JP5137317B2 - Electronic components - Google Patents

Electronic components Download PDF

Info

Publication number
JP5137317B2
JP5137317B2 JP2006101609A JP2006101609A JP5137317B2 JP 5137317 B2 JP5137317 B2 JP 5137317B2 JP 2006101609 A JP2006101609 A JP 2006101609A JP 2006101609 A JP2006101609 A JP 2006101609A JP 5137317 B2 JP5137317 B2 JP 5137317B2
Authority
JP
Japan
Prior art keywords
solder
alloy
surface treatment
plating
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006101609A
Other languages
Japanese (ja)
Other versions
JP2007277593A (en
Inventor
高志 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2006101609A priority Critical patent/JP5137317B2/en
Publication of JP2007277593A publication Critical patent/JP2007277593A/en
Application granted granted Critical
Publication of JP5137317B2 publication Critical patent/JP5137317B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

本発明は、Sn及びSn合金に対する表面処理剤、及びそれを用いた表面処理方法に関する。更に、本発明は、その表面処理方法で処理を行った電子部品、Sn合金はんだボール、Sn合金はんだ粉末、及び該はんだボールを用いたボールグリッドアレイ、該はんだ粉末を用いたはんだペースト、それらを用いた実装品に関する。   The present invention relates to a surface treatment agent for Sn and an Sn alloy, and a surface treatment method using the same. Furthermore, the present invention relates to an electronic component treated by the surface treatment method, an Sn alloy solder ball, an Sn alloy solder powder, a ball grid array using the solder ball, a solder paste using the solder powder, It relates to the mounted product used.

はんだ付けは、融点が比較的低い物質を用いて物体同士を接合する技術であり、現代産業において、電子機器の接合、組み立て等に幅広く用いられている。一般的に用いられているはんだはSn−Pb合金であり、その共晶組成(63%Sn−残部Pb)の融点が183℃と低いものであることから、そのはんだ付けは220〜230℃で行われるため、電子部品や基板に対しほとんど熱損傷を与えない。しかも、Sn−Pb合金は、はんだ付け性が良好であるとともに、はんだ付け時にすぐに凝固して、はんだ付け部に振動が加わっても割れや剥離を起こし難いという優れた特徴も有している。   Soldering is a technique for joining objects using a material having a relatively low melting point, and is widely used in joining and assembling electronic devices in the modern industry. The commonly used solder is Sn—Pb alloy, and its eutectic composition (63% Sn—remainder Pb) has a melting point as low as 183 ° C., so the soldering is performed at 220 to 230 ° C. As a result, almost no thermal damage is caused to the electronic components and the substrate. In addition, the Sn-Pb alloy has excellent characteristics that it has good solderability and is solidified immediately during soldering, and hardly cracks or peels even if vibration is applied to the soldered portion. .

一般に電子機器は、外枠や基板等の合成樹脂と導体部やフレーム等の金属により形成されており、廃棄処分された場合は、焼却処分されず、ほとんどが地中に埋め立てられる。近年、地上に降る雨は酸性を示す傾向にあり(酸性雨)、地中に埋められた電子機器のはんだを溶出させて、地下水を汚染することが問題化している。このため、特に電子機器業界において、鉛を含まないはんだ(鉛フリーはんだ)への代替の動きが急速に進んでいる
In general, an electronic device is formed of a synthetic resin such as an outer frame or a substrate and a metal such as a conductor or a frame. When discarded, the electronic device is not incinerated and mostly buried in the ground. In recent years, rain on the ground tends to be acidic (acid rain), and it has become a problem that the solder of electronic devices buried in the ground is eluted to contaminate groundwater. For this reason, particularly in the electronic equipment industry, an alternative movement to lead-free solder (lead-free solder) is rapidly progressing.

電子部品の外部リード端子には、そのはんだ濡れ性と耐食性を向上させるため、主にはんだめっき(90%Sn−残部Pb)が施されており、その鉛フリー化への対応が望まれている。鉛フリーはんだめっきの候補としては、純Sn、Sn−Ag(Cu)系、Sn−Zn系、Sn−Bi系に大別されるが、それぞれ一長一短がありSn−Pb合金を完全に代替するには未だ至っていない。   External lead terminals of electronic components are mainly subjected to solder plating (90% Sn-remainder Pb) in order to improve solder wettability and corrosion resistance, and it is desired to cope with lead-free. . Candidates for lead-free solder plating are broadly divided into pure Sn, Sn-Ag (Cu), Sn-Zn, and Sn-Bi, but each has its merits and demerits to completely replace Sn-Pb alloys. Has not yet reached.

純Snめっきは、コストやめっきの作業性等、総合的にみて鉛フリーめっきとしては最有力と考えられる。しかし、Snめっきは表面の酸化や内部応力に起因して、ウィスカーが発生し易いことに加え、経時的にはんだ濡れ性が劣化し易いという課題があり、その改善が強く要望されている。   Pure Sn plating is considered to be the most powerful lead-free plating in terms of cost and workability of plating. However, Sn plating has a problem that solder wettability tends to deteriorate with time in addition to the fact that whiskers are likely to occur due to surface oxidation and internal stress, and there is a strong demand for improvement.

Sn−Zn系合金は、従来のSn−Pb系合金と融点が近いことから、現在の設備や工程を変える必要がないという点で有利である。また、めっき被膜の機械的強度に優れコスト的にも優れている。しかし、Znは活性な金属種であることから酸化され易く、Sn−Zn系合金は酸化により、はんだ濡れ性が非常に悪くなるため、現時点では、実用化される可能性は最も低いと考えられている。   The Sn—Zn alloy is advantageous in that it does not need to change current facilities and processes because it has a melting point close to that of a conventional Sn—Pb alloy. Moreover, it is excellent in the mechanical strength of a plating film, and is excellent also in cost. However, since Zn is an active metal species, it is likely to be oxidized, and Sn—Zn-based alloys have a very poor solder wettability due to oxidation. ing.

