水溶液を加えて閉環を確実にすることも出来る。この場合、アルカリ金属水酸化物の使用量は式(2)化合物の水酸基1モルに対して、通常0.01〜0.3モル、好ましくは0.05〜0.2モルである。反応温度は通常50〜120℃、反応時間は通常0.5〜2時間である。   Subsequently, excess epihalohydrin, a solvent, etc. are removed under the heat-reduced pressure after washing these epoxidation reaction products with water or without washing with water. Furthermore, in order to make an epoxy resin with less hydrolyzable halogen, the recovered epoxy resin is dissolved in toluene, methyl isobutyl ketone, etc., and an aqueous solution of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is added to perform ring closure. Can also be ensured. In this case, the usage-amount of an alkali metal hydroxide is 0.01-0.3 mol normally with respect to 1 mol of hydroxyl groups of a compound of Formula (2), Preferably it is 0.05-0.2 mol. The reaction temperature is usually 50 to 120 ° C., and the reaction time is usually 0.5 to 2 hours.

反応終了後、生成した塩を濾過、水洗などにより除去し加熱減圧下で溶剤を除去することにより低分子量のエポキシ樹脂(a´)が得られる。エポキシ樹脂(a´)のエポキシ当量は通常160〜200g/eqである。   After completion of the reaction, the produced salt is removed by filtration, washing with water, etc., and the solvent is removed under heating and reduced pressure to obtain a low molecular weight epoxy resin (a ′). The epoxy equivalent of the epoxy resin (a ′) is usually 160 to 200 g / eq.

次に低分子量のエポキシ樹脂(a´)と前記式(3)で表される4,4´−ビフェノールとを付加反応させ、高分子量化を行う。低分子量のエポキシ樹脂(a´)と4,4´−ビフェノールとの仕込み比率は、エポキシ樹脂(a´)のエポキシ基1モルに対し、式(3)の化合物の水酸基が通常0.05〜0.95モル、好ましくは0.1〜0.9モルとなる割合である。   Next, low molecular weight epoxy resin (a ′) and 4,4′-biphenol represented by the above formula (3) are subjected to an addition reaction to increase the molecular weight. The charging ratio of the low molecular weight epoxy resin (a ′) and 4,4′-biphenol is usually 0.05 to 0.001 of the hydroxyl group of the compound of the formula (3) with respect to 1 mol of the epoxy group of the epoxy resin (a ′). The ratio is 0.95 mol, preferably 0.1 to 0.9 mol.

付加反応は無触媒で行うことも出来るが、反応を促進させる上では触媒を用いることが好ましい。用い得る触媒としてはトリフェニルホスフィン、テトラメチルアンモニウムクロライド、水酸化ナトリウム、水酸化カリウム、ベンジルトリフェニルホスフォニウムクロライド、ブチルトリフェニルホスフォニウム、エチルトリフェニルホスフォニウムヨーダイド、エチルトリフェニルホスフォニウムブロマイドなどが挙げられる。触媒の使用量としては、反応の全体重量に対して0.001〜1重量%、好ましくは0.01〜0.5重量%である。   Although the addition reaction can be carried out without a catalyst, it is preferable to use a catalyst for promoting the reaction. Catalysts that can be used include triphenylphosphine, tetramethylammonium chloride, sodium hydroxide, potassium hydroxide, benzyltriphenylphosphonium chloride, butyltriphenylphosphonium, ethyltriphenylphosphonium iodide, ethyltriphenylphosphine. Examples include phonium bromide. The amount of the catalyst used is 0.001 to 1% by weight, preferably 0.01 to 0.5% by weight, based on the total weight of the reaction.

付加反応においては反応温度を制御する上で溶剤を用いることが好ましい。用い得る溶剤としてはシクロペンタノン、シクロヘキサノン、メチルイソブチルケトン、メチルエチルケトン、アセトン、トルエン、N−メチルピロリドン、N,N−ジメチルスルホキシド、N,N−ジメチルホルムアミドなどが挙げられる。溶剤の使用量としては低分子量のエポキシ樹脂(a´)と式(3)の化合物の合計重量に対して、通常5〜150重量%、好ましくは10〜100重量%である。   In the addition reaction, it is preferable to use a solvent for controlling the reaction temperature. Examples of the solvent that can be used include cyclopentanone, cyclohexanone, methyl isobutyl ketone, methyl ethyl ketone, acetone, toluene, N-methylpyrrolidone, N, N-dimethyl sulfoxide, N, N-dimethylformamide, and the like. The amount of the solvent used is usually 5 to 150% by weight, preferably 10 to 100% by weight, based on the total weight of the low molecular weight epoxy resin (a ′) and the compound of formula (3).

反応温度は通常60〜180℃、好ましくは70〜160℃である。反応の進行はGPC(ゲルパーミエイションクロマトグラフィー)などで追跡することが出来、式(3)の化合物が完全に検出されなくなるまで行う。反応時間は通常0.5〜15時間、好ましくは1〜10時間である。こうして得られた反応混合物から必要により使用した溶媒を留去することで、エポキシ樹脂(a)を得ることができるが、エポキシ樹脂の用途により下記のようにして結晶性の粉末を得ることができる。   The reaction temperature is usually 60 to 180 ° C, preferably 70 to 160 ° C. The progress of the reaction can be followed by GPC (gel permeation chromatography) or the like, and is performed until the compound of formula (3) is not completely detected. The reaction time is usually 0.5 to 15 hours, preferably 1 to 10 hours. The epoxy resin (a) can be obtained by distilling off the solvent used as necessary from the reaction mixture thus obtained, but a crystalline powder can be obtained as follows depending on the use of the epoxy resin. .

すなわち、反応終了後、貧溶媒を加え冷却することによりエポキシ樹脂の結晶を析出させる。貧溶媒としてはメチルイソブチルケトン、メチルエチルケトン、アセトン、トルエン、メタノール、エタノール、水などが挙げられる。加える貧溶媒の使用量としては低分子量のエポキシ樹脂(a´)と式(3)の化合物の合計重量に対して、通常50〜400重量%、好ましくは100〜300重量%である。結晶を析出させた後、濾別し乾燥させることにより結晶状のエポキシ樹脂(a)を得ることが出来る。また、樹脂状のエポキシ樹脂(a)をその融点以上に加熱して、徐々に冷却することでも結晶性を有する樹脂塊とすることもできる。   That is, after completion of the reaction, an epoxy resin crystal is precipitated by adding a poor solvent and cooling. Examples of the poor solvent include methyl isobutyl ketone, methyl ethyl ketone, acetone, toluene, methanol, ethanol, water and the like. The amount of the poor solvent to be added is usually 50 to 400% by weight, preferably 100 to 300% by weight, based on the total weight of the low molecular weight epoxy resin (a ′) and the compound of the formula (3). After the crystals are precipitated, the crystalline epoxy resin (a) can be obtained by filtering and drying. Further, the resinous epoxy resin (a) can be heated to the melting point or higher and gradually cooled to obtain a crystalline resin mass.

また、無溶媒で付加反応を行った場合は、反応終了後、N−メチルピロリドン、ジメチルスルホキシド、N,N−ジメチルホルムアミドなどの良溶媒に生成物を溶解させ、次いでメタノール、エタノール、イソプロパノール、アセトン、メチルエチルケトンなどの水溶性の貧溶媒を加え、更に水を加えることによって収率良く本発明のエポキシ樹脂を得ることが出来る。この場合、良溶媒の使用量は低分子量のエポキシ樹脂(a´)と式(3)の化合物の合計重量に対して、通常5〜200重量%、好ましくは10〜150重量%である。水溶性貧溶媒の使用量としてはエポキシ樹脂の理論収量に対して、通常5〜200重量%であり、好ましくは10〜150重量%である。水の使用量は低分子量のエポキシ樹脂(a´)と式(3)の化合物の合計重量に対して、通常50〜400重量%、好ましくは100〜300重量%である。   In addition, when the addition reaction is carried out without solvent, after completion of the reaction, the product is dissolved in a good solvent such as N-methylpyrrolidone, dimethyl sulfoxide, N, N-dimethylformamide, and then methanol, ethanol, isopropanol, acetone The epoxy resin of the present invention can be obtained in good yield by adding a water-soluble poor solvent such as methyl ethyl ketone and further adding water. In this case, the amount of the good solvent used is usually 5 to 200% by weight, preferably 10 to 150% by weight, based on the total weight of the low molecular weight epoxy resin (a ′) and the compound of formula (3). The use amount of the water-soluble poor solvent is usually 5 to 200% by weight, preferably 10 to 150% by weight, based on the theoretical yield of the epoxy resin. The amount of water used is usually 50 to 400% by weight, preferably 100 to 300% by weight, based on the total weight of the low molecular weight epoxy resin (a ′) and the compound of formula (3).

こうして得られるエポキシ樹脂(a)は通常、融点が70〜180℃の結晶であり、エポキシ当量は通常200〜2000g/eq、好ましくは250〜1500g/eqである。エポキシ樹脂(a)をDSC(示差熱分析装置)で測定を行うと、二箇所以上に、吸熱ピークが見られることが多い。この現象はエポキシ樹脂(a)が液晶性を有することを示すものである。更に偏光顕微鏡を用いて昇温しながら観察することによりエポキシ樹脂(a)が光学的に異方性を示す温度領域を特定することが可能である。一般にエポキシ樹脂(a)が光学的異方性を示す温度領域は100〜200℃である。なお、得られたエポキシ樹脂の式(I)と式(II)の繰り返し数の総和は通常、平均値で1.1〜20を表すが、好ましくは1.3〜5、特に好ましくは1.5〜3である。式(I)と式(II)の繰り返し数の総和の値は得られた樹脂につき、GPCやNMR測定またはエポキシ当量からの計算で推定できる。また、式(I)の繰り返し数÷式(II)の繰り返し数の値は、仕込み量から判断する。この値は、また、NMRによって芳香環上の水素原子とビスフェノールのメチレンの比から計算することができる。   The epoxy resin (a) thus obtained is usually a crystal having a melting point of 70 to 180 ° C., and the epoxy equivalent is usually 200 to 2000 g / eq, preferably 250 to 1500 g / eq. When the epoxy resin (a) is measured by DSC (differential thermal analyzer), endothermic peaks are often observed at two or more locations. This phenomenon indicates that the epoxy resin (a) has liquid crystallinity. Furthermore, it is possible to specify the temperature region in which the epoxy resin (a) exhibits optical anisotropy by observing while raising the temperature using a polarizing microscope. Generally, the temperature range in which the epoxy resin (a) exhibits optical anisotropy is 100 to 200 ° C. In addition, although the sum total of the repeating number of the formula (I) and the formula (II) of the obtained epoxy resin normally represents 1.1-20 in an average value, Preferably it is 1.3-5, Especially preferably, 1. 5-3. The sum of the number of repetitions of formula (I) and formula (II) can be estimated for the obtained resin by GPC, NMR measurement or calculation from epoxy equivalent. The value of the number of repetitions of formula (I) / the number of repetitions of formula (II) is determined from the charged amount. This value can also be calculated from the ratio of hydrogen atom on the aromatic ring to the methylene of bisphenol by NMR.

得られたエポキシ樹脂(a)はそのエポキシ樹脂組成物の調製において結晶状態でも用いることが出来るが、一度融点以上に加熱して溶融状態にし、次いで過冷却して得られる樹脂状態でも使用することが出来る。樹脂状態の場合、軟化点は通常45〜100℃である。   The obtained epoxy resin (a) can be used in the crystalline state in the preparation of the epoxy resin composition, but it should also be used in a resin state obtained by heating once to the melting point or higher to make it molten and then supercooling. I can do it. In the case of a resin state, the softening point is usually 45 to 100 ° C.

こうして得られたエポキシ樹脂(a)に、重合可能なエチレン性不飽和基と一個以上のカルボキシル基を併せ持つ化合物(b)(以下単にカルボン酸化合物(b)という)を反応させることで、本発明の反応性カルボキシレート化合物(A)を得ることができる。   The epoxy resin (a) thus obtained is reacted with a compound (b) having both a polymerizable ethylenically unsaturated group and one or more carboxyl groups (hereinafter simply referred to as a carboxylic acid compound (b)), thereby producing the present invention. The reactive carboxylate compound (A) can be obtained.

前記カルボン酸化合物(b)は、活性エネルギー線への反応性を付与させるために反応せしめるものである。具体的には、例えば(メタ)アクリル酸類やクロトン酸、α−シアノ桂皮酸、桂皮酸、或いは飽和または不飽和二塩基酸と不飽和基含有モノグリシジル化合物との反応物が挙げられる。上記においてアクリル酸類としては、例えば(メタ)アクリル酸、β−スチリルアクリル酸、β−フルフリルアクリル酸、(メタ)アクリル酸二量体、飽和または不飽和二塩基酸無水物と1分子中に1個の水酸基を有する(メタ)アクリレート誘導体と当モル反応物である半エステル類、飽和または不飽和二塩基酸とモノグリシジル(メタ)アクリレート誘導体類との当モル反応物である半エステル類等の一分子中にカルボキシル基をひとつ含むモノカルボン酸化合物が挙げられる。   The carboxylic acid compound (b) is reacted in order to impart reactivity to active energy rays. Specific examples include (meth) acrylic acids, crotonic acid, α-cyanocinnamic acid, cinnamic acid, or a reaction product of a saturated or unsaturated dibasic acid and an unsaturated group-containing monoglycidyl compound. In the above, examples of the acrylic acid include (meth) acrylic acid, β-styrylacrylic acid, β-furfurylacrylic acid, (meth) acrylic acid dimer, saturated or unsaturated dibasic acid anhydride and 1 molecule. Half-esters that are (meth) acrylate derivatives having one hydroxyl group and equimolar reactants, half-esters that are equimolar reactants of saturated or unsaturated dibasic acids and monoglycidyl (meth) acrylate derivatives, etc. And monocarboxylic acid compounds containing one carboxyl group in one molecule.

