JP5136597B2 - Liquid crystal optical element and manufacturing method thereof - Google Patents

Liquid crystal optical element and manufacturing method thereof Download PDF

Info

Publication number
JP5136597B2
JP5136597B2 JP2010124593A JP2010124593A JP5136597B2 JP 5136597 B2 JP5136597 B2 JP 5136597B2 JP 2010124593 A JP2010124593 A JP 2010124593A JP 2010124593 A JP2010124593 A JP 2010124593A JP 5136597 B2 JP5136597 B2 JP 5136597B2
Authority
JP
Japan
Prior art keywords
liquid crystal
curable compound
optical element
crystal optical
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2010124593A
Other languages
Japanese (ja)
Other versions
JP2010211236A (en
Inventor
聡 新山
慎哉 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2010124593A priority Critical patent/JP5136597B2/en
Publication of JP2010211236A publication Critical patent/JP2010211236A/en
Application granted granted Critical
Publication of JP5136597B2 publication Critical patent/JP5136597B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は、電界の印加/非印加により、素子の透過、散乱、反射状態を制御し、調光素子や表示素子、光学シャッター等に利用可能な液晶光学素子に関する。   The present invention relates to a liquid crystal optical element that can be used for a light control element, a display element, an optical shutter, and the like by controlling transmission, scattering, and reflection states of the element by applying / not applying an electric field.

液晶と透明な高分子とを複合して、高分子と液晶、または液晶内部(微小領域間)の屈折率差を生じせしめた透過−散乱型の光学素子が提案された。液晶/高分子複合体素子、液晶/樹脂複合体素子あるいは分散型液晶素子などと呼ばれている。この素子は原理的に偏光板を必要としないので、光の吸収損失が少なく、かつ高い散乱性能が得られ、素子全体における光の利用効率が高いことが大きな利点となっている。   A transmission-scattering type optical element has been proposed in which a liquid crystal and a transparent polymer are combined to cause a difference in refractive index between the polymer and the liquid crystal, or inside the liquid crystal (between microregions). It is called a liquid crystal / polymer composite element, a liquid crystal / resin composite element, or a dispersed liquid crystal element. Since this element does not require a polarizing plate in principle, it has a great advantage that light absorption loss is small, high scattering performance is obtained, and light use efficiency in the entire element is high.

この特性を生かして、調光ガラス、光シャッター、レーザー装置及び表示装置などに用いられている。電圧非印加で散乱状態、電圧印加で透明状態のものが商用化された。   Taking advantage of this characteristic, it is used for light control glass, optical shutters, laser devices, display devices, and the like. Those in a scattering state when no voltage was applied and in a transparent state when a voltage was applied were commercialized.

さらに、特許文献1では、液晶と重合性の液晶を用いた素子が開示された。この特許文献1は、電圧非印加時において素子内の液晶と重合された液晶とが同じ配向方向を有しているので、素子をどの方向から見ても透明状態を呈する。そして、電圧印加時には、素子内の液晶の配向が電界によって制御され、液晶分子の配列方向が微小領域においてさまざまに変化することにより、素子は散乱状態を呈する。   Further, Patent Document 1 discloses an element using a liquid crystal and a polymerizable liquid crystal. In Patent Document 1, since the liquid crystal in the element and the polymerized liquid crystal have the same alignment direction when no voltage is applied, the element is transparent when viewed from any direction. When a voltage is applied, the orientation of the liquid crystal in the element is controlled by an electric field, and the arrangement direction of the liquid crystal molecules changes variously in a minute region, whereby the element exhibits a scattering state.

また、カイラル剤を添加して初期配向にヘリカル構造を設けることで、コントラスト比が向上することが開示された。この素子は、「異方性ゲル」または「液晶ゲル」と呼ばれている。この特許文献1ではアクリロイル基を末端に持つメソゲンモノマーが使用された。   It has also been disclosed that the contrast ratio is improved by adding a chiral agent to provide a helical structure in the initial orientation. This element is called “anisotropic gel” or “liquid crystal gel”. In this Patent Document 1, a mesogenic monomer having an acryloyl group at the terminal is used.

また、特許文献2にも同様の構成を持つ素子が開示された。特許文献1と同様の動作モードであって、カイラルネマチック液晶中に微量の高分子を分散させ、電圧非印加時に透明状態、電圧印加時に散乱状態を得る。この素子はPSCT(ポリマー・スタビライズド・コレステリック・テクスチャー)と呼ばれている。この特許文献2にもアクリロイル基を末端に持つメソゲンモノマーが開示された。   Patent Document 2 also discloses an element having a similar configuration. The operation mode is the same as in Patent Document 1, and a small amount of polymer is dispersed in a chiral nematic liquid crystal to obtain a transparent state when no voltage is applied and a scattering state when a voltage is applied. This element is called PSCT (Polymer Stabilized Cholesteric Texture). This Patent Document 2 also discloses a mesogenic monomer having an acryloyl group at the terminal.