はんだペーストは、電子部品を基板に表面実装するために用いられ、近年その使用量が増大している。はんだペーストは、一般には、はんだ合金粉末を主体とし、粘着剤、活性剤、チクソトロピック剤、界面活性剤、溶剤等を含むフラックスを加えたものである。はんだペーストの鉛フリー化として、Sn−Ag(Cu)系合金、Sn−Zn系合金、Sn−Bi系合金が検討されているが、Sn−Zn系合金は前述した通り、従来のSn−Pb系はんだの共晶温度に近いことから、代替の有力な候補として考えられている。しかし、前述の通りZnの酸化されやすさから、Sn−Zn系合金をはんだ粉末として用いたはんだペーストはフラックスに含まれる活性剤と酸化反応を起こし、はんだ濡れ性、保存安定性が著しく悪く、またリフロー時に不活性ガス雰囲気が必要という欠点がある。   Solder paste is used to surface-mount electronic components on a substrate, and the amount of use has increased in recent years. The solder paste is generally composed of a solder alloy powder as a main component and added with a flux containing an adhesive, an activator, a thixotropic agent, a surfactant, a solvent, and the like. As a lead-free solder paste, Sn—Ag (Cu) alloy, Sn—Zn alloy, and Sn—Bi alloy have been studied. As described above, Sn—Zn alloy is a conventional Sn—Pb alloy. Because it is close to the eutectic temperature of a solder, it is considered as a promising alternative candidate. However, because of the ease of oxidation of Zn as described above, the solder paste using the Sn—Zn alloy as the solder powder causes an oxidation reaction with the activator contained in the flux, and the solder wettability and storage stability are remarkably poor. In addition, there is a disadvantage that an inert gas atmosphere is required during reflow.

これらの問題に対処するため、本発明者らは特許文献1(特開2004−137574号公報)にて、一つもしくは二つの、飽和もしくは不飽和アルキル基をもつ酸性リン酸エステル及びその塩を含むことを特徴とする表面処理剤を提案した。   In order to cope with these problems, the present inventors have disclosed, in Patent Document 1 (Japanese Patent Application Laid-Open No. 2004-137574), one or two acidic phosphate esters having a saturated or unsaturated alkyl group and salts thereof. A surface treatment agent characterized by containing was proposed.

また、特許文献2(特開平7−188942号公報)には、特に、リン酸ジフェニルエステル及び/又は亜リン酸ジフェニルエステルからなることを特徴とする酸化防止剤が提案されている。   Patent Document 2 (Japanese Patent Laid-Open No. 7-188942) proposes an antioxidant characterized in that it is composed of phosphoric acid diphenyl ester and / or phosphorous acid diphenyl ester.

しかし、上記の技術におけるリン酸エステルもしくは亜リン酸エステルは、比較的高温(200℃以上)の熱処理によってエステル結合が分解することにより、充分な酸化防止効果が得られない。このため、上記の技術では、一般的にはんだ付け温度が従来より上がる鉛フリーはんだ対応のSn及びSn合金材の酸化を防止することは困難であった。   However, the phosphoric acid ester or phosphite ester in the above technique cannot obtain a sufficient antioxidant effect because the ester bond is decomposed by heat treatment at a relatively high temperature (200 ° C. or higher). For this reason, it has been difficult to prevent the oxidation of Sn and Sn alloy materials corresponding to lead-free solder, in which the soldering temperature is generally higher than in the prior art.

この高温酸化防止を目的に、本発明者らは特許文献3(特願2004−061635)において、一分子中に2個以上のホスホン酸基を持ち、分子内にエステル結合を含まない化合物、及び/又はその塩の一種もしくは二種以上を合計で0.01g/L以上含む表面処理剤を提案した。
しかし、この表面処理剤は、強酸領域(pH2以下)で最大の効果を発揮することから、チップコンデンサー等の酸に弱い素材の部品には適用することが困難であった。
特開2004−137574号公報 特開平7−188942号公報 特願2004−061635
For the purpose of preventing this high temperature oxidation, the present inventors disclosed in Patent Document 3 (Japanese Patent Application No. 2004-061635) a compound having two or more phosphonic acid groups in one molecule and no ester bond in the molecule, and A surface treatment agent containing at least 0.01 g / L of one or more of its salts in total has been proposed.
However, since this surface treatment agent exhibits the maximum effect in a strong acid region (pH 2 or less), it has been difficult to apply it to parts made of materials that are vulnerable to acids such as chip capacitors.
JP 2004-137574 A Japanese Patent Laid-Open No. 7-188942 Japanese Patent Application No. 2004-061635

本発明は、酸に弱い素材の部品にも適用することができ、Sn及びSn合金に耐酸化性を付与し、はんだ濡れ性を改善する表面処理剤を提供することを目的とする。更に、本発明は、Sn及びSn合金のウィスカーの発生を抑制する表面処理剤を提供することを目的とする。   The present invention can be applied to parts made of a material that is weak against acid, and an object thereof is to provide a surface treatment agent that imparts oxidation resistance to Sn and Sn alloy and improves solder wettability. Furthermore, an object of this invention is to provide the surface treating agent which suppresses generation | occurrence | production of the whisker of Sn and Sn alloy.