さらに一分子中に複数の水酸基を有する(メタ)アクリレート誘導体と当モル反応物である半エステル類、飽和または不飽和二塩基酸と複数のエポキシ基を有するグリシジル(メタ)アクリレート誘導体類との当モル反応物である半エステル類等の一分子中にカルボキシル基を複数有するポリカルボン酸化合物が挙げられる。   In addition, (meth) acrylate derivatives having a plurality of hydroxyl groups in one molecule and half-esters which are equimolar reactants, glycidyl (meth) acrylate derivatives having a saturated or unsaturated dibasic acid and a plurality of epoxy groups. Examples thereof include polycarboxylic acid compounds having a plurality of carboxyl groups in one molecule such as half-esters which are molar reactants.

これらのうち、エポキシ樹脂(a)とカルボン酸化合物(b)の反応の安定性を考慮すると、(b)はモノカルボン酸であることが好ましく、モノカルボン酸とポリカルボン酸を併用する場合でも、モノカルボン酸のモル量/ポリカルボン酸のモル量で表される比率が15以上であることが好ましい。   Of these, considering the stability of the reaction between the epoxy resin (a) and the carboxylic acid compound (b), (b) is preferably a monocarboxylic acid, even when the monocarboxylic acid and the polycarboxylic acid are used in combination. The ratio represented by the molar amount of monocarboxylic acid / the molar amount of polycarboxylic acid is preferably 15 or more.

最も好ましくは、活性エネルギー線硬化型樹脂組成物としたときの感度の点で(メタ)アクリル酸、(メタ)アクリル酸とε−カプロラクトンとの反応生成物または桂皮酸が挙げられる。   Most preferably, (meth) acrylic acid, a reaction product of (meth) acrylic acid and ε-caprolactone, or cinnamic acid is used from the viewpoint of sensitivity when an active energy ray-curable resin composition is used.

この反応におけるエポキシ樹脂(a)とカルボン酸化合物(b)の仕込み割合としては、用途に応じて適宜変更されるべきものである。即ち、全てのエポキシ基をカルボキシレート化した場合は、未反応のエポキシ基が残存しないために、反応性カルボキシレート化合物としての保存安定性は高い。この場合は、導入した二重結合による反応性のみを利用することになる。   The charging ratio of the epoxy resin (a) and the carboxylic acid compound (b) in this reaction should be appropriately changed according to the application. That is, when all the epoxy groups are carboxylated, unreacted epoxy groups do not remain, so that the storage stability as a reactive carboxylate compound is high. In this case, only the reactivity due to the introduced double bond is used.

一方、カルボン酸化合物(b)の仕込み量を減量し未反応の残存エポキシ基を残すことで、導入した不飽和結合による反応性と、残存するエポキシ基による反応、例えば光カチオン触媒による重合反応や熱重合反応を複合的に利用することも可能である。しかし、この場合は反応性カルボキシレート化合物の保存、及び製造条件の検討には注意を払うべきである。   On the other hand, by reducing the charged amount of the carboxylic acid compound (b) and leaving an unreacted residual epoxy group, the reactivity due to the introduced unsaturated bond and the reaction due to the remaining epoxy group, for example, the polymerization reaction by the photocation catalyst, It is also possible to use the thermal polymerization reaction in combination. In this case, however, attention should be paid to the storage of the reactive carboxylate compound and the examination of the production conditions.

エポキシ基を残存させない反応性カルボキシレート化合物(A)を製造する場合、カルボン酸化合物(b)が、エポキシ樹脂(a)1当量に対し90〜120当量%であることが好ましく、95〜105当量%であることがより好ましい。この範囲であれば比較的安定な条件での製造が可能である。これよりもカルボン酸化合物の仕込み量が多い場合には、過剰のカルボン酸化合物(b)が残存してしまうために好ましくない。   When producing the reactive carboxylate compound (A) that does not leave an epoxy group, the carboxylic acid compound (b) is preferably 90 to 120 equivalent%, and 95 to 105 equivalent, based on 1 equivalent of the epoxy resin (a). % Is more preferable. Within this range, it is possible to manufacture under relatively stable conditions. When the amount of the carboxylic acid compound charged is larger than this, an excess of the carboxylic acid compound (b) remains, which is not preferable.

また、エポキシ基を残す場合には、カルボン酸化合物(b)が、エポキシ樹脂(a)1当量に対し20〜90当量%であることが好ましく、30〜80当量%であることがより好ましい。これの範囲を逸脱する場合には、複合硬化の効果が薄くなる。もちろんこの場合は、反応中のゲル化や、反応性カルボキシレート化合物(A)の経時安定性に対して十分な注意が必要である。   Moreover, when leaving an epoxy group, it is preferable that a carboxylic acid compound (b) is 20-90 equivalent% with respect to 1 equivalent of epoxy resins (a), and it is more preferable that it is 30-80 equivalent%. When deviating from this range, the effect of the composite curing is reduced. Of course, in this case, sufficient attention must be paid to gelation during the reaction and stability with time of the reactive carboxylate compound (A).

本カルボキシレート化反応は、無溶剤で反応させる、若しくは溶剤で希釈して反応させることも出来る。ここで用いることが出来る溶剤としては、カルボキシレート化反応に対してイナート溶剤であれば特に限定はない。また、前工程であるカルボキシレート化反応で溶剤を用いて製造した場合には、その両反応にイナートであることを条件に、溶剤を除くことなく直接次工程である酸付加反応に供することもできる。   This carboxylation reaction can be carried out without a solvent or diluted with a solvent. The solvent that can be used here is not particularly limited as long as it is an inert solvent for the carboxylation reaction. In addition, in the case of producing using a solvent in the carboxylation reaction that is the previous step, it may be subjected directly to the acid addition reaction that is the next step without removing the solvent, provided that both reactions are inert. it can.

具体的に例示すれば、例えばトルエン、キシレン、エチルベンゼン、テトラメチルベンゼン等の芳香族系炭化水素溶剤、ヘキサン、オクタン、デカン等の脂肪族系炭化水素溶剤、及びそれらの混合物である石油エーテル、ホワイトガソリン、ソルベントナフサ等が挙げられる。
また、エステル系溶剤としては、酢酸エチル、酢酸プロピル、酢酸ブチル等のアルキルアセテート類、γ−ブチロラクトン等の環状エステル類、エチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノメチルエーテルモノアセテート、ジエチレングリコールモノエチルエーテルモノアセテート、トリエチレングリコールモノエチルエーテルモノアセテート、ジエチレングリコールモノブチルエーテルモノアセテート、プロピレングリコールモノメチルエーテルアセテート、ブチレングリコールモノメチルエーテルアセテート等のモノ、若しくはポリアルキレングリコールモノアルキルエーテルモノアセテート類、グルタル酸ジアルキル、コハク酸ジアルキル、アジピン酸ジアルキル等のポリカルボン酸アルキルエステル類等が挙げられる。
また、エーテル系溶剤としては、ジエチルエーテル、エチルブチルエーテル等のアルキルエーテル類、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル等のグリコールエーテル類、テトラヒドロフラン等の環状エーテル類等が挙げられる。
また、ケトン系溶剤としては、アセトン、メチルエチルケトン、シクロヘキサノン、イソホロン等が挙げられる。
Specifically, for example, aromatic hydrocarbon solvents such as toluene, xylene, ethylbenzene and tetramethylbenzene, aliphatic hydrocarbon solvents such as hexane, octane and decane, and mixtures thereof, petroleum ether, white Examples include gasoline and solvent naphtha.
Examples of ester solvents include alkyl acetates such as ethyl acetate, propyl acetate, and butyl acetate, cyclic esters such as γ-butyrolactone, ethylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether monoacetate, diethylene glycol monoethyl ether monoacetate, Mono- or polyalkylene glycol monoalkyl ether monoacetates such as triethylene glycol monoethyl ether monoacetate, diethylene glycol monobutyl ether monoacetate, propylene glycol monomethyl ether acetate, butylene glycol monomethyl ether acetate, dialkyl glutarate, dialkyl succinate, adipine Polyesters of polycarboxylic acids such as dialkyl acids Kind, and the like.
Examples of ether solvents include alkyl ethers such as diethyl ether and ethyl butyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, dipropylene glycol dimethyl ether, dipropylene glycol diethyl ether, triethylene glycol dimethyl ether, and triethylene glycol diethyl ether. Glycol ethers, and cyclic ethers such as tetrahydrofuran.
Examples of the ketone solvent include acetone, methyl ethyl ketone, cyclohexanone, and isophorone.

このほかにも、その他の反応性化合物(C)等の単独または混合有機溶媒中で行うことができる。この場合、硬化性組成物として使用した場合には、直接に組成物として利用することが出来るので好ましい。   In addition, it can carry out in other organic compound alone, such as other reactive compounds (C). In this case, when used as a curable composition, it can be used directly as a composition, which is preferable.

エポキシ樹脂(a)とカルボン酸化合物(b)の反応において用いる溶剤、もしくはその他の反応性化合物(C)の使用量は、(a)、(b)、溶剤もしくは(C)、触媒等を併せた総量中の60重量%以下であることが好ましく、さらに好ましくは20〜50重量%である。   The amount of the solvent used in the reaction of the epoxy resin (a) and the carboxylic acid compound (b) or the other reactive compound (C) includes (a), (b), the solvent or (C), the catalyst, etc. The total amount is preferably 60% by weight or less, and more preferably 20 to 50% by weight.

反応時には、反応を促進させるために触媒を使用することができ、該触媒の使用量は、反応物、即ちエポキシ化合物(a)、カルボン酸化合物(b)、及び場合により溶剤その他を加えた反応物の総量に対して0.1〜10重量%である。その際の反応温度は60〜150℃であり、また反応時間は、好ましくは5〜60時間である。本発明において使用しうる触媒の具体例としては、例えばトリエチルアミン、ベンジルジメチルアミン、トリエチルアンモニウムクロライド、ベンジルトリメチルアンモニウムブロマイド、ベンジルトリメチルアンモニウムアイオダイド、トリフェニルフォスフィン、トリフェニルスチビン、メチルトリフェニルスチビン、オクタン酸クロム、オクタン酸ジルコニウム等既知一般の塩基性触媒等が挙げられる。   During the reaction, a catalyst can be used to promote the reaction, and the amount of the catalyst used is a reaction with the addition of the reactants, that is, the epoxy compound (a), the carboxylic acid compound (b), and optionally a solvent or the like. It is 0.1 to 10 weight% with respect to the total amount of a thing. The reaction temperature at that time is 60 to 150 ° C., and the reaction time is preferably 5 to 60 hours. Specific examples of the catalyst that can be used in the present invention include triethylamine, benzyldimethylamine, triethylammonium chloride, benzyltrimethylammonium bromide, benzyltrimethylammonium iodide, triphenylphosphine, triphenylstibine, methyltriphenylstibine, and octane. Known general basic catalysts such as chromium acid and zirconium octoate are exemplified.

また、本発明において用いうる熱重合禁止剤として、ハイドロキノンモノメチルエーテル、2−メチルハイドロキノン、ハイドロキノン、ジフェニルピクリルヒドラジン、ジフェニルアミン、3,5−ジ−tert−ブチル−4ヒドロキシトルエン等を使用するのが好ましい。   In addition, hydroquinone monomethyl ether, 2-methylhydroquinone, hydroquinone, diphenylpicrylhydrazine, diphenylamine, 3,5-di-tert-butyl-4hydroxytoluene and the like are used as thermal polymerization inhibitors that can be used in the present invention. preferable.

本反応は、適宜サンプリングしながら、サンプルの酸価が1mgKOH/g以下、好ましくは0.5mgKOH/g以下となった時点を終点とする。   The end point of this reaction is the time when the acid value of the sample is 1 mgKOH / g or less, preferably 0.5 mgKOH / g or less, while sampling appropriately.

得られた本発明の反応性カルボキシレート化合物(A)に、多塩基酸無水物(c)を付加反応させることで、本発明の反応性ポリカルボン酸化合物(B)を得ることができる。酸付加工程は、前記カルボキシレート化反応により生じた水酸基に多塩基酸無水物(c)を付加反応させることで、エステル結合を介してカルボキシル基を導入させることを目的として行う。   The reactive polycarboxylic acid compound (B) of the present invention can be obtained by subjecting the obtained reactive carboxylate compound (A) of the present invention to an addition reaction of the polybasic acid anhydride (c). The acid addition step is performed for the purpose of introducing a carboxyl group through an ester bond by addition reaction of the polybasic acid anhydride (c) to the hydroxyl group generated by the carboxylation reaction.

