JPH09329781A - Optical scattering type liquid crystal device and its production - Google Patents

Optical scattering type liquid crystal device and its production

Info

Publication number
JPH09329781A
JPH09329781A JP25607196A JP25607196A JPH09329781A JP H09329781 A JPH09329781 A JP H09329781A JP 25607196 A JP25607196 A JP 25607196A JP 25607196 A JP25607196 A JP 25607196A JP H09329781 A JPH09329781 A JP H09329781A
Authority
JP
Japan
Prior art keywords
liquid crystal
light
crystal device
temperature
driving voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25607196A
Other languages
Japanese (ja)
Other versions
JP3750219B2 (en
Inventor
Noburu Fujisawa
宣 藤澤
Hidetoshi Nakada
秀俊 中田
Masao Aizawa
政男 相澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP25607196A priority Critical patent/JP3750219B2/en
Publication of JPH09329781A publication Critical patent/JPH09329781A/en
Application granted granted Critical
Publication of JP3750219B2 publication Critical patent/JP3750219B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To lower the dependence of a driving voltage on temp. by consisting of a polymerizable compsn. consists of a polymerizable compd. with which the driving voltage falls with an increase in temp. and a polymerizable compd. with which the driving voltage rises with the increase in temp. SOLUTION: This optical scattering type liquid crystal device contains at least the polymerizable compd. which forms a transparent high-polymer material constituting the light controllable layer of the optical scattering type liquid crystal device of the driving voltage dropping with the increase in temp. and the transparent high-polymer material constituting the light controllable layer of the optical scattering type liquid crystal device of the driving voltage rising with the increase in temp. as the essential components, although combination use of >=2 kinds of monomers and oligomers is possible even if these monomers and oligomers are polymer forming monomers and oligomers. Two kinds of polymerizable compds. varying in the dependence of the driving voltage on temp. are adjusted in their mixing ratio by taking their temp. characteristics and further, voltage transmittance characteristics into consideration. As a result, the contrast is made high, the driving voltage low and the dependence of the driving voltage on temp. small.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、大面積になし得る
光散乱型液晶デバイスの製造方法に関し、更に詳しく
は、光の遮断、透過を電気的叉は熱的に操作し得るもの
であって、文字や図形を表示し、高速応答を以って電気
的に表示を切り換えることによって、広告板、案内板、
装飾表示板等の表示体、OA器材などのディスプレイ等
のハイインフォメーション表示体として利用される光散
乱型液晶デバイスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a light-scattering type liquid crystal device which can have a large area, and more specifically, it can control the blocking and transmission of light electrically or thermally. , Letters and figures are displayed, and the display is switched electrically with a high-speed response, so that an advertisement board, a guide board,
The present invention relates to a light-scattering liquid crystal device used as a display such as a decorative display plate or a high information display such as a display such as OA equipment.

【0002】[0002]

【従来の技術】偏光板や配向処理を要さず、明るくコン
トラストの良い、大型で廉価な液晶デバイスとして、特
表昭58−501631号公報、米国特許第44350
47号明細書には、液晶のカプセル化により、ポリマー
中に液晶滴を分散させ、そのポリマーをフィルム化する
方法が開示されている。ここでカプセル化物質として
は、ゼラチン、アラビアゴム、ポリビニルアルコール等
が提案されている。
2. Description of the Related Art A large-sized, inexpensive liquid crystal device which does not require a polarizing plate or an alignment treatment and has a good contrast, is disclosed in Japanese Patent Publication No. 58-501631 and US Pat. No. 44350.
Japanese Patent No. 47 discloses a method in which liquid crystal droplets are dispersed in a polymer by encapsulation of the liquid crystal and the polymer is formed into a film. Here, gelatin, gum arabic, polyvinyl alcohol and the like have been proposed as the encapsulating substance.

【0003】ポリビニルアルコールでカプセル化された
液晶分子は、それが薄層中で正の誘電異方性を有するも
のであれば、電界の存在下でその液晶分子が電界の方向
に配列し、液晶の屈折率n0とポリマーの屈折率npが
等しいときには、透明性を発現する。電界が除かれる
と、液晶はランダム配列に戻り、液晶滴の屈折率n0よ
りずれるため、液晶滴は、その境界面で光を散乱し、光
の透過を遮断するので、薄層体は白濁する。
Liquid crystal molecules encapsulated with polyvinyl alcohol, if they have a positive dielectric anisotropy in a thin layer, are aligned in the direction of the electric field in the presence of an electric field, When the refractive index n0 of the polymer is equal to the refractive index np of the polymer, transparency is exhibited. When the electric field is removed, the liquid crystal returns to the random arrangement and deviates from the refractive index n0 of the liquid crystal droplet, so that the liquid crystal droplet scatters light at the boundary surface and blocks the transmission of light, so the thin layer body becomes cloudy. .

【0004】このように、液晶滴を分散包蔵したポリマ
ーを薄膜としている技術は、上記のもの以外にもいくつ
か知られており、例えば、特表昭61−502128号
公報には、液晶エポキシ樹脂中に分散したもの、特開昭
62−2231号公報には、特殊な紫外線硬化ポリマー
中に液晶が分散したもの、特開昭63−271233号
公報には、光硬化性ビニル系化合物と液晶との溶解物に
おいて、上記光硬化性ビニル系化合物の光硬化に伴う液
晶物質の相分離を利用し調光層を形成させたものがそれ
ぞれ開示されている。
As described above, there are several known techniques for forming a thin film of a polymer containing dispersed liquid crystal droplets. For example, Japanese Patent Publication No. 61-502128 discloses a liquid crystal epoxy resin. A liquid crystal dispersed in a special UV-curable polymer in JP-A-62-1231, and a photo-curable vinyl compound and a liquid crystal in JP-A-63-271233. Of the above (3), the light control layer is formed by utilizing the phase separation of the liquid crystal substance accompanying the photocuring of the photocurable vinyl compound.

【0005】また、光散乱型液晶デバイスの実用化に要
求される重要な特性である低電圧駆動特性、高コントラ
ストを可能にするために、特開平1−198725号公
報には、液晶材料の連続層中に透明性高分子物質を三次
元網目状構造に形成せしめ、液晶デバイスの低電圧駆動
を可能にした技術が開示されている。
Further, in order to enable low voltage driving characteristics and high contrast, which are important characteristics required for practical use of a light-scattering type liquid crystal device, JP-A-1-198725 discloses continuous liquid crystal materials. A technique has been disclosed in which a transparent polymer substance is formed in a layer in a three-dimensional network structure to enable low voltage driving of a liquid crystal device.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、液晶材
料の連続層中に三次元網目構造を有する透明性高分子物
質を形成して成る調光層を有する光散乱型液晶デバイス
をはじめとして、液晶材料と透明性高分子物質とから成
る光散乱型液晶デバイスにおいては、駆動電圧の温度依
存性が大きく、使用温度により駆動電圧が異なるという
問題があった。
However, a liquid crystal material including a light-scattering type liquid crystal device having a dimming layer formed by forming a transparent polymer substance having a three-dimensional network structure in a continuous layer of the liquid crystal material. In a light-scattering liquid crystal device composed of a transparent polymer material and a transparent polymer material, there is a problem that the driving voltage has a large temperature dependency and the driving voltage varies depending on the operating temperature.

【0007】本発明が解決しようとする課題は、液晶材
料及び透明性高分子物質を含有する調光層を有する光散
乱型液晶デバイスにおいて、駆動電圧の温度依存性が小
さい光散乱型液晶デバイスを提供することにある。
The problem to be solved by the present invention is to provide a light-scattering liquid crystal device having a dimming layer containing a liquid crystal material and a transparent polymer substance, in which the temperature dependence of the driving voltage is small. To provide.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記課題
を解決するため鋭意研究を重ねた結果、本発明を完成す
るに至った。
The present inventors have completed the present invention as a result of intensive studies to solve the above problems.

【0009】即ち、本発明は上記課題を解決するため
に、電極層を有する少なくとも一方が透明な2枚の基板
と、これらの基板間に支持された調光層とを有し、前記
調光層が、液晶材料及び透明性高分子物質を含有する光
散乱型液晶デバイスにおいて、前記透明性高分子物質が
(1)温度上昇に伴ない駆動電圧が低下する光散乱型液
晶デバイスの調光層を構成する透明性高分子物質を形成
する重合性化合物及び(2)温度上昇に伴ない駆動電圧
が上昇する光散乱型液晶デバイスの調光層を構成する透
明性高分子物質を形成する重合性化合物を含有する重合
性組成物から成る透明性高分子物質であることを特徴と
する光散乱型液晶デバイスを提供する。
That is, in order to solve the above problems, the present invention has two substrates, at least one of which has an electrode layer and which is transparent, and a light control layer supported between these substrates. A light-scattering liquid crystal device in which the layer contains a liquid crystal material and a transparent polymer substance, wherein the transparent polymer substance has (1) a light control layer of the light-scattering liquid crystal device in which a driving voltage is lowered with an increase in temperature. And a polymerizable compound that forms a transparent polymer substance that forms a transparent polymer substance that forms a transparent polymer substance that forms a light control layer of a light-scattering liquid crystal device in which a driving voltage increases with an increase in temperature. Provided is a light-scattering liquid crystal device, which is a transparent polymer substance composed of a polymerizable composition containing a compound.

【0010】[0010]

【発明の実施の形態】本発明の液晶デバイスは、例え
ば、以下の製造方法に従って、製造することができる。
BEST MODE FOR CARRYING OUT THE INVENTION The liquid crystal device of the present invention can be manufactured by the following manufacturing method, for example.

【0011】即ち、電極層を有する少なくとも一方が透
明な2枚の基板間に、(A)液晶材料と(B)(1)温
度上昇に伴ない駆動電圧が低下する光散乱型液晶デバイ
スの調光層を構成する透明性高分子物質を形成する重合
性化合物及び(2)温度上昇に伴ない駆動電圧が上昇す
る光散乱型液晶デバイスの調光層を構成する透明性高分
子物質を形成する重合性化合物、及び(3)重合開始剤
を含有する重合性組成物から成る調光層形成材料を介在
させ、紫外線を照射することによって、重合性化合物を
重合させることにより、2枚の基板間に液晶材料及び透
明性固体物質を含有する調光層を形成する光散乱型液晶
デバイスの製造方法。
That is, (A) a liquid crystal material and (B) (1) a light-scattering type liquid crystal device in which a driving voltage decreases with an increase in temperature between two substrates having at least one transparent electrode layer. A polymerizable compound that forms a transparent polymer material that forms the light layer, and (2) forms a transparent polymer material that forms the light control layer of a light-scattering liquid crystal device in which the driving voltage increases with increasing temperature. Between the two substrates by polymerizing the polymerizable compound by irradiating with ultraviolet rays through a light control layer forming material composed of the polymerizable composition containing the polymerizable compound and (3) a polymerization initiator. A method for manufacturing a light-scattering liquid crystal device, which comprises forming a light control layer containing a liquid crystal material and a transparent solid substance therein.

【0012】[0012]

【発明の実施の形態】本発明で使用する基板は、堅固な
材料、例えば、ガラス、金属等であっても良く、柔軟性
を有する材料、例えば、プラスチックフィルムの如きも
のであっても良い。そして、基板は2枚が対向して適当
な間隔を隔てるものであり、その少なくとも一方は透明
性を有し、その2枚の間に挟持される液晶材料及び透明
性高分子物質を含有する調光層を外界から視覚させるも
のでなければならない。但し、完全な透明性を必須とす
るものではない。
BEST MODE FOR CARRYING OUT THE INVENTION The substrate used in the present invention may be a rigid material such as glass or metal, or a flexible material such as a plastic film. The two substrates are opposed to each other and are spaced apart from each other at an appropriate interval, at least one of which is transparent, and a substrate containing a liquid crystal material and a transparent polymer substance sandwiched between the two substrates. The light layer must be visible from the outside world. However, complete transparency is not essential.

【0013】もし、この光散乱型液晶デバイスが、デバ
イスの一方の側から他方の側へ通過する光に対して作用
させるために使用される場合は、共に適宜な透明性が与
えられる。この基板には、目的に応じて透明、不透明の
適宜な電極が、その前面叉は部分的に配置されても良
い。但し、プラスチックの如き柔軟性を有する材料の場
合には、堅固な材料、例えば、ガラス、金属等に固定し
たうえで本発明の液晶デバイスに用いることができる。
If the light-scattering liquid crystal device is used to act on light passing from one side of the device to the other, both are provided with appropriate transparency. Appropriate transparent or opaque electrodes may be disposed on the front surface or a part of the substrate depending on the purpose. However, in the case of a flexible material such as plastic, it can be used for the liquid crystal device of the present invention after being fixed to a rigid material such as glass or metal.

【0014】また、2枚の基板間には、通常、周知の光
散乱型液晶デバイスと同様、間隔保持用のスペーサーを
介在させることもできる。
Further, a spacer for holding a space can be usually interposed between the two substrates, as in the known light-scattering type liquid crystal device.

【0015】スペーサーとしては、例えば、マイラー、
アルミナ、ロッドタイプのガラスファイバー、ガラスビ
ーズ、ポリマービーズ等種々の液晶セル用のものを用い
ることができる。
As the spacer, for example, Mylar,
Alumina, rod-type glass fiber, glass beads, polymer beads, and other various liquid crystal cells can be used.

【0016】本発明で使用する液晶材料は、単一の液晶
性化合物であることを要しないのは勿論で、2種以上の
液晶化合物や液晶化合物以外の物質も含んだ混合物であ
っても良く、通常この技術分野で液晶材料として認識さ
れるものであれば良く、そのうちの正の誘電異方性を有
するものが好ましい。用いる液晶としては、ネマチック
液晶、スメクチック液晶、コレステリック液晶が好まし
く、ネマチック液晶が特に好ましい。その性能を改善す
るために、コレステリック液晶、カイラルネマチック液
晶、カイラルスメクチック液晶等やカイラル化合物が適
宜含まれていてもよい。
The liquid crystal material used in the present invention does not need to be a single liquid crystal compound, and may be a mixture containing two or more kinds of liquid crystal compounds or substances other than the liquid crystal compounds. Any material generally recognized as a liquid crystal material in this technical field may be used, and one having a positive dielectric anisotropy is preferable. As a liquid crystal to be used, a nematic liquid crystal, a smectic liquid crystal, and a cholesteric liquid crystal are preferable, and a nematic liquid crystal is particularly preferable. In order to improve the performance, a cholesteric liquid crystal, a chiral nematic liquid crystal, a chiral smectic liquid crystal or the like, or a chiral compound may be appropriately contained.

【0017】本発明で使用する液晶材料は、以下に示し
た化合物群から選ばれる1種類以上の化合物から成る配
合組成物が好ましく、液晶材料の特性、即ち、抵抗値、
等方性液体と液晶の相転移温度、融点、粘度、屈折率異
方性(Δn)、誘電率異方性(Δε)及び重合性組成物
等との溶解性等を改善することを目的として適宜選択、
配合して用いることができる。
The liquid crystal material used in the present invention is preferably a blended composition comprising one or more compounds selected from the compound group shown below, and the characteristics of the liquid crystal material, that is, the resistance value,
For the purpose of improving the phase transition temperature, melting point, viscosity, refractive index anisotropy (Δn), dielectric anisotropy (Δε) of the isotropic liquid and the liquid crystal, and the solubility of the polymerizable composition and the like. Choose appropriately,
It can be used by mixing.

【0018】そのような液晶材料には、安息香酸エステ
ル系、シクロヘキシルカルボン酸エステル系、ビフェニ
ル系、ターフェニル系、フェニルシクロヘキサン系、ビ
フェニルシクロヘキサン系、ピリミジン系、ピリジン
系、ジオキサン系、シクロヘキサンシクロヘキサンエス
テル系、シクロヘキシルエタン系、トラン系、アルケニ
ル系等の各種液晶化合物が使用される。
Examples of such liquid crystal materials include benzoic acid ester type, cyclohexylcarboxylic acid ester type, biphenyl type, terphenyl type, phenylcyclohexane type, biphenylcyclohexane type, pyrimidine type, pyridine type, dioxane type, cyclohexane cyclohexane ester type. , Various cyclohexylethane-based, tolan-based, alkenyl-based liquid crystal compounds are used.