そこで、本発明者は、鋭意検討を重ねた結果、タンニン酸を0.01g/L以上含む表面処理剤でSn及びSn合金を表面処理することにより、pH3〜5の領域でも耐酸化性を付与し、はんだ濡れ性が改善されることを見出した。また、この表面処理を施したSn合金を含むはんだペーストは、その保存安定性に顕著な改善効果が見られた。更に、この表面処理を施したSn及びSn合金めっきからは、ウィスカーの発生が大幅に抑制されることを確認した。   Therefore, as a result of intensive studies, the present inventor imparts oxidation resistance even in a pH range of 3 to 5 by surface-treating Sn and Sn alloy with a surface treatment agent containing 0.01 g / L or more of tannic acid. And found that the solder wettability is improved. Further, the solder paste containing the Sn alloy subjected to the surface treatment showed a remarkable improvement effect on the storage stability. Furthermore, it was confirmed that the generation of whiskers was significantly suppressed from the Sn and Sn alloy plating subjected to this surface treatment.

即ち本発明は、以下のとおりである。
(1) 電子部品の接続端子部の導体表面にSnまたはSn合金めっきを施した後、該SnまたはSn合金表面の表面処理を行うための、タンニン酸を0.01g/L以上含むことを特徴とする表面処理剤により表面処理を行ったことを特徴とする電子部品。
That is, the present invention is as follows.
(1) It is characterized by containing 0.01 g / L or more of tannic acid for performing a surface treatment of the Sn or Sn alloy surface after the Sn or Sn alloy plating is performed on the conductor surface of the connection terminal portion of the electronic component. An electronic component that is surface-treated with a surface treatment agent.

タンニン酸を0.01g/L以上含む表面処理剤でSn又はSn合金を表面処理することにより、耐酸化性を付与し、はんだ濡れ性を改善することができる。
また、本発明の表面処理剤を用いて表面処理を施したSn合金はんだ粉末を含むはんだペーストは、その保存安定性が著しく改善される。更に、Sn及びSn合金めっきを本発明の表面処理剤を用いて処理することにより、ウィスカーの発生を大幅に抑制することができる。
By surface-treating Sn or Sn alloy with a surface treatment agent containing 0.01 g / L or more of tannic acid, oxidation resistance can be imparted and solder wettability can be improved.
Moreover, the storage stability of the solder paste containing the Sn alloy solder powder subjected to the surface treatment using the surface treating agent of the present invention is remarkably improved. Furthermore, by processing Sn and Sn alloy plating using the surface treating agent of the present invention, the generation of whiskers can be significantly suppressed.

以下に本発明の表面処理剤について詳述する。
本発明の表面処理剤で処理される金属としては、Sn及びSn合金が挙げられ、Sn合金としては、環境汚染等の問題から鉛を含まないSn合金がより好ましい。鉛を含まないSn合金としては、SnにZn、Bi、Cu、In、Ag、Sbのいずれか一つもしくは二つ以上を含むはんだ合金等が挙げられる。
The surface treatment agent of the present invention is described in detail below.
Examples of the metal to be treated with the surface treating agent of the present invention include Sn and Sn alloy. As the Sn alloy, an Sn alloy containing no lead is more preferable from the viewpoint of environmental pollution. Examples of the Sn alloy not containing lead include a solder alloy containing one or more of Zn, Bi, Cu, In, Ag, and Sb in Sn.

本発明の表面処理剤は、タンニン酸を溶媒に溶解して用いることができる。
タンニンは、通例、没食子や五倍子等の植物に含まれる多価フェノール成分であって、一つのベンゼン環に複数のOH基を持つ化合物であり、本発明においては、このタンニン及び/又はその誘導体を含めタンニン酸と称する。タンニンとしては、没食子タンニン、五倍子タンニン、トルコタンニン、スーマックタンニン等の加水分解型タンニンと、ケプラチョタンニン、ワルトタンニン等の縮合型タンニンが、本用途に有効であるが、Sn及びSn合金との反応性の点では、加水分解型タンニンを使用することが望ましい。
タンニン酸は複雑な構造のため、分解温度が比較的高く(225〜235℃)、耐熱性が高い。従って、リン酸エステルや亜リン酸エステルを用いる場合より耐熱性に優れている。
The surface treating agent of the present invention can be used by dissolving tannic acid in a solvent.
Tannin is a polyhydric phenol component usually contained in plants such as gallic and pentaploid, and is a compound having a plurality of OH groups in one benzene ring. In the present invention, tannin and / or a derivative thereof is used. Including tannic acid. As tannins, hydrolyzable tannins such as gallic tannin, pentaploid tannin, turkey tannin, sumac tannin, and condensed tannins such as kepracho tannin and walt tannin are effective for this application, but Sn and Sn alloys From the viewpoint of reactivity, it is desirable to use hydrolyzed tannin.
Tannic acid has a complex structure, and therefore has a relatively high decomposition temperature (225 to 235 ° C.) and high heat resistance. Accordingly, the heat resistance is superior to the case of using phosphate ester or phosphite ester.

使用される溶媒としては、可溶であれば特に制限されるものでない。例えば、水や、アルコール、グリコール等の極性溶媒が挙げられるが、溶解度、コスト等を考慮すると水が好ましい。   The solvent used is not particularly limited as long as it is soluble. For example, water and polar solvents such as alcohol and glycol can be mentioned, but water is preferable in consideration of solubility, cost and the like.