本発明において用いうる多塩基酸無水物(c)の具体例としては、分子中に酸無水物構造を有する化合物であればすべて用いることができるが、例えば、アルカリ水溶液現像性、耐熱性、加水分解耐性等に優れた無水コハク酸、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、無水イタコン酸、3−メチル−テトラヒドロ無水フタル酸、4−メチル−ヘキサヒドロ無水フタル酸、無水トリメリット酸または、無水マレイン酸が好ましい。   As specific examples of the polybasic acid anhydride (c) that can be used in the present invention, any compound having an acid anhydride structure in the molecule can be used. For example, alkaline aqueous solution developability, heat resistance, Excellent succinic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, itaconic anhydride, 3-methyl-tetrahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride, trimellitic anhydride Alternatively, maleic anhydride is preferred.

多塩基酸無水物(c)の添加量は用途に応じて適宜変更されうる。しかしながら、本発明の反応性ポリカルボン酸化合物(B)をアルカリ現像型のレジストとして用いようとする場合は、最終的に得られる反応性ポリカルボン酸化合物(B)の固形分酸価(JIS K5601−2−1:1999に準拠)が40〜120mg・KOH/g、より好ましくは60〜110mg・KOH/g、となる計算値の多塩基酸無水物(c)を仕込むことが好ましい。このときの固形分酸価がこの範囲よりも小さい場合、本発明の活性エネルギー線硬化型樹脂組成物のアルカリ水溶液現像性が著しく低下し、最悪の場合現像できなくなるおそれがあり、また、固形分酸価がこれを越える場合、酸無水物が反応点に対して過剰となり、未反応の多塩基酸無水物(c)が残存する。もしくは現像性が高くなりすぎ、パターニングができなくなるおそれがある。   The addition amount of the polybasic acid anhydride (c) can be appropriately changed according to the use. However, when the reactive polycarboxylic acid compound (B) of the present invention is to be used as an alkali development resist, the solid content acid value (JIS K5601) of the finally obtained reactive polycarboxylic acid compound (B). 2-1: Based on 1999) It is preferable to charge polybasic acid anhydride (c) having a calculated value of 40 to 120 mg · KOH / g, more preferably 60 to 110 mg · KOH / g. If the solid content acid value at this time is smaller than this range, the alkaline aqueous solution developability of the active energy ray-curable resin composition of the present invention is remarkably lowered, and in the worst case, development may not be possible. When an acid value exceeds this, an acid anhydride becomes excess with respect to a reaction point, and an unreacted polybasic acid anhydride (c) remains. Alternatively, the developability becomes too high and patterning may not be possible.

反応時には、反応を促進させるために触媒を使用することが好ましく、該触媒の使用量は、本発明の反応性カルボキシレート化合物(A)、及び多塩基酸無水物(c)、場合により溶剤その他を加えた反応物の総量に対して0.1〜10重量%である。その際の反応温度は60〜150℃であり、また反応時間は、好ましくは5〜60時間である。本発明において使用しうる触媒の具体例としては、例えばトリエチルアミン、ベンジルジメチルアミン、トリエチルアンモニウムクロライド、ベンジルトリメチルアンモニウムブロマイド、ベンジルトリメチルアンモニウムアイオダイド、トリフェニルフォスフィン、トリフェニルスチビン、メチルトリフェニルスチビン、オクタン酸クロム、オクタン酸ジルコニウム等が挙げられる。   During the reaction, it is preferable to use a catalyst to promote the reaction. The amount of the catalyst used is the reactive carboxylate compound (A) of the present invention, the polybasic acid anhydride (c), and optionally a solvent or the like. Is 0.1 to 10% by weight based on the total amount of the reaction product added. The reaction temperature at that time is 60 to 150 ° C., and the reaction time is preferably 5 to 60 hours. Specific examples of the catalyst that can be used in the present invention include triethylamine, benzyldimethylamine, triethylammonium chloride, benzyltrimethylammonium bromide, benzyltrimethylammonium iodide, triphenylphosphine, triphenylstibine, methyltriphenylstibine, and octane. Examples include chromium acid and zirconium octoate.

本酸付加反応は、無溶剤で反応させる、若しくは溶剤で希釈して反応させることも出来る。ここで用いることが出来る溶剤としては、酸付加反応に対してイナート溶剤であれば特に限定はない。また、前工程であるカルボキシレート化反応で溶剤を用いて製造した場合には、その両反応にイナートであることを条件に、溶剤を除くことなく直接次工程である酸付加反応に供することもできる。   The acid addition reaction can be performed without a solvent or diluted with a solvent. The solvent that can be used here is not particularly limited as long as it is an inert solvent for the acid addition reaction. In addition, in the case of producing using a solvent in the carboxylation reaction that is the previous step, it may be subjected directly to the acid addition reaction that is the next step without removing the solvent, provided that both reactions are inert. it can.

具体的には、前記カルボキシレート化反応で用いうる溶剤と同じものが挙げられる。   Specific examples include the same solvents that can be used in the carboxylation reaction.

このほかにも、その他の反応性化合物(C)等の単独または混合有機溶媒中で行うことができる。この場合、活性エネルギー線硬化型樹脂組成物として使用した場合には、直接に組成物として利用することが出来るので好ましい。   In addition, it can carry out in other organic compound alone, such as other reactive compounds (C). In this case, when used as an active energy ray-curable resin composition, it can be used directly as a composition, which is preferable.

カルボキシレート化合物(A)と多塩基酸無水物(c)の反応において用いる溶剤、もしくはその他の反応性化合物(C)の使用量は、(A)、(c)、溶剤もしくは(C)、触媒等を併せた総量中の60重量%以下であることが好ましく、さらに好ましくは20〜50重量%である。   The amount of the solvent used in the reaction of the carboxylate compound (A) and the polybasic acid anhydride (c) or the other reactive compound (C) is (A), (c), solvent or (C), catalyst It is preferable that it is 60 weight% or less in the total amount which combined etc., More preferably, it is 20 to 50 weight%.

また、本酸付加反応において用いうる熱重合禁止剤等は、前記カルボキシレート化反応における例示と同様のものを使用することが好ましい。   Further, as the thermal polymerization inhibitor and the like that can be used in the acid addition reaction, it is preferable to use the same ones as exemplified in the carboxylation reaction.

本反応は、適宜サンプリングしながら、反応物の酸価が、設定した酸価のプラスマイナス10%の範囲になった点をもって終点とする。   In this reaction, the end point is determined when the acid value of the reaction product is within a range of plus or minus 10% of the set acid value while appropriately sampling.

本発明の活性エネルギー線硬化型樹脂組成物に含まれるその他の反応性化合物(C)とは、本発明の反応性カルボキシレート化合物(A)と同様、活性エネルギー線により反応性を示すものの総称である。これらは使用目的に応じた硬化前、硬化後の物性を付与させるために使用することが好ましい。   The other reactive compound (C) contained in the active energy ray-curable resin composition of the present invention is a generic name for those reactive with active energy rays, like the reactive carboxylate compound (A) of the present invention. is there. These are preferably used for imparting physical properties before and after curing according to the purpose of use.

使用しうるその他の反応性化合物(C)の具体例としては、ラジカル反応型のアクリレート類、カチオン反応型のその他エポキシ化合物類、その双方に感応するビニル化合物類等のいわゆる反応性オリゴマー類が挙げられる。   Specific examples of other reactive compounds (C) that can be used include so-called reactive oligomers such as radical-reactive acrylates, cation-reactive other epoxy compounds, and vinyl compounds sensitive to both. It is done.

使用しうるラジカル反応型のアクリレート類としては、単官能(メタ)アクリレート類、多官能(メタ)アクリレート、その他エポキシアクリレート、ポリエステルアクリレート、ウレタンアクリレート等が挙げられる。   Examples of radical reaction type acrylates that can be used include monofunctional (meth) acrylates, polyfunctional (meth) acrylates, other epoxy acrylates, polyester acrylates, urethane acrylates, and the like.

単官能(メタ)アクリレート類としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、ラウリル(メタ)アクリレート等のアルキル(メタ)アクリレート類、ポリエチレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレートモノメチルエーテル等のアルキレングリコールモノ(メタ)アクリレート類、ベンジル(メタ)アクリレート、フェニルエチル(メタ)アクリレート等の芳香族(メタ)アクリレート類、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等の環状脂肪族(メタ)アクリレート類、テトラヒドロフルフリル(メタ)アクリレート等の複素環含有(メタ)アクリレート類が挙げられる。   Monofunctional (meth) acrylates include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, alkyl (meth) acrylates such as lauryl (meth) acrylate, polyethylene glycol (meth) acrylate, polyethylene Alkylene glycol mono (meth) acrylates such as glycol (meth) acrylate monomethyl ether, aromatic (meth) acrylates such as benzyl (meth) acrylate, phenylethyl (meth) acrylate, isobornyl (meth) acrylate, cyclohexyl (meth) Examples thereof include cycloaliphatic (meth) acrylates such as acrylate, and heterocyclic-containing (meth) acrylates such as tetrahydrofurfuryl (meth) acrylate.

多官能(メタ)アクリレート類としては、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ノナンジオールジ(メタ)アクリレート等のアルキレンジオール(メタ)アクリレート類、グリコールジ(メタ)アクリレート、ジエチレンジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等のアルキレングリコールジ(メタ)アクリレート等、ビスフェノールエチレンオキサイドジ(メタ)アクリレート、ビスフェノールジ(メタ)アクリレート等の芳香族(メタ)アクリレート、水素化ビスフェノールエチレンオキサイド(メタ)アクリレート等の環状脂肪族(メタ)アクリレート類、トリス(メタ)アクリロイルオキシエチルイソシアヌレート等の複素環含有(メタ)アクリレート類、アジピン酸エポキシジ(メタ)アクリレート等のその他エポキシアクリレート類、ジペンタエリスリトールポリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリエチロールプロパントリ(メタ)アクリレート等のアルキルポリオール(メタ)アクリレート類、ジペンタエリスリトールポリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリエチロールプロパントリ(メタ)アクリレート等のエチレンオキサイド付加物、またはプロピレンオキサイド付加物の(メタ)アクリレート等、ヒドロキシビバリン酸ネオペングリコールのε−カプロラクトン付加物のジ(メタ)アクリレート、ジペンタエリスリトールとε−カプロラクトンの反応物のポリ(メタ)アクリレート等のポリオールカプロラクトン変性(メタ)アクリレート類が挙げられる。   Polyfunctional (meth) acrylates include butanediol di (meth) acrylate, hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, nonanediol di (meth) acrylate and other alkylene diol (meth) acrylates Glycol di (meth) acrylate, diethylene di (meth) acrylate, polyethylene glycol di (meth) acrylate, alkylene glycol di (meth) acrylate such as polypropylene glycol di (meth) acrylate, bisphenol ethylene oxide di (meth) acrylate, Aromatic (meth) acrylates such as bisphenol di (meth) acrylate, cycloaliphatic (meth) acrylates such as hydrogenated bisphenol ethylene oxide (meth) acrylate , Heterocycle-containing (meth) acrylates such as tris (meth) acryloyloxyethyl isocyanurate, other epoxy acrylates such as adipic acid epoxy di (meth) acrylate, dipentaerythritol poly (meth) acrylate, trimethylolpropane tri (meth) ) Acrylate, alkyl polyol (meth) acrylates such as triethylolpropane tri (meth) acrylate, ethylene such as dipentaerythritol poly (meth) acrylate, trimethylolpropane tri (meth) acrylate, triethylolpropane tri (meth) acrylate Di (meth) acrylates of ε-caprolactone adducts of hydroxybivalic acid neopent glycol, such as (meth) acrylates of oxide adducts or propylene oxide adducts Rate, polyol caprolactone modified (meth) acrylates of poly (meth) acrylate of a reaction product of dipentaerythritol and ε- caprolactone.

使用しうるビニル化合物類としてはビニルエーテル類、スチレン類、その他ビニル化合物が挙げられる。ビニルエーテル類としては、エチルビニルエーテル、プロピルビニルエーテル、ヒドロキシエチルビニルエーテル、エチレングリコールジビニルエーテル等が挙げられる。スチレン類としては、スチレン、メチルスチレン、エチルスチレン等が挙げられる。その他ビニル化合物としてはトリアリルイソイシアヌレート、トリメタアリルイソシアヌレート等が挙げられる。   Examples of vinyl compounds that can be used include vinyl ethers, styrenes, and other vinyl compounds. Examples of vinyl ethers include ethyl vinyl ether, propyl vinyl ether, hydroxyethyl vinyl ether, and ethylene glycol divinyl ether. Examples of styrenes include styrene, methyl styrene, and ethyl styrene. Other vinyl compounds include triallyl isocyanurate and trimethallyl isocyanurate.