米国特許5188760号明細書US Pat. No. 5,188,760 国際公開第92/19695号International Publication No. 92/19695

未硬化の硬化性化合物の構造として、特許文献1では、式(2)の化合物が、また、特許文献2では式(3)の化合物が例示された。   As the structure of the uncured curable compound, Patent Document 1 exemplifies the compound of Formula (2), and Patent Document 2 exemplifies the compound of Formula (3).

Figure 0005136597
Figure 0005136597

Figure 0005136597
Figure 0005136597

しかしながらこれらの化合物を単独で用いて形成した硬化物は分子構造に起因した特性を有していた。すなわち、結晶性の高いメソゲン構造部を含むこと、かつ、分子内の硬化部位(この場合アクリロイル基)間の距離が短いことから、架橋点間分子量が小さくなり、得られた硬化物が硬く脆くなる。また、そのために、硬化途中において未硬化部位の運動性が著しく損なわれるため、充分な硬化のためにはかなり長時間の硬化時間が必要になる、といった問題点があった。   However, a cured product formed by using these compounds alone had characteristics resulting from the molecular structure. That is, since it contains a highly crystalline mesogenic structure and the distance between the cured sites in the molecule (in this case, acryloyl groups) is short, the molecular weight between the crosslinking points is reduced, and the resulting cured product is hard and brittle. Become. For this reason, the motility of the uncured part is remarkably impaired during the curing, so that a considerably long curing time is required for sufficient curing.

また、前記混合物中の硬化性化合物を硬化させて得られる液晶光学素子の特性は、その液晶/硬化物複合体層の構造に大きく依存する。そして、その構造は用いる未硬化の硬化性化合物の分子構造に大きな影響を受ける。
一般にビフェニル構造などのメソゲン構造部を含む硬化性化合物は、両端の硬化部位が結合し、硬化した後の弾性率は大きく、かつ、得られる高分子のガラス転移温度も高いことが報告されている。
The characteristics of the liquid crystal optical element obtained by curing the curable compound in the mixture largely depend on the structure of the liquid crystal / cured product composite layer. The structure is greatly influenced by the molecular structure of the uncured curable compound to be used.
In general, it is reported that a curable compound containing a mesogen structure such as a biphenyl structure has a cured portion bonded at both ends, has a large elastic modulus after curing, and a high glass transition temperature of the resulting polymer. .

一方このことは、硬化途中の硬化性化合物の分子運動や自由体積に制限を与えるものであり、硬化過程の後期においては、硬化部位の反応性が抑制される可能性があり、硬化反応が充分行われない、または、非常に長時間の硬化時間が必要となるといった問題点が生ずる。   On the other hand, this restricts the molecular motion and free volume of the curable compound in the middle of curing, and in the latter stage of the curing process, the reactivity of the cured site may be suppressed, and the curing reaction is sufficient. There is a problem that it is not performed or a very long curing time is required.

また、液晶/硬化物複合体層の硬化物である樹脂の物性が液晶光学素子の電気光学特性に関与することがわかった。樹脂の弾性率が高過ぎたり、また脆いと、必要な駆動電圧が大きくなり、比較的低い駆動電圧レンジでは、電圧印加/非印加での透過率変化や反射率変化において、充分なコントラスト比が得られないことがあった。   It was also found that the physical properties of the resin, which is a cured product of the liquid crystal / cured product composite layer, are involved in the electro-optical characteristics of the liquid crystal optical element. If the elastic modulus of the resin is too high or fragile, the required drive voltage increases, and in a relatively low drive voltage range, there is a sufficient contrast ratio in the transmittance change and reflectance change with and without voltage application. Sometimes it was not possible.

本発明の課題は、上記の問題を解決するものであり、例えば短い硬化時間で製造でき、かつ、低い駆動電圧でも高コントラスト比の液晶光学素子を提供することである。   An object of the present invention is to solve the above problems, and to provide a liquid crystal optical element that can be produced in, for example, a short curing time and has a high contrast ratio even at a low driving voltage.