タンニン酸を0.01g/L以上含有する表面処理剤でSn又はSn合金を表面処理することにより、被処理材表面に耐酸化性を付与し、はんだ濡れ性を向上させることができる。
タンニン酸の量が0.01g/L未満であるとその効果が小さい。また、逆に添加量が多過ぎると特性が劣化することはないため、添加量の上限はないが、コスト的な問題から、添加量は0.01〜500g/Lが望ましく、より好ましくは0.1〜100g/Lである。
By surface-treating Sn or an Sn alloy with a surface treatment agent containing 0.01 g / L or more of tannic acid, it is possible to impart oxidation resistance to the surface of the material to be treated and improve solder wettability.
The effect is small when the amount of tannic acid is less than 0.01 g / L. On the other hand, if the amount added is too large, the properties will not deteriorate, so there is no upper limit for the amount added. However, from the viewpoint of cost, the amount added is preferably 0.01 to 500 g / L, more preferably 0. .1 to 100 g / L.

水系溶媒を用いた場合、表面処理剤のpHは、素材等への影響を鑑み、好ましくはpH3〜5であり、より好ましくはpH3〜4である。pHが4を超えると、分解しやすくなるが、酸化防止剤を添加することにより抑制することができる。pH調整剤としては、一般的に入手可能な酸、アルカリが使用可能である。   When an aqueous solvent is used, the pH of the surface treatment agent is preferably pH 3 to 5 and more preferably pH 3 to 4 in view of the influence on the material and the like. When pH exceeds 4, it becomes easy to decompose | disassemble, but it can suppress by adding antioxidant. As the pH adjuster, generally available acids and alkalis can be used.

上述したように、本発明の表面処理剤は、更に酸化防止剤(溶液安定化剤)を添加することによりタンニン酸の分解を抑制することができる。酸化防止剤は、タンニン酸の量に対し5wt%以上添加することが好ましい。酸化防止剤の添加量がタンニン酸の5wt%未満であると、添加することによるタンニン酸の分解抑制効果が得られない。酸化防止剤の添加量は、好ましくはタンニン酸の量に対し5〜20wt%である。
酸化防止剤としては、通常の酸化防止剤を用いることができ、例えば、
1)フェノール性水酸基を分子内に持つdl−α−トコフェロール、ジブチルヒドロキシトルエン、ブチルヒドロキシアニソール、没食子酸などと、L−アスコルビン酸、L−アスコルビン酸ステアリン酸エステル等のアスコルビン酸誘導体、エリソルビン酸、エリソルビン酸ナトリウム、L−システイン塩酸塩などのラジカルや活性酸素を消去するもの、
2)ピロ亜硫酸カリウム、ピロ亜硫酸ナトリウム、亜硫酸ナトリウム、次亜硫酸ナトリウム、二酸化硫黄などの無機系還元作用が強いもの、
3)エチレンジアミン四酢酸カルシウム二ナトリウム、エチレンジアミン四酢酸二ナトリウム、クエン酸イソプロピルなどのキレート作用が強いもの
がある。
As described above, the surface treatment agent of the present invention can suppress decomposition of tannic acid by adding an antioxidant (solution stabilizer). The antioxidant is preferably added in an amount of 5 wt% or more based on the amount of tannic acid. When the addition amount of the antioxidant is less than 5 wt% of the tannic acid, the effect of suppressing the decomposition of tannic acid due to the addition cannot be obtained. The addition amount of the antioxidant is preferably 5 to 20 wt% with respect to the amount of tannic acid.
As the antioxidant, a normal antioxidant can be used, for example,
1) dl-α-tocopherol having a phenolic hydroxyl group in the molecule, dibutylhydroxytoluene, butylhydroxyanisole, gallic acid and the like, ascorbic acid derivatives such as L-ascorbic acid and L-ascorbic acid stearate, erythorbic acid, Eliminate radicals and active oxygen such as sodium erythorbate and L-cysteine hydrochloride
2) Strong inorganic reducing action such as potassium pyrosulfite, sodium pyrosulfite, sodium sulfite, sodium hyposulfite, sulfur dioxide,
3) Some have strong chelating action such as disodium ethylenediaminetetraacetate, disodium ethylenediaminetetraacetate, isopropyl citrate and the like.

また、本発明の表面処理剤は、所望の性能を付与させる目的で本来の性質を損なわない範囲の量の添加剤を含んでいてもよい。添加剤としては、防腐剤、pH緩衝剤等が挙げられ、これらは従来公知のものを用いることができる。   In addition, the surface treatment agent of the present invention may contain an amount of an additive in a range that does not impair the original properties for the purpose of imparting desired performance. Examples of the additive include preservatives and pH buffering agents, and conventionally known additives can be used.

本発明の表面処理剤を用いてSn又はSn合金を表面処理するには、Sn又はSn合金の表面に被膜を形成する方法であればよく、例えば、Sn又はSn合金を単に表面処理剤に浸漬させる方法、表面処理剤を、シャワー、又はエアードコータ、ブレードコータ、ロッドコータ、ナイフコータ、グラビアコータ、リバースコータ、キャストコータなどの装置を用いて塗布する方法等が挙げられる。
表面処理する際の溶液の温度としては、水系で使用する場合は、反応性、設備耐熱温度及び作業性の観点から20〜60℃が好ましく、より好ましくは30〜50℃である。
In order to surface-treat Sn or Sn alloy using the surface treatment agent of the present invention, any method can be used as long as it is a method of forming a film on the surface of Sn or Sn alloy. For example, Sn or Sn alloy is simply immersed in the surface treatment agent. And a method of applying the surface treatment agent using a shower or a device such as an air coater, a blade coater, a rod coater, a knife coater, a gravure coater, a reverse coater, and a cast coater.
The temperature of the solution for the surface treatment is preferably 20 to 60 ° C., more preferably 30 to 50 ° C. from the viewpoint of reactivity, equipment heat resistance temperature and workability when used in an aqueous system.