また、カチオン反応型のその他エポキシ化合物類としては、一般的にエポキシ基を有する化合物であれば特に限定はない。例えば、グリシジル(メタ)アクリレート、メチルグリジジルエーテル、エチルグリシジルエーテル、ブチルグリシジルエーテル、ビスフェノールAジグリジジルエーテル等の通常のエポキシ化合物、または、3,4−エポキシシクロヘキシルメチル−3,4,−エポキシシクロヘキサンカルボキシレート(ユニオン・カーバイド社製「サイラキュアUVR−6110」等)、3,4−エポキシシクロヘキシルエチル−3,4−エポキシシクロヘキサンカルボキシレート、ビニルシクロヘキセンジオキシド(ユニオン・カーバイド社製「ELR−4206」等)、リモネンジオキシド(ダイセル化学工業社製「セロキサイド3000」等)、アリルシクロヘキセンジオキシド、3,4−エポキシ−4−メチルシクロヘキシル−2−プロピレンオキシド、2−(3,4−エポキシシクロヘキシル−5,5−スピロ−3,4−エポキシ)シクロヘキサン−m−ジオキサン、ビス(3,4−エポキシシクロヘキシル)アジペート(ユニオン・カーバイド社製「サイラキュアUVR−6128」等)、ビス(3,4−エポキシシクロヘキシルメチル)アジペート、ビス(3,4−エポキシシクロヘキシル)エーテル、ビス(3,4−エポキシシクロヘキシルメチル)エーテル、ビス(3,4−エポキシシクロヘキシル)ジエチルシロキサン等のいわゆる脂環式エポキシ化合物等が挙げられる。   In addition, the cation reaction type other epoxy compounds are not particularly limited as long as they are generally compounds having an epoxy group. For example, normal epoxy compounds such as glycidyl (meth) acrylate, methyl glycidyl ether, ethyl glycidyl ether, butyl glycidyl ether, bisphenol A diglycidyl ether, or 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexane Carboxylates (such as “Syracure UVR-6110” manufactured by Union Carbide), 3,4-epoxycyclohexylethyl-3,4-epoxycyclohexanecarboxylate, vinylcyclohexene dioxide (“ELR-4206” manufactured by Union Carbide, etc.) ), Limonene dioxide (“Celoxide 3000” manufactured by Daicel Chemical Industries, Ltd.), allylcyclohexene dioxide, 3,4-epoxy-4-methylcyclohexyl-2-propylene 2- (3,4-epoxycyclohexyl-5,5-spiro-3,4-epoxy) cyclohexane-m-dioxane, bis (3,4-epoxycyclohexyl) adipate ("Syracure UVR-" manufactured by Union Carbide) 6128 "etc.), bis (3,4-epoxycyclohexylmethyl) adipate, bis (3,4-epoxycyclohexyl) ether, bis (3,4-epoxycyclohexylmethyl) ether, bis (3,4-epoxycyclohexyl) diethyl Examples include so-called alicyclic epoxy compounds such as siloxane.

これらのうち、その他の反応性化合物(C)としては、ラジカル反応型のアクリレート類が最も好ましい。カチオン反応型のその他エポキシ化合物類の場合、カルボン酸とエポキシが反応してしまうため2液混合型にする必要が生じる。   Among these, as the other reactive compound (C), radical reaction type acrylates are most preferable. In the case of other cation-reactive epoxy compounds, carboxylic acid and epoxy react with each other, so that it is necessary to use a two-component mixed type.

本発明のカルボキシレート化合物(A)、または反応性ポリカルボン酸化合物(B)と、その他の反応性化合物(C)とを混合せしめて本発明の活性エネルギー線硬化型樹脂組成物を得ることができる。このとき、用途に応じて適宜その他の成分を加えてもよい。   It is possible to obtain the active energy ray-curable resin composition of the present invention by mixing the carboxylate compound (A) or the reactive polycarboxylic acid compound (B) of the present invention with another reactive compound (C). it can. At this time, you may add another component suitably according to a use.

本発明の活性エネルギー線硬化型樹脂組成物は、組成物中にカルボキシレート化合物(A)または反応性ポリカルボン酸化合物(B)97〜5重量%、好ましくは87〜10重量%、その他の反応性化合物(C)3〜95重量%、さらに好ましくは10〜80重量%を含む。必要に応じてその他の成分を含んでもよい。特に無機フィラーを含有する組成物として用いる場合には、カルボキシレート化合物(A)または反応性ポリカルボン酸化合物(B)10〜40重量%、その他の反応性化合物(C)5〜50重量%、無機フィラー10〜65重量%、さらに開始剤、揮発性溶剤等必要に応じて用いられるその他成分を75〜20重量%含むことが好ましい。   The active energy ray-curable resin composition of the present invention contains 97 to 5% by weight of the carboxylate compound (A) or the reactive polycarboxylic acid compound (B) in the composition, preferably 87 to 10% by weight, and other reactions. 3 to 95% by weight of the active compound (C), more preferably 10 to 80% by weight. Other components may be included as necessary. In particular, when used as a composition containing an inorganic filler, the carboxylate compound (A) or the reactive polycarboxylic acid compound (B) is 10 to 40% by weight, the other reactive compound (C) is 5 to 50% by weight, It is preferable that 10 to 65% by weight of the inorganic filler and 75 to 20% by weight of other components such as an initiator and a volatile solvent that are used as necessary.

本発明の活性エネルギー線硬化型樹脂組成物における、カルボキシレート化合物(A)もしくは反応性ポリカルボン酸化合物(B)は、その用途に応じて適宜使い分けられるものである。例えば、同じソルダーレジスト用途でも現像せず、印刷法によりパターンを成形する場合や溶剤等により未反応部位を流去させる、所謂溶剤現像型の場合にはカルボキシレート化合物(A)を用い、アルカリ水により現像させる場合には反応性ポリカルボン酸化合物(B)を用いる。一般的にアルカリ水現像型の方が微細なパターンを作りやすいという観点から、この用途には反応性ポリカルボン酸化合物(B)を用いる場合が多い。もちろん(A)と(B)を併用してもなんら問題はない。併用する場合の(A):(B)の重量比は、20:80〜5:95の範囲にすることができる。   The carboxylate compound (A) or the reactive polycarboxylic acid compound (B) in the active energy ray-curable resin composition of the present invention can be appropriately used depending on the application. For example, in the case of a so-called solvent development type in which a pattern is formed by a printing method or an unreacted site is washed away by a solvent or the like without developing even in the same solder resist application, a carboxylate compound (A) is used and alkaline water is used. In the case of developing by using a reactive polycarboxylic acid compound (B). In general, the reactive polycarboxylic acid compound (B) is often used for this application from the viewpoint that the alkaline water development type can easily form a fine pattern. Of course, there is no problem even if (A) and (B) are used in combination. When used in combination, the weight ratio of (A) :( B) can be in the range of 20:80 to 5:95.

本発明の活性エネルギー線硬化型樹脂組成物は活性エネルギー線によって容易に硬化する。ここで活性エネルギー線の具体例としては、紫外線、可視光線、赤外線、X線、ガンマー線、レーザー光線等の電磁波、アルファー線、ベータ線、電子線等の粒子線等が挙げられる。本発明の好適な用途を考慮すれば、これらのうち、紫外線、レーザー光線、可視光線、または電子線が好ましい。   The active energy ray-curable resin composition of the present invention is easily cured by active energy rays. Specific examples of the active energy rays include electromagnetic waves such as ultraviolet rays, visible rays, infrared rays, X rays, gamma rays and laser rays, particle rays such as alpha rays, beta rays and electron rays. Of these, ultraviolet rays, laser beams, visible rays, or electron beams are preferred in view of suitable applications of the present invention.

本発明において成形用材料とは、未硬化の組成物を型にいれ、もしくは型を押し付け物体を成形したのち、活性エネルギー線により硬化反応を起こさせ成形させるもの、もしくは未硬化の組成物にレーザー等の焦点光などを照射し、硬化反応を起こさせ成形させる用途に用いられる材料を指す。   In the present invention, the molding material refers to a material in which an uncured composition is put into a mold or an object is molded by pressing the mold and then a curing reaction is caused by active energy rays, or a laser is applied to the uncured composition. It refers to a material that is used for applications in which it is irradiated with a focused light such as to cause a curing reaction to be molded.

具体的な用途としては、平面状に成形したシート、素子を保護するための封止材、未硬化の組成物に微細加工された「型」を押し当て微細な成形を行う、所謂ナノインプリント材料、さらには特に熱的な要求の厳しい発光ダイオード、光電変換素子等の周辺封止材料等が好適な用途として挙げられる。   Specific applications include a sheet formed into a flat shape, a sealing material for protecting the element, a so-called nanoimprint material that performs fine molding by pressing a "mold" that has been micro-processed into an uncured composition, Furthermore, particularly suitable applications include peripheral sealing materials such as light-emitting diodes and photoelectric conversion elements, which have particularly severe thermal requirements.

本発明において皮膜形成用材料とは、基材表面を被覆することを目的として利用されるものである。具体的な用途としては、グラビアインキ、フレキソインキ、シルクスクリーンインキ、オフセットインキ等のインキ材料、ハードコート、トップコート、オーバープリントニス、クリヤコート等の塗工材料、ラミネート用、光ディスク用他各種接着剤、粘着剤等の接着材料、ソルダーレジスト、エッチングレジスト、マイクロマシン用レジスト等のレジスト材料等これに該当する。さらには、皮膜形成用材料を一時的に剥離性基材に塗工しフイルム化した後、本来目的とする基材に貼合し皮膜を形成させる、いわゆるドライフイルムも皮膜形成用材料に該当する。   In the present invention, the film forming material is used for the purpose of coating the surface of a substrate. Specific applications include gravure inks, flexo inks, silk screen inks, offset inks and other ink materials, hard coats, top coats, overprint varnishes, clear coats and other coating materials, laminating, optical disk and other various adhesives. This corresponds to adhesive materials such as adhesives and adhesives, resist materials such as solder resists, etching resists, and resists for micromachines. Furthermore, after the film forming material is temporarily applied to the peelable substrate and formed into a film, it is bonded to the original target substrate to form a film, so-called dry film also corresponds to the film forming material. .

これらのうち、反応性ポリカルボン酸化合物(B)のカルボキシル基の導入によって、基材への密着性が高まるため、プラスチック基材、若しくは金属基材を被覆するための用途として用いることが好ましい。   Among these, the introduction of the carboxyl group of the reactive polycarboxylic acid compound (B) increases the adhesion to the substrate, and therefore, it is preferably used as an application for coating a plastic substrate or a metal substrate.

さらには、未反応の反応性ポリカルボン酸化合物(B)が、アルカリ水溶液に可溶性となる特徴を生かして、アルカリ水現像型レジスト材料組成物として用いることも好ましい。   Furthermore, taking advantage of the feature that the unreacted reactive polycarboxylic acid compound (B) is soluble in an alkaline aqueous solution, it is also preferable to use it as an alkaline water developable resist material composition.

本発明においてレジスト材料とは、基材上に本発明の組成物の皮膜層を形成させ、その後、紫外線等の活性エネルギー線を部分的に照射し、照射部、未照射部の物性的な差異を利用して描画しようとする活性エネルギー線感応型の組成物を指す。具体的には、照射部、または未照射部を何らかの方法、例えば溶剤等やアルカリ溶液等で溶解させるなどして除去し、描画を行うことを目的として用いられる組成物である。   In the present invention, the resist material is formed by forming a coating layer of the composition of the present invention on a substrate, and then partially irradiating active energy rays such as ultraviolet rays, and the physical difference between irradiated and unirradiated parts. This refers to an active energy ray-sensitive composition that is intended to be drawn using. Specifically, the composition is used for the purpose of removing the irradiated part or the unirradiated part by dissolving the irradiated part or the non-irradiated part with, for example, a solvent or an alkaline solution.

皮膜形成させる方法としては特に制限はないが、グラビア等の凹版印刷方式、フレキソ等の凸版印刷方式、シルクスクリーン等の孔版印刷方式、オフセット等の平版印刷方式、ロールコーター、ナイフコーター、ダイコーター、カーテンコーター、スピンコーター等の各種塗工方式が任意に採用できる。   There are no particular restrictions on the method for forming the film, but an intaglio printing method such as gravure, a relief printing method such as flexo, a stencil printing method such as silk screen, a lithographic printing method such as offset, a roll coater, a knife coater, a die coater, Various coating methods such as curtain coater and spin coater can be arbitrarily adopted.

本発明において熱伝導材料とは、スイッチイング電源、パワーIC、CPU、照明用インバーター、ヒーター用機器、各種電子部品、例えば半導体素子や回路基板などの発熱体、または吸熱体から、すばやく熱を放散する、若しくは伝熱させることを目的として用いられる材料を指す。   In the present invention, the heat conducting material means that heat is quickly dissipated from a switching power source, power IC, CPU, lighting inverter, heater device, various electronic components such as a heating element such as a semiconductor element or a circuit board, or a heat absorbing body. Refers to a material used for the purpose of heat transfer or heat transfer.

本発明の活性エネルギー線硬化型樹脂組成物の硬化物とは、本発明の活性エネルギー線硬化型樹脂組成物に活性エネルギー線を照射し硬化させたものを指す。   The cured product of the active energy ray-curable resin composition of the present invention refers to a product obtained by irradiating and curing the active energy ray-curable resin composition of the present invention with active energy rays.

本発明の多層材料とは、本発明の活性エネルギー線硬化型樹脂組成物を基材上に皮膜形成・硬化させ得られる、少なくとも二層以上の層をもってなる材料を示す。   The multilayer material of the present invention refers to a material having at least two layers obtained by forming and curing a film of the active energy ray-curable resin composition of the present invention on a substrate.

本発明の硬化物は、放熱性等の熱伝導性を求められる用途に用いることが好ましい。   The cured product of the present invention is preferably used for applications requiring heat conductivity such as heat dissipation.

この他、本発明の活性エネルギー線硬化型樹脂組成物を各種用途に適合させる目的で、70重量%を上限にその他の成分を加えることもできる。その他の成分としては無機フィラー、光重合開始剤、その他の添加剤、着色材料等が挙げられる。下記に使用しうるその他の成分を例示する。   In addition, for the purpose of adapting the active energy ray-curable resin composition of the present invention to various uses, other components may be added up to 70% by weight. Examples of other components include inorganic fillers, photopolymerization initiators, other additives, and coloring materials. Examples of other components that can be used are shown below.