すなわち、本発明は、少なくとも一方が透明な一対の電極付き基板間に液晶と未硬化の硬化性化合物との混合物を挟持し、前記硬化性化合物を硬化させて液晶/硬化物複合体層を形成する液晶光学素子の製造方法において、前記硬化性化合物が、式(1)で示される第1の硬化性化合物と、メソゲン構造部を含まず、かつ、前記第1の硬化性化合物と結合可能な硬化部位としてアクリロイル基および/またはメタクリロイル基を有する第2の硬化性化合物とを含有し、前記第2の硬化性化合物の分子量が前記第1の硬化性化合物の2倍以上であることを特徴とする液晶光学素子の製造方法を提供する。   That is, in the present invention, a liquid crystal / cured material composite layer is formed by sandwiching a mixture of a liquid crystal and an uncured curable compound between a pair of substrates with electrodes, at least one of which is transparent, and curing the curable compound. In the method for producing a liquid crystal optical element, the curable compound does not include the first curable compound represented by the formula (1) and the mesogenic structure and can be bonded to the first curable compound. And a second curable compound having an acryloyl group and / or a methacryloyl group as a curing site, wherein the molecular weight of the second curable compound is at least twice that of the first curable compound. A method of manufacturing a liquid crystal optical element is provided.

Figure 0005136597
Figure 0005136597

、A:それぞれ独立にアクリロイル基、メタクリロイル基
、R:それぞれ独立に炭素数2〜6のアルキレン基
Z:2価のメソゲン構造部である4,4'−ビフェニレン基
n、m:それぞれ独立に1〜4の整数
A 1 , A 2 : each independently an acryloyl group, methacryloyl group R 1 , R 2 : each independently an alkylene group having 2 to 6 carbon atoms Z: a 4,4′-biphenylene group n which is a divalent mesogen structure part, m: each independently an integer of 1 to 4

本発明においては、未硬化の硬化性化合物が、分子量が2倍以上異なる2種の硬化性化合物を含有せしめることで、硬化過程及び硬化後の樹脂の架橋点間分子量を変化させることができる。もしくは、樹脂の結晶性を制御することができる。これらのことにより硬化過程の硬化性を向上させ、さらに、硬化後の樹脂の弾性率を調節できるため、低い駆動電圧でも高いコントラストを発現できる液晶光学素子が得られることを見出した。   In the present invention, the uncured curable compound contains two kinds of curable compounds having different molecular weights by 2 times or more, so that the curing process and the molecular weight between crosslinking points of the cured resin can be changed. Alternatively, the crystallinity of the resin can be controlled. As a result, the present inventors have found that a liquid crystal optical element capable of producing a high contrast even at a low driving voltage can be obtained because the curability of the curing process can be improved and the elastic modulus of the cured resin can be adjusted.

さらに、未硬化の硬化性化合物が式(1)の硬化性化合物を含有する場合には、未硬化時の液晶との相溶性を改善できる。また、メソゲン構造部と硬化部位との間に分子運動性の高いオキシアルキレン構造を導入することで、硬化過程における硬化部位の分子運動性を向上させて、短時間の硬化反応においても、電界印加/非印加時の状態が安定で信頼性が高く、かつコントラストも高い液晶光学素子が得られることを見出した。   Furthermore, when an uncured curable compound contains the curable compound of Formula (1), compatibility with the liquid crystal when uncured can be improved. In addition, by introducing an oxyalkylene structure with high molecular mobility between the mesogenic structure and the curing site, the molecular mobility of the curing site in the curing process is improved, so that an electric field can be applied even in a short curing reaction. It has been found that a liquid crystal optical element having a stable state when not applied, high reliability, and high contrast can be obtained.

式(1)の硬化部位(A、A)としては、一般に硬化触媒と共に光硬化、熱硬化可能な上記の官能基であればいずれでもよいが、なかでも、硬化時の温度を制御できることから光硬化に適するアクリロイル基、メタクリロイル基が好ましい。 The curing site (A 1 , A 2 ) of the formula (1) may be any of the above functional groups that can be photocured and thermally cured together with a curing catalyst. In particular, the temperature during curing can be controlled. To acryloyl group and methacryloyl group suitable for photocuring.

式(1)のオキシアルキレン部のR及びRの炭素数については、その運動性から2〜6が好ましく、さらに炭素数2のエチレン基及び炭素数3のプロピレン基が好ましい。 About carbon number of R < 1 > and R < 2 > of the oxyalkylene part of Formula (1), 2-6 are preferable from the mobility, and also a C2-ethylene group and a C3-propylene group are preferable.

式(1)のメソゲン構造部(Z)としては、1,4−フェニレン基が2個以上連結した2価のポリフェニレンが好ましい。また、このポリフェニレン基中の一部の1,4−フェニレン基が1,4−シクロヘキシレン基で置換された2価の有機基であってもよい。   As the mesogen structure part (Z) of the formula (1), divalent polyphenylene in which two or more 1,4-phenylene groups are linked is preferable. Further, a divalent organic group in which a part of the 1,4-phenylene group in the polyphenylene group is substituted with a 1,4-cyclohexylene group may be used.