本発明の表面処理剤で表面処理をする金属の形状は、線状、板・帯・箔状、粒状、粉末状等いずれの形状であってもよく、本発明の表面処理剤は、電子部品、はんだボール、はんだ粉末等を処理することができる。尚、本発明における電子部品としては、基板も含むものである。
本発明の表面処理剤を用い、電子部品の接続端子部の導体表面を表面処理する、またはその導体表面にめっきを施した後に、表面処理することにより、耐酸化性に優れ、はんだ濡れ性が改善された電子部品とすることができる。また、はんだ濡れ性が改善されることにより、はんだ付け性も改善される。
本発明の表面処理剤で処理されたSn合金を用いたはんだボールは、耐酸化性に優れ、電気的接続部材であるボールグリッドアレイとして、また、電子部品に配置し、これを回路基板に接続した実装品として良好に用いることができる。
The shape of the metal surface-treated with the surface treatment agent of the present invention may be any shape such as linear, plate / strip / foil, granular, powder, etc. The surface treatment agent of the present invention is an electronic component. Solder balls, solder powder, etc. can be processed. The electronic component in the present invention includes a substrate.
The surface treatment agent of the present invention is used to surface-treat the conductor surface of the connection terminal portion of the electronic component, or after plating the conductor surface, it is excellent in oxidation resistance and solder wettability. It can be an improved electronic component. Moreover, solderability is also improved by improving solder wettability.
Solder balls using an Sn alloy treated with the surface treating agent of the present invention have excellent oxidation resistance, and are arranged on electronic components as a ball grid array which is an electrical connection member, and this is connected to a circuit board. It can be used satisfactorily as a mounted product.

また、Sn合金粉末を本発明の表面処理剤を用いて処理し、これに粘着剤、活性剤、チクソトロピック剤、界面活性剤、溶剤等を含むフラックスを加えてはんだペーストとして用いることもできる。このはんだペーストは、その保存安定性に顕著な改善効果が見られる。上記粘着剤、活性剤、チクソトロピック剤、界面活性剤、溶剤としては従来公知のものを用いることができる。   Further, the Sn alloy powder can be treated with the surface treating agent of the present invention, and a flux containing an adhesive, an activator, a thixotropic agent, a surfactant, a solvent and the like can be added thereto to be used as a solder paste. This solder paste has a remarkable improvement effect on its storage stability. Conventionally known pressure-sensitive adhesives, activators, thixotropic agents, surfactants and solvents can be used.

以下に実施例を挙げて本発明を詳細に説明する。
実施例1〜7、及び比較例1
タンニン酸(タンニン酸AL、富士化学工業(株)製)を主成分とするイソプロピルアルコール(IPA)溶液又は水溶液を7種類調製した(実施例1〜7)。内訳を表1に示す。
他方、銅材(C1020P、10mm×25mm×0.2tmm)に対し、以下の前処理を行った。
アルカリ電解脱脂(常温、15A/dm2、約30秒程度処理)→水洗→酸浸漬(10%硫酸、常温、5秒)→水洗→化学研磨(CPB−40、常温、1分浸漬)→水洗→酸浸漬(10%硫酸、常温、5秒)→水洗
この基材に対し、膜厚約5μmのSnめっきを行った(めっき浴:ティンコートK(日鉱メタルプレーティング(株)製)、めっき条件:陰極電流密度2A/dm2、温度20℃、液流動及びカソード揺動めっき)。
Hereinafter, the present invention will be described in detail with reference to examples.
Examples 1-7 and Comparative Example 1
Seven types of isopropyl alcohol (IPA) solutions or aqueous solutions mainly containing tannic acid (tannic acid AL, manufactured by Fuji Chemical Industry Co., Ltd.) were prepared (Examples 1 to 7). The breakdown is shown in Table 1.
On the other hand, the following pretreatment was performed on the copper material (C1020P, 10 mm × 25 mm × 0.2 t mm).
Alkaline electrolytic degreasing (room temperature, 15 A / dm 2 , treatment for about 30 seconds) → water washing → acid immersion (10% sulfuric acid, room temperature, 5 seconds) → water washing → chemical polishing (CPB-40, room temperature, 1 minute immersion) → water washing → Acid soaking (10% sulfuric acid, room temperature, 5 seconds) → Washing This substrate was Sn plated with a film thickness of about 5 μm (plating bath: Tincoat K (manufactured by Nikko Metal Plating Co., Ltd.)), plating Conditions: cathode current density 2 A / dm 2 , temperature 20 ° C., liquid flow and cathode swing plating).

このSnめっきを施した基材(以下Sn基材)を、上記のアルコール溶液に、室温で10秒間浸漬した後、乾燥させたものを試験基板とした(実施例1、2)。他方、このSn基材を、上記の水溶液に、浴温40℃で10秒間浸漬した後、水洗し、乾燥させたものも併せて試験基板とした(実施例3〜7)。   The substrate subjected to Sn plating (hereinafter referred to as “Sn substrate”) was immersed in the above alcohol solution at room temperature for 10 seconds and then dried to obtain a test substrate (Examples 1 and 2). On the other hand, the Sn substrate was immersed in the above aqueous solution at a bath temperature of 40 ° C. for 10 seconds, then washed with water and dried to obtain a test substrate (Examples 3 to 7).