このうち、無機フィラーとして高い熱伝導性を有する熱伝導性無機フィラーを用いることで、本発明の活性エネルギー線硬化型樹脂組成物の特性を最大限発揮させることができる。   Among these, the characteristic of the active energy ray curable resin composition of this invention can be exhibited to the maximum by using the heat conductive inorganic filler which has high heat conductivity as an inorganic filler.

熱伝導性無機フィラーとしては、本発明において示される高い熱伝導性を持つ反応性カルボキシレート化合物(A)又は反応性ポリカルボン酸化合物(B)の能力をより高めるために組み合わせて用いるものである。例えば、導電性を持っても良い用途であれば、アルミ粉末、銅粉末、銀粉末等の金属粉を混ぜても良い。また絶縁性を求めるような用途、例えば、ソルダーレジスト用途等の場合ではアルミナ、窒化アルミニウム、シリカ、マグネシア、窒化ホウ素等が挙げられる。これらの中で、熱伝導性を考慮すると熱伝導率が10W/m/K以上であるものが特に有効に作用する。具体的には熱伝導性を考慮するとアルミナ、窒化アルミニウムが好ましい。熱伝導性無機フィラーは、組成物の総量中10〜65重量%程度用いることが好ましく、さらに好ましくは15〜50重量%である。   The thermally conductive inorganic filler is used in combination in order to further enhance the ability of the reactive carboxylate compound (A) or the reactive polycarboxylic acid compound (B) having high thermal conductivity shown in the present invention. . For example, metal powders such as aluminum powder, copper powder, and silver powder may be mixed as long as the application may have electrical conductivity. In the case of applications requiring insulation, for example, solder resist applications, alumina, aluminum nitride, silica, magnesia, boron nitride and the like can be mentioned. Among these, those having a thermal conductivity of 10 W / m / K or more work particularly effectively in consideration of thermal conductivity. Specifically, alumina and aluminum nitride are preferable in view of thermal conductivity. The heat conductive inorganic filler is preferably used in an amount of about 10 to 65% by weight, more preferably 15 to 50% by weight, based on the total amount of the composition.

ラジカル型光重合開始剤としては、例えばベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾイン類;アセトフェノン、2,2−ジエトキシ−2−フェニルアセトフェノン、2,2−ジエトキシ−2−フェニルアセトフェノン、1,1−ジクロロアセトフェノン、2−ヒドロキシ−2−メチル−フェニルプロパン−1−オン、ジエトキシアセトフェノン、1−ヒドロキシンクロヘキシルフェニルケトン、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルホリノ−プロパン−1−オン等のアセトフェノン類;2−エチルアントラキノン、2−t−ブチルアントラキノン、2−クロロアントラキノン、2−アミルアントラキノン等のアントラキノン類;2,4−ジエチルチオキサントン、2−イソプロピルチオキサントン、2−クロロチオキサントン等のチオキサントン類;アセトフエノンジメチルケタール、ベンジルジメチルケタール等のケタール類;ベンゾフェノン、4−ベンゾイル−4´−メチルジフェニルサルファイド、4,4´−ビスメチルアミノベンゾフェノン等のベンゾフェノン類;2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキサイド等のホスフィンオキサイド類等の公知一般のラジカル型光反応開始剤が挙げられる。   Examples of the radical photopolymerization initiator include benzoins such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, and benzoin isobutyl ether; acetophenone, 2,2-diethoxy-2-phenylacetophenone, 2,2-diethoxy 2-phenylacetophenone, 1,1-dichloroacetophenone, 2-hydroxy-2-methyl-phenylpropan-1-one, diethoxyacetophenone, 1-hydroxyhexylphenyl ketone, 2-methyl-1- [4- ( Acetophenones such as methylthio) phenyl] -2-morpholino-propan-1-one; ant such as 2-ethylanthraquinone, 2-t-butylanthraquinone, 2-chloroanthraquinone, 2-amylanthraquinone Quinones; thioxanthones such as 2,4-diethylthioxanthone, 2-isopropylthioxanthone, 2-chlorothioxanthone; ketals such as acetophenone dimethyl ketal and benzyl dimethyl ketal; benzophenone, 4-benzoyl-4'-methyldiphenyl sulfide Benzophenones such as 4,4′-bismethylaminobenzophenone; phosphine oxides such as 2,4,6-trimethylbenzoyldiphenylphosphine oxide and bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide A general radical type photoinitiator is mentioned.

また、カチオン系開始剤としては、ルイス酸のジアゾニウム塩、ルイス酸のヨードニウム塩、ルイス酸のスルホニウム塩、ルイス酸のホスホニウム塩、その他のハロゲン化物、トリアジン系開始剤、ボーレート系開始剤、及びその他の光酸発生剤等が挙げられる。   In addition, as the cationic initiator, Lewis acid diazonium salt, Lewis acid iodonium salt, Lewis acid sulfonium salt, Lewis acid phosphonium salt, other halides, triazine initiator, borate initiator, and others And a photoacid generator.

ルイス酸のジアゾニウム塩としては、p−メトキシフェニルジアゾニウムフルオロホスホネート、N,N−ジエチルアミノフェニルジアゾニウムヘキサフルオロホスホネート( 三新化学工業社製サンエイドSI−60L/SI−80L/SI−100L など)等が挙げられ、ルイス酸のヨードニウム塩としては、ジフェニルヨードニウムヘキサフルオロホスホネート、ジフェニルヨードニウムヘキサフルオロアンチモネート等が挙げられ、ルイス酸のスルホニウム塩としては、トリフェニルスルホニウムヘキサフルオロホスホネート(Union Carbide社製 Cyracure UVI−6990など)、トリフェニルスルホニウムヘキサフルオロアンチモネート(Union Carbide社製:Cyracure UVI−6974など)等が挙げられ、ルイス酸のホスホニウム塩としては、トリフェニルホスホニウムヘキサフルオロアンチモネート等が挙げられる。   Examples of the diazonium salt of Lewis acid include p-methoxyphenyldiazonium fluorophosphonate, N, N-diethylaminophenyldiazonium hexafluorophosphonate (Sun Shine SI-60L / SI-80L / SI-100L, etc., manufactured by Sanshin Chemical Industry Co., Ltd.) and the like. Examples of the Lewis acid iodonium salt include diphenyliodonium hexafluorophosphonate and diphenyliodonium hexafluoroantimonate. Examples of the Lewis acid sulfonium salt include triphenylsulfonium hexafluorophosphonate (Cyracure UVI-6990 manufactured by Union Carbide). Etc.), triphenylsulfonium hexafluoroantimonate (available from Union Carbide: Cyracure UVI-) 974, etc.). Examples of the phosphonium salt of a Lewis acid, triphenyl phosphonium hexafluoroantimonate, and the like.

その他のハロゲン化物としては、2,2,2−トリクロロ−[1−4´−(ジメチルエチル)フェニル]エタノン(AKZO社製:Trigonal PIなど)、2.2−ジクロロ−1−4−(フェノキシフェニル)エタノン(Sandoz社製:Sandray 1000など、α,α,α−トリブロモメチルフェニルスルホン(製鉄化学社製:BMPSなど)等が挙げられる。トリアジン系開始剤としては、2,4,6−トリス(トリクロロメチル)−トリアジン、2,4−トリクロロメチル−(4´−メトキシフェニル)−6−トリアジン(Panchim社製 Triazine Aなど)、2,4−トリクロロメチル−(4´−メトキシスチリル)−6−トリアジン(Panchim社製:Triazine PMSなど)、2,4−トリクロロメチル−(ピプロニル)−6−トリアジン(Panchim社製 Triazine PPなど)、2,4−トリクロロメチル−(4´−メトキシナフチル)−6−トリアジン(Panchim社製 Triazine B など)、2[2´(5”−メチルフリル)エチリデン]−4,6−ビス(トリクロロメチル)−s−トリアジン(三和ケミカル社製など)、2(2´−フリルエチリデン)−4,6−ビス(トリクロロメチル)−s−トリアジン(三和ケミカル社製)等が挙げられる。   As other halides, 2,2,2-trichloro- [1-4 ′-(dimethylethyl) phenyl] ethanone (manufactured by AKZO: Trigonal PI, etc.), 2.2-dichloro-1--4- (phenoxy) Phenyl) ethanone (manufactured by Sandoz: Sandray 1000), α, α, α-tribromomethylphenylsulfone (manufactured by Iron Chemical Co., Ltd .: BMPS, etc.), etc. Examples of triazine initiators include 2,4,6- Tris (trichloromethyl) -triazine, 2,4-trichloromethyl- (4′-methoxyphenyl) -6-triazine (such as Triazine A manufactured by Panchim), 2,4-trichloromethyl- (4′-methoxystyryl)- 6-triazine (manufactured by Panchi: Triazine PMS, etc.), 2,4-to Lichloromethyl- (pipronyl) -6-triazine (such as Triazine PP manufactured by Panchim), 2,4-trichloromethyl- (4′-methoxynaphthyl) -6-triazine (such as Triazine B manufactured by Panchim), 2 [2 ′ ( 5 "-methylfuryl) ethylidene] -4,6-bis (trichloromethyl) -s-triazine (manufactured by Sanwa Chemical Co., Ltd.), 2 (2'-furylethylidene) -4,6-bis (trichloromethyl)- Examples thereof include s-triazine (manufactured by Sanwa Chemical Co., Ltd.).

ボーレート系開始剤としては、日本感光色素製:NK−3876及びNK−3881等が挙げられ、その他の光酸発生剤等としては、9−フェニルアクリジン、2,2´−ビス(o−クロロフェニル)−4,4´,5,5´−テトラフェニル−1,2−ビイミダゾール(黒金化成社製:ビイミダゾールなど)、2,2−アゾビス(2−アミノ−プロパン)ジヒドロクロリド(和光純薬社製:V50など)、2,2−アゾビス[2−(イミダソリン−2イル)プロパン]ジヒドロクロリド(和光純薬社製:VA044など)、[η−5−2−4−(シクロペンタデシル)(1,2,3,4,5,6,η)−(メチルエチル)−ベンゼン]鉄(II)ヘキサフルオロホスホネート(チバスペシャリティケミカルズ社製:Irgacure 261など)等が挙げられる。   Examples of the borate initiator include Nippon Senshoku Dye: NK-3876 and NK-3881, and other photoacid generators include 9-phenylacridine, 2,2′-bis (o-chlorophenyl). -4,4 ', 5,5'-tetraphenyl-1,2-biimidazole (manufactured by Kurokin Kasei Co., Ltd .: biimidazole), 2,2-azobis (2-amino-propane) dihydrochloride (Wako Pure Chemical) Manufactured by: V50, etc.), 2,2-azobis [2- (imidazolin-2-yl) propane] dihydrochloride (manufactured by Wako Pure Chemical Industries, Ltd .: VA044), [η-5-2-4- (cyclopentadecyl) (1,2,3,4,5,6, η)-(methylethyl) -benzene] iron (II) hexafluorophosphonate (manufactured by Ciba Specialty Chemicals: Irgacure 261, etc. Etc. The.

この他、アゾビスイソブチロニトリル等のアゾ系開始剤、過酸化ベンゾイル等の熱に感応する過酸化物系ラジカル型開始剤等を併せて用いても良い。また、ラジカル系とカチオン系の双方の開始剤を併せて用いても良い。開始剤は、1種類を単独で用いることもできるし、2種類以上を併せて用いることもできる。   In addition, an azo initiator such as azobisisobutyronitrile, a peroxide radical initiator sensitive to heat such as benzoyl peroxide, and the like may be used in combination. Further, both radical and cationic initiators may be used in combination. One type of initiator can be used alone, or two or more types can be used in combination.

その他の添加剤としては、例えばメラミン等の熱硬化触媒、タルク、硫酸バリウム、炭酸カルシウム、炭酸マグネシウム、チタン酸バリウム、水酸化アルミニウム、酸化アルミニウム、シリカ、クレー等の充填剤、アエロジル等のチキソトロピー付与剤、フタロシアニンブルー、フタロシアニングリーン、酸化チタン、シリコーン、フッ素系のレベリング剤や消泡剤、ハイドロキノン、ハイドロキノンモノメチルエーテル等の重合禁止剤等を使用することが出来る。   Other additives include thermosetting catalysts such as melamine, fillers such as talc, barium sulfate, calcium carbonate, magnesium carbonate, barium titanate, aluminum hydroxide, aluminum oxide, silica, clay, and thixotropy such as aerosil. Agents, phthalocyanine blue, phthalocyanine green, titanium oxide, silicone, fluorine-based leveling agents and antifoaming agents, polymerization inhibitors such as hydroquinone and hydroquinone monomethyl ether can be used.

また、顔料材料としては例えば、フタロシアニン系、アゾ系、キナクリドン系等の有機顔料、酸化チタン、カーボンブラック、ベンガラ、酸化亜鉛、硫酸バリウム、タルク等の無機顔料、公知一般の着色、及び体質顔料使用することができる。   Examples of pigment materials include organic pigments such as phthalocyanine, azo, and quinacridone, inorganic pigments such as titanium oxide, carbon black, bengara, zinc oxide, barium sulfate, and talc, known general coloring, and extender pigments. can do.