【0019】液晶化合物の具体例としては、4−置換安
息香酸4’−置換フェニルエステル、4−置換シクロヘ
キサンカルボン酸4’−置換フェニルエステル、4−置
換シクロヘキサンカルボン酸4’−置換ビフェニルエス
テル、4−(4−置換シクロヘキサンカルボニルオキ
シ)安息香酸4’−置換フェニルエステル、4−(4−
置換シクロヘキシル)安息香酸4’−シクロヘキシルエ
ステル、4−置換4’−置換ビフェニル、4−置換フェ
ニル4’置換シクロヘキサン、4−置換4”−置換ター
フェニル、4−置換ビフェニル4’−置換シクロヘキサ
ン、2−(4−置換フェニル)5−置換ピリジン、4−
置換(4−置換フェニルエチニル)フェニル等を挙げる
ことができる。
Specific examples of the liquid crystal compound include 4-substituted benzoic acid 4′-substituted phenyl ester, 4-substituted cyclohexanecarboxylic acid 4′-substituted phenyl ester, 4-substituted cyclohexanecarboxylic acid 4′-substituted biphenyl ester, 4 -(4-Substituted cyclohexanecarbonyloxy) benzoic acid 4'-substituted phenyl ester, 4- (4-
Substituted cyclohexyl) benzoic acid 4′-cyclohexyl ester, 4-substituted 4′-substituted biphenyl, 4-substituted phenyl 4′-substituted cyclohexane, 4-substituted 4 ″ -substituted terphenyl, 4-substituted biphenyl 4′-substituted cyclohexane, 2 -(4-Substituted phenyl) 5-substituted pyridine, 4-
Examples thereof include substituted (4-substituted phenylethynyl) phenyl.

【0020】調光層形成材料中の液晶材料の含有率は、
60〜98重量%の範囲が好ましく、70〜90重量%
の範囲が特に好ましい。
The content of the liquid crystal material in the light control layer forming material is
A range of 60 to 98% by weight is preferable, and 70 to 90% by weight
Is particularly preferred.

【0021】前記調光層中に形成される透明性高分子物
質は、その中に液晶材料を分散する構造のものでもよい
が、三次元網目状構造を有するものがより好ましい。
The transparent polymer substance formed in the light control layer may have a structure in which a liquid crystal material is dispersed therein, but one having a three-dimensional network structure is more preferable.

【0022】この透明性高分子物質の三次元網目状構造
には液晶材料が充填され、かつ、液晶材料が連続層を形
成することが好ましく、液晶材料の無秩序な状態を形成
することにより光学境界面を形成し、光の散乱を発現さ
せる。
It is preferable that the three-dimensional network structure of the transparent polymer substance is filled with a liquid crystal material, and the liquid crystal material forms a continuous layer, and the optical boundary is formed by forming a disordered state of the liquid crystal material. It forms a surface and develops light scattering.

【0023】この透明性高分子物質は、堅固なものに限
らず、目的に応じ得る限り可撓性、柔軟性、弾性を有す
るものであっても良い。
The transparent polymer substance is not limited to a solid substance, but may be a substance having flexibility, flexibility and elasticity as long as it is suitable for the purpose.

【0024】本発明で使用する重合性組成物は、重合体
形成モノマー、オリゴマーであって、これらのモノマー
及びオリゴマーは2種類以上併用することができるが、
少なくとも、温度上昇に伴ない駆動電圧が低下する光散
乱型液晶デバイスの調光層を構成する透明性高分子物質
を形成する重合性化合物、及び温度上昇に伴ない駆動電
圧が上昇する光散乱型液晶デバイスの調光層を構成する
透明性高分子物質を形成する重合性化合物を必須成分と
して含有する。この駆動電圧の温度依存性が異なる2種
類の重合性化合物を、その温度特性、さらには電圧透過
率特性を考慮し混合比を調節することによって、コント
ラストが高く、駆動電圧が低く、さらには駆動電圧の温
度依存性が小さい光散乱型液晶デバイスを作製すること
ができる。
The polymerizable composition used in the present invention is a polymer-forming monomer or oligomer, and two or more kinds of these monomers and oligomers can be used in combination.
At least a polymerizable compound that forms a transparent polymer substance that constitutes the light control layer of a light-scattering liquid crystal device in which the driving voltage decreases with increasing temperature, and a light-scattering type in which the driving voltage increases with increasing temperature. A polymerizable compound that forms a transparent polymer substance that constitutes a light control layer of a liquid crystal device is contained as an essential component. By adjusting the mixing ratio of the two types of polymerizable compounds having different temperature dependences of the driving voltage in consideration of the temperature characteristics and further the voltage transmittance characteristics, the contrast is high, the driving voltage is low, and the driving voltage is high. A light-scattering liquid crystal device in which the temperature dependence of voltage is small can be manufactured.

【0025】本発明で使用する温度上昇に伴ない駆動電
圧が低下する光散乱型液晶デバイスの調光層を構成する
透明性高分子物質を形成する重合性化合物としては、例
えば、2−オクチルデシルアクリレート、2−ヘプチル
ノニルアクリレート、2−ノニルウンデシルアクリレー
ト、2−デシルドデシルアクリレート、(1,2−ヒド
ロキシオクチル−3−オクチル−4−ヘチシル)シクロ
ヘキサンと9−ノニル−10−オクチルノナデカンジオ
ールの混合物のジアクリレートエステル等が挙げられ
る。
Examples of the polymerizable compound used in the present invention for forming the transparent polymer substance forming the light control layer of the light-scattering type liquid crystal device in which the driving voltage decreases with an increase in temperature include 2-octyldecyl. Of acrylate, 2-heptylnonyl acrylate, 2-nonylundecyl acrylate, 2-decyldodecyl acrylate, (1,2-hydroxyoctyl-3-octyl-4-hexyl) cyclohexane and 9-nonyl-10-octylnonadecanediol. The diacrylate ester of a mixture etc. are mentioned.

【0026】本発明で使用する温度上昇に伴ない駆動電
圧が上昇する光散乱型液晶デバイスの調光層を構成する
透明性高分子物質を形成する重合性化合物としては、例
えば、2−(3−メチルブチル)−7−メチルオクチル
アクリレート、2−(1−メチルブチル)−5−メチル
オクチルアクリレート、2−(1−メチル−3−ジメチ
ル)−5−メチル−7−ジメチルオクチルアクリレート
等が挙げられる。
Examples of the polymerizable compound used in the present invention for forming the transparent polymer substance forming the light control layer of the light-scattering liquid crystal device in which the driving voltage increases with an increase in temperature include 2- (3 -Methylbutyl) -7-methyloctyl acrylate, 2- (1-methylbutyl) -5-methyloctyl acrylate, 2- (1-methyl-3-dimethyl) -5-methyl-7-dimethyloctyl acrylate and the like.

【0027】また、温度上昇に伴い駆動電圧が上昇する
性質を示す重合性化合物の市販品としては、例えば、イ
ソミリスチルアクリレートIMA(共栄油脂社製)、イ
ソステアリルアクリレートISA(共栄油脂社製)、ラ
ウリルアクリレートLA(共栄油脂社製)、アクリル酸
2−エチルヘキシル(東京化成社製)、ダイマージアク
リレートA−OCD(新中村化学社製)等が挙げられ
る。更に、二種類の組み合わせにより温度上昇に伴い駆
動電圧が上昇する性質を示す重合性化合物は、例えば、
ネオペンチルグリコールジアクリレートA−NPG(新
中村化学社製)又はC9A(第一工業製薬社製)と、T
O−1338(東亜合成社製)又はTO−1336(東
亜合成社製)との組み合わせ等が挙げられる。
Commercially available polymerizable compounds exhibiting the property that the driving voltage increases with increasing temperature include, for example, isomyristyl acrylate IMA (manufactured by Kyoei Yushi Co., Ltd.), isostearyl acrylate ISA (manufactured by Kyoei Yushi Co., Ltd.), Examples include lauryl acrylate LA (manufactured by Kyoei Yushi Co., Ltd.), 2-ethylhexyl acrylate (manufactured by Tokyo Chemical Industry Co., Ltd.), and dimerge acrylate A-OCD (manufactured by Shin Nakamura Chemical Co., Ltd.). Further, a polymerizable compound showing a property that the driving voltage increases with a temperature increase due to a combination of two types, for example,
Neopentyl glycol diacrylate A-NPG (manufactured by Shin-Nakamura Chemical Co., Ltd.) or C9A (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and T
A combination with O-1338 (manufactured by Toa Gosei Co., Ltd.) or TO-1336 (manufactured by Toa Gosei Co., Ltd.) and the like can be mentioned.

【0028】これら温度上昇に伴ない駆動電圧が低下す
る光散乱型液晶デバイスの調光層を構成する透明性高分
子物質を形成する重合性化合物、及び温度上昇に伴ない
駆動電圧が上昇する光散乱型液晶デバイスの調光層を構
成する透明性高分子物質を形成する重合性化合物は、各
々2種類以上併用して用いることもできる。
A polymerizable compound forming a transparent polymer substance forming a light control layer of a light-scattering type liquid crystal device whose driving voltage decreases with increasing temperature, and light whose driving voltage increases with increasing temperature. Two or more kinds of the polymerizable compounds forming the transparent polymer substance forming the light control layer of the scattering type liquid crystal device may be used in combination.

【0029】具体的な重合性組成物の調整方法として
は、まず、最適網目の透明性高分子物質を作製し、か
つ、高コントラストの光散乱型液晶デバイスを得る要素
として、(1,2−ヒドロキシオクチル−3−オクチ
ル−4−ヘキシル)シクロヘキサンと9−ノニル−10
−オクチルノナデカンジオールの混合物のジアクリレー
トエステル等の2官能アクリレートを用い、次いで、光
散乱型液晶デバイスの駆動電圧を下げるため、2−オ
クチルデシルアクリレート、2−ヘプチルノニルアクリ
レート、2−ノニルウンデシルアクリレート、2−デシ
ルドデシルアクリレート等の単官能アクリレートを加え
た重合性組成物を調製する。この重合性組成物を用いて
も、高コントラストで低電圧駆動の光散乱型液晶デバイ
スが得られるが、重合性組成物が、、とも、温度上
昇に伴なって駆動電圧が低下する光散乱型液晶デバイス
の調光層を構成する透明性高分子物質を形成する重合性
化合物であるので、得られた光散乱型液晶デバイスは温
度が高くなるにつれ駆動電圧は上昇減少する特性を示
す。
As a specific method for adjusting the polymerizable composition, first, as an element for producing a transparent polymer substance having an optimum mesh and obtaining a light-scattering liquid crystal device with high contrast, (1,2- Hydroxyoctyl-3-octyl-4-hexyl) cyclohexane and 9-nonyl-10
-Using a bifunctional acrylate such as a diacrylate ester of a mixture of octyl nonadecane diol, and then using 2-octyl decyl acrylate, 2-heptyl nonyl acrylate, 2-nonyl undecyl in order to lower the driving voltage of the light scattering liquid crystal device. A polymerizable composition to which a monofunctional acrylate such as acrylate or 2-decyldodecyl acrylate is added is prepared. A high-contrast, low-voltage driven light-scattering liquid crystal device can be obtained by using this polymerizable composition. However, the polymerizable composition is a light-scattering liquid crystal device in which the driving voltage decreases with an increase in temperature. Since it is a polymerizable compound that forms a transparent polymer material that constitutes the light control layer of a liquid crystal device, the obtained light-scattering liquid crystal device exhibits a characteristic that the driving voltage increases and decreases as the temperature rises.

【0030】そこで、さらに、温度特性を調整する要素
として、2−(3−メチルブチル)−7−メチルオク
チルアクリレート、2−(1−メチルブチル)−5−メ
チルオクチルアクリレート及び2−(1−メチル−3−
ジメチル)−5−メチル−7−ジメチルオクチルアクリ
レート等の、温度上昇に伴なって駆動電圧が上昇する光
散乱型液晶デバイスの調光層を構成する透明性高分子物
質を形成する重合性化合物を加えることにより、高コン
トラスト、低駆動電圧で駆動電圧の温度特性が小さい光
散乱型液晶デバイスを得ることができる。
Therefore, as elements for adjusting the temperature characteristics, 2- (3-methylbutyl) -7-methyloctyl acrylate, 2- (1-methylbutyl) -5-methyloctyl acrylate and 2- (1-methyl-octyl acrylate). 3-
A polymerizable compound such as dimethyl) -5-methyl-7-dimethyloctyl acrylate that forms a transparent polymer substance that forms a light control layer of a light scattering type liquid crystal device in which a driving voltage increases with an increase in temperature. By adding, a light-scattering liquid crystal device having high contrast, low driving voltage, and small temperature characteristics of driving voltage can be obtained.

【0031】上記の調整方法において使用する重合性組
成物の駆動電圧に対する温度特性、電圧透過率特性によ
っては、ととの組み合わせによって同様の効果を得
ることもできる。
Depending on the temperature characteristics and voltage transmittance characteristics of the polymerizable composition used in the above adjusting method with respect to the driving voltage, the same effect can be obtained by combining with.

【0032】温度上昇に伴なって駆動電圧が上昇する光
散乱型液晶デバイスにおいて、駆動電圧の温度依存性
は、温度に対して駆動電圧の極小値を持ち、この極小値
を示す温度以下では本発明の温度特性の調整方法でも駆
動電圧の温度特性は降温で増加してしまい所望の温度特
性を得るのが難しい。駆動電圧の極小値温度以上では温
度上昇に伴い駆動電圧が上昇する温度範囲がありその範
囲で温度特性を調整して駆動電圧の温度依存性を小さく
することができる。そのため駆動電圧の極小値温度が重
要になり、必要に応じて液晶材料と重合性化合物との組
み合わせを適宜選択して駆動電圧の極小値温度を調整す
ることが必要になる。また、駆動電圧の極小値を示す温
度は、使用する液晶材料の種類及び光散乱型液晶デバイ
スを構成する透明性高分子物質を形成する重合性化合物
の種類により異なる。
In a light-scattering liquid crystal device in which the driving voltage rises as the temperature rises, the temperature dependence of the driving voltage has a minimum value of the driving voltage with respect to temperature, and below the temperature at which this minimum value is reached, Even with the temperature characteristic adjusting method of the present invention, the temperature characteristic of the driving voltage increases as the temperature drops, and it is difficult to obtain the desired temperature characteristic. There is a temperature range in which the drive voltage rises as the temperature rises above the minimum value temperature of the drive voltage, and the temperature characteristics can be adjusted in that range to reduce the temperature dependence of the drive voltage. Therefore, the minimum value temperature of the driving voltage is important, and it is necessary to appropriately select the combination of the liquid crystal material and the polymerizable compound as necessary to adjust the minimum value temperature of the driving voltage. The temperature at which the driving voltage has a minimum value varies depending on the type of liquid crystal material used and the type of polymerizable compound forming the transparent polymer substance constituting the light scattering liquid crystal device.