これらの試験基板に対し、以下の評価を行った。
また、更に比較例として、未処理の上記Sn基材(比較例1)も併せて評価した。
耐熱酸化性
これらの試験基板を、220℃に保持した電気炉において、大気雰囲気で1時間熱処理した後、鉛フリーはんだとのはんだ付け性(ゼロクロスタイム)をメニスコグラフ法で以下の測定条件に基づき測定し、下記の基準に沿って評価した。
装置;ソルダーチェッカー SAT−5100(レスカ製)
はんだ槽;すず:銀:銅=96.5:3:0.5(浴温245℃)
フラックス;NA−200(タムラ化研製)
浸漬深さ;2mm
浸漬速度;4mm/sec.
浸漬時間;5sec.
評価基準
◎: ゼロクロスタイム1秒未満
○: ゼロクロスタイム1秒以上3秒未満
△: ゼロクロスタイム3秒以上5秒未満
×: ゼロクロスタイム5秒以上
表1に試験結果を示す。
The following evaluations were performed on these test substrates.
Further, as a comparative example, the untreated Sn base material (Comparative Example 1) was also evaluated.
Thermal oxidation resistance These test boards were heat-treated in an electric furnace maintained at 220 ° C. for 1 hour in air, and then solderability with lead-free solder (zero cross time) was measured by the meniscograph method based on the following measurement conditions And evaluated according to the following criteria.
Equipment: Solder Checker SAT-5100 (Resca)
Solder bath; tin: silver: copper = 96.5: 3: 0.5 (bath temperature 245 ° C.)
Flux; NA-200 (manufactured by Tamura Kaken)
Immersion depth: 2mm
Immersion speed: 4 mm / sec.
Immersion time: 5 sec.
Evaluation criteria A: Zero cross time less than 1 second ○: Zero cross time 1 second or more and less than 3 seconds Δ: Zero cross time 3 seconds or more and less than 5 seconds X: Zero cross time 5 seconds or more Table 1 shows the test results.

耐湿酸化性
これらの試験基板に対し、PCT処理(温度105℃、湿度100%の密閉釜内にて16時間放置)を施した後、鉛フリーはんだとのはんだ付け性(ゼロクロスタイム)をメニスコグラフ法で耐熱酸化性の項と同様に測定し、評価した。表1に試験結果を示す。
Moisture oxidation resistance These test substrates were subjected to PCT treatment (left in a sealed kettle with a temperature of 105 ° C and a humidity of 100% for 16 hours) and then soldered with lead-free solder (zero cross time) by meniscograph method Measured and evaluated in the same manner as in the section of heat and oxidation resistance. Table 1 shows the test results.

溶液の安定性
実施例1〜7で調製した溶液をネジ口ビンに入れ、蓋を閉めて、40℃に保持したウォーターバスに浸漬して、溶液の経時劣化(沈殿の発生)を確認した。結果を併せて表1に示す。
Solution Stability The solutions prepared in Examples 1 to 7 were placed in a screw cap bottle, the lid was closed, and the solution was immersed in a water bath maintained at 40 ° C. to confirm deterioration of the solution over time (generation of precipitation). The results are also shown in Table 1.

Figure 0005137317
Figure 0005137317

実施例8〜13、及び比較例2
前記実施例1〜7と同様な前処理を行った銅材(C1020P、10mm×25mm×0.2tmm)に対し、膜厚約5μmのSn−Znめっきを行った(めっき浴:日鉱メタルプレーティング(株)製、めっき条件:陰極電流密度3A/dm2、温度35℃、pH4.0、液流動及びカソード揺動めっき)。
このSn−Znめっきを施した基材(以下Sn−Zn基材)を、前記実施例1、2にて調製したアルコール溶液に、室温で10秒間浸漬した後、乾燥させたものを試験基板とした(実施例8、9)。他方、このSn−Zn基材を、前記実施例3、4、6、7で調製した水溶液に、浴温40℃で10秒間浸漬した後、水洗し、乾燥させたものも併せて試験基板とした(実施例10〜13)。
これらの試験基板に対し、前記実施例1〜7、及び比較例1と同様に、耐熱酸化性、耐湿酸化性の評価を行った。試験結果を表2に示す。
Examples 8 to 13 and Comparative Example 2
The copper material (C1020P, 10 mm × 25 mm × 0.2 t mm) subjected to the same pretreatment as in Examples 1 to 7 was subjected to Sn—Zn plating with a film thickness of about 5 μm (plating bath: Nikko Metal) Plating Co., Ltd., plating conditions: cathode current density 3 A / dm 2 , temperature 35 ° C., pH 4.0, liquid flow and cathode swing plating).
The substrate subjected to Sn—Zn plating (hereinafter referred to as “Sn—Zn substrate”) was dipped in the alcohol solution prepared in Examples 1 and 2 at room temperature for 10 seconds, and then dried and used as a test substrate. (Examples 8 and 9). On the other hand, the Sn—Zn base material was immersed in the aqueous solutions prepared in Examples 3, 4, 6, and 7 at a bath temperature of 40 ° C. for 10 seconds, washed with water, and dried, together with the test substrate. (Examples 10 to 13).
With respect to these test substrates, in the same manner as in Examples 1 to 7 and Comparative Example 1, the heat oxidation resistance and the moisture oxidation resistance were evaluated. The test results are shown in Table 2.

また、更に比較例として、未処理の上記Sn−Zn基材(比較例2)も併せて評価した。試験結果を併せて表2に示す。   Further, as a comparative example, the untreated Sn—Zn base material (Comparative Example 2) was also evaluated. The test results are also shown in Table 2.