この他に活性エネルギー線に反応性を示さない樹脂類(いわゆるイナートポリマー)、たとえばその他のエポキシ樹脂、フェノール樹脂、ウレタン樹脂、ポリエステル樹脂、ケトンホルムアルデヒド樹脂、クレゾール樹脂、キシレン樹脂、ジアリルフタレート樹脂、スチレン樹脂、グアナミン樹脂、天然及び合成ゴム、アクリル樹脂、ポリオレフィン樹脂、及びこれらの変性物を用いることもできる。これらは40重量%までの範囲において用いることが好ましい。   Other resins that are not reactive with active energy rays (so-called inert polymers), such as other epoxy resins, phenol resins, urethane resins, polyester resins, ketone formaldehyde resins, cresol resins, xylene resins, diallyl phthalate resins, styrene Resins, guanamine resins, natural and synthetic rubbers, acrylic resins, polyolefin resins, and modified products thereof can also be used. These are preferably used in the range of up to 40% by weight.

特に、ソルダーレジスト用途に反応性ポリカルボン酸化合物(B)を用いようとする場合には、活性エネルギー線に反応性を示さない樹脂類として公知一般のエポキシ樹脂を用いることが好ましい。これは活性エネルギー線によって反応、硬化させた後も(B)に由来するカルボキシル基が残留してしまい、結果としてその硬化物は耐水性や加水分解性に劣ってしまう。したがって、エポキシ樹脂を用いることで残留するカルボキシル基をさらにカルボキシレート化し、さらに強固な架橋構造を形成させる。好ましいエポキシ樹脂の使用量は組成物中に含まれるカルボキシル基に対してエポキシ基が0.5〜3当量、好ましくは1〜1.5当量である。   In particular, when the reactive polycarboxylic acid compound (B) is to be used for solder resist applications, it is preferable to use a known general epoxy resin as a resin that does not show reactivity to active energy rays. This is because the carboxyl group derived from (B) remains even after being reacted and cured by active energy rays, and as a result, the cured product is inferior in water resistance and hydrolyzability. Therefore, by using an epoxy resin, the remaining carboxyl group is further carboxylated to form a stronger cross-linked structure. The preferable usage-amount of an epoxy resin is 0.5-3 equivalent with an epoxy group with respect to the carboxyl group contained in a composition, Preferably it is 1-1.5 equivalent.

また使用目的に応じて、粘度を調整する目的で、組成物全体中において揮発性溶剤を使用することができる。この際、揮発性溶剤の使用量は、組成物の総量中50重量%、さらに好ましくは40重量%までの範囲が好適である。使用する溶剤量が多い場合は、乾燥等のプロセスに配慮がより必要となる。   Depending on the purpose of use, a volatile solvent can be used in the entire composition for the purpose of adjusting the viscosity. In this case, the amount of the volatile solvent used is preferably in the range of 50% by weight, more preferably up to 40% by weight, based on the total amount of the composition. If the amount of solvent used is large, consideration must be given to processes such as drying.

以下、本発明を実施例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。また、実施例中特に断りがない限り、部は重量部を示す。   EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to these Examples. Moreover, unless otherwise indicated in an Example, a part shows a weight part.

合成例1:エポキシ樹脂aの合成1
温度計、冷却管、分留管、撹拌機を取り付けたフラスコに窒素パージを施しながら、前記式(2)で表されるフェノール系化合物(商品名p,p´−BPF 本州化学株式会社製)100部に対しエピクロルヒドリン370部、メタノール26部を仕込み撹拌下で65〜70℃まで昇温し、完全に溶解させた後、還流条件化でフレーク状水酸化ナトリウム40.4部を100分かけて分割添加した。その後、更に70℃で1時間、後反応を行った。次いで水を150部加えて水洗を2回行い、加熱減圧下で油層から過剰のエピクロルヒドリンなどを除去した。残留分にメチルイソブチルケトン312部を加えて溶解し、70℃で30%水酸化ナトリウム水溶液10部を加えて1時間反応を行った。反応後、水洗を3回行い生成塩などを除去した。加熱減圧下でメチルイソブチルケトンを留去し、エポキシ樹脂(a´−1)150部を得た。得られたエポキシ樹脂のエポキシ当量は170g/eq、25℃における粘度は1000mP・s、全塩素量は1200ppmであった。次いでこのエポキシ樹脂(a´−1)85部及び前記式(3)で表される化合物23部を加えて撹拌下で溶解させ、ベンジルトリフェニルホスフォニウムクロライド0.08部を添加した。160℃で4時間反応させGPCにおいて4,4´−ビフェノールが完全に消滅した後、更に反応を続け合計6時間反応させた後で100℃まで冷却しジメチルスルホキシド108部を加えて得られた樹脂を完全に溶解させた。更に60℃まで冷却し撹拌下でメタノール108部を加えた。次いで30℃にまで冷却し水208部を加えて結晶を析出させた。この結晶を濾過後乾燥させ白色粉末状のエポキシ樹脂(a)103部を得た。このエポキシ樹脂(a)のエポキシ当量は443g/eq(式(I)と式(II)の繰り返し数の総和≒2.09(平均値:エポキシ当量から計算))であった。また、式(I)の繰り返し数÷式(II)の繰り返し数の値は、3.53であった。得られたエポキシ樹脂(a)の融点をDSC(示差熱分析計)で測定したところ、111℃であった。またDSCの測定結果ではピークトップが二つ現れ、125℃と160℃であった。更に得られたエポキシ樹脂(a)を偏光顕微鏡を用いて毎分1℃の昇温速度で観察したところ、140〜160℃において該エポキシ樹脂が光学的な異方性を示すことが確認された。
Synthesis Example 1: Synthesis 1 of epoxy resin a
A phenolic compound represented by the above formula (2) (trade name p, p′-BPF, manufactured by Honshu Chemical Co., Ltd.) while purging nitrogen with a flask equipped with a thermometer, a condenser tube, a fractionating tube, and a stirrer. To 100 parts, 370 parts of epichlorohydrin and 26 parts of methanol were added and heated to 65-70 ° C. with stirring. After completely dissolved, 40.4 parts of flaky sodium hydroxide was added over 100 minutes under reflux conditions. Add in portions. Thereafter, the post reaction was further carried out at 70 ° C. for 1 hour. Subsequently, 150 parts of water was added and washed with water twice, and excess epichlorohydrin and the like were removed from the oil layer under heating and reduced pressure. 312 parts of methyl isobutyl ketone was added to the residue and dissolved, and 10 parts of 30% aqueous sodium hydroxide solution was added at 70 ° C. and reacted for 1 hour. After the reaction, the product was washed with water three times to remove generated salts and the like. Methyl isobutyl ketone was distilled off under reduced pressure by heating to obtain 150 parts of epoxy resin (a′-1). The epoxy equivalent of the obtained epoxy resin was 170 g / eq, the viscosity at 25 ° C. was 1000 mP · s, and the total chlorine content was 1200 ppm. Subsequently, 85 parts of this epoxy resin (a′-1) and 23 parts of the compound represented by the formula (3) were added and dissolved under stirring, and 0.08 part of benzyltriphenylphosphonium chloride was added. After reacting at 160 ° C. for 4 hours and 4,4′-biphenol completely disappeared in GPC, the reaction was further continued and reacted for a total of 6 hours, followed by cooling to 100 ° C. and adding 108 parts of dimethyl sulfoxide. Was completely dissolved. The mixture was further cooled to 60 ° C., and 108 parts of methanol was added with stirring. Next, the mixture was cooled to 30 ° C. and 208 parts of water was added to precipitate crystals. The crystals were filtered and dried to obtain 103 parts of a white powdery epoxy resin (a). The epoxy equivalent of this epoxy resin (a) was 443 g / eq (the total number of repetitions of the formulas (I) and (II) ≈2.09 (average value: calculated from the epoxy equivalent)). Further, the value of the number of repetitions of formula (I) ÷ the number of repetitions of formula (II) was 3.53. It was 111 degreeC when melting | fusing point of the obtained epoxy resin (a) was measured by DSC (differential thermal analyzer). In the DSC measurement results, two peak tops appeared and were 125 ° C. and 160 ° C. Furthermore, when the obtained epoxy resin (a) was observed at a heating rate of 1 ° C. per minute using a polarizing microscope, it was confirmed that the epoxy resin exhibited optical anisotropy at 140 to 160 ° C. .

熱伝導性の測定
合成例1の樹脂、および、市販高分子量ビスフェノールF型樹脂(YDF−2001、東都化成株式会社製)のそれぞれをASTME1530に準拠した手法で熱伝導性を比較した。
その結果、合成例1は0.41(W/mK)であり、YDF−2001は0.19(W/mK)であった。エポキシ樹脂は(a)高い熱伝導性を示し、これより誘導される本発明の反応性カルボキシレート化合物(A)、反応性ポリカルボン酸化合物(C)及び活性エネルギー線硬化型樹脂組成物も熱伝導性が優れていると判断される。
Measurement of thermal conductivity The thermal conductivity of each of the resin of Synthesis Example 1 and a commercially available high molecular weight bisphenol F type resin (YDF-2001, manufactured by Tohto Kasei Co., Ltd.) was compared by a technique based on ASTM 1530.
As a result, Synthesis Example 1 was 0.41 (W / mK), and YDF-2001 was 0.19 (W / mK). The epoxy resin (a) exhibits high thermal conductivity, and the reactive carboxylate compound (A), the reactive polycarboxylic acid compound (C) and the active energy ray-curable resin composition of the present invention derived from the epoxy resin are also heat-sensitive. It is judged that the conductivity is excellent.

実施例1−1、実施例1−2:カルボキシレート化合物(A)の調製
合成例1で調製したエポキシ樹脂(a)443g、分子中に一個以上の重合可能なエチレン性不飽和基と一個以上のカルボキシル基を併せ持つ化合物(b)としてアクリル酸(略称AA、Mw=72)を表1中記載量、触媒としてトリフェニルフォスフィン3g、溶剤としてプロピレングリコールモノメチルエーテルモノアセテートを固形分80%となるように129g加え、溶液の酸価が1mgKOH/g以下となるまで100℃24時間反応させ、本発明の反応性カルボキシレート化合物(A)溶液(実施例1−1、実施例1−2)を得た。
Example 1-1, Example 1-2: Preparation of carboxylate compound (A) 443 g of epoxy resin (a) prepared in Synthesis Example 1, one or more polymerizable ethylenically unsaturated groups and one or more in the molecule Acrylic acid (abbreviation: AA, Mw = 72) as the compound (b) having both of the carboxyl groups described in Table 1, the amount of triphenylphosphine 3 g as a catalyst, and propylene glycol monomethyl ether monoacetate as a solvent to a solid content of 80% 129 g of the solution, and allowed to react at 100 ° C. for 24 hours until the acid value of the solution reached 1 mg KOH / g or less, and the reactive carboxylate compound (A) solution of the present invention (Example 1-1, Example 1-2) was added. Obtained.

比較例1−1:一般ビスフェノールF型エポキシ樹脂のカルボキシレート化合物の調製
実施例1で用いたエポキシ樹脂(a)のかわりに、市販高分子量ビスフェノールF型樹脂(YDF−2001、東都化成株式会社製、エポキシ当量471g/eq)471gを用い、分子中に一個以上の重合可能なエチレン性不飽和基と一個以上のカルボキシル基を併せ持つ化合物(b)としてアクリル酸(略称AA、Mw=72)を表1中記載量、触媒としてトリフェニルフォスフィン3g、溶剤としてプロピレングリコールモノメチルエーテルモノアセテートを固形分80%となるように136gを加え、100℃24時間反応させ、一般のビスフェノールF型カルボキシレート化合物溶液(比較例1−1)を得た。
Comparative Example 1-1: Preparation of Carboxylate Compound of General Bisphenol F Type Epoxy Resin Instead of the epoxy resin (a) used in Example 1, a commercially available high molecular weight bisphenol F type resin (YDF-2001, manufactured by Toto Kasei Co., Ltd.) , Epoxy equivalent 471 g / eq) 471 g, and acrylic acid (abbreviation AA, Mw = 72) is represented as a compound (b) having one or more polymerizable ethylenically unsaturated groups and one or more carboxyl groups in the molecule. 1, 3 g of triphenylphosphine as a catalyst and 136 g of propylene glycol monomethyl ether monoacetate as a solvent so as to have a solid content of 80%, reacted at 100 ° C. for 24 hours, and a general bisphenol F-type carboxylate compound solution (Comparative Example 1-1) was obtained.

Figure 0005137823
Figure 0005137823

実施例2−1、実施例2−2:反応性ポリカルボン酸化合物(B)の調製
実施例1−1において得られたカルボキシレート化合物(A)溶液323gに多塩基酸無水物(c)として、テトラヒドロ無水フタル酸(略称THPA)表2中記載量、及び溶剤として固形分が65重量%となるようプロピレングリコールモノメチルエーテルモノアセテートを添加し、100℃に加熱し10時間酸付加反応させ本発明の反応性ポリカルボン酸化合物(B)溶液(実施例2−1、実施例2−2)を得た。
Example 2-1 and Example 2-2: Preparation of reactive polycarboxylic acid compound (B) Polybasic acid anhydride (c) was added to 323 g of the carboxylate compound (A) solution obtained in Example 1-1. , Tetrahydrophthalic anhydride (abbreviated as THPA) listed in Table 2, and propylene glycol monomethyl ether monoacetate as a solvent so that the solid content is 65% by weight, heated to 100 ° C. and subjected to an acid addition reaction for 10 hours. The reactive polycarboxylic acid compound (B) solution (Example 2-1 and Example 2-2) was obtained.