【0033】分子構造と駆動電圧の極小値温度の関係を
見ると、側鎖に炭素鎖を有する重合性化合物を重合性組
成物に用いた場合において、駆動電圧の極小値が温度変
化に対して発現する。また、駆動電圧の低電圧効果及び
光散乱性を考慮すると、直鎖型重合性化合物を重合性組
成物に用いた場合では、炭素原子数5以上の炭素鎖を有
する材料が好ましく、炭素鎖が長くなると駆動電圧の極
小値温度が高くなる傾向が見られる。例えば、炭素原子
数7の直鎖型炭素鎖を有する重合性化合物を重合性組成
物に用いた場合では、極小値温度は0℃になり、炭素原
子数9の直鎖型炭素鎖を有する重合性化合物を重合性組
成物に用いた場合では、極小値温度が25℃、炭素原子
数12の直鎖型炭素鎖を有する重合性化合物を重合性組
成物に用いた場合では、極小値温度は50℃に達する。
特に、炭素原子数7〜9の直鎖型炭素鎖を有する重合性
化合物を重合性組成物に用いた場合において、駆動電圧
の極小値が、他の化合物を用いた場合と比較して、小さ
くなることからより好ましい。
Looking at the relationship between the molecular structure and the minimum value temperature of the driving voltage, when the polymerizable compound having a carbon chain in the side chain is used in the polymerizable composition, the minimum value of the driving voltage with respect to the temperature change. Express. Further, in consideration of the low voltage effect of the driving voltage and the light scattering property, when the linear polymerizable compound is used in the polymerizable composition, a material having a carbon chain having 5 or more carbon atoms is preferable, and the carbon chain is As the length increases, the minimum temperature of the drive voltage tends to increase. For example, when a polymerizable compound having a linear carbon chain having 7 carbon atoms is used in the polymerizable composition, the minimum temperature is 0 ° C., and the polymerization having a linear carbon chain having 9 carbon atoms is performed. When the polymerizable compound is used in the polymerizable composition, the minimum temperature is 25 ° C., and when the polymerizable compound having a linear carbon chain having 12 carbon atoms is used in the polymerizable composition, the minimum temperature is Reach 50 ° C.
In particular, when the polymerizable compound having a linear carbon chain having 7 to 9 carbon atoms is used in the polymerizable composition, the minimum value of the driving voltage is smaller than that when other compounds are used. Is more preferable.

【0034】一方、分岐型の側鎖を有する重合性化合物
を重合性組成物に用いた場合では、直鎖型の重合性化合
物のような炭素鎖の長さと極小値温度との関係は確認さ
れないが、室温以下での駆動電圧の上昇を押さえる効
果、又は、温度上昇に伴い駆動電圧を上昇させる効果が
認められる。
On the other hand, when a polymerizable compound having a branched side chain is used in the polymerizable composition, the relationship between the length of the carbon chain and the minimum temperature as in the linear polymerizable compound is not confirmed. However, the effect of suppressing the increase of the driving voltage at room temperature or lower, or the effect of increasing the driving voltage with the temperature increase is recognized.

【0035】本発明の液晶デバイスでは、駆動電圧の温
度特性を調整するためには、温度上昇に伴い駆動電圧が
上昇する効果を有する分岐型の側鎖の重合性化合物を用
いることが好ましい。また、二種類の異なる極小値温度
を示す重合性化合物を用いると両者の極小値温度の中間
に駆動電圧の極小値が見られる。また、単体では駆動電
圧の極小値温度を発現しない重合性化合物を使用した場
合、他の同様な性質の側鎖を有する重合性化合物と組み
合わせることによって、駆動電圧の極小値を発現するこ
とがあり、共重合体における側鎖の形態、長さ、側鎖比
率等に影響される。更に、光散乱型デバイスを構成する
調光層において、液晶材料の含有量及び調光層を構成す
る透明性高分子物質に含まれる駆動電圧の極小値を示す
重合性化合物の濃度からも駆動電圧の極小値温度は影響
される。例えば、液晶濃度が70%で極小値温度が20
℃を示す場合、液晶濃度を75%にすると極小値温度は
25℃に上昇する。また、駆動電圧の極小値温度を示す
重合性化合物濃度が17.5%で極小値温度が25℃を
示す場合、前記重合性化合物濃度を12.5%にすると
極小値温度は5℃に低下する。
In the liquid crystal device of the present invention, in order to adjust the temperature characteristic of the driving voltage, it is preferable to use a branched side chain polymerizable compound having an effect of increasing the driving voltage with increasing temperature. Further, when two kinds of polymerizable compounds exhibiting different minimum values are used, the minimum value of the driving voltage is found between the two minimum values. In addition, when a polymerizable compound that does not exhibit a minimum driving voltage temperature by itself is used, it may exhibit a minimum driving voltage value when combined with another polymerizable compound having a side chain with similar properties. It is influenced by the side chain morphology, length, side chain ratio, etc. in the copolymer. Further, in the light control layer constituting the light scattering type device, the driving voltage is also determined from the content of the liquid crystal material and the concentration of the polymerizable compound showing the minimum value of the driving voltage contained in the transparent polymer substance forming the light control layer. The minimum temperature of is affected. For example, the liquid crystal concentration is 70% and the minimum temperature is 20.
In the case of ℃, the minimum temperature rises to 25 ℃ when the liquid crystal concentration is set to 75%. When the concentration of the polymerizable compound showing the minimum value temperature of the driving voltage is 17.5% and the minimum value temperature is 25 ° C., the minimum value temperature is lowered to 5 ° C. when the concentration of the polymerizable compound is set to 12.5%. To do.

【0036】このように駆動電圧の極小値温度の調整す
るためには、1)液晶濃度、2)駆動電圧の極小値を示
す重合性化合物濃度、3)液晶材料との駆動電圧の極小
値を示す重合性化合物の種類及びその組み合わせ等を変
えることにより極小値温度の調整が可能であり、必要に
応じて適宜これらの手段を選択して極小値温度を調整す
ることができる。
As described above, in order to adjust the temperature of the minimum value of the driving voltage, 1) the liquid crystal concentration, 2) the concentration of the polymerizable compound showing the minimum value of the driving voltage, and 3) the minimum value of the driving voltage with the liquid crystal material are set. The minimum temperature can be adjusted by changing the type of the polymerizable compound and the combination thereof, and the minimum temperature can be adjusted by appropriately selecting these means as necessary.

【0037】液晶材料と駆動電圧の極小値との関係を見
ると、液晶材料の極性に影響される。例えば、シアノ系
液晶の如き極性の高い液晶を用いた場合、駆動電圧が温
度上昇に伴なって単調に減少するだけで、駆動電圧の温
度特性において極小値が認められない。一方、極性の小
さいフッ素系液晶を用いた場合、駆動電圧の温度特性に
おいて極小値が認められ、液晶材料の垂直成分の誘電率
ε⊥が小さいと温度に対する駆動電圧の極小値を下げる
効果が大きくなり、低電圧駆動で温度特性を調整できる
ようになる。そのため、少なくとも誘電率ε⊥が5.5
以下である液晶を用いた場合、駆動電圧の温度特性に小
さく極小値が現われるので好ましい。また、極小値温度
を示す液晶材料を添加しても駆動電圧の極小値温度を調
整することができる。
Looking at the relationship between the liquid crystal material and the minimum value of the driving voltage, it is affected by the polarity of the liquid crystal material. For example, when a liquid crystal having a high polarity such as a cyano liquid crystal is used, the driving voltage only monotonously decreases as the temperature rises, and a minimum value is not recognized in the temperature characteristic of the driving voltage. On the other hand, when a fluorine-based liquid crystal with a small polarity is used, a minimum value is recognized in the temperature characteristic of the drive voltage, and if the dielectric constant ε⊥ of the vertical component of the liquid crystal material is small, the effect of lowering the minimum value of the drive voltage with respect to temperature is great. Therefore, the temperature characteristics can be adjusted by driving at a low voltage. Therefore, at least the dielectric constant ε⊥ is 5.5.
When the following liquid crystals are used, the temperature characteristic of the driving voltage is small and a minimum value appears, which is preferable. Further, the minimum temperature of the driving voltage can be adjusted by adding a liquid crystal material exhibiting the minimum temperature.

【0038】駆動電圧が極小値を示し温度上昇に伴い駆
動電圧が増加する要因の一つは、液晶分子と調光層に使
用される透明性高分子物質との相互作用に起因してお
り、特に、調光層の透明性高分子物質と液晶材料との界
面で誘起されるプレチルト角の温度変化に強く影響され
ている。温度に対して駆動電圧が極小値を示す温度付近
では、プレチルト角が最大となり、この時、液晶のしき
い値電圧が最小になり駆動電圧の極小値が見られる。駆
動電圧の極小値温度から温度が上昇すると誘起されるプ
レチルト角がしだいに減少してゆき、この減少に伴ない
液晶のしきい値が増加して駆動電圧が増加する。プレチ
ルト角の温度変化の現象は、温度に対する液晶しきい値
電圧以下の静電容量測定と透過率の測定から観測され
る。また、重合性化合物を配向膜として用いた平行配向
セルの静電容量の温度変化からも見ることもできる。液
晶デバイスにおいて、液晶デバイスの容量は、駆動電圧
の極小値温度に向けて降温に伴なって僅かづつ増加し、
駆動電圧の極小値温度近傍で急激に増加する。これは、
調光層中で液晶分子が任意に配向した状態において、液
晶分子の配向が電極間の電界方向に対して平行になる成
分が増大し、透明性高分子物質界面からの影響で液晶分
子の配向方向が変化したことに由来する。また、最小透
過率の温度特性と比較すると、静電容量が急激に増加す
る付近で最小透過率も同時に増加する。
One of the factors that the driving voltage shows a minimum value and the driving voltage increases as the temperature rises is due to the interaction between the liquid crystal molecules and the transparent polymer substance used in the light control layer. In particular, it is strongly influenced by the temperature change of the pretilt angle induced at the interface between the transparent polymer substance of the light control layer and the liquid crystal material. The pretilt angle is maximized near a temperature at which the drive voltage has a minimum value with respect to the temperature, and at this time, the threshold voltage of the liquid crystal is minimized and the drive voltage has a minimum value. When the temperature rises from the minimum value temperature of the driving voltage, the induced pretilt angle gradually decreases, and with this decrease, the threshold value of the liquid crystal increases and the driving voltage increases. The phenomenon of the change in the pretilt angle with temperature is observed from the measurement of the capacitance below the liquid crystal threshold voltage and the measurement of the transmittance with respect to the temperature. It can also be seen from the temperature change of the capacitance of a parallel alignment cell using a polymerizable compound as an alignment film. In the liquid crystal device, the capacitance of the liquid crystal device increases little by little as the temperature decreases toward the minimum value temperature of the driving voltage,
It rapidly increases near the minimum temperature of the driving voltage. this is,
In the state where the liquid crystal molecules are arbitrarily aligned in the light control layer, the component that makes the alignment of the liquid crystal molecules parallel to the electric field direction between the electrodes increases, and the alignment of the liquid crystal molecules is affected by the interface of the transparent polymer substance. It comes from the change in direction. Further, when compared with the temperature characteristic of the minimum transmittance, the minimum transmittance also increases at the same time when the capacitance rapidly increases.

【0039】これらの点から、透明性高分子界面上での
液晶配向変化に起因する変化が最小透過率の温度変化及
びしきい値電圧以下の静電容量の温度変化に現れてお
り、更に、液晶しきい値電圧以下の静電容量が同様に降
温に伴なって増加する同様な現象が同一の透明性高分子
物質を配向膜として用いた平行配向セルにおいても観測
されることから、何れもプレチル角の誘起に伴なう配向
変化に起因していることが理解できる。
From these points, the change caused by the change in the liquid crystal orientation on the interface of the transparent polymer appears in the temperature change of the minimum transmittance and the temperature change of the capacitance below the threshold voltage. Since a similar phenomenon in which the capacitance below the liquid crystal threshold voltage similarly increases with decreasing temperature is also observed in a parallel alignment cell using the same transparent polymer substance as an alignment film, It can be understood that this is due to the change in orientation accompanying the induction of the pretilt angle.

【0040】即ち、温度上昇に伴ない駆動電圧が上昇す
る光散乱型液晶デバイスの調光層を構成する透明性高分
子物質を形成する重合性化合物には、降温に伴い液晶と
の界面で誘起するプレチルト角が増加するものであれば
良く、誘起するプレチルト角が最大になる温度を液晶デ
バイスの実用動作温度範囲の下限値以下に設定するよう
に重合性化合物及び液晶材料を調整すれば良い。また、
駆動電圧の極小値温度以下では、電圧透過率特性のヒス
テリシス幅が増加し光散乱性が低下するので極小値温度
以上で本発明の液晶デバイスを駆動させることが好まし
い。
That is, the polymerizable compound forming the transparent polymer substance forming the dimming layer of the light-scattering liquid crystal device in which the driving voltage rises as the temperature rises is induced at the interface with the liquid crystal as the temperature drops. As long as the pretilt angle is increased, the polymerizable compound and the liquid crystal material may be adjusted so that the temperature at which the induced pretilt angle is maximized is set to be equal to or lower than the lower limit of the practical operating temperature range of the liquid crystal device. Also,
Below the minimum value temperature of the driving voltage, the hysteresis width of the voltage transmittance characteristic increases and the light scattering property decreases, so it is preferable to drive the liquid crystal device of the present invention above the minimum value temperature.

【0041】重合開始剤としては、例えば、2−ヒドロ
キシ−2−メチル−1−フェニルプロパン−1−オン
(メルク社製「ダロキュア1173」)、1−ヒドロキ
シシクロヘキシルフェニルケトン(チバ・ガイギー社製
「イルガキュア184」)、1−(4−イソプロピルフ
ェニル)−2−ヒドロキシ−2−メチルプロパン−1−
オン(メルク社製「ダロキュア1116」)、2−メチ
ル−1−[メチルチオ)フェニル]−2−モリホリノプ
ロパン−1(チバ・ガイギー社製「イルガキュア90
7」)、ベンジルジメチルケタール(チバ・ガイギー社
製「イルガキュア651」)、2,4−ジエチルチオキ
サントン(日本化薬社製「カヤキュアDETX」)、と
p−ジメチルアミノ安息香酸エチル(日本化薬社製「カ
ヤキュアEPA」)との混合物、イソプロピルチオキサ
ントン(ワードプレキンソツプ社製「カンタキュア−I
TX」)とp−ジメチルアミノ安息香酸エチルとの混合
物、アシルフォスフィンオキシド(BASF社製「ルシ
リンTPO」)等が挙げられる。
Examples of the polymerization initiator include 2-hydroxy-2-methyl-1-phenylpropan-1-one (“Darocur 1173” manufactured by Merck), 1-hydroxycyclohexyl phenyl ketone (“Ciba Geigy” manufactured by Ciba Geigy). Irgacure 184 "), 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropane-1-
On (Merck & Co. "Darocur 1116"), 2-methyl-1- [methylthio) phenyl] -2-morpholinopropane-1 (Ciba Geigy "Irgacure 90"
7 "), benzyl dimethyl ketal (" Irgacure 651 "manufactured by Ciba-Geigy), 2,4-diethylthioxanthone (" Kayacure DETX "manufactured by Nippon Kayaku Co., Ltd.), and ethyl p-dimethylaminobenzoate (Nippon Kayaku Co., Ltd.) Mixture with "Kayacure EPA", isopropyl thioxanthone ("Cantacure-I" manufactured by Ward Prekinsop Co., Ltd.)
TX ") and a mixture of ethyl p-dimethylaminobenzoate, acylphosphine oxide (" Lucirin TPO "manufactured by BASF), and the like.

【0042】重合開始剤の使用割合は、重合性組成物総
量の0.1〜10.0重量%範囲が好ましい。
The proportion of the polymerization initiator used is preferably 0.1 to 10.0% by weight based on the total amount of the polymerizable composition.

【0043】調光層形成材料を2枚の基板間に介在させ
るには、この調光層形成材料を基板間に注入しても良い
が、一方の基板上に適当な溶液塗布機やスピンコーター
等を用いて均一に塗布し、ついで他方の基板を重ね合わ
せ圧着させても良い。
In order to interpose the light control layer forming material between the two substrates, this light control layer forming material may be injected between the substrates. However, a suitable solution coater or spin coater may be provided on one of the substrates. It is also possible to apply evenly by using the above, and then press the other substrate one on top of another for pressure bonding.

【0044】また、一方の基板上に調光層形成材料を均
一な厚さに塗布し、重合用エネルギーを供給することに
よって重合性組成物を重合硬化させて調光層を形成した
後、他方の基板を貼り合わせる光散乱型液晶デバイスの
製造方法も、また有効である。
Further, after applying the light control layer forming material on one substrate to a uniform thickness and supplying the polymerization energy to polymerize and cure the polymerizable composition to form the light control layer, the other The method for manufacturing a light-scattering liquid crystal device in which the above substrates are bonded together is also effective.

【0045】重合用エネルギーとしては、重合性組成物
が適切に重合できるものであれば良く、例えば、紫外
線、可視光線、電子線等の放射線や熱等が挙げられる。
The energy for polymerization may be any energy as long as the polymerizable composition can be appropriately polymerized, and examples thereof include radiation such as ultraviolet rays, visible rays, electron beams, and heat.

【0046】特に、紫外線による方法は好適である。ま
た、調光層形成材料の等方性液体状態を保持しながら紫
外線を照射することは、均一な調光層を形成する上で好
ましい。
The method using ultraviolet rays is particularly preferable. Further, it is preferable to irradiate with ultraviolet rays while maintaining the isotropic liquid state of the light control layer forming material in order to form a uniform light control layer.

【0047】液晶材料中で重合性組成物を重合させるに
は、一定の強さ以上の光強度及び照射量を必要とする
が、それは重合性組成物の反応性及び光重合開始剤の種
類、濃度によって左右され、適切な光強度の選択により
三次元網目状構造の形成、及びその網目の大きさを均一
にすることができる。
In order to polymerize the polymerizable composition in the liquid crystal material, light intensity and irradiation dose above a certain level are required, which is the reactivity of the polymerizable composition and the kind of the photopolymerization initiator. Depending on the concentration, it is possible to form a three-dimensional mesh structure and make the mesh size uniform by selecting an appropriate light intensity.

【0048】更に、時間的、平面的に均一に照射するこ
とは、基板間に介在する重合性組成物に瞬間的に強い光
を照射して重合を進行させ、これによって網目の大きさ
を均一にする上で効果的である。即ち、適切な強度でパ
ルス上に紫外線を照射することにより、均一な三次元網
目状構造を有する透明性高分子物質を液晶中に形成する
ことができる。
Further, the uniform irradiation in terms of time and plane means that the polymerizable composition interposed between the substrates is instantaneously irradiated with strong light to proceed with the polymerization, thereby making the size of the mesh uniform. It is effective in That is, by irradiating the pulse with ultraviolet light at an appropriate intensity, a transparent polymer substance having a uniform three-dimensional network structure can be formed in the liquid crystal.

【0049】[0049]

【実施例】以下、実施例及び比較例を用いて本発明を更
に詳細に説明する。しかしながら、本発明はこれらの実
施例に限定されるものではない。
The present invention will be described below in more detail with reference to Examples and Comparative Examples. However, the invention is not limited to these examples.

【0050】以下の実施例において、評価特性の各々は
以下の記号及び内容を意味する。 T0 :白濁度;印加電圧0の時の光透過率(%) T100 :透明度;印加電圧を増加させていき光透過率が
ほとんど増加しなくなった時の光透過率(%) V90 :駆動電圧;T0を0%、T100を100%とした
とき光透過率が90%となる印加電圧(Vrms)
In the following examples, each of the evaluation characteristics means the following symbols and contents. T0: White turbidity; Light transmittance (%) when applied voltage is 0. T100: Transparency; Light transmittance (%) when applied voltage is increased and light transmittance almost stops V90: Driving voltage; Applied voltage (Vrms) at which the light transmittance becomes 90% when T0 is 0% and T100 is 100%.

【0051】<実施例1> (液晶材料) 下記組成から成る液晶組成物A 76.0重量% (重合性化合物) 「KU−760」 11.76重量% (荒川化学社製の(1,2−ヒドロキシオクチル−3−オクチル−4−ヘ チシル)シクロヘキサンと9−ノニル−10−オクチルノナデカンジオールの混 合物のジアクリレート) 「TO1338」 9.41重量% (東亜合成化学社製の2−ノニルウンデシルアクリレート) 「IS−A」 2.35重量% (共栄化学社製の2−(1−メチル−3−ジメチル)−5−メチル−7 −ジメチルオクチルアクリレート = イソステアリルアクリレート) (重合開始剤) 「イルガキュア651」 0.48重量% (チバガイギー社製ベンジルジメチルケタール) からなる調光層形成材料を、11.0μmのガラスファ
イバー製スペーサーが塗布された2枚のITO電極ガラ
ス基板に挟み込み、調光層形成材料が等方性液体状態と
なる温度を保ちながら、 20mW/cm2の紫外線を60
秒間照射して重合性化合物を硬化させて液晶材料と透明
性高分子物質から成る厚さ11.0μmの調光層を有す
る光散乱型液晶デバイスを得た。
<Example 1> (Liquid crystal material) Liquid crystal composition A having the following composition: 76.0% by weight (Polymerizable compound) "KU-760" 11.76% by weight ((1,2 manufactured by Arakawa Chemical Co., Ltd. -Hydroxyoctyl-3-octyl-4-hexyl) cyclohexane and diacrylate of a mixture of 9-nonyl-10-octylnonadecanediol) "TO1338" 9.41% by weight (2, manufactured by Toagosei Co., Ltd. Nonylundecyl acrylate) "IS-A" 2.35% by weight (2- (1-methyl-3-dimethyl) -5-methyl-7-dimethyloctyl acrylate manufactured by Kyoei Chemical Co., Ltd. = isostearyl acrylate) (polymerization initiation) Agent) A dimming layer forming material consisting of 0.48% by weight of "Irgacure 651" (benzyl dimethyl ketal manufactured by Ciba-Geigy Co., Ltd.) was added in an amount of 11.0 μm. It is sandwiched between two ITO electrode glass substrates coated with the glass fiber spacers described above, and while maintaining the temperature at which the light control layer forming material becomes an isotropic liquid state, ultraviolet rays of 20 mW / cm 2 are applied at 60
The polymerizable compound was cured by irradiation for 2 seconds to obtain a light-scattering type liquid crystal device having a light control layer of a thickness of 11.0 μm made of a liquid crystal material and a transparent polymer substance.

【0052】このようにして得た光散乱型液晶デバイス
の調光層を電子顕微鏡で観察したところ、三次元網目状
の透明性固体物質を確認することができた。
When the light control layer of the light-scattering liquid crystal device thus obtained was observed with an electron microscope, a transparent solid substance having a three-dimensional network could be confirmed.

【0053】次に、このようにして得た光散乱型液晶デ
バイスの25℃、30℃及び40℃における電圧透過率
特性を測定した結果、各測定温度で以下のような特性を
示した。 25℃ T0=2.7%、 T100=90.0%、 V90
=4.7Vrms 30℃ T0=2.7%、 T100=89.5%、 V90
=4.7Vrms 40℃ T0=3.1%、 T100=89.4%、 V90
=4.7Vrms
Next, the voltage-transmittance characteristics of the light-scattering type liquid crystal device thus obtained at 25 ° C., 30 ° C. and 40 ° C. were measured, and the following characteristics were shown at each measurement temperature. 25 ° C T0 = 2.7%, T100 = 90.0%, V90
= 4.7Vrms 30 ° C T0 = 2.7%, T100 = 89.5%, V90
= 4.7Vrms 40 ° C T0 = 3.1%, T100 = 89.4%, V90
= 4.7Vrms

【0054】(液晶組成物Aの組成)(Composition of liquid crystal composition A)

【化1】 Embedded image

【0055】<比較例1> (液晶材料) 実施例1で使用した液晶組成物A 76.0重量% (重合性化合物) 「KU−760」(荒川化学社製のジアクリレート) 23.52重量% (重合開始剤) 「イルガキュア651」(チバガイギー社製) 0.48重量% からなる調光層形成材料を11.0μmのガラスファイ
バー製スペーサーが塗布された2枚のITO電極ガラス
基板に挟み込み、調光層形成材料が等方性液体状態とな
るよう温度を保ちながら、 20mW/cm2の紫外線を6
0秒間照射して重合性化合物を硬化させて液晶材料と透
明性高分子物質から成る厚さ11.0μmの調光層を有
する光散乱型液晶デバイスを得た。
Comparative Example 1 (Liquid Crystal Material) Liquid Crystal Composition A Used in Example 1 76.0% by Weight (Polymerizable Compound) "KU-760" (Diacrylate manufactured by Arakawa Chemical Co., Ltd.) 23.52% by weight % (Polymerization initiator) “Irgacure 651” (manufactured by Ciba Geigy) 0.48% by weight of the light control layer forming material is sandwiched between two ITO electrode glass substrates coated with 11.0 μm glass fiber spacers, While maintaining the temperature so that the material for forming the light control layer becomes an isotropic liquid state, 6 mW of UV light of 20 mW / cm 2 was applied.
The polymerizable compound was cured by irradiation for 0 seconds to obtain a light-scattering type liquid crystal device having a light control layer made of a liquid crystal material and a transparent polymer substance and having a thickness of 11.0 μm.

【0056】このようにして得た光散乱型液晶デバイス
の調光層を電子顕微鏡で観察したところ、三次元網目状
の透明性固体物質を確認することができた。
When the light control layer of the light-scattering liquid crystal device thus obtained was observed with an electron microscope, a transparent solid substance having a three-dimensional network could be confirmed.

【0057】次に、このようにして得た光散乱型液晶デ
バイスの25℃、30℃及び40℃における電圧透過率
特性を測定した結果、各測定温度で以下のような特性を
示した。 25℃ T0=1.8%、 T100=84.5%、 V90
=25.5Vrms 30℃ T0=1.8%、 T100=85.3%、 V90
=24.3Vrms 40℃ T0=2.0%、 T100=85.3%、 V90
=22.2Vrms
Next, as a result of measuring the voltage transmittance characteristics of the light-scattering type liquid crystal device thus obtained at 25 ° C., 30 ° C. and 40 ° C., the following characteristics were shown at each measurement temperature. 25 ° C T0 = 1.8%, T100 = 84.5%, V90
= 25.5Vrms 30 ° C T0 = 1.8%, T100 = 85.3%, V90
= 24.3Vrms 40 ° C T0 = 2.0%, T100 = 85.3%, V90
= 22.2 Vrms

【0058】<比較例2> (液晶材料) 実施例1で使用した液晶組成物A 76.0重量% (重合性化合物) 「KU−760」(荒川化学社製のジアクリレート) 11.76重量% 「TO1338」 11.76重量% (東亜合成化学社製の2−ノニルウンデシルアクリレート) (重合開始剤) 「イルガキュア651」(チバガイギー社製) 0.48重量% からなる調光層形成材料を11.0μmのガラスファイ
バー製スペーサーが塗布された2枚のITO電極ガラス
基板に挟み込み、調光層形成材料が等方性液体状態とな
るよう温度を保ちながら、 20mW/cm2の紫外線を6
0秒間照射して重合性化合物を硬化させて液晶材料と透
明性高分子物質から成る厚さ11.0μmの調光層を有
する光散乱型液晶デバイスを得た。
Comparative Example 2 (Liquid Crystal Material) Liquid Crystal Composition A Used in Example 1 76.0% by Weight (Polymerizable Compound) “KU-760” (Diacrylate manufactured by Arakawa Chemical Co., Ltd.) 11.76% by weight % "TO1338" 11.76% by weight (2-nonylundecyl acrylate manufactured by Toagosei Co., Ltd.) (Polymerization initiator) 0.48% by weight of a dimming layer forming material "IRGACURE 651" (manufactured by Ciba Geigy) It is sandwiched between two ITO electrode glass substrates coated with 11.0 μm glass fiber spacers, and while maintaining the temperature so that the light control layer forming material becomes an isotropic liquid state, 20 mW / cm 2 of UV light is applied to the substrate.
The polymerizable compound was cured by irradiation for 0 seconds to obtain a light-scattering type liquid crystal device having a light control layer made of a liquid crystal material and a transparent polymer substance and having a thickness of 11.0 μm.

【0059】このようにして得た光散乱型液晶デバイス
の調光層を電子顕微鏡で観察したところ、三次元網目状
の透明性固体物質を確認することができた。
When the light control layer of the light-scattering liquid crystal device thus obtained was observed with an electron microscope, a transparent solid substance having a three-dimensional network could be confirmed.

【0060】次に、このようにして得た光散乱型液晶デ
バイスの25℃、30℃及び40℃における電圧透過率
特性を測定した結果、各測定温度で以下のような特性を
示した。 25℃ T0=2.5%、 T100=89.4%、 V90
=5.3Vrms 30℃ T0=2.5%、 T100=88.6%、 V90
=5.1Vrms 40℃ T0=3.0%、 T100=89.4%、 V90
=4.8Vrms
Next, the voltage-transmittance characteristics of the light-scattering type liquid crystal device thus obtained at 25 ° C., 30 ° C. and 40 ° C. were measured, and the following characteristics were shown at each measurement temperature. 25 ° C T0 = 2.5%, T100 = 89.4%, V90
= 5.3Vrms 30 ° C T0 = 2.5%, T100 = 88.6%, V90
= 5.1Vrms 40 ° C T0 = 3.0%, T100 = 89.4%, V90
= 4.8Vrms

【0061】以上の実施例1及び比較例1〜2で得た液
晶デバイスと、その評価結果を以下の表1にまとめて示
した。
The liquid crystal devices obtained in Example 1 and Comparative Examples 1 and 2 and the evaluation results thereof are summarized in Table 1 below.

【0062】[0062]

【表1】 [Table 1]

【0063】表1に示した結果から、駆動電圧に対する
温度特性が異なる重合性化合物の混合比を調整すること
により、得られる光散乱型液晶デバイスの駆動電圧の温
度依存性を小さくすることができることが理解できる。
From the results shown in Table 1, it is possible to reduce the temperature dependence of the driving voltage of the obtained light scattering type liquid crystal device by adjusting the mixing ratio of the polymerizable compounds having different temperature characteristics with respect to the driving voltage. Can understand.

【0064】以下の実施例2以降に、上記のような調整
方法で駆動電圧の温度依存性を解消した例を示す。
The following second and subsequent embodiments show examples in which the temperature dependency of the drive voltage is eliminated by the above adjusting method.

【0065】<実施例2> (液晶材料) 実施例1で使用した液晶組成物A 75.0重量% (重合性化合物) 「KU−760」(荒川化学社製のジアクリレート) 11.03重量% 「TO1338」 9.80重量% (東亜合成化学社製の2−ノニルウンデシルアクリレート) 「IM−A」 3.68重量% (共栄化学社製の2−(3−メチルブチル)−7−メチルオクチルアク リレート = イソミリスチルアクリレート) (重合開始剤) 「イルガキュア651」(チバガイギー社製) 0.49重量% からなる調光層形成材料を、11.0μmのガラスファ
イバー製スペーサーが塗布された2枚のITO電極ガラ
ス基板に挟み込み、調光層形成材料が等方性液体状態と
なる温度を保ちながら、 20mW/cm2の紫外線を60
秒間照射して重合性化合物を硬化させて液晶材料と透明
性高分子物質から成る厚さ11.0μmの調光層を有す
る光散乱型液晶デバイスを得た。
<Example 2> (Liquid crystal material) Liquid crystal composition A used in Example 1 75.0% by weight (Polymerizable compound) "KU-760" (diacrylate manufactured by Arakawa Chemical Co., Ltd.) 11.03% by weight % "TO1338" 9.80% by weight (2-nonylundecyl acrylate manufactured by Toagosei Kagaku) "IM-A" 3.68% by weight (2- (3-methylbutyl) -7-methyl manufactured by Kyoei Chemical Co., Ltd. Octyl acrylate = isomyristyl acrylate) (Polymerization initiator) "Irgacure 651" (manufactured by Ciba-Geigy) 0.49% by weight of the light control layer forming material coated with 11.0 μm glass fiber spacers It is sandwiched between the ITO electrode glass substrates of, and while maintaining the temperature at which the light control layer forming material becomes an isotropic liquid state, ultraviolet rays of 20 mW / cm 2 are applied at 60
The polymerizable compound was cured by irradiation for 2 seconds to obtain a light-scattering type liquid crystal device having a light control layer of a thickness of 11.0 μm made of a liquid crystal material and a transparent polymer substance.

【0066】このようにして得た光散乱型液晶デバイス
の調光層を電子顕微鏡で観察したところ、三次元網目状
の透明性固体物質を確認することができた。
When the light control layer of the light-scattering type liquid crystal device thus obtained was observed with an electron microscope, a transparent solid substance having a three-dimensional network could be confirmed.

【0067】次に、このようにして得た光散乱型液晶デ
バイスの25℃、30℃及び40℃における電圧透過率
特性を測定した結果、各測定温度で以下のような特性を
示した。 25℃ T0=3.1%、 T100=90.1%、 V90
=4.6Vrms 30℃ T0=3.2%、 T100=90.2%、 V90
=4.6Vrms 40℃ T0=3.5%、 T100=89.5%、 V90
=4.6Vrms
Next, as a result of measuring the voltage transmittance characteristics of the light-scattering type liquid crystal device thus obtained at 25 ° C., 30 ° C. and 40 ° C., the following characteristics were shown at each measurement temperature. 25 ° C T0 = 3.1%, T100 = 90.1%, V90
= 4.6Vrms 30 ° C T0 = 3.2%, T100 = 90.2%, V90
= 4.6Vrms 40 ° C T0 = 3.5%, T100 = 89.5%, V90
= 4.6 Vrms

【0068】<実施例3> (液晶材料) 実施例1で使用した液晶組成物A 75.0重量% (重合性化合物) 「KU−760」(荒川化学社製のジアクリレート) 11.03重量% 「TO1336」 12.25重量% (東亜合成社製の2−ヘプチルノニルアクリレート) 「IM−A」 1.23重量% (共栄化学社製のイソミリスチルアクリレート) (重合開始剤) 「イルガキュア651」(チバガイギー社製) 0.49重量% からなる調光層形成材料を、11.0μmのガラスファ
イバー製スペーサーが塗布された2枚のITO電極ガラ
ス基板に挟み込み、調光層形成材料が等方性液体状態と
なる温度を保ちながら、 20mW/cm2の紫外線を60
秒間照射して重合性化合物を硬化させて液晶材料と透明
性高分子物質から成る厚さ11.0μmの調光層を有す
る光散乱型液晶デバイスを得た。
<Example 3> (Liquid crystal material) Liquid crystal composition A used in Example 1 75.0% by weight (Polymerizable compound) "KU-760" (diacrylate manufactured by Arakawa Chemical Co., Ltd.) 11.03% by weight % "TO1336" 12.25% by weight (2-heptylnonyl acrylate manufactured by Toagosei Co., Ltd.) "IM-A" 1.23% by weight (isomyristyl acrylate manufactured by Kyoei Chemical Co., Ltd.) (Polymerization initiator) "Irgacure 651" (Manufactured by Ciba-Geigy) A dimming layer forming material consisting of 0.49% by weight is sandwiched between two ITO electrode glass substrates coated with a 11.0 μm glass fiber spacer to make the dimming layer forming material isotropic. While maintaining the liquid temperature, 60 mW of UV light of 20 mW / cm 2
The polymerizable compound was cured by irradiation for 2 seconds to obtain a light-scattering type liquid crystal device having a light control layer of a thickness of 11.0 μm made of a liquid crystal material and a transparent polymer substance.

【0069】このようにして得た光散乱型液晶デバイス
の調光層を電子顕微鏡で観察したところ、三次元網目状
の透明性固体物質を確認することができた。
When the light control layer of the light-scattering type liquid crystal device thus obtained was observed with an electron microscope, a transparent solid substance having a three-dimensional network could be confirmed.

【0070】次に、このようにして得た光散乱型液晶デ
バイスの25℃、30℃及び40℃における電圧透過率
特性を測定した結果、各測定温度で以下のような特性を
示した。 25℃ T0=2.0%、 T100=90.2%、 V90
=4.8Vrms 30℃ T0=2.0%、 T100=90.2%、 V90
=4.8Vrms 40℃ T0=2.4%、 T100=90.0%、 V90
=4.8Vrms
Next, as a result of measuring the voltage transmittance characteristics of the light-scattering type liquid crystal device thus obtained at 25 ° C., 30 ° C. and 40 ° C., the following characteristics were shown at each measurement temperature. 25 ° C T0 = 2.0%, T100 = 90.2%, V90
= 4.8Vrms 30 ° C T0 = 2.0%, T100 = 90.2%, V90
= 4.8Vrms 40 ° C T0 = 2.4%, T100 = 90.0%, V90
= 4.8Vrms

【0071】<比較例3> (液晶材料) 実施例1で使用した液晶組成物A 76.0重量% (重合性化合物) 「KU−760」(荒川化学社製のジアクリレート) 14.12重量% 「TO1336」(東亜合成社製のモノアクリレート) 9.41重量% (重合開始剤) 「イルガキュア651」(チバガイギー社製) 0.47重量% からなる調光層形成材料を、11.0μmのガラスファ
イバー製スペーサーが塗布された2枚のITO電極ガラ
ス基板に挟み込み、調光層形成材料が等方性液体状態と
なる温度を保ちながら、 20mW/cm2の紫外線を60
秒間照射して重合性化合物を硬化させて液晶材料と透明
性高分子物質から成る厚さ11.0μmの調光層を有す
る光散乱型液晶デバイスを得た。
Comparative Example 3 (Liquid Crystal Material) Liquid Crystal Composition A Used in Example 1 76.0% by Weight (Polymerizable Compound) “KU-760” (Diacrylate manufactured by Arakawa Chemical Co., Ltd.) 14.12% by weight % “TO1336” (monoacrylate manufactured by Toagosei Co., Ltd.) 9.41% by weight (polymerization initiator) “Irgacure 651” (manufactured by Ciba-Geigy) 0.47% by weight of the light control layer forming material of 11.0 μm It is sandwiched between two ITO electrode glass substrates coated with glass fiber spacers, and while maintaining the temperature at which the material for forming the light control layer becomes an isotropic liquid state, ultraviolet rays of 20 mW / cm 2 are applied at 60
The polymerizable compound was cured by irradiation for 2 seconds to obtain a light-scattering type liquid crystal device having a light control layer of a thickness of 11.0 μm made of a liquid crystal material and a transparent polymer substance.

【0072】このようにして得た光散乱型液晶デバイス
の調光層を電子顕微鏡で観察したところ、三次元網目状
の透明性固体物質を確認することができた。
When the light control layer of the light-scattering type liquid crystal device thus obtained was observed with an electron microscope, a transparent solid substance having a three-dimensional network could be confirmed.

【0073】次に、このようにして得た光散乱型液晶デ
バイスの25℃、30℃及び40℃における電圧透過率
特性を測定した結果、各測定温度で以下のような特性を
示した。 25℃ T0=2.0%、 T100=89.2%、 V90
=10.3Vrms 30℃ T0=2.0%、 T100=90.0%、 V90
= 9.9Vrms 40℃ T0=2.4%、 T100=89.7%、 V90
= 9.3Vrms
Next, as a result of measuring the voltage transmittance characteristics of the light scattering type liquid crystal device thus obtained at 25 ° C., 30 ° C. and 40 ° C., the following characteristics were shown at each measurement temperature. 25 ° C T0 = 2.0%, T100 = 89.2%, V90
= 10.3Vrms 30 ° C T0 = 2.0%, T100 = 90.0%, V90
= 9.9Vrms 40 ° C T0 = 2.4%, T100 = 89.7%, V90
= 9.3Vrms

【0074】<実施例4> (液晶材料) 実施例1で使用した液晶組成物A 75.0重量% (重合性化合物) 「KU−760」(荒川化学社製のジアクリレート) 11.03重量% 「ISA」 12.25重量% (新中村化学社製2−オクリルデシルアクリレート) 「IM−A」 1.23重量% (共栄化学社製のイソミリスチルアクリレート) (重合開始剤) 「イルガキュア651」(チバガイギー社製) 0.49重量% からなる調光層形成材料を、11.0μmのガラスファ
イバー製スペーサーが塗布された2枚のITO電極ガラ
ス基板に挟み込み、調光層形成材料が等方性液体状態と
なる温度を保ちながら、 20mW/cm2の紫外線を60
秒間照射して重合性化合物を硬化させて液晶材料と透明
性高分子物質から成る厚さ11.0μmの調光層を有す
る光散乱型液晶デバイスを得た。
<Example 4> (Liquid crystal material) Liquid crystal composition A used in Example 1 75.0% by weight (Polymerizable compound) "KU-760" (diacrylate manufactured by Arakawa Chemical Co., Ltd.) 11.03% by weight % "ISA" 12.25% by weight (2-Ocryldecyl acrylate manufactured by Shin-Nakamura Chemical Co., Ltd.) 1.23% by weight (isomyristyl acrylate manufactured by Kyoei Chemical Co., Ltd.) (Polymerization initiator) "Irgacure 651" (Manufactured by Ciba-Geigy) 0.49% by weight of the light control layer forming material is sandwiched between two ITO electrode glass substrates coated with 11.0 μm glass fiber spacers, and the light control layer forming material is isotropic. while maintaining the temperature at which the sexual liquid state, the ultraviolet 20 mW / cm 2 60
The polymerizable compound was cured by irradiation for 2 seconds to obtain a light-scattering type liquid crystal device having a light control layer of a thickness of 11.0 μm made of a liquid crystal material and a transparent polymer substance.

【0075】このようにして得た光散乱型液晶デバイス
の調光層を電子顕微鏡で観察したところ、三次元網目状
の透明性固体物質を確認することができた。
When the light control layer of the light-scattering type liquid crystal device thus obtained was observed with an electron microscope, a transparent solid substance having a three-dimensional network could be confirmed.

【0076】次に、このようにして得た光散乱型液晶デ
バイスの25℃、30℃及び40℃における電圧透過率
特性を測定した結果、各測定温度で以下のような特性を
示した。 25℃ T0=2.0%、 T100=90.1%、 V90
=4.5Vrms 30℃ T0=2.0%、 T100=90.2%、 V90
=4.5Vrms 40℃ T0=2.3%、 T100=90.0%、 V90
=4.5Vrms
Next, as a result of measuring the voltage transmittance characteristics of the light-scattering type liquid crystal device thus obtained at 25 ° C., 30 ° C. and 40 ° C., the following characteristics were shown at each measurement temperature. 25 ° C T0 = 2.0%, T100 = 90.1%, V90
= 4.5Vrms 30 ° C T0 = 2.0%, T100 = 90.2%, V90
= 4.5Vrms 40 ° C T0 = 2.3%, T100 = 90.0%, V90
= 4.5Vrms

【0077】<比較例4> (液晶材料) 実施例1で使用した液晶組成物A 75.0重量% (重合性化合物) 「KU−760」(荒川化学社製のジアクリレート) 11.03重量% 「ISA」 13.48重量% (新中村化学社製2−オクチルデシルアクリレート) (重合開始剤) 「イルガキュア651」(チバガイギー社製) 0.49重量% からなる調光層形成材料を、11.0μmのガラスファ
イバー製スペーサーが塗布された2枚のITO電極ガラ
ス基板に挟み込み、調光層形成材料が等方性液体状態と
なる温度を保ちながら、 20mW/cm2の紫外線を60
秒間照射して重合性化合物を硬化させて液晶材料と透明
性高分子物質から成る厚さ11.0μmの調光層を有す
る光散乱型液晶デバイスを得た。
<Comparative Example 4> (Liquid crystal material) Liquid crystal composition A used in Example 1 75.0% by weight (Polymerizable compound) "KU-760" (diacrylate manufactured by Arakawa Chemical Co., Ltd.) 11.03% by weight % "ISA" 13.48% by weight (2-octyldecyl acrylate manufactured by Shin-Nakamura Chemical Co., Ltd.) (Polymerization initiator) "Irgacure 651" (manufactured by Ciba Geigy) 0.49% by weight was used as a light control layer forming material. It is sandwiched between two ITO electrode glass substrates coated with a glass fiber spacer of 0.0 μm, and while maintaining the temperature at which the light control layer forming material becomes an isotropic liquid state, an ultraviolet ray of 20 mW / cm 2 is applied to 60 μm.
The polymerizable compound was cured by irradiation for 2 seconds to obtain a light-scattering type liquid crystal device having a light control layer of a thickness of 11.0 μm made of a liquid crystal material and a transparent polymer substance.

【0078】このようにして得た光散乱型液晶デバイス
の調光層を電子顕微鏡で観察したところ、三次元網目状
の透明性固体物質を確認することができた。
When the light control layer of the light-scattering type liquid crystal device thus obtained was observed with an electron microscope, a transparent solid substance having a three-dimensional network could be confirmed.

【0079】次に、このようにして得た光散乱型液晶デ
バイスの25℃、30℃及び40℃における電圧透過率
特性を測定した結果、各測定温度で以下のような特性を
示した。 25℃ T0=2.5%、 T100=89.5%、 V90
=4.1Vrms 30℃ T0=2.6%、 T100=89.9%、 V90
=4.0Vrms 40℃ T0=3.0%、 T100=89.9%、 V90
=3.8Vrms
Next, as a result of measuring the voltage transmittance characteristics of the light scattering type liquid crystal device thus obtained at 25 ° C., 30 ° C. and 40 ° C., the following characteristics were shown at each measurement temperature. 25 ° C T0 = 2.5%, T100 = 89.5%, V90
= 4.1Vrms 30 ° C T0 = 2.6%, T100 = 89.9%, V90
= 4.0Vrms 40 ° C T0 = 3.0%, T100 = 89.9%, V90
= 3.8 Vrms

【0080】<実施例5> (液晶材料) 実施例1で使用した液晶組成物A 74.0重量% (重合性化合物) 「KU−760」(荒川化学社製のジアクリレート) 11.47重量% 「TO1339」 8.92重量% (東亜合成化学社製の2−ノニルウンデシルアクリレート) 「IM−A」 5.10重量% (共栄化学社製のイソミリスチルアクリレート) (重合開始剤) 「イルガキュア651」(チバガイギー社製) 0.51重量% からなる調光層形成材料を、11.0μmのガラスファ
イバー製スペーサーが塗布された2枚のITO電極ガラ
ス基板に挟み込み、調光層形成材料が等方性液体状態と
なる温度を保ちながら、 20mW/cm2の紫外線を60
秒間照射して重合性化合物を硬化させて液晶材料と透明
性高分子物質から成る厚さ11.0μmの調光層を有す
る光散乱型液晶デバイスを得た。
<Example 5> (Liquid crystal material) Liquid crystal composition A used in Example 1 74.0% by weight (Polymerizable compound) "KU-760" (diacrylate manufactured by Arakawa Chemical Co., Ltd.) 11.47% by weight % "TO1339" 8.92% by weight (2-nonylundecyl acrylate manufactured by Toagosei Kagaku) "IM-A" 5.10% by weight (isomyristyl acrylate manufactured by Kyoei Chemical) (polymerization initiator) "Irgacure 651 ”(manufactured by Ciba Geigy) 0.51% by weight of the light control layer forming material is sandwiched between two ITO electrode glass substrates coated with 11.0 μm glass fiber spacers to form the light control layer forming material. While maintaining the temperature at which the liquid becomes an isotropic liquid, 60 mW of UV light of 20 mW / cm 2
The polymerizable compound was cured by irradiation for 2 seconds to obtain a light-scattering type liquid crystal device having a light control layer of a thickness of 11.0 μm made of a liquid crystal material and a transparent polymer substance.

【0081】このようにして得た光散乱型液晶デバイス
の調光層を電子顕微鏡で観察したところ、三次元網目状
の透明性固体物質を確認することができた。
When the light control layer of the light-scattering type liquid crystal device thus obtained was observed with an electron microscope, a transparent solid substance having a three-dimensional network could be confirmed.

【0082】次に、このようにして得た光散乱型液晶デ
バイスの25℃、30℃及び40℃における電圧透過率
特性を測定した結果、各測定温度で以下のような特性を
示した。 25℃ T0=2.3%、 T100=90.0%、 V90
=4.9Vrms 30℃ T0=2.3%、 T100=89.7%、 V90
=4.9Vrms 40℃ T0=2.7%、 T100=90.1%、 V90
=4.9Vrms
Next, as a result of measuring the voltage transmittance characteristics of the thus obtained light scattering type liquid crystal device at 25 ° C., 30 ° C. and 40 ° C., the following characteristics were shown at each measurement temperature. 25 ° C T0 = 2.3%, T100 = 90.0%, V90
= 4.9Vrms 30 ° C T0 = 2.3%, T100 = 89.7%, V90
= 4.9Vrms 40 ° C T0 = 2.7%, T100 = 90.1%, V90
= 4.9Vrms

【0083】<比較例7> (液晶材料) 実施例1で使用した液晶組成物A 76.0重量% (重合性化合物) 「KU−760」(荒川化学社製のジアクリレート) 14.12重量% 「TO1339」(東亜合成社製のモノアクリレート))9.41重量% (重合開始剤) 「イルガキュア651」(チバガイギー社製) 0.47重量% からなる調光層形成材料を、11.0μmのガラスファ
イバー製スペーサーが塗布された2枚のITO電極ガラ
ス基板に挟み込み、調光層形成材料が等方性液体状態と
なる温度を保ちながら、 20mW/cm2の紫外線を60
秒間照射して重合性化合物を硬化させて液晶材料と透明
性高分子物質から成る厚さ11.0μmの調光層を有す
る光散乱型液晶デバイスを得た。
Comparative Example 7 (Liquid Crystal Material) Liquid Crystal Composition A Used in Example 1 76.0% by Weight (Polymerizable Compound) “KU-760” (Diacrylate manufactured by Arakawa Chemical Co., Ltd.) 14.12% by weight % “TO1339” (monoacrylate manufactured by Toagosei Co., Ltd.) 9.41% by weight (polymerization initiator) “Irgacure 651” (manufactured by Ciba Geigy) 0.47% by weight is used as a light control layer forming material of 11.0 μm. It is sandwiched between two ITO electrode glass substrates coated with the glass fiber spacers described above, and while maintaining the temperature at which the light control layer forming material becomes an isotropic liquid state, ultraviolet rays of 20 mW / cm 2 are applied at 60
The polymerizable compound was cured by irradiation for 2 seconds to obtain a light-scattering type liquid crystal device having a light control layer of a thickness of 11.0 μm made of a liquid crystal material and a transparent polymer substance.

【0084】このようにして得た光散乱型液晶デバイス
の調光層を電子顕微鏡で観察したところ、三次元網目状
の透明性固体物質を確認することができた。
When the light control layer of the light-scattering type liquid crystal device thus obtained was observed with an electron microscope, a transparent solid substance having a three-dimensional network could be confirmed.

【0085】次に、このようにして得た光散乱型液晶デ
バイスの25℃、30℃及び40℃における電圧透過率
特性を測定した結果、各測定温度で以下のような特性を
示した。 25℃ T0=2.1%、 T100=90.0%、 V90
=11.0Vrms 30℃ T0=2.1%、 T100=90.1%、 V90
=10.5Vrms 40℃ T0=2.4%、 T100=89.6%、 V90
= 9.7Vrms
Next, as a result of measuring the voltage transmittance characteristics of the light-scattering type liquid crystal device thus obtained at 25 ° C., 30 ° C. and 40 ° C., the following characteristics were shown at each measurement temperature. 25 ° C T0 = 2.1%, T100 = 90.0%, V90
= 11.0Vrms 30 ° C T0 = 2.1%, T100 = 90.1%, V90
= 10.5 Vrms 40 ° C. T0 = 2.4%, T100 = 89.6%, V90
= 9.7Vrms

【0086】<実施例6>重合性化合物「IS−A」
(共栄化学社製の2−(1−メチル−3−ジメチル)−
5−メチル−7−ジメチルオクチルアクリレート =
イソステアリルアクリレート)97.0重量%及び重合
開始剤「イルガキュア651」(チバガイギー社製)3
%から成る溶液を二枚のITOガラス基板上に滴下した
後、30秒700回転、1分5000回転の条件でスピ
ンコートした。スピンコート後、直ちにスピンコートし
たガラス基板を窒素パージしたガラス容器の中に入れ、
50mw/cm2 の紫外線を60秒間照射して、約0.3
μmの厚さの透明性高分子薄膜を基板上に形成した。こ
の透明性高分子薄膜が向かい合うように予め8μmのガ
ラスファイバー製スペーサーを散布された二枚の基板を
張り合わせて液晶空セルを作製した。これに下記液晶組
成物Bを真空注入して静電容量測定用に用いた。
<Example 6> Polymerizable compound "IS-A"
(Kyoei Chemical Co., Ltd. 2- (1-methyl-3-dimethyl)-
5-methyl-7-dimethyloctyl acrylate =
Isostearyl acrylate) 97.0% by weight and polymerization initiator "IRGACURE 651" (manufactured by Ciba Geigy) 3
% Of the solution was dropped on two ITO glass substrates, and then spin coated under the conditions of 700 seconds for 30 seconds and 5000 rpm for 1 minute. Immediately after spin coating, place the spin coated glass substrate in a nitrogen-purged glass container,
Irradiate 50mw / cm 2 of UV light for 60 seconds, and
A transparent polymer thin film having a thickness of μm was formed on the substrate. A liquid crystal empty cell was prepared by laminating two substrates on which glass fiber spacers having a thickness of 8 μm were previously dispersed so that the transparent polymer thin films face each other. The following liquid crystal composition B was vacuum-injected and used for capacitance measurement.

【0087】比較のために、「IS−A」に代えてポリ
イミド(日立化成社製の「PIX−5000」)を用い
た以外は、上記と同様にして、ポリイミドから成る透明
性高分子薄膜を有する静電容量測定用液晶セルを作製し
た。
For comparison, a transparent polymer thin film made of polyimide was prepared in the same manner as above except that polyimide (“PIX-5000” manufactured by Hitachi Chemical Co., Ltd.) was used instead of “IS-A”. A liquid crystal cell for measuring the capacitance was prepared.

【0088】温度を10〜60℃範囲で変化させ、これ
らの二つの液晶セルの静電容量を測定した。静電容量の
測定条件は、1kHzのサイン波で、液晶材料のしきい
値電圧以下の電圧0.4Vでホモジニアス配向の静電容
量を測定した。ホメオトロピック配向の静電容量は電圧
10Vを印加して測定した。
The temperature was changed in the range of 10 to 60 ° C., and the capacitances of these two liquid crystal cells were measured. The electrostatic capacitance was measured with a sine wave of 1 kHz, and the electrostatic capacitance of homogeneous alignment was measured at a voltage of 0.4 V, which is lower than the threshold voltage of the liquid crystal material. The capacitance of homeotropic alignment was measured by applying a voltage of 10V.

【0089】求めた静電容量から誘電率を算出し、その
結果を図1に示した。ポリイミド膜を用いた液晶セルに
おける誘電率の温度変化は、一般に知られている誘電率
の温度変化と一致して液晶のホメオトロピック配向の誘
電率ε//及びホモジニアス配向の誘電率ε⊥の値が得ら
れている。一方、イソステアリルアクリレートから成る
膜を用いた液晶セルでは、ホメオトロピック配向の誘電
率ε//は、ポリイミド膜を用いた液晶セルと同様な傾向
であるが、ホモジニアス配向の誘電率ε⊥は、イソステ
アリルアクリレートから成る膜を用いた液晶セルのホモ
ジニアス配向のポリイミド膜を用いた液晶セルとは異な
る動向を示す。例えば、温度60℃では、すでにポリイ
ミド膜を用いた液晶セルよりもイソステアリルアクリレ
ートから成る膜を用いた液晶セルの方がホモジニアス配
向の誘電率ε⊥の値が大きい。温度が下がると、イソス
テアリルアクリレートから成る膜を用いた液晶セルのホ
モジニアス配向の誘電率ε⊥は次第に増加し、40〜3
0℃の間では急激に大きくなり、30℃以下ではホメオ
トロピック配向の誘電率ε//と完全に一致する。これ
は、イソステアリルアクリレートから成る膜の作用によ
り高分子界面上の液晶分子の配向状態が温度変化により
ホモジニアス配向からホメオトロピック配向に変化した
ことを意味している。60℃でポリイミド膜を用いた液
晶セルとイソステアリルアクリレートから成る膜を用い
た液晶セルのホモジニアス配向の誘電率ε⊥が異なるの
は、この温度で液晶分子がイソステアリルアクリレート
から成る膜の界面でプレチルトが誘起されているためで
あると考えられる。温度が下がるとこの誘起されたプレ
チルトの角度が増加していることがイソステアリルアク
リレートから成る膜を用いた液晶セルのホモジニアス配
向の誘電率ε⊥変化から理解できる。
The dielectric constant was calculated from the obtained capacitance, and the result is shown in FIG. The temperature change of the dielectric constant in a liquid crystal cell using a polyimide film is in agreement with the temperature change of the generally known dielectric constant, and the value of the dielectric constant ε // of the homeotropic alignment of the liquid crystal and the value of the dielectric constant ε ⊥ of the homogeneous alignment. Has been obtained. On the other hand, in the liquid crystal cell using the film made of isostearyl acrylate, the dielectric constant ε // of homeotropic alignment has the same tendency as the liquid crystal cell using the polyimide film, but the dielectric constant ε⊥ of homogeneous alignment is The liquid crystal cell using a film made of isostearyl acrylate shows a different trend from the liquid crystal cell using a homogeneously oriented polyimide film. For example, at a temperature of 60 ° C., the value of the permittivity ε⊥ in the homogeneous orientation is larger in the liquid crystal cell using the film made of isostearyl acrylate than in the liquid crystal cell using the polyimide film. When the temperature decreases, the permittivity ε⊥ of the homogeneous alignment of the liquid crystal cell using the film made of isostearyl acrylate gradually increases to 40 to 3
It rapidly increases between 0 ° C., and at 30 ° C. or lower, it completely matches the dielectric constant ε // of homeotropic orientation. This means that the alignment state of the liquid crystal molecules on the polymer interface changed from homogeneous alignment to homeotropic alignment due to the temperature change due to the action of the film made of isostearyl acrylate. The difference in the dielectric constant ε⊥ of the homogeneous alignment between the liquid crystal cell using a polyimide film and the liquid crystal cell using a film made of isostearyl acrylate at 60 ° C is that at the interface of the film made of isostearyl acrylate liquid crystal molecules at this temperature. It is considered that this is because the pretilt is induced. It can be understood from the change in the dielectric constant ε⊥ of the homogeneous alignment of the liquid crystal cell using the film made of isostearyl acrylate that the angle of the induced pretilt increases with decreasing temperature.

【0090】(液晶組成物Bの組成)(Composition of liquid crystal composition B)

【化2】 Embedded image

【0091】<実施例7〜11>実施例6で検証したプ
レチルトを誘起するイソステアリルアクリレートを透明
性高分子物質を構成する重合性化合物として液晶デバイ
スに用いて駆動電圧の温度特性を調整した。
<Examples 7 to 11> The pretilt-inducing isostearyl acrylate verified in Example 6 was used as a polymerizable compound constituting a transparent polymer substance in a liquid crystal device to adjust the temperature characteristics of the driving voltage.

【0092】<実施例7> (液晶材料) 実施例6で使用した液晶組成物B 75.0重量% (重合性化合物) 「A−OCD」 12.1重量% (新中村化学社製のダイマーアクリレート) 「TO1338」 12.1重量% (東亜合成化学社製の2−ノニルウンデシルアクリレート) (重合開始剤) 「イルガキュア651」(チバガイギー社製) 0.8重量% からなる調光層形成材料を、11.0μmのガラスファ
イバー製スペーサーが塗布された2枚のITO電極ガラ
ス基板に挟み込み、調光層形成材料が等方性液体状態と
なる温度を保ちながら、 20mW/cm2の紫外線を60
秒間照射して重合性化合物を硬化させて液晶材料と透明
性高分子物質から成る厚さ11.0μmの調光層を有す
る光散乱型液晶デバイスを得た。
<Example 7> (Liquid crystal material) Liquid crystal composition B used in Example 6 75.0% by weight (Polymerizable compound) "A-OCD" 12.1% by weight (Shin Nakamura Chemical's dimer Acrylate) "TO1338" 12.1 wt% (2-nonylundecyl acrylate manufactured by Toagosei Co., Ltd.) (Polymerization initiator) "Irgacure 651" (manufactured by Ciba-Geigy) 0.8 wt% Is sandwiched between two ITO electrode glass substrates coated with 11.0 μm glass fiber spacers, and while maintaining the temperature at which the light control layer forming material becomes an isotropic liquid state, 20 mW / cm 2 of ultraviolet light is applied to 60
The polymerizable compound was cured by irradiation for 2 seconds to obtain a light-scattering type liquid crystal device having a light control layer of a thickness of 11.0 μm made of a liquid crystal material and a transparent polymer substance.

【0093】このようにして得た光散乱型液晶デバイス
の調光層を電子顕微鏡で観察したところ、三次元網目状
の透明性固体物質を確認することができた。
When the light control layer of the light-scattering liquid crystal device thus obtained was observed with an electron microscope, a transparent solid substance having a three-dimensional network could be confirmed.

【0094】<実施例8> (液晶材料) 実施例6で使用した液晶組成物B 75.0重量% (重合性化合物) 「A−OCD」 12.1重量% (新中村化学社製のダイマーアクリレート) 「IS−A」 12.1重量% (共栄化学社製の2−(1−メチル−3−ジメチル)−5−メチル−7− ジメチルオクチルアクリレート=イソステアリルアクリレート) (重合開始剤) 「イルガキュア651」(チバガイギー社製) 0.8重量% からなる調光層形成材料を、11.0μmのガラスファ
イバー製スペーサーが塗布された2枚のITO電極ガラ
ス基板に挟み込み、調光層形成材料が等方性液体状態と
なる温度を保ちながら、 20mW/cm2の紫外線を60
秒間照射して重合性化合物を硬化させて液晶材料と透明
性高分子物質から成る厚さ11.0μmの調光層を有す
る光散乱型液晶デバイスを得た。
<Example 8> (Liquid crystal material) Liquid crystal composition B used in Example 6 75.0% by weight (polymerizable compound) "A-OCD" 12.1% by weight (Shin Nakamura Chemical Co., Ltd. dimer Acrylate) "IS-A" 12.1 wt% (2- (1-methyl-3-dimethyl) -5-methyl-7-dimethyloctyl acrylate = isostearyl acrylate manufactured by Kyoei Chemical Co., Ltd.) (polymerization initiator) " Irgacure 651 ”(manufactured by Ciba-Geigy) 0.8% by weight of the light control layer forming material is sandwiched between two ITO electrode glass substrates coated with 11.0 μm glass fiber spacers to form a light control layer forming material. While maintaining the temperature at which it becomes an isotropic liquid, it is possible to apply 20 mW / cm 2 of UV light to 60
The polymerizable compound was cured by irradiation for 2 seconds to obtain a light-scattering type liquid crystal device having a light control layer of a thickness of 11.0 μm made of a liquid crystal material and a transparent polymer substance.

【0095】このようにして得た光散乱型液晶デバイス
の調光層を電子顕微鏡で観察したところ、三次元網目状
の透明性固体物質を確認することができた。
When the light control layer of the light-scattering liquid crystal device thus obtained was observed with an electron microscope, a transparent solid substance having a three-dimensional network could be confirmed.

【0096】<実施例9> (液晶材料) 実施例6で使用した液晶組成物B 75.0重量% (重合性化合物) 「A−OCD」 12.1重量% (新中村化学社製のダイマーアクリレート) 「IS−A」 6.05重量% (共栄化学社製の2−(1−メチル−3−ジメチル)−5−メチル−7− ジメチルオクチルアクリレート=イソステアリルアクリレート) 「TO1338」 6.05重量% (東亜合成化学社製の2−ノニルウンデシルアクリレート) (重合開始剤) 「イルガキュア651」(チバガイギー社製) 0.8重量% からなる調光層形成材料を、11.0μmのガラスファ
イバー製スペーサーが塗布された2枚のITO電極ガラ
ス基板に挟み込み、調光層形成材料が等方性液体状態と
なる温度を保ちながら、 20mW/cm2の紫外線を60
秒間照射して重合性化合物を硬化させて液晶材料と透明
性高分子物質から成る厚さ11.0μmの調光層を有す
る光散乱型液晶デバイスを得た。
<Example 9> (Liquid crystal material) Liquid crystal composition B used in Example 6 75.0% by weight (Polymerizable compound) "A-OCD" 12.1% by weight (Shin Nakamura Chemical Co., Ltd. dimer Acrylate) "IS-A" 6.05% by weight (2- (1-methyl-3-dimethyl) -5-methyl-7-dimethyloctyl acrylate = isostearyl acrylate manufactured by Kyoei Chemical Co., Ltd.) "TO1338" 6.05 Weight control material (2-nonylundecyl acrylate manufactured by Toagosei Co., Ltd.) (Polymerization initiator) "Irgacure 651" (manufactured by Ciba Geigy) It is sandwiched between two ITO electrode glass substrates coated with spacers, and the purple light of 20 mW / cm 2 is added while maintaining the temperature at which the light control layer forming material becomes an isotropic liquid state. Outside line 60
The polymerizable compound was cured by irradiation for 2 seconds to obtain a light-scattering type liquid crystal device having a light control layer of a thickness of 11.0 μm made of a liquid crystal material and a transparent polymer substance.

【0097】このようにして得た光散乱型液晶デバイス
の調光層を電子顕微鏡で観察したところ、三次元網目状
の透明性固体物質を確認することができた。
When the light control layer of the light-scattering type liquid crystal device thus obtained was observed with an electron microscope, a transparent solid substance having a three-dimensional network could be confirmed.

【0098】<実施例10> (液晶材料) 実施例6で使用した液晶組成物B 75.0重量% (重合性化合物) 「A−OCD」 12.1重量% (新中村化学社製のダイマーアクリレート) 「IS−A」 2.42重量% (共栄化学社製の2−(1−メチル−3−ジメチル)−5−メチル−7− ジメチルオクチルアクリレート=イソステアリルアクリレート) 「TO1338」 9.68重量% (東亜合成化学社製の2−ノニルウンデシルアクリレート) (重合開始剤) 「イルガキュア651」(チバガイギー社製) 0.8重量% からなる調光層形成材料を、11.0μmのガラスファ
イバー製スペーサーが塗布された2枚のITO電極ガラ
ス基板に挟み込み、調光層形成材料が等方性液体状態と
なる温度を保ちながら、 20mW/cm2の紫外線を60
秒間照射して重合性化合物を硬化させて液晶材料と透明
性高分子物質から成る厚さ11.0μmの調光層を有す
る光散乱型液晶デバイスを得た。
<Example 10> (Liquid crystal material) Liquid crystal composition B used in Example 6 75.0% by weight (Polymerizable compound) "A-OCD" 12.1% by weight (Shin Nakamura Chemical's dimer Acrylate) "IS-A" 2.42% by weight (2- (1-methyl-3-dimethyl) -5-methyl-7-dimethyloctyl acrylate = isostearyl acrylate manufactured by Kyoei Chemical Co., Ltd.) "TO1338" 9.68 Weight control material (2-nonylundecyl acrylate manufactured by Toagosei Co., Ltd.) (Polymerization initiator) "Irgacure 651" (manufactured by Ciba Geigy) It is sandwiched between two ITO electrode glass substrates coated with spacers, and the light control layer forming material is kept at a temperature of 20 mW / cm 2 while maintaining a temperature at which it becomes an isotropic liquid state. 60 UV
The polymerizable compound was cured by irradiation for 2 seconds to obtain a light-scattering type liquid crystal device having a light control layer of a thickness of 11.0 μm made of a liquid crystal material and a transparent polymer substance.

【0099】このようにして得た光散乱型液晶デバイス
の調光層を電子顕微鏡で観察したところ、三次元網目状
の透明性固体物質を確認することができた。
When the light control layer of the light-scattering liquid crystal device thus obtained was observed with an electron microscope, a transparent solid substance having a three-dimensional network could be confirmed.

【0100】<実施例11> (液晶材料) 実施例6で使用した液晶組成物B 75.0重量% (重合性化合物) 「A−OCD」 24.2重量% (新中村化学社製のダイマーアクリレート) (重合開始剤) 「イルガキュア651」(チバガイギー社製) 0.8重量% からなる調光層形成材料を、11.0μmのガラスファ
イバー製スペーサーが塗布された2枚のITO電極ガラ
ス基板に挟み込み、調光層形成材料が等方性液体状態と
なる温度を保ちながら、 20mW/cm2の紫外線を60
秒間照射して重合性化合物を硬化させて液晶材料と透明
性高分子物質から成る厚さ11.0μmの調光層を有す
る光散乱型液晶デバイスを得た。
<Example 11> (Liquid crystal material) Liquid crystal composition B used in Example 6 75.0% by weight (Polymerizable compound) "A-OCD" 24.2% by weight (Dimer manufactured by Shin-Nakamura Chemical Co., Ltd. Acrylate) (Polymerization initiator) "Irgacure 651" (manufactured by Ciba-Geigy) 0.8% by weight of the light control layer forming material is applied to two ITO electrode glass substrates coated with 11.0 μm glass fiber spacers. When sandwiched, while maintaining the temperature at which the material for forming the light control layer becomes an isotropic liquid state, ultraviolet rays of 20 mW / cm 2 are applied at 60
The polymerizable compound was cured by irradiation for 2 seconds to obtain a light-scattering type liquid crystal device having a light control layer of a thickness of 11.0 μm made of a liquid crystal material and a transparent polymer substance.

【0101】このようにして得た光散乱型液晶デバイス
の調光層を電子顕微鏡で観察したところ、三次元網目状
の透明性固体物質を確認することができた。
When the light control layer of the light-scattering liquid crystal device thus obtained was observed with an electron microscope, a three-dimensional mesh-like transparent solid substance could be confirmed.

【0102】次に、実施例7〜11で得た各光散乱型液
晶デバイスの15℃、25℃、30℃及び40℃におけ
る電圧透過率特性を測定した結果を以下の表2に示し
た。
Next, the results of measuring the voltage transmittance characteristics at 15 ° C., 25 ° C., 30 ° C. and 40 ° C. of the light scattering type liquid crystal devices obtained in Examples 7 to 11 are shown in Table 2 below.

【0103】[0103]

【表2】 [Table 2]

【0104】<実施例12> (液晶材料) 実施例6で使用した液晶組成物B 75.0重量% (重合性化合物) 「C9A」 11.9重量% (第一工業製薬社製の2−エチル−2−ブチルプロパンジアクリレート) 「TO1338」 13.3重量% (東亜合成化学社製の2−ノニルウンデシルアクリレート) (重合開始剤) 「イルガキュア651」(チバガイギー社製) 0.8重量% からなる調光層形成材料を、11.0μmのガラスファ
イバー製スペーサーが塗布された2枚のITO電極ガラ
ス基板に挟み込み、調光層形成材料が等方性液体状態と
なる温度を保ちながら、 20mW/cm2の紫外線を60
秒間照射して重合性化合物を硬化させて液晶材料と透明
性高分子物質から成る厚さ11.0μmの調光層を有す
る光散乱型液晶デバイスを得た。
<Example 12> (Liquid crystal material) Liquid crystal composition B used in Example 6 75.0% by weight (Polymerizable compound) "C9A" 11.9% by weight (2-manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd. Ethyl-2-butylpropanediacrylate) "TO1338" 13.3% by weight (2-nonylundecyl acrylate manufactured by Toagosei Co., Ltd.) (Polymerization initiator) "Irgacure 651" (manufactured by Ciba Geigy) 0.8% by weight The dimming layer forming material consisting of is sandwiched between two ITO electrode glass substrates coated with a glass fiber spacer of 11.0 μm, and the dimming layer forming material is maintained at a temperature of 20 mW while maintaining a temperature in which it is in an isotropic liquid state. 60 / cm 2 of ultraviolet rays
The polymerizable compound was cured by irradiation for 2 seconds to obtain a light-scattering type liquid crystal device having a light control layer of a thickness of 11.0 μm made of a liquid crystal material and a transparent polymer substance.

【0105】このようにして得た光散乱型液晶デバイス
の調光層を電子顕微鏡で観察したところ、三次元網目状
の透明性固体物質を確認することができた。
When the light control layer of the light-scattering liquid crystal device thus obtained was observed with an electron microscope, a transparent solid substance having a three-dimensional network could be confirmed.

【0106】次に、このようにして得た光散乱型液晶デ
バイスの25℃、30℃及び40℃における電圧透過率
特性を測定した結果、各測定温度で以下のような特性を
示した。 25℃ T0=2.1%、 T100=89.0%、 V90
=4.2Vrms 30℃ T0=2.1%、 T100=89.7%、 V90
=4.5Vrms 40℃ T0=2.5%、 T100=90.1%、 V90
=4.9Vrms
Next, as a result of measuring the voltage transmittance characteristics of the light scattering type liquid crystal device thus obtained at 25 ° C., 30 ° C. and 40 ° C., the following characteristics were shown at each measurement temperature. 25 ° C T0 = 2.1%, T100 = 89.0%, V90
= 4.2Vrms 30 ° C T0 = 2.1%, T100 = 89.7%, V90
= 4.5Vrms 40 ° C T0 = 2.5%, T100 = 90.1%, V90
= 4.9Vrms

【0107】<実施例13〜16>垂直成分の誘電率ε
⊥の異なる液晶材料を用いて光散乱型液晶デバイスを作
成した (液晶材料) 下記の液晶組成物1〜4のいずれか 75.0重量% (重合性化合物) 「A−OCD」 7.2重量% (新中村化学社製のダイマーアクリレート) 「IS−A」 17.0重量% (共栄化学社製の2−(1−メチル−3−ジメチル)−5−メチル−7− ジメチルオクチルアクリレート = イソステアリルアクリレート) (重合開始剤) 「イルガキュア651」(チバガイギー社製) 0.8重量% からなる調光層形成材料を、11.0μmのガラスファ
イバー製スペーサーが塗布された2枚のITO電極ガラ
ス基板に挟み込み、調光層形成材料が等方性液体状態と
なる温度を保ちながら、 20mW/cm2の紫外線を6
0秒間照射して重合性化合物を硬化させて液晶材料と透
明性高分子物質から成る厚さ11.0μmの調光層を有
する光散乱型液晶デバイスを得た。
<Examples 13 to 16> Permittivity ε of vertical component
A light-scattering liquid crystal device was created using liquid crystal materials having different ⊥ (liquid crystal material) Any of the following liquid crystal compositions 1 to 75.0% by weight (polymerizable compound) "A-OCD" 7.2 weight % (Shin-Nakamura Chemical Co., Ltd. dimer acrylate) “IS-A” 17.0% by weight (Kyoei Chemical Co., Ltd. 2- (1-methyl-3-dimethyl) -5-methyl-7-dimethyloctyl acrylate = iso Stearyl acrylate) (Polymerization initiator) "Irgacure 651" (manufactured by Ciba-Geigy) 0.8% by weight of the light control layer forming material is applied to two ITO electrode glass substrates coated with 11.0 μm glass fiber spacers. It is sandwiched between the two, and while maintaining the temperature at which the light control layer forming material is in an isotropic liquid state, 6 m of ultraviolet light of 20 mW / cm2
The polymerizable compound was cured by irradiation for 0 seconds to obtain a light-scattering type liquid crystal device having a light control layer made of a liquid crystal material and a transparent polymer substance and having a thickness of 11.0 μm.

【0108】このようにして得た光散乱型液晶デバイス
の調光層を電子顕微鏡で観察したところ、三次元網目状
の透明性固体物質を確認することができた。
When the light control layer of the light-scattering liquid crystal device thus obtained was observed with an electron microscope, a transparent solid substance having a three-dimensional network could be confirmed.

【0109】(液晶組成物1の組成)(Composition of liquid crystal composition 1)

【化3】 Embedded image

【0110】(液晶組成物2の組成)(Composition of liquid crystal composition 2)

【化4】 Embedded image

【0111】(液晶組成物3の組成)(Composition of liquid crystal composition 3)

【化5】 Embedded image

【0112】(液晶組成物4の組成)(Composition of liquid crystal composition 4)

【化6】 [Chemical 6]

【0113】使用した液晶材料1〜4の物性と実施例1
3〜16で得た液晶デバイスの駆動電圧の極小値の関係
を以下の表3に示した。
Physical Properties of Liquid Crystal Materials 1 to 4 Used and Example 1
Table 3 below shows the relationship between the minimum values of the driving voltage of the liquid crystal devices obtained in 3 to 16.

【0114】[0114]

【表3】 [Table 3]

【0115】このように、ε⊥の小さい液晶材料を用い
て光散乱型液晶デバイスを作製すると駆動電圧の極小値
を小さくすることができる。
As described above, when a light-scattering liquid crystal device is manufactured using a liquid crystal material having a small ε⊥, the minimum value of the driving voltage can be reduced.

【0116】<実施例18>液晶材料3を用いて駆動電
圧の温度特性を以下の組成で調整した。 (液晶材料) 液晶材料3 75.0重量% (ε⊥:3.44;ε//:11.77;Vth:2.05;Δn:0.24) (重合性化合物) 「A−OCD」 12.1重量% (新中村化学社製のダイマーアクリレート) 「IS−A」 12.1重量% (共栄化学社製の2−(1−メチル−3−ジメチル)−5−メチル−7− ジメチルオクチルアクリレート = イソステアリルアクリレート) (重合開始剤) 「イルガキュア651」(チバガイギー社製) 0.8重量% からなる調光層形成材料を、11.0μmのガラスファ
イバー製スペーサーが塗布された2枚のITO電極ガラ
ス基板に挟み込み、調光層形成材料が等方性液体状態と
なる温度を保ちながら、 20mW/cm2の紫外線を60
秒間照射して重合性化合物を硬化させて液晶材料と透明
性高分子物質から成る厚さ11.0μmの調光層を有す
る光散乱型液晶デバイスを得た。
Example 18 The liquid crystal material 3 was used to adjust the temperature characteristics of the driving voltage with the following composition. (Liquid crystal material) Liquid crystal material 3 75.0% by weight (ε⊥: 3.44; ε //: 11.77; Vth: 2.05; Δn: 0.24) (Polymerizable compound) “A-OCD” 12.1% by weight (Shin Nakamura Chemical company's dimer acrylate) "IS-A" 12.1% by weight (Kyoei Chemical company's 2- (1-methyl-3-dimethyl) -5-methyl-7-dimethyloctyl acrylate = isostearyl acrylate) ( Polymerization initiator) “Irgacure 651” (manufactured by Ciba-Geigy) 0.8% by weight of the light control layer forming material is sandwiched between two ITO electrode glass substrates coated with 11.0 μm glass fiber spacers to adjust the light intensity. While maintaining the temperature at which the material for forming the light layer becomes an isotropic liquid state, ultraviolet rays of 20 mW / cm 2
The polymerizable compound was cured by irradiation for 2 seconds to obtain a light-scattering type liquid crystal device having a light control layer of a thickness of 11.0 μm made of a liquid crystal material and a transparent polymer substance.