Figure 0005137317
Figure 0005137317

実施例14、及び比較例3
実施例14では、Snめっきに対し表面処理したもののウィスカー発生が、表面処理しなかったものと比べて、著しく抑制された結果を示す。
前記実施例2と同等の処理をしたSnめっき基板と、表面処理をしなかった基板を、温度85℃、湿度85%の恒温恒湿雰囲気下において、24時間放置した。その後、基板を充分に乾燥した後、走査型電子顕微鏡(SEM)にて表面観察したところ、表面処理をしなかったものは、ウィスカーが多く観察された(比較例3)のに対し、表面処理をしたものからは、ウィスカーが全く観察されなかった(実施例14)。
Example 14 and Comparative Example 3
Example 14 shows a result in which whisker generation of the surface-treated Sn plating was significantly suppressed as compared to the case where the surface treatment was not performed.
The Sn-plated substrate treated in the same manner as in Example 2 and the substrate not subjected to surface treatment were left for 24 hours in a constant temperature and humidity atmosphere at a temperature of 85 ° C. and a humidity of 85%. Then, after fully drying the substrate, the surface was observed with a scanning electron microscope (SEM). When the surface treatment was not performed, many whiskers were observed (Comparative Example 3), whereas the surface treatment was performed. No whiskers were observed from those subjected to (Example 14).

実施例15、及び比較例4
実施例15では、表面処理したSn−9%Zn合金粉を用いたペーストの保存安定性が、表面処理しなかったものと比べて、著しく抑制された結果を示す。
タンニン酸を有効成分とする1wt%イソプロパノール溶液(実施例2と同じ溶液)を調製し、Sn−9%Znはんだ粉(粒径25〜45μm)に表面処理を行った。
この表面処理を施したはんだ粉末とフラックスを重量比で9:1でよく混合し、はんだペーストとした。尚、フラックスとしては重合ロジン30部、水添ロジン30部、グリコール系溶剤30部、活性剤(炭素数1〜30の有機酸、及びアミン臭化水素酸塩)5部、チキソ剤(硬化ヒマシ油)5部を用いたはんだペースト用フラックスを用いた。
5℃で冷蔵保存し、保存安定性の評価を行ったところ、未処理粉によるはんだペーストは、1週間後に固化し、粘度が測定不能になった(比較例4)のに対し、表面処理粉によるはんだペーストは、3ヶ月後でも粘度に大きな差はなかった(実施例15)。
Example 15 and Comparative Example 4
In Example 15, the storage stability of the paste using the surface-treated Sn-9% Zn alloy powder is shown to be significantly suppressed as compared to the case where the surface treatment was not performed.
A 1 wt% isopropanol solution containing tannic acid as an active ingredient (the same solution as in Example 2) was prepared, and surface treatment was performed on Sn-9% Zn solder powder (particle size: 25 to 45 μm).
This surface-treated solder powder and flux were well mixed at a weight ratio of 9: 1 to obtain a solder paste. The flux includes 30 parts of polymerized rosin, 30 parts of hydrogenated rosin, 30 parts of glycol solvent, 5 parts of activator (organic acid having 1 to 30 carbon atoms and amine hydrobromide), thixotropic agent (cured castor) Oil) Flux for solder paste using 5 parts was used.
When the storage stability was evaluated by refrigerated storage at 5 ° C., the solder paste made of untreated powder solidified after one week, and the viscosity became unmeasurable (Comparative Example 4). The solder paste according to No. 3 showed no significant difference in viscosity even after 3 months (Example 15).

実施例16、及び比較例5
実施例16では、表面処理したSn−3%Ag−0.5%Cu合金微粉を用いたペーストの保存安定性が、表面処理しなかったものと比べて、著しく抑制された結果を示す。
タンニン酸を有効成分とする1wt%イソプロパノール溶液(実施例2と同じ溶液)を調製し、Sn−3%Ag−0.5%Cuはんだ粉(粒径5〜15μm)に表面処理を行った。
この表面処理を施したはんだ粉末と実施例15で用いたはんだペースト用フラックスを重量比で9:1でよく混合し、はんだペーストとした。
5℃で冷蔵保存し、保存安定性の評価を行ったところ、未処理粉によるはんだペーストは、2週間後に固化し、粘度が測定不能になった(比較例5)のに対し、表面処理粉によるはんだペーストは、3ヶ月後でも粘度に大きな差はなかった(実施例16)。
Example 16 and Comparative Example 5
In Example 16, the storage stability of the paste using the surface-treated Sn-3% Ag-0.5% Cu alloy fine powder is shown to be significantly suppressed as compared with the case where the surface treatment was not performed.
A 1 wt% isopropanol solution containing tannic acid as an active ingredient (the same solution as in Example 2) was prepared, and surface treatment was performed on Sn-3% Ag-0.5% Cu solder powder (particle diameter 5-15 μm).
This surface-treated solder powder and the solder paste flux used in Example 15 were well mixed at a weight ratio of 9: 1 to obtain a solder paste.
When the storage stability was evaluated by refrigerated storage at 5 ° C., the solder paste made of untreated powder solidified after 2 weeks, and the viscosity became unmeasurable (Comparative Example 5). The solder paste according to No. 3 showed no significant difference in viscosity even after 3 months (Example 16).

実施例17、及び比較例6
実施例17では、表面処理したSn−3%Ag−0.5%Cu合金を用いたはんだボールの耐酸化性能が、表面処理しなかったものと比べて、著しく改善された結果を示す。
タンニン酸を有効成分とする1wt%イソプロパノール溶液(実施例2と同じ溶液)を調製し、Sn−3%Ag−0.5%Cuはんだボール(粒径600μm)に表面処理を行った。
この表面処理を施したはんだボール及び未処理のはんだボールを、220℃に保持した電気炉において、大気雰囲気で1時間熱処理した後、以下の測定条件に基づき、実施例1で作製したSnめっき基板上でリフロー処理を行った。
リフロー条件;260℃×30秒(ホットプレートで実施)
フラックス:NA−200、タムラ化研製
それぞれのはんだ部を上方から写真撮影し、はんだ部の濡れ広がり面積を算出し、はんだボールの濡れ広がり性を評価した。表3に結果を示す。
Example 17 and Comparative Example 6
In Example 17, the oxidation resistance performance of the solder balls using the surface-treated Sn-3% Ag-0.5% Cu alloy is shown to be remarkably improved as compared with those not subjected to the surface treatment.
A 1 wt% isopropanol solution containing tannic acid as an active ingredient (the same solution as in Example 2) was prepared, and surface treatment was performed on Sn-3% Ag-0.5% Cu solder balls (particle diameter 600 μm).
The surface-treated solder balls and untreated solder balls were heat-treated in an air atmosphere for 1 hour in an electric furnace maintained at 220 ° C., and then Sn-plated substrate produced in Example 1 based on the following measurement conditions The reflow process was performed above.
Reflow conditions: 260 ° C x 30 seconds (implemented on a hot plate)
Flux: NA-200, manufactured by Tamura Chemical Co., Ltd. Each solder part was photographed from above, the wet spread area of the solder part was calculated, and the wet spread characteristic of the solder ball was evaluated. Table 3 shows the results.

Figure 0005137317
Figure 0005137317

Claims (1)

電子部品の接続端子部の導体表面にSnまたはSn合金めっきを施した後、該SnまたはSn合金表面の表面処理を行うための、タンニン酸を0.01g/L以上含むことを特徴とする表面処理剤により表面処理を行ったことを特徴とする電子部品。  A surface comprising 0.01 g / L or more of tannic acid for performing Sn or Sn alloy plating on a conductor surface of a connection terminal portion of an electronic component and then performing surface treatment of the Sn or Sn alloy surface An electronic component that is surface-treated with a treating agent.
JP2006101609A 2006-04-03 2006-04-03 Electronic components Active JP5137317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006101609A JP5137317B2 (en) 2006-04-03 2006-04-03 Electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006101609A JP5137317B2 (en) 2006-04-03 2006-04-03 Electronic components

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012224710A Division JP5697641B2 (en) 2012-10-10 2012-10-10 Surface treatment agent for Sn and Sn alloy

Publications (2)

Publication Number Publication Date
JP2007277593A JP2007277593A (en) 2007-10-25
JP5137317B2 true JP5137317B2 (en) 2013-02-06

Family

ID=38679338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006101609A Active JP5137317B2 (en) 2006-04-03 2006-04-03 Electronic components

Country Status (1)

Country Link
JP (1) JP5137317B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070838A (en) * 2008-09-22 2010-04-02 Rohm & Haas Electronic Materials Llc Aqueous solution for surface treatment of metal and method for reducing whisker on metal surface
JP5453017B2 (en) * 2009-08-21 2014-03-26 日新製鋼株式会社 Chemical conversion liquid and method for producing chemical conversion steel sheet

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3273757B2 (en) * 1998-03-19 2002-04-15 株式会社東芝 Solder paste and flux for forming solder joints
GB0021182D0 (en) * 2000-08-29 2000-10-18 Unilever Plc Cleaning aid
JP2002355921A (en) * 2001-05-31 2002-12-10 Nippon Steel Corp Steel panel for container excellent in adhesion and corrosion resistance
JP2004176114A (en) * 2002-11-26 2004-06-24 Nippon Steel Corp Highly corrosion resistant rustpreventive steel sheet for fuel tank
JP4215235B2 (en) * 2002-10-18 2009-01-28 日鉱金属株式会社 Surface treatment agent and surface treatment method for Sn alloy
JP2007095939A (en) * 2005-09-28 2007-04-12 Toshiba Corp Flux composition for soldering

Also Published As

Publication number Publication date
JP2007277593A (en) 2007-10-25

Similar Documents

Publication Publication Date Title
JP4601670B2 (en) Aqueous antioxidants of tin and tin alloys
CN105087182B (en) Circuit board having solder solidified thereon, method for producing circuit board having electronic component mounted thereon, and cleaning agent composition for flux
JP4518507B2 (en) Metal surface treatment agent
JP6222412B1 (en) flux
EP1771603B1 (en) Corrosion resistance enhancement of tin surfaces
JP2006289493A (en) Sn-zn based solder, lead-free solder, its solder work, solder paste, and electronic component-soldering substrate
EP2014798A1 (en) Solution and process for increasing the solderability and corrosion resistance of metal or metal alloy surface
CN114833491A (en) Copper surface selective organic solderability preservative and use method thereof
JP4215235B2 (en) Surface treatment agent and surface treatment method for Sn alloy
JP5649139B2 (en) Surface coating layer structure on copper surface
KR101696796B1 (en) A method for plating copper alloy with tin
JP5137317B2 (en) Electronic components
JP5697641B2 (en) Surface treatment agent for Sn and Sn alloy
EP1348512A1 (en) Water-soluble flux composition and process for producing soldered part
JP2004156094A (en) SURFACE TREATING AGENT AND METHOD FOR Sn OR Sn ALLOY
JP5985368B2 (en) Surface treatment solution for copper or copper alloy and use thereof
JP2022022508A (en) Flux, solder paste, electronic circuit mounting substrate, and electronic control device
JP3173982B2 (en) Lead-free solder plating bath and solder plating film obtained thereby

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100722

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121010

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121113

R150 Certificate of patent or registration of utility model

Ref document number: 5137317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250