比較例2−1:一般ビスフェノールF型反応性ポリカルボン酸化合物の調製
比較合成例1−1で調製したビスフェノールF型カルボキシレート化合物溶液341gを実施例2と同様の方法によってカルボキシレート化させた。
Comparative Example 2-1 Preparation of General Bisphenol F-type Reactive Polycarboxylic Acid Compound 341 g of the bisphenol F-type carboxylate compound solution prepared in Comparative Synthesis Example 1-1 was carboxylated by the same method as in Example 2.

Figure 0005137823
Figure 0005137823

実施例3−1〜3−4、比較例3:活性エネルギー線硬化型樹脂組成物の調製
実施例1−1、実施例1−2で調製したカルボキシレート化合物、実施例2−1、実施例2−2で調製した反応性ポリカルボン酸化合物、比較例1−1で調製したカルボキシレート化合物、比較例2−1で調製した反応性ポリカルボン酸化合物を各7g、その他の反応性化合物(C)としてジペンタエリスリトールヘキサアクリレート1g、その他の添加成分としてラジカル型光重合開始剤として2−メチル−1−[4−(メチルチオ)フェニル]−2−モルホリノ−プロパン−1−オン(市販名:イルガキュア907:チバスペシャリチィーケミカルズ製)0.4g、2,4−ジエチルチオキサントン0.05g(市販名:カヤキュアDETX―S:日本化薬製)を混合した。調製した活性エネルギー線硬化型樹脂組成物を150ミクロンのアプリケーターでポリエステルフイルム上に塗工し、80℃のオーブンで30分間乾燥させた。
乾燥終了後2000mJ/cm2の紫外線を照射させ、硬化反応させた。
得られた硬化物はいずれもおおよそ100ミクロンの厚さとなった。
Examples 3-1 to 3-4, Comparative Example 3: Preparation of active energy ray-curable resin composition Carboxylate compounds prepared in Example 1-1 and Example 1-2, Example 2-1, Example 7 g each of the reactive polycarboxylic acid compound prepared in 2-2, the carboxylate compound prepared in Comparative Example 1-1, and the reactive polycarboxylic acid compound prepared in Comparative Example 2-1, other reactive compounds (C ) As dipentaerythritol hexaacrylate, and 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one (commercial name: Irgacure) as a radical photopolymerization initiator as other additive components 907: 0.4 g of Ciba Specialty Chemicals, 0.05 g of 2,4-diethylthioxanthone (commercial name: Kayacure DETX-S: manufactured by Nippon Kayaku Co., Ltd.) It was mixed. The prepared active energy ray-curable resin composition was coated on a polyester film with a 150 micron applicator and dried in an oven at 80 ° C. for 30 minutes.
After completion of drying, 2000 mJ / cm 2 of ultraviolet rays were irradiated to cause a curing reaction.
Each of the obtained cured products had a thickness of about 100 microns.

本発明の硬化物(硬化膜)(実施例3−1〜3−4)は本発明の反応性カルボキシレート化合物(A)の熱伝導率が比較例の反応性カルボキシレート化合物よりも優れていることが前記の通り判断されるため、比較例の硬化物よりも熱伝導率が優れていると判断される。   The cured product (cured film) of the present invention (Examples 3-1 to 3-4) is superior in thermal conductivity of the reactive carboxylate compound (A) of the present invention to the reactive carboxylate compound of the comparative example. Since it is determined as described above, it is determined that the thermal conductivity is superior to the cured product of the comparative example.

実施例4−1、実施例4−2:熱伝導性無機フィラーの効果の測定
実施例2−1、比較例2−1で調製した反応性ポリカルボン酸化合物溶液を各7g、その他の反応性化合物(C)としてジペンタエリスリトールヘキサアクリレート2g、熱伝導性無機フィラーとして表3中記載の窒化アルミニウム又は硫酸バリウム3g(平均粒子径10ミクロン)、ラジカル型光重合開始剤として2−メチル−1−[4−(メチルチオ)フェニル]−2−モルホリノ−プロパン−1−オン(市販名イルガキュア907:チバスペシャリチィーケミカルズ製)0.1g、2,4−ジエチルチオキサントン0.01g(市販名カヤキュアDETX―S:日本化薬製)を混合し、三本ロールミルにて練肉した。
調製した活性エネルギー線硬化型樹脂組成物を150ミクロンのアプリケーターでポリエステルフイルム上に塗工し、80℃のオーブンで60分間乾燥させた。乾燥終了後8000mJ/cm2の紫外線を照射させ、硬化反応させた。
得られた硬化物はいずれもおおよそ100ミクロンの厚さとなった。
Example 4-1 and Example 4-2: Measurement of effect of thermally conductive inorganic filler 7 g of the reactive polycarboxylic acid compound solution prepared in Example 2-1 and Comparative Example 2-1, other reactivity 2 g of dipentaerythritol hexaacrylate as the compound (C), 3 g of aluminum nitride or barium sulfate listed in Table 3 (average particle diameter 10 microns) as the thermally conductive inorganic filler, and 2-methyl-1-as the radical photopolymerization initiator [4- (Methylthio) phenyl] -2-morpholino-propan-1-one (commercial name Irgacure 907: manufactured by Ciba Specialty Chemicals) 0.1 g, 2,4-diethylthioxanthone 0.01 g (commercial name Kayacure DETX-S : Nippon Kayaku Co., Ltd.) and mixed with a three-roll mill.
The prepared active energy ray-curable resin composition was applied onto a polyester film with a 150-micron applicator and dried in an oven at 80 ° C. for 60 minutes. After completion of the drying, an ultraviolet ray of 8000 mJ / cm 2 was irradiated to cause a curing reaction.
Each of the obtained cured products had a thickness of about 100 microns.

Figure 0005137823
Figure 0005137823

本発明の反応性ポリカルボン酸化合物(B)と熱伝導性無機フィラーを組み合わせることで、より高い熱伝導性を発揮させることができると判断される。   It is judged that higher thermal conductivity can be exhibited by combining the reactive polycarboxylic acid compound (B) of the present invention and the thermally conductive inorganic filler.

実施例5:レジスト材料組成物としての評価
実施例2−1で合成された本発明の反応性ポリカルボン酸化合物溶液(A)7g、ジペンタエリスリトールヘキサアクリレート2g、無機フィラーとして粉末硫酸バリウム(平均粒子径10ミクロン)3g、ラジカル型光重合開始剤として2−メチル−1−[4−(メチルチオ)フェニル]−2−モルホリノ−プロパン−1−オン(市販名イルガキュア907:チバスペシャリチィーケミカルズ製)0.5g、2,4−ジエチルチオキサントン0.1g(市販名カヤキュアDETX―S:日本化薬製)、1,3,5−トリスグリシジルイソシアヌル酸2g、溶剤としてカルビトールアセテート3gを混合し、三本ロールミルにて練肉し、レジスト材料組成物を得た。
得られた組成物をエポキシ樹脂銅張り積層板に、100メッシュシルクスクリーン法を用いて塗工し、80℃、30分間乾燥させ、乾燥後の塗膜表面を評価した。
さらにパターンマスクを塗膜表面に載せて垂直露光機を用いて、500mJ/cm2の紫外線を照射し、マスクを取り外した後、1重量%の炭酸ナトリウム水溶液を1分間スプレーし現像を行った。その結果、マスクパターンにより露光されなかった部分は現像液により流れ落ち、照射部のみが残留し現像性を有することが示された。
現像終了後の基板を水洗後、150℃のオーブン中で1時間加熱し、組成物中、反応性ポリカルボン酸(B)に由来するカルボン酸と1,3,5−トリスグリシジルイソシアヌル酸に由来するエポキシ基を反応させ、より強固な架橋構造を形成させた多層材料を得た。
こうして得られた硬化皮膜を鉛筆硬度試験法(JIS K5600:1999)及びクロスカットセロハンテープ剥離試験(JIS K5600−5−6:1999)により評価した。さらにこの塗膜を260℃のハンダ浴に1分間浸漬させた後、クロスカットセロハンテープ剥離試験(JIS K5600−5−6:1999)を行い、耐熱性を評価した。
Example 5: Evaluation as a resist material composition 7 g of the reactive polycarboxylic acid compound solution (A) of the present invention synthesized in Example 2-1, 2 g of dipentaerythritol hexaacrylate, and powdered barium sulfate (average) 3 g of particle size) 3 g, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one as a radical photopolymerization initiator (commercial name Irgacure 907: manufactured by Ciba Specialty Chemicals) 0.5 g, 2,4-diethylthioxanthone 0.1 g (commercial name Kayacure DETX-S: manufactured by Nippon Kayaku), 1,3,5-trisglycidyl isocyanuric acid 2 g, carbitol acetate 3 g as a solvent, This roll mill was kneaded to obtain a resist material composition.
The obtained composition was applied to an epoxy resin copper-clad laminate using a 100 mesh silk screen method, dried at 80 ° C. for 30 minutes, and the coating surface after drying was evaluated.
Further, a pattern mask was placed on the surface of the coating film, and irradiated with 500 mJ / cm 2 of ultraviolet rays using a vertical exposure machine. After removing the mask, development was carried out by spraying a 1 wt% aqueous sodium carbonate solution for 1 minute. As a result, it was shown that the portion that was not exposed by the mask pattern flowed down with the developer, and only the irradiated portion remained and had developability.
After completion of development, the substrate is washed with water and heated in an oven at 150 ° C. for 1 hour, and the composition is derived from the carboxylic acid derived from the reactive polycarboxylic acid (B) and 1,3,5-trisglycidyl isocyanuric acid. A multilayer material in which a stronger cross-linked structure was formed by reacting the epoxy group was obtained.
The cured film thus obtained was evaluated by a pencil hardness test method (JIS K5600: 1999) and a cross-cut cellophane tape peel test (JIS K5600-5-6: 1999). Furthermore, after this coating film was immersed in a 260 ° C. solder bath for 1 minute, a cross-cut cellophane tape peeling test (JIS K5600-5-6: 1999) was performed to evaluate heat resistance.

比較例5:レジスト材料組成物としての評価
実施例5で用いた実施例2−1で示された本発明の反応性ポリカルボン酸化合物に代わり、比較例2−1の一般のビスフェノールF型の反応性ポリカルボン酸化合物を用い、レジスト材料組成物を構成した。組成物の製法、及び評価方法は実施例5に準じて行った。これらの結果を表4に示す。
Comparative Example 5: Evaluation as a resist material composition Instead of the reactive polycarboxylic acid compound of the present invention shown in Example 2-1 used in Example 5, the general bisphenol F type of Comparative Example 2-1 was used. A resist material composition was formed using a reactive polycarboxylic acid compound. The production method and evaluation method of the composition were performed according to Example 5. These results are shown in Table 4.

Figure 0005137823
Figure 0005137823

以上の結果から、本発明の反応性ポリカルボン酸化合物をソルダーレジストインキとして用いた場合に、ハンダに対して良好な耐性を持っており、また比較例5のビスフェノール系材料と比較して良好な硬度と耐熱性を示すことが明らかになった。   From the above results, when the reactive polycarboxylic acid compound of the present invention is used as a solder resist ink, it has good resistance to solder and is good compared to the bisphenol-based material of Comparative Example 5. It became clear that it showed hardness and heat resistance.

試験例1:熱伝導性の評価
実施例1−1において合成した本発明の反応性カルボキシレート化合物(A)の樹脂溶液を、減圧乾燥により溶剤を除いた。重量が恒量になったことから溶剤除去を確認した。
溶剤を除いた樹脂9.7g、重合開始剤アゾビスイソブチロニトリル0.3gをメノウ鉢にてよく混合した。混合物を錠剤製造機により直径100mm、厚さ4mmの円盤状に成形した。成形後金属製の型枠ごと150℃で一時間加熱し、反応性カルボキシレート化合物を反応、さらに硬化させた。
冷却後、アンター社製ユニサーモモデル2022熱伝導性測定装置にて成形した円盤状試料の30℃における熱伝導性の測定を実施した。その結果を下記表5に示した。
なお、本試験例における試料は、試料作成の都合上、活性エネルギー線ではなく熱硬化を用いた。熱反応により生成される化学構造は活性エネルギー線による硬化反応によるものと同一であり、活性エネルギー線により得られる硬化物とほぼ同等の結果を示すものと考えられる。
Test Example 1: Evaluation of thermal conductivity The solvent was removed from the resin solution of the reactive carboxylate compound (A) of the present invention synthesized in Example 1-1 by drying under reduced pressure. Since the weight became constant, solvent removal was confirmed.
9.7 g of the resin excluding the solvent and 0.3 g of the polymerization initiator azobisisobutyronitrile were mixed well in an agate bowl. The mixture was formed into a disk shape having a diameter of 100 mm and a thickness of 4 mm using a tablet manufacturing machine. After forming, the metal mold was heated at 150 ° C. for 1 hour to react and further cure the reactive carboxylate compound.
After cooling, the thermal conductivity at 30 ° C. of a disk-shaped sample molded with an Unther Unimodel 2022 thermal conductivity measuring device was measured. The results are shown in Table 5 below.
The sample in this test example used thermosetting instead of active energy rays for the convenience of sample preparation. The chemical structure generated by the thermal reaction is the same as that caused by the curing reaction by the active energy ray, and is considered to show almost the same result as the cured product obtained by the active energy ray.