これらポリフェニレン基や2価の有機基の水素原子の一部または全部は炭素数1〜2のアルキル基、ハロゲン原子、カルボキシル基、アルコキシカルボニル基などの置換基に置換されていてもよい。好ましいZは、1,4−フェニレン基が2個連結したビフェニレン基(以下、4,4'−ビフェニレン基という。)、3個連結したターフェニレン基、及びこれらの水素原子の1〜4個が炭素数1〜2のアルキル基、フッ素原子、塩素原子もしくはカルボキシル基に置換された2価の有機基である。最も、好ましいZは置換基を有しない4,4'−ビフェニレン基である。   Some or all of the hydrogen atoms of these polyphenylene groups and divalent organic groups may be substituted with substituents such as alkyl groups having 1 to 2 carbon atoms, halogen atoms, carboxyl groups, and alkoxycarbonyl groups. Preferred Z is a biphenylene group in which two 1,4-phenylene groups are linked (hereinafter referred to as 4,4′-biphenylene group), a terphenylene group in which three 1,4-phenylene groups are linked, and 1 to 4 of these hydrogen atoms. It is a divalent organic group substituted by an alkyl group having 1 to 2 carbon atoms, a fluorine atom, a chlorine atom or a carboxyl group. Most preferred Z is a 4,4′-biphenylene group having no substituent.

式(1)のn、mはあまり大きいと液晶との相溶性が低下するため、それぞれ独立に1〜10であり、硬化後の素子特性を考慮すると1〜4がさらに好ましい。   If n and m in the formula (1) are too large, the compatibility with the liquid crystal is lowered. Therefore, each is independently 1 to 10, and 1 to 4 is more preferable in consideration of element characteristics after curing.

未硬化時の液晶との相溶性と、硬化後の樹脂の弾性率を調節するためには、未硬化の硬化性化合物が、分子内にメソゲン構造部を含む硬化性化合物と含まない硬化性化合物とを、ともに含有することが好ましい。これは、メソゲン構造部が、未硬化時の液晶との相溶性を向上させる一方で、硬化後の樹脂の弾性率を必要以上に大きくしてしまうためである。   In order to adjust the compatibility with the uncured liquid crystal and the elastic modulus of the cured resin, the uncured curable compound does not contain the curable compound containing a mesogen structure in the molecule Are preferably contained together. This is because the mesogen structure part improves the compatibility with the liquid crystal when it is uncured, but increases the elastic modulus of the cured resin more than necessary.

含有する2種の未硬化の硬化性化合物は、お互いに結合可能である方が、硬化して形成される樹脂内で、樹脂同士で相分離して、透過時または反射時のヘイズを上昇させることがなく好ましい。   The two uncured curable compounds to be contained are phase-separated with each other within the resin formed by curing when the two uncured curable compounds can be bonded to each other, thereby increasing the haze at the time of transmission or reflection. It is preferable without any problem.

架橋点間分子量を大きくして硬化時の硬化性を向上させ、硬化後の樹脂の弾性率を低下させるためには、未硬化の硬化性化合物として比較的分子量が大きい硬化性化合物を用いることが好ましい。具体的には分子量1000以上の硬化性化合物が好ましい。   In order to increase the molecular weight between crosslinking points to improve the curability at the time of curing and to lower the elastic modulus of the resin after curing, it is necessary to use a curable compound having a relatively high molecular weight as the uncured curable compound. preferable. Specifically, a curable compound having a molecular weight of 1000 or more is preferable.

液晶と未硬化の硬化性化合物の混合物が硬化触媒を含有していてもよく、光硬化の場合、ベンゾインエーテル系、アセトフェノン系、フォスフィンオキサイド系などの一般に光硬化樹脂に用いられる光重合開始剤を使用できる。熱硬化の場合は、硬化部位の種類に応じて、パーオキサイド系、チオール系、アミン系、酸無水物系などの硬化触媒を使用でき、また、必要に応じてアミン類などの硬化助剤も使用できる。   A mixture of liquid crystal and an uncured curable compound may contain a curing catalyst. In the case of photocuring, a photopolymerization initiator generally used for photocuring resins such as benzoin ether, acetophenone, and phosphine oxide. Can be used. In the case of thermosetting, a curing catalyst such as peroxide, thiol, amine, or acid anhydride can be used depending on the type of curing site, and if necessary, curing aids such as amines can also be used. Can be used.

硬化触媒の含有量は、含有する未硬化の硬化性化合物の20wt%以下が好ましく、硬化後の硬化物の高い分子量や高い比抵抗が要求される場合、1〜10wt%がさらに好ましい。   The content of the curing catalyst is preferably 20 wt% or less of the uncured curable compound to be contained, and more preferably 1 to 10 wt% when a high molecular weight or high specific resistance of the cured product after curing is required.

また、電界印加/非印加時の素子のコントラストを向上させるために、液晶と未硬化の硬化性化合物の混合物にカイラル剤を添加することもでき、それにより誘起されるヘリカルピッチは、小さすぎると駆動電圧が上昇し、大きすぎると充分なコントラストが得られないため、5μm以上、かつ、電極間隙の2倍以下であることが好ましい。   In addition, a chiral agent can be added to a mixture of liquid crystal and an uncured curable compound in order to improve the contrast of the device when an electric field is applied / not applied, and the helical pitch induced thereby is too small. If the driving voltage rises and is too large, sufficient contrast cannot be obtained. Therefore, the driving voltage is preferably 5 μm or more and twice or less the electrode gap.

一方、液晶と未硬化の硬化性化合物の混合物は、混合後均質な溶液であることが好ましい。液晶と未硬化の硬化性化合物の混合物は、電極付き基板に挟持されるとき、液晶相を示していてもよい。液晶と未硬化の硬化性化合物の混合物は、硬化されるとき、液晶相を示していてもよい。   On the other hand, the mixture of the liquid crystal and the uncured curable compound is preferably a homogeneous solution after mixing. A mixture of liquid crystal and an uncured curable compound may exhibit a liquid crystal phase when sandwiched between substrates with electrodes. The mixture of liquid crystal and uncured curable compound may exhibit a liquid crystal phase when cured.

液晶と未硬化の硬化性化合物の混合物を挟持する電極付き基板の電極表面を直接研磨したり、樹脂の薄膜を設けそれをラビングするなどして、電極表面に液晶を配向させる機能を付与することもでき、それにより、液晶と未硬化の硬化性化合物の混合物を挟持する際のむらを低減させることもできる。
また、一対の配向処理済み基板の配向方向の組み合わせとしては、平行、直交、いずれでもよく、混合物挟持時のむらが最小となるよう角度を設定すればよい。
Giving a function to orient the liquid crystal on the electrode surface by directly polishing the electrode surface of the substrate with the electrode that sandwiches the mixture of liquid crystal and uncured curable compound, or by rubbing it with a resin thin film. It is also possible to reduce unevenness when sandwiching the mixture of the liquid crystal and the uncured curable compound.
Further, the combination of the alignment directions of the pair of alignment-treated substrates may be either parallel or orthogonal, and the angle may be set so as to minimize the unevenness when the mixture is sandwiched.

電極間隙は、スペーサー等で保持することができ、4〜50μmが好ましく、さらには5〜30μmが好ましい。電極間隙は小さすぎるとコントラスト比が低下し、大きすぎると駆動電圧が上昇する。
電極を支持する基板は、ガラス基板でも樹脂基板でもよく、またガラス基板と樹脂基板との組み合わせでもよい。また、片方がアルミニウムや誘電体多層膜の反射電極であってもよい。
The electrode gap can be held by a spacer or the like, and is preferably 4 to 50 μm, more preferably 5 to 30 μm. If the electrode gap is too small, the contrast ratio decreases, and if it is too large, the drive voltage increases.
The substrate that supports the electrodes may be a glass substrate or a resin substrate, or a combination of a glass substrate and a resin substrate. Alternatively, one may be a reflective electrode made of aluminum or a dielectric multilayer film.

フィルム基板の場合、連続で供給される電極付き基板を2本のゴムロール等で挟み、その間に、スペーサーを含有分散させた液晶と未硬化の硬化性化合物との混合物を供給し、挟み込み、その後連続で硬化させることができ生産性が高い。   In the case of a film substrate, a substrate with electrodes to be continuously supplied is sandwiched between two rubber rolls, and a mixture of a liquid crystal containing a spacer and dispersed therein and an uncured curable compound is interposed between the substrates, and then continuously inserted. Can be cured with high productivity.

ガラス基板の場合、電極面内に微量のスペーサーを散布し、対向させた基板の4辺をエポキシ樹脂等のシール剤で封止セルとし、2カ所以上の設けたシールの切り欠きの一方を液晶と未硬化の硬化性化合物の混合物に浸し、他方より吸引することでセル内に混合物を満たし、硬化させ液晶光学素子を得ることができる。また、通常の真空注入法を用いることもできる。以下、実施例について説明を行う。   In the case of a glass substrate, a small amount of spacers are scattered on the electrode surface, and the four sides of the opposed substrate are sealed with a sealing agent such as epoxy resin, and one of the cutouts of the seals provided at two or more locations is liquid crystal A liquid crystal optical element can be obtained by immersing in a mixture of curable compound and uncured curable compound and sucking from the other to fill the cell with the mixture and cure. Also, a normal vacuum injection method can be used. Examples will be described below.

(実施例1)
シアノ系ネマチック液晶(メルク社製 BL−009)94.6部、カイラル剤(メルク社製 S−811とメルク社製 C15の重量比1:1の混合物)2.4部、分子量382である式(4)の硬化性化合物2.5部、分子量1500以上であるウレタンアクリレートオリゴマー(UCB社製 EB−270)0.5部、ベンゾインイソプロピルエーテル0.09部の混合物(混合物A)を調製した。
Example 1
94.6 parts of cyano nematic liquid crystal (BL-009 manufactured by Merck & Co.), 2.4 parts of chiral agent (mixture of S-811 manufactured by Merck & C15 manufactured by Merck & Co., weight ratio of 1: 1), and a molecular weight of 382. A mixture (mixture A) of 2.5 parts of the curable compound (4), 0.5 part of urethane acrylate oligomer (EB-270 manufactured by UCB) having a molecular weight of 1500 or more and 0.09 part of benzoin isopropyl ether was prepared.

Figure 0005136597
Figure 0005136597

この混合物Aを、透明電極上に形成したポリイミド薄膜を一方向にラビングした一対の基板をラビング方向が直交するように対向させ、微量の直径13μmの樹脂ビーズを介して、四辺に幅約1mmで印刷したエポキシ樹脂により張り合わせて作製した液晶セルに注入した。   A pair of substrates obtained by rubbing this mixture A on a polyimide thin film formed on a transparent electrode in one direction are opposed so that the rubbing directions are orthogonal to each other, and a width of about 1 mm is provided on four sides through a small amount of resin beads having a diameter of 13 μm. It injected into the liquid crystal cell produced by bonding together with the printed epoxy resin.

この液晶セルを25℃に保持した状態で、主波長が約365nmのHgXeランプにより、上側より3mW/cm、下側より同じく約3mW/cmの紫外線を10分間照射し、液晶光学素子を得た。 While maintaining the liquid crystal cell 25 ° C., the dominant wavelength of about 365nm of HgXe lamp, 3 mW / cm 2 from the upper side, the same about 3 mW / cm 2 UV than the lower irradiation for 10 minutes, the liquid crystal optical element Obtained.

この液晶光学素子に矩形波50Hz、20Vrmsの電圧を10分印加後電圧を除去する操作を10回繰り返した。その後、530nmを中心波長とした半値幅約20nmの測定光源を用いた透過率測定系(光学系のF値11.5)で透過率を測定したところ、電圧を印加しない状態で83%、この値を20Vrms印加したときの透過率で割ったコントラスト比の値は31であった。   The operation of removing the voltage after applying a rectangular wave of 50 Hz and a voltage of 20 Vrms for 10 minutes to this liquid crystal optical element was repeated 10 times. Thereafter, the transmittance was measured with a transmittance measurement system (F value 11.5 of the optical system) using a measurement light source with a center wavelength of 530 nm and a half-value width of about 20 nm. The value of the contrast ratio divided by the transmittance when the value was applied at 20 Vrms was 31.

(比較例1)
未硬化の硬化性化合物として式(4)の化合物のみを用いた以外は実施例1と同様にして液晶光学素子を得た。この液晶光学素子に実施例1と同様に電圧を印加後、同じ測定系で透過率を測定したところ、電圧を印加しない状態で83%、この値を20Vrms印加したときの透過率で割ったコントラスト比の値は11であった。
(Comparative Example 1)
A liquid crystal optical element was obtained in the same manner as in Example 1 except that only the compound of formula (4) was used as the uncured curable compound. After applying a voltage to this liquid crystal optical element in the same manner as in Example 1, the transmittance was measured with the same measurement system. As a result, 83% was obtained when no voltage was applied, and this value was divided by the transmittance when 20 Vrms was applied. The ratio value was 11.

(実施例2)
実施例1で調製した混合物Aを実施例1と同じ液晶セルに注入し、25℃に保持した状態で、実施例1と同様にして紫外線を3分間照射し、液晶光学素子を得た。
(Example 2)
The mixture A prepared in Example 1 was poured into the same liquid crystal cell as in Example 1, and irradiated with ultraviolet rays for 3 minutes in the same manner as in Example 1 while being kept at 25 ° C., to obtain a liquid crystal optical element.

この液晶光学素子に矩形波50Hz、20Vrmsの電圧を10分印加後、電圧を除去する操作を10回繰り返した。その後、530nmを中心波長とした半値幅約20nmの測定光源を用いた透過率測定系(光学系のF値11.5)で透過率を測定したところ、電圧を印加しない状態で79%、この値を20Vrms印加したときの透過率で割ったコントラスト比の値は43であった。   The operation of removing the voltage was repeated 10 times after applying a rectangular wave of 50 Hz and a voltage of 20 Vrms to the liquid crystal optical element for 10 minutes. Thereafter, the transmittance was measured with a transmittance measurement system (F value 11.5 of the optical system) using a measurement light source with a center wavelength of 530 nm and a half-value width of about 20 nm. The contrast ratio obtained by dividing the value by the transmittance when 20 Vrms was applied was 43.

(比較例2)
未硬化の硬化性化合物として式(2)の化合物のみを用いた以外は実施例2と同様にして液晶光学素子を得た。
この液晶光学素子に実施例2と同様に電圧を印加後、同じ測定系で透過率を測定したところ、電圧を印加しない状態で81%、この値を20Vrms印加した時の透過率で割ったコントラスト比の値は12であった。
(Comparative Example 2)
A liquid crystal optical element was obtained in the same manner as in Example 2 except that only the compound of formula (2) was used as the uncured curable compound.
After applying a voltage to this liquid crystal optical element in the same manner as in Example 2, the transmittance was measured with the same measurement system. As a result, 81% with no voltage applied, and this value divided by the transmittance when 20 Vrms was applied. The value of the ratio was 12.

本発明の液晶光学素子は、用いる硬化性化合物の硬化性が高いため、電界の印加/非印加時の透過率や反射率におけるコントラストが高い液晶光学素子を短かい硬化時間で作製することができるので生産性が高い。   Since the liquid crystal optical element of the present invention has high curability of the curable compound to be used, a liquid crystal optical element having a high contrast in transmittance and reflectance at the time of application / non-application of an electric field can be produced in a short curing time. So productivity is high.

また、硬化した樹脂の架橋点間分子量や弾性率を制御できるために、低い駆動電圧でも高コントラスト比を示す液晶光学素子が得られ、駆動電圧に制限のある調光ガラスやディスプレイ、光シャッター等に好適である。   In addition, since the molecular weight and elastic modulus between the crosslinking points of the cured resin can be controlled, a liquid crystal optical element that exhibits a high contrast ratio even at a low driving voltage can be obtained, and a light control glass, display, optical shutter, etc. with a limited driving voltage. It is suitable for.

Claims (4)

少なくとも一方が透明な一対の電極付き基板間に液晶と未硬化の硬化性化合物との混合物を挟持し、前記硬化性化合物を硬化させて液晶/硬化物複合体層を形成する液晶光学素子の製造方法において、
前記硬化性化合物が、
式(1)で示される第1の硬化性化合物と、
メソゲン構造部を含まず、かつ、前記第1の硬化性化合物と結合可能な硬化部位としてアクリロイル基および/またはメタクリロイル基を有し、第2の硬化性化合物と、を含有し、
前記第2の硬化性化合物の分子量が前記第1の硬化性化合物の2倍以上であることを特徴とする液晶光学素子の製造方法。
−(OR−O−Z−O−(RO)−A・・・式(1)
、A:それぞれ独立にアクリロイル基、メタクリロイル基
、R:それぞれ独立に炭素数2〜6のアルキレン基
Z:2価のメソゲン構造部である4,4'−ビフェニレン基
n、m:それぞれ独立に1〜4の整数
Production of a liquid crystal optical element in which a mixture of a liquid crystal and an uncured curable compound is sandwiched between a pair of substrates with electrodes at least one of which is transparent, and the curable compound is cured to form a liquid crystal / cured material composite layer In the method
The curable compound is
A first curable compound represented by formula (1);
Including no mesogenic structure and having a acryloyl group and / or a methacryloyl group as a curing site capable of binding to the first curable compound, and a second curable compound,
A method for producing a liquid crystal optical element, wherein the molecular weight of the second curable compound is twice or more that of the first curable compound.
A 1 - (OR 1) n -O-Z-O- (R 2 O) m -A 2 ··· Equation (1)
A 1 , A 2 : each independently an acryloyl group, methacryloyl group R 1 , R 2 : each independently an alkylene group having 2 to 6 carbon atoms Z: a 4,4′-biphenylene group n which is a divalent mesogen structure part, m: each independently an integer of 1 to 4
前記第2の硬化性化合物の分子量が1000以上である請求項1に記載の液晶光学素子の製造方法。   The method for producing a liquid crystal optical element according to claim 1, wherein the molecular weight of the second curable compound is 1000 or more. 前記混合物が20wt%以下の硬化触媒を含有する請求項1または2に記載の液晶光学素子の製造方法。   The method for producing a liquid crystal optical element according to claim 1, wherein the mixture contains a curing catalyst of 20 wt% or less. 請求項1〜3のいずれか1項に記載の製造方法で製造した液晶光学素子。   The liquid crystal optical element manufactured with the manufacturing method of any one of Claims 1-3.
JP2010124593A 2010-05-31 2010-05-31 Liquid crystal optical element and manufacturing method thereof Expired - Lifetime JP5136597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010124593A JP5136597B2 (en) 2010-05-31 2010-05-31 Liquid crystal optical element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010124593A JP5136597B2 (en) 2010-05-31 2010-05-31 Liquid crystal optical element and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP29862098A Division JP2000119655A (en) 1998-10-20 1998-10-20 Liquid crystal optical element and manufacture thereof

Publications (2)

Publication Number Publication Date
JP2010211236A JP2010211236A (en) 2010-09-24
JP5136597B2 true JP5136597B2 (en) 2013-02-06

Family

ID=42971389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010124593A Expired - Lifetime JP5136597B2 (en) 2010-05-31 2010-05-31 Liquid crystal optical element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5136597B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0419709A (en) * 1990-05-15 1992-01-23 Victor Co Of Japan Ltd Production of high-polymer/liquid crystal composite
JPH05196925A (en) * 1991-04-17 1993-08-06 Asahi Glass Co Ltd Projection type liquid crystal display device
JPH06148620A (en) * 1992-11-06 1994-05-27 Asahi Glass Co Ltd Transmission and scattering type optical device with coloring prism
JP3091642B2 (en) * 1993-07-22 2000-09-25 株式会社半導体エネルギー研究所 Liquid crystal electro-optical device and manufacturing method thereof
JP3799654B2 (en) * 1995-04-24 2006-07-19 旭硝子株式会社 Liquid crystal optical element, manufacturing method thereof, and projection type liquid crystal display device
JP3799664B2 (en) * 1995-06-28 2006-07-19 旭硝子株式会社 Liquid crystal optical element, liquid crystal display element and projection type liquid crystal display device using the same

Also Published As

Publication number Publication date
JP2010211236A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
US6723393B1 (en) Liquid crystal optical element and method for preparing the same
JP4360444B2 (en) Polymer-stabilized liquid crystal composition, liquid crystal display element, and method for producing liquid crystal display element
US8686196B2 (en) Optically isotropic liquid crystal medium and optical device
JP5240486B2 (en) Polymer stabilized liquid crystal display element composition and polymer dispersed liquid crystal display element
JP4132424B2 (en) Manufacturing method of liquid crystal optical element
JP2001004986A5 (en)
JP5040400B2 (en) Polymer stabilized liquid crystal composition and polymer stabilized liquid crystal display device
JP5309645B2 (en) Polymer-stabilized ferroelectric liquid crystal composition and liquid crystal display device
JP5560532B2 (en) Polymer-stabilized ferroelectric liquid crystal composition and liquid crystal display device
JP4352480B2 (en) Liquid crystal optical element and manufacturing method thereof
JPWO2018025996A1 (en) Material for liquid crystal device and liquid crystal device
JP2000119656A5 (en)
US20120268692A1 (en) Liquid crystal optical device and its production process
JP6318528B2 (en) Liquid crystal / polymer composite material, optical element, method for manufacturing optical element, and method for manufacturing liquid crystal / polymer composite material
JP4689201B2 (en) Method for producing photo-alignment film for liquid crystal display element and method for producing liquid crystal display element
JP5136597B2 (en) Liquid crystal optical element and manufacturing method thereof
CN112015018A (en) Light modulation device and preparation method thereof
TWI697550B (en) Liquid crystal composition and liquid crystal optical device
JP2000119655A5 (en)
JP2000119655A (en) Liquid crystal optical element and manufacture thereof
JP2014021182A (en) Liquid crystal display element and method for manufacturing liquid crystal display element
JPH09329781A (en) Optical scattering type liquid crystal device and its production
JP2000119654A5 (en)
JP2000119654A (en) Preparation of liquid crystal optical element
JP2007002083A (en) Liquid crystal optical element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

EXPY Cancellation because of completion of term