【0117】このようにして得た光散乱型液晶デバイス
の調光層を電子顕微鏡で観察したところ、三次元網目状
の透明性固体物質を確認することができた。
When the light control layer of the light-scattering type liquid crystal device thus obtained was observed with an electron microscope, a transparent solid substance having a three-dimensional network could be confirmed.

【0118】次に、このようにして得た光散乱型液晶デ
バイスの25℃、30℃及び40℃における電圧透過率
特性を測定した結果、各測定温度で以下のような特性を
示した。 25℃ T0=1.4%、 T100=89.0%、 V90
=4.8Vrms 30℃ T0=1.5%、 T100=89.2%、 V90
=4.8Vrms 40℃ T0=1.7%、 T100=90.1%、 V90
=4.6Vrms
Next, as a result of measuring the voltage transmittance characteristics of the light-scattering type liquid crystal device thus obtained at 25 ° C., 30 ° C. and 40 ° C., the following characteristics were shown at each measurement temperature. 25 ° C T0 = 1.4%, T100 = 89.0%, V90
= 4.8Vrms 30 ° C T0 = 1.5%, T100 = 89.2%, V90
= 4.8Vrms 40 ° C T0 = 1.7%, T100 = 90.1%, V90
= 4.6 Vrms

【0119】[0119]

【発明の効果】本発明の製造方法により得られた光散乱
型液晶デバイスは、偏光板が不要で明るい表示画面のも
のであり、大面積で薄膜型のものである。また、駆動電
圧の温度依存性が小さく、使用温度による表示特性の変
化が少ない光散乱型液晶デバイスである。
The light-scattering liquid crystal device obtained by the manufacturing method of the present invention does not require a polarizing plate and has a bright display screen, and has a large area and a thin film type. Further, it is a light-scattering type liquid crystal device in which the temperature dependence of the driving voltage is small and the change in display characteristics due to the operating temperature is small.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例6で使用した静電容量測定用液晶セルに
おける温度変化に伴なう誘電率の変化を示した図表であ
る。
FIG. 1 is a chart showing a change in dielectric constant with a change in temperature in a liquid crystal cell for measuring capacitance used in Example 6.

【符号の説明】[Explanation of symbols]

▲−▲ イソステアリルアクリレート膜を有する液晶セ
ルを用いた場合のホモジニアス配向の誘電率(ε⊥) ◆−◆ イソステアリルアクリレート膜を有する液晶セ
ルを用いた場合のホメオトロピック配向の誘電率(ε/
/) ■−■ ポリイミド膜を有する液晶セルを用いた場合の
ホモジニアス配向の誘電率(ε⊥) ●−● ポリイミド膜を有する液晶セルを用いた場合の
ホメオトロピック配向の誘電率(ε//)
▲-▲ Dielectric constant of homogeneous alignment when using a liquid crystal cell with an isostearyl acrylate film (ε⊥) ◆-◆ Dielectric constant of homeotropic alignment when using a liquid crystal cell with an isostearyl acrylate film (ε /
/) ■ − ■ Dielectric constant of homogeneous alignment (ε⊥) when using liquid crystal cell with polyimide film ● − ● Dielectric constant of homeotropic alignment (ε //) when using liquid crystal cell with polyimide film

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 電極層を有する少なくとも一方が透明な
2枚の基板と、これらの基板間に支持された調光層とを
有し、前記調光層が、液晶材料及び透明性高分子物質を
含有する光散乱型液晶デバイスにおいて、前記透明性高
分子物質が(1)温度上昇に伴ない駆動電圧が低下する
光散乱型液晶デバイスの調光層を構成する透明性高分子
物質を形成する重合性化合物、及び(2)温度上昇に伴
ない駆動電圧が上昇する光散乱型液晶デバイスの調光層
を構成する透明性高分子物質を形成する重合性化合物を
含有する重合性組成物から成る透明性高分子物質である
ことを特徴とする光散乱型液晶デバイス。
1. At least one transparent substrate having an electrode layer, and a dimming layer supported between these substrates, wherein the dimming layer comprises a liquid crystal material and a transparent polymer substance. In a light-scattering liquid crystal device containing: (1) the transparent polymer substance forms a transparent polymer substance that constitutes a dimming layer of the light-scattering liquid crystal device in which the driving voltage decreases with increasing temperature. A polymerizable composition containing a polymerizable compound and (2) a polymerizable compound that forms a transparent polymer substance that constitutes a light control layer of a light-scattering liquid crystal device in which a driving voltage increases with an increase in temperature. A light-scattering type liquid crystal device characterized by being a transparent polymer substance.
【請求項2】温度上昇に伴い駆動電圧が上昇する光散乱
型液晶デバイスの調光層を構成する透明性高分子物質を
形成する重合性化合物が、アルキルアクリレートであっ
て、分子中のアルキル基の最も長い炭化水素鎖の炭素数
が7〜12の範囲にあるアルキルアクリレートから成る
群から選ばれる化合物である請求項1記載の光散乱型液
晶デバイス。
2. A polymerizable compound forming a transparent polymer substance constituting a light control layer of a light scattering liquid crystal device in which a driving voltage increases with an increase in temperature is an alkyl acrylate, and an alkyl group in a molecule. 2. The light-scattering liquid crystal device according to claim 1, which is a compound selected from the group consisting of alkyl acrylates having the longest hydrocarbon chain of 7 to 12 carbon atoms.
【請求項3】 温度上昇に伴ない駆動電圧が上昇する光
散乱型液晶デバイスの調光層を構成する透明性高分子物
質を形成する重合性化合物が、2−(3−メチルブチ
ル)−7−メチルオクチルアクリレート、2−(1−メ
チルブチル)−5−メチルオクチルアクリレート及び2
−(1−メチル−3−ジメチル)−5−メチル−7−ジ
メチルオクチルアクリレートから成る群から選ばれる化
合物である請求項1記載の光散乱型液晶デバイス。
3. A polymerizable compound forming a transparent polymer substance constituting a light control layer of a light-scattering type liquid crystal device in which a driving voltage increases with an increase in temperature is 2- (3-methylbutyl) -7- Methyloctyl acrylate, 2- (1-methylbutyl) -5-methyloctyl acrylate and 2
The light-scattering liquid crystal device according to claim 1, which is a compound selected from the group consisting of-(1-methyl-3-dimethyl) -5-methyl-7-dimethyloctyl acrylate.
【請求項4】温度上昇に伴い駆動電圧が上昇する光散乱
型液晶デバイスの調光層を構成する透明性高分子物質を
形成する重合性化合物が、ネオペンチルグリコールジア
クリレート、2-エチル-2-ブチル-プロパンジオールジ
アクリレート、から成る群から選ばれる化合物及び請求
項2記載の群から選ばれた化合物を含有する請求項1記
載の光散乱型液晶デバイス。
4. A polymerizable compound forming a transparent polymer substance constituting a light control layer of a light-scattering type liquid crystal device in which a driving voltage increases with an increase in temperature is neopentyl glycol diacrylate, 2-ethyl-2. The light-scattering liquid crystal device according to claim 1, which contains a compound selected from the group consisting of -butyl-propanediol diacrylate and a compound selected from the group according to claim 2.
【請求項5】 温度上昇に伴ない駆動電圧が低下する光
散乱型液晶デバイスの調光層を構成する透明性高分子物
質を形成する重合性化合物が、2−オクチルデシルアク
リレート、2−ヘプチルノニルアクリレート、2−ノニ
ルウンデシルアクリレート、2−デシルドデシルアクリ
レート、及び(1,2−ヒドロキシオクチル−3−オク
チル−4−ヘチシル)シクロヘキサンと9−ノニル−1
0−オクチルノナデカンジオールの混合物のジアクリレ
ートエステルから成る群から選ばれる化合物である請求
項1又は2記載の光散乱型液晶デバイス。
5. A polymerizable compound forming a transparent polymer substance constituting a light control layer of a light scattering type liquid crystal device in which a driving voltage decreases with an increase in temperature is 2-octyldecyl acrylate or 2-heptylnonyl. Acrylate, 2-nonyl undecyl acrylate, 2-decyl dodecyl acrylate, and (1,2-hydroxyoctyl-3-octyl-4-hexyl) cyclohexane and 9-nonyl-1.
The light-scattering liquid crystal device according to claim 1, which is a compound selected from the group consisting of diacrylate esters of a mixture of 0-octylnonadecanediol.
【請求項6】 温度上昇に伴い駆動電圧が上昇する光散
乱型液晶デバイスの調光層を構成する透明性高分子物質
を形成する重合性化合物が、液晶分子に対しプレチルト
を誘起させる化合物である請求項1記載の光散乱型液晶
デバイス。
6. A polymerizable compound that forms a transparent polymer substance that constitutes a dimming layer of a light-scattering liquid crystal device in which a driving voltage rises with an increase in temperature is a compound that induces pretilt with respect to liquid crystal molecules. The light-scattering liquid crystal device according to claim 1.
【請求項7】 温度上昇に伴い駆動電圧が上昇する光散
乱型液晶デバイスの調光層を構成する透明性高分子物質
を形成する重合性化合物が、液晶分子に対してプレチル
トを発現させ、温度0℃〜70℃に於いて、降温に伴い
プレチルト角が5度以上から40度以下に増加させる化
合物を含有する請求項1記載の光散乱型液晶デバイス。
7. A polymerizable compound forming a transparent polymer substance forming a dimming layer of a light-scattering type liquid crystal device in which a driving voltage increases with an increase in temperature causes a pretilt to liquid crystal molecules, and The light-scattering liquid crystal device according to claim 1, further comprising a compound that increases the pretilt angle from 5 degrees or more to 40 degrees or less as the temperature falls at 0 ° C to 70 ° C.
【請求項8】 液晶材料がフッ素置換基を有する液晶化
合物を含有し、垂直成分の誘電率(ε⊥)が5.5以下
であることを特徴とする請求項1、2、3、4、5、6
又は7記載の光散乱型液晶デバイス。
8. The liquid crystal material contains a liquid crystal compound having a fluorine substituent, and the dielectric constant (ε⊥) of the vertical component is 5.5 or less. 5, 6
Alternatively, the light-scattering liquid crystal device according to item 7.
【請求項9】 電極層を有する少なくとも一方が透明な
2枚の基板間に、(A)液晶材料と(B)重合性化合物
及び重合開始剤を含有する重合性組成物から成る調光層
形成材料を介在させ、紫外線を照射することによって、
重合性化合物を重合させることにより、2枚の基板間に
液晶材料及び透明性固体物質を含有する調光層を形成す
る光散乱型液晶デバイスの製造方法において、 重合性組成物として、(1)温度上昇に伴ない駆動電圧
が低下する光散乱型液晶デバイスの調光層を構成する透
明性高分子物質を形成する重合性化合物、及び(2)温
度上昇に伴ない駆動電圧が上昇する光散乱型液晶デバイ
スの調光層を構成する透明性高分子物質を形成する重合
性化合物、を含有する重合性組成物を用いることを特徴
とする光散乱型液晶デバイスの製造方法。
9. A dimming layer formation comprising a polymerizable composition containing (A) a liquid crystal material and (B) a polymerizable compound and a polymerization initiator between at least one transparent substrate having an electrode layer. By interposing a material and irradiating with ultraviolet rays,
In the method for producing a light-scattering liquid crystal device, in which a dimming layer containing a liquid crystal material and a transparent solid substance is formed between two substrates by polymerizing a polymerizable compound, the polymerizable composition comprises (1) A polymerizable compound that forms a transparent polymer substance that constitutes a light control layer of a light-scattering liquid crystal device in which the driving voltage decreases with an increase in temperature, and (2) a light scattering in which the driving voltage increases with an increase in temperature The method for producing a light-scattering liquid crystal device, which comprises using a polymerizable composition containing a polymerizable compound forming a transparent polymer substance constituting a light control layer of the liquid crystal device.
JP25607196A 1996-04-09 1996-09-27 Light scattering type liquid crystal device and manufacturing method thereof Expired - Lifetime JP3750219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25607196A JP3750219B2 (en) 1996-04-09 1996-09-27 Light scattering type liquid crystal device and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-86461 1996-04-09
JP8646196 1996-04-09
JP25607196A JP3750219B2 (en) 1996-04-09 1996-09-27 Light scattering type liquid crystal device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH09329781A true JPH09329781A (en) 1997-12-22
JP3750219B2 JP3750219B2 (en) 2006-03-01

Family

ID=26427572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25607196A Expired - Lifetime JP3750219B2 (en) 1996-04-09 1996-09-27 Light scattering type liquid crystal device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3750219B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005250223A (en) * 2004-03-05 2005-09-15 Dainippon Ink & Chem Inc Light scattering type liquid crystal device and light controlling layer formation material
JP2005250110A (en) * 2004-03-04 2005-09-15 Dainippon Ink & Chem Inc Light scattering type liquid crystal device and light controlling layer formation material
JP2007009070A (en) * 2005-06-30 2007-01-18 Dainippon Ink & Chem Inc Composition for polymer-dispersed-type liquid crystal display device and polymer-dispersed-type liquid crystal display device
JP2010091940A (en) * 2008-10-10 2010-04-22 Dic Corp Liquid crystal temperature sensor
WO2020095511A1 (en) * 2018-11-06 2020-05-14 Jnc株式会社 Liquid crystal light control element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005250110A (en) * 2004-03-04 2005-09-15 Dainippon Ink & Chem Inc Light scattering type liquid crystal device and light controlling layer formation material
JP2005250223A (en) * 2004-03-05 2005-09-15 Dainippon Ink & Chem Inc Light scattering type liquid crystal device and light controlling layer formation material
JP2007009070A (en) * 2005-06-30 2007-01-18 Dainippon Ink & Chem Inc Composition for polymer-dispersed-type liquid crystal display device and polymer-dispersed-type liquid crystal display device
JP2010091940A (en) * 2008-10-10 2010-04-22 Dic Corp Liquid crystal temperature sensor
WO2020095511A1 (en) * 2018-11-06 2020-05-14 Jnc株式会社 Liquid crystal light control element
JPWO2020095511A1 (en) * 2018-11-06 2021-09-30 Jnc株式会社 Liquid crystal dimming element

Also Published As

Publication number Publication date
JP3750219B2 (en) 2006-03-01

Similar Documents

Publication Publication Date Title
EP0313053A2 (en) Liquid crystal device
JP7120013B2 (en) Materials for liquid crystal devices and liquid crystal devices
JP2724596B2 (en) Liquid crystal device and method of manufacturing the same
JP2807172B2 (en) LCD light shutter
JP2010090277A (en) Polymeric stabilized ferroelectric liquid crystal composition, liquid crystal element, and process for producing the same
JP2019135500A (en) Liquid crystal element, liquid crystal composition, and screen and display using liquid crystal element
JP2762487B2 (en) Liquid crystal device
JP3030973B2 (en) Liquid crystal display device
JP3750219B2 (en) Light scattering type liquid crystal device and manufacturing method thereof
JP2725283B2 (en) Liquid crystal device and method of manufacturing the same
JP3308353B2 (en) Liquid crystal optical element
JP3116493B2 (en) Liquid crystal device
JP3401680B2 (en) Liquid crystal device
JPH07175045A (en) Liquid crystal dimming element and its production
JP6965538B2 (en) Liquid crystal composition and liquid crystal element
JP3383921B2 (en) Liquid crystal device
JP3598614B2 (en) Liquid crystal device and method of manufacturing the same
JPH08110515A (en) Liquid crystal device and its production
JP3707108B2 (en) LCD device
JP3055208B2 (en) Liquid crystal device manufacturing method
JPH04130311A (en) Liquid crystal device and production thereof
JPH02310520A (en) Liquid crystal dimming/display material and production thereof
JP2019219626A (en) Material for liquid crystal device and liquid crystal device
JPH01252689A (en) Liquid crystal device
JP3041914B2 (en) Liquid crystal device and method of manufacturing the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term