比較試験例1:熱伝導性の評価
試験例1で用いた反応性カルボキシレート化合物(A)を、比較例1−1において得られた一般のビスフェノールF型カルボキシレート化合物溶液に置き換え、試験例1と同じく熱伝導性を比較した。
Comparative Test Example 1: Evaluation of Thermal Conductivity The reactive carboxylate compound (A) used in Test Example 1 was replaced with the general bisphenol F-type carboxylate compound solution obtained in Comparative Example 1-1, and Test Example 1 was conducted. The thermal conductivity was compared as well.

Figure 0005137823
Figure 0005137823

以上の結果から、本発明の反応性カルボキシレート化合物(A)は、通常一般のエポキシアクリレート材料と比較して良好な熱伝導性を有していることが明らかとなった。   From the above results, it became clear that the reactive carboxylate compound (A) of the present invention has a good thermal conductivity as compared with a general epoxy acrylate material.

Claims (11)

下記式(I)、(II)で表される構造単位を共に有し、式(I)と式(II)の繰り返し数の総和の平均値が1.1〜20であり、式(I)の繰り返し数÷式(II)の繰り返し数で示される値が0.5以上50以下であることを特徴とするエポキシ樹脂(a)と、分子中に一個以上の重合可能なエチレン性不飽和基と一個以上のカルボキシル基を併せ持つ化合物(b)を反応せしめて得られる反応性カルボキシレート化合物(A)。
Figure 0005137823
Both have structural units represented by the following formulas (I) and (II), the average value of the sum of the number of repetitions of formula (I) and formula (II) is 1.1 to 20, and the formula (I) The epoxy resin (a), wherein the value represented by the number of repetitions of ÷ the number of repetitions of formula (II) is 0.5 to 50, and one or more polymerizable ethylenically unsaturated groups in the molecule And a reactive carboxylate compound (A) obtained by reacting a compound (b) having at least one carboxyl group.
Figure 0005137823
式(I)と式(II)の繰り返し数の総和の平均値が1.3〜5であり、式(I)の繰り返し数÷式(II)の繰り返し数で示される値が0.5以上10以下であって、両末端がエポキシ基である請求項1に記載の反応性カルボキシレート化合物(A)。The average value of the sum of the number of repetitions of formula (I) and formula (II) is 1.3 to 5, and the value represented by the number of repetitions of formula (I) ÷ the number of repetitions of formula (II) is 0.5 or more. The reactive carboxylate compound (A) according to claim 1, which is 10 or less and both ends are epoxy groups. 請求項1に記載のカルボキシレート化合物(A)に多塩基酸無水物(c)を反応せしめて得られる反応性ポリカルボン酸化合物(B)。A reactive polycarboxylic acid compound (B) obtained by reacting the carboxylate compound (A) according to claim 1 with a polybasic acid anhydride (c). 請求項1に記載のカルボキシレート化合物(A)又は請求項3に記載の反応性ポリカルボン酸化合物(B)を含むことを特徴とする活性エネルギー線硬化型樹脂組成物。An active energy ray-curable resin composition comprising the carboxylate compound (A) according to claim 1 or the reactive polycarboxylic acid compound (B) according to claim 3. その他の反応性化合物(C)を含むことを特徴とする請求項4に記載の活性エネルギー線硬化型樹脂組成物。The active energy ray-curable resin composition according to claim 4, further comprising another reactive compound (C). 請求項5に記載の活性エネルギー線硬化型樹脂組成物において、その他の反応性化合物(C)がラジカル反応型のアクリレート類である活性エネルギー線硬化型樹脂組成物。The active energy ray-curable resin composition according to claim 5, wherein the other reactive compound (C) is a radical-reactive acrylate. 請求項5又は請求項6に記載の活性エネルギー線硬化型樹脂組成物に熱伝導性無機フィラーを含有させることを特徴とする活性エネルギー線硬化型樹脂組成物。An active energy ray-curable resin composition comprising a thermally conductive inorganic filler in the active energy ray-curable resin composition according to claim 5 or 6. 成形用材料である請求項4に記載の活性エネルギー線硬化型樹脂組成物。The active energy ray-curable resin composition according to claim 4, which is a molding material. 皮膜形成用材料である請求項4に記載の活性エネルギー線硬化型樹脂組成物。The active energy ray-curable resin composition according to claim 4, which is a film forming material. レジスト材料である請求項4に記載の活性エネルギー線硬化型樹脂組成物。The active energy ray-curable resin composition according to claim 4, which is a resist material. 熱伝導材料である請求項4に記載の活性エネルギー線硬化型樹脂組成物。The active energy ray-curable resin composition according to claim 4, which is a heat conductive material.
JP2008515507A 2006-05-11 2007-05-10 Reactive carboxylate compound, curable resin composition using the same, and use thereof Expired - Fee Related JP5137823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008515507A JP5137823B2 (en) 2006-05-11 2007-05-10 Reactive carboxylate compound, curable resin composition using the same, and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006132826 2006-05-11
JP2006132826 2006-05-11
JP2008515507A JP5137823B2 (en) 2006-05-11 2007-05-10 Reactive carboxylate compound, curable resin composition using the same, and use thereof
PCT/JP2007/059644 WO2007132724A1 (en) 2006-05-11 2007-05-10 Reactive carboxylate compound, curable resin composition using the same, and use thereof

Publications (2)

Publication Number Publication Date
JPWO2007132724A1 JPWO2007132724A1 (en) 2009-09-24
JP5137823B2 true JP5137823B2 (en) 2013-02-06

Family

ID=38693818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008515507A Expired - Fee Related JP5137823B2 (en) 2006-05-11 2007-05-10 Reactive carboxylate compound, curable resin composition using the same, and use thereof

Country Status (2)

Country Link
JP (1) JP5137823B2 (en)
WO (1) WO2007132724A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101456516B1 (en) * 2007-08-28 2014-11-03 니폰 가야꾸 가부시끼가이샤 Reactive carboxylate compound, curable resin composition using the same, and use of the same
JP5562241B2 (en) * 2008-08-08 2014-07-30 昭和電工株式会社 Epoxy group-containing copolymer, epoxy (meth) acrylate copolymer using the same, and production method thereof
WO2011043803A1 (en) * 2009-10-07 2011-04-14 Dow Global Technologies Inc. Reducing impurities in solid epoxy resin
JP6052873B2 (en) * 2012-12-25 2016-12-27 株式会社Adeka Photo-curable composition for nanoimprint
JP2017036379A (en) 2015-08-07 2017-02-16 日本化薬株式会社 Novel reactive carboxylate compound, curable resin composition prepared therewith, and use therefor
JP6588346B2 (en) * 2016-01-14 2019-10-09 日本化薬株式会社 Epoxy resin, reactive carboxylate compound, curable resin composition using the same, and use thereof
JP6685813B2 (en) * 2016-04-14 2020-04-22 日本化薬株式会社 Epoxy resin, reactive carboxylate compound, curable resin composition using the same, and use thereof
CN114249879A (en) * 2022-01-12 2022-03-29 广东美亨新材料科技有限公司 Environment-friendly vinyl ester resin

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09227653A (en) * 1996-02-23 1997-09-02 Asahi Chiba Kk Novel epoxy resin and epoxy resin composition
JP2002138131A (en) * 2000-11-01 2002-05-14 Japan U-Pica Co Ltd Epoxy(meth)acrylate, resin composition using the same and cured product thereof
JP2003280192A (en) * 2002-03-22 2003-10-02 Taiyo Ink Mfg Ltd Photosetting and thermosetting resin composition
JP2004137328A (en) * 2002-10-16 2004-05-13 Japan U-Pica Co Ltd Photocurable compound and photocurable thermosetting resin composition and its cured product

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01296241A (en) * 1988-05-24 1989-11-29 Unitika Ltd Photosensitive resin composition
JP3190251B2 (en) * 1995-06-06 2001-07-23 太陽インキ製造株式会社 Photocurable and thermosetting resin composition for alkali-developed flexible printed wiring boards
JPH09157340A (en) * 1995-12-08 1997-06-17 Kyoeisha Chem Co Ltd Novel heat-resistant resin
JP4042198B2 (en) * 1998-02-24 2008-02-06 日立化成工業株式会社 Photocurable resin composition and photosensitive element using the same
JP2000330275A (en) * 1999-05-19 2000-11-30 Mitsubishi Gas Chem Co Inc Photosensitive resin composition
JP4344894B2 (en) * 1999-05-28 2009-10-14 三菱瓦斯化学株式会社 Epoxy acrylate compound
JP3723036B2 (en) * 2000-03-29 2005-12-07 太陽インキ製造株式会社 Active energy ray-curable resin and photocurable / thermosetting resin composition using the same
JP2001310927A (en) * 2000-04-28 2001-11-06 Nippon Shokubai Co Ltd Carboxylic acid having unsaturated group
JP2002121258A (en) * 2000-08-10 2002-04-23 Dainippon Ink & Chem Inc Method for producing energy ray-curable resin and energy ray-curable resin composition for resist
JP4713753B2 (en) * 2001-03-29 2011-06-29 太陽ホールディングス株式会社 Photocurable thermosetting resin composition and cured product thereof
JP3901658B2 (en) * 2003-03-31 2007-04-04 太陽インキ製造株式会社 Active energy ray-curable resin, composition using the same, and cured product
JP4022194B2 (en) * 2003-06-04 2007-12-12 積水化学工業株式会社 Curable resin composition for liquid crystal display element, sealing agent for liquid crystal display element, sealing agent for liquid crystal display element, vertical conduction material for liquid crystal display element, and liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09227653A (en) * 1996-02-23 1997-09-02 Asahi Chiba Kk Novel epoxy resin and epoxy resin composition
JP2002138131A (en) * 2000-11-01 2002-05-14 Japan U-Pica Co Ltd Epoxy(meth)acrylate, resin composition using the same and cured product thereof
JP2003280192A (en) * 2002-03-22 2003-10-02 Taiyo Ink Mfg Ltd Photosetting and thermosetting resin composition
JP2004137328A (en) * 2002-10-16 2004-05-13 Japan U-Pica Co Ltd Photocurable compound and photocurable thermosetting resin composition and its cured product

Also Published As

Publication number Publication date
JPWO2007132724A1 (en) 2009-09-24
WO2007132724A1 (en) 2007-11-22

Similar Documents

Publication Publication Date Title
JP5137823B2 (en) Reactive carboxylate compound, curable resin composition using the same, and use thereof
JP6576161B2 (en) Novel reactive epoxycarboxylate compound, derivative thereof, resin composition containing the same, and cured product thereof
JP6075772B2 (en) Resin composition and cured product thereof
JP2017036379A (en) Novel reactive carboxylate compound, curable resin composition prepared therewith, and use therefor
CN108373532B (en) Reactive polycarboxylic acid compound, active energy ray-curable resin composition, cured product, and article
JP7236817B2 (en) Reactive polycarboxylic acid compound, active energy ray-curable resin composition using the same, cured product thereof, and use thereof
JP2009120737A (en) Reactive carboxylate compound, active energy ray-curable resin composition using the same, and application of the resin composition
JP5473208B2 (en) Novel epoxy carboxylate compound, derivative thereof, active energy ray-curable resin composition containing the same, and cured product thereof
JP2022166092A (en) Reactive polycarboxylic acid compound, active energy ray-curable resin composition using the same, cured product thereof, and use thereof
JP5604106B2 (en) Reactive carboxylate compound, curable resin composition using the same, and use thereof
JP2018188623A (en) Reactive polycarboxylic acid compound, active energy ray curable resin composition using same, and cured product thereof and use thereof
JP6556735B2 (en) Reactive polyester compound and active energy ray-curable resin composition using the same
JP7419246B2 (en) Reactive polycarboxylic acid resin mixture, active energy ray-curable resin composition using the same and cured product thereof, and reactive epoxycarboxylate resin mixture
JP6025245B2 (en) Novel epoxy carboxylate compound, derivative thereof, active energy ray-curable resin composition containing the same, and cured product thereof
JP2009227848A (en) Epoxycarboxylate compound with little chlorine content, derivative thereof, active energy ray-curable resin composition containing the same, and cured product thereof
WO2013172009A1 (en) Reactive polyester compound and active energy ray-curable resin composition
CN107298753B (en) Reactive epoxy carboxylate compound, reactive polycarboxylic acid compound resin composition, cured product and article
JP2009275167A (en) Reactive carboxylate compound, active energy ray-curable resin composition utilizing the same, and use of the same
JP5959125B2 (en) Reactive carboxylate compound, active energy ray-curable resin composition using the same, and use thereof
JP2018012802A (en) Epoxy carboxylate compound, polycarboxylic acid compound, energy ray curable resin composition containing the same and cured product thereof
CN105968001B (en) Carboxyl group-containing reactive compound, curable resin composition using same, and cured product
JP2016148874A (en) Reactive carboxylate compound, active energy ray-curable resin composition using the same, and application of the same
JP6588346B2 (en) Epoxy resin, reactive carboxylate compound, curable resin composition using the same, and use thereof
KR20220144318A (en) Novel reactive epoxy carboxylate compound, derivative thereof, photosensitive resin composition containing them, and cured product thereof
JP2013108093A (en) Reactive carboxylate compound, active energy ray-curable resin composition using the same, and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees