JP5135755B2 - Polishing agent for copper and copper alloy and polishing method using the same - Google Patents

Polishing agent for copper and copper alloy and polishing method using the same Download PDF

Info

Publication number
JP5135755B2
JP5135755B2 JP2006279685A JP2006279685A JP5135755B2 JP 5135755 B2 JP5135755 B2 JP 5135755B2 JP 2006279685 A JP2006279685 A JP 2006279685A JP 2006279685 A JP2006279685 A JP 2006279685A JP 5135755 B2 JP5135755 B2 JP 5135755B2
Authority
JP
Japan
Prior art keywords
copper
polishing
abrasive
acid
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006279685A
Other languages
Japanese (ja)
Other versions
JP2007142377A (en
Inventor
康雄 上方
裕 小野
豊 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2006279685A priority Critical patent/JP5135755B2/en
Publication of JP2007142377A publication Critical patent/JP2007142377A/en
Application granted granted Critical
Publication of JP5135755B2 publication Critical patent/JP5135755B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、銅及び銅合金用研磨剤並びにそれを用いた研磨方法に関わり、特にケミカル・メカニカル・プラナリゼーション(CMP)工程での使用に適する高研磨速度の銅及び銅合金用研磨剤及びそれを用いた研磨方法に関する。   The present invention relates to a polishing agent for copper and copper alloy and a polishing method using the same, and particularly to a polishing agent for copper and copper alloy having a high polishing rate suitable for use in a chemical mechanical planarization (CMP) process and the same. The present invention relates to a polishing method using stencil.

LSIを高性能化するために、配線材料として従来のアルミニウム合金配線に替わって銅合金の利用が進んでいる。銅合金は従来のアルミニウム合金配線の形成で頻繁に用いられたドライエッチング法による微細加工が困難である。
そこで、あらかじめ溝を形成してある絶縁膜上に銅合金薄膜を堆積して埋め込み、溝部以外の銅合金薄膜をCMPにより除去して埋め込み配線を形成する、いわゆるダマシン法が主に採用されている(特許文献1参照。)。
In order to improve the performance of LSIs, the use of copper alloys as a wiring material is progressing instead of conventional aluminum alloy wiring. The copper alloy is difficult to be finely processed by the dry etching method frequently used in the formation of the conventional aluminum alloy wiring.
Therefore, a so-called damascene method is mainly employed in which a copper alloy thin film is deposited and embedded on an insulating film in which grooves have been formed in advance, and the copper alloy thin film other than the grooves is removed by CMP to form embedded wiring. (See Patent Document 1).

銅合金等の金属CMPの一般的な方法は、円形の研磨定盤(プラテン)上に研磨パッドを貼り付け、研磨パッド表面を金属用研磨剤で浸し、基板の金属膜を形成した面を押し付けて、その裏面から所定の圧力(以下、研磨圧力と記す。)を加えた状態で研磨定盤を回し、研磨剤と金属膜の凸部との機械的摩擦によって凸部の金属膜を除去するものである。   The general method of metal CMP for copper alloys is to apply a polishing pad on a circular polishing platen (platen), immerse the surface of the polishing pad with a metal abrasive, and press the surface on which the metal film of the substrate is formed. Then, with a predetermined pressure (hereinafter referred to as polishing pressure) applied from the back surface, the polishing platen is rotated, and the metal film on the convex portion is removed by mechanical friction between the abrasive and the convex portion of the metal film. Is.

CMPに用いられる金属用研磨剤は、一般には酸化剤及び砥粒からなっており必要に応じてさらに酸化金属溶解剤、保護膜形成剤が添加される。
まず酸化剤によって金属膜表面を酸化し、その酸化層を固体砥粒によって削り取るのが基本的なメカニズムと考えられている。
The metal abrasive used in CMP is generally composed of an oxidizer and abrasive grains, and a metal oxide solubilizer and a protective film forming agent are further added as necessary.
First, it is considered that the basic mechanism is to oxidize the surface of a metal film with an oxidizing agent and scrape the oxidized layer with solid abrasive grains.

凹部の金属表面の酸化層は研磨パッドにあまり触れず、固体砥粒による削り取りの効果が及ばないので、CMPの進行とともに凸部の金属層が除去されて基体表面は平坦化される(非特許文献1参照。)。   Since the oxide layer on the metal surface of the recess does not touch the polishing pad so much and does not have the effect of scraping with solid abrasive grains, the metal layer on the protrusion is removed and the substrate surface is flattened with the progress of CMP (non-patent) Reference 1).

一般にLSIの製造において、使用される銅及び銅合金の膜厚は1μm程度であり、研磨速度は0.5μm/min程度の研磨剤が使用されている(特許文献2参照。)。
特開平2−278822号公報 ジャーナル・オブ・エレクトロケミカルソサエティ誌、第138巻11号(1991年発行) 3460〜3464頁 特開2003−124160号公報
In general, in the manufacture of LSI, an abrasive having a film thickness of about 1 μm and a polishing rate of about 0.5 μm / min is used (see Patent Document 2).
JP-A-2-278822 Journal of Electrochemical Society, Vol.138, No.11 (published in 1991) 3460-3464 JP 2003-124160 A

近年、LSIに適用されている銅及び銅合金のCMP処理はパッケージ基板などの高性能・微細配線板の製造にも適用されようとしている。これらの配線板はLSIに比べて金属の膜厚が厚いため従来のLSI用の研磨剤では研磨速度が低く生産性が低下するという課題があった。このため高性能配線板製造用のCMP研磨剤としては従来の研磨剤に比べて高速度で金属膜を研磨できることが求められていた。   In recent years, CMP processing of copper and copper alloys applied to LSIs is about to be applied to the production of high-performance and fine wiring boards such as package substrates. Since these wiring boards are thicker than the LSI, the conventional LSI polishing agent has a problem that the polishing rate is low and the productivity is lowered. For this reason, as a CMP abrasive | polishing agent for high performance wiring board manufacture, it was calculated | required that a metal film can be grind | polished at high speed compared with the conventional abrasive | polishing agent.

本発明の目的は銅及び銅合金膜を1.5μm/min以上の高研磨速度でかつ平滑に研磨することが可能で、高性能配線板などの厚い金属膜の研磨が必要とされる製品の製造においても、短時間で研磨処理が可能で十分な生産性を確保できる銅及び銅合金用研磨剤を提供するものである。   It is an object of the present invention to be able to smoothly polish copper and copper alloy films at a high polishing rate of 1.5 μm / min or more, and for products that require polishing of thick metal films such as high-performance wiring boards. In production, the present invention provides a polishing agent for copper and copper alloy that can be polished in a short time and can secure sufficient productivity.

本発明は、(1)無機酸、アミノ酸、金属表面に対する保護膜形成剤、砥粒、酸化剤及び水を含み、pHが1.5〜4で、水酸化カリウムによる中和滴定等量が0.05mol/kg以上である銅及び銅合金用研磨剤に関する。
また、本発明は、(2)無機酸が、硫酸およびリン酸の少なくとも一方である前記(1)の銅及び銅合金用研磨剤に関する。
また、本発明は、(3)アミノ酸が、第1酸解離定数の逆数の対数(pK)2〜3のアミノ酸である前記(1)または(2)の銅及び銅合金用研磨剤に関する。
The present invention includes (1) an inorganic acid, an amino acid, a protective film-forming agent for metal surfaces, abrasive grains, an oxidizing agent and water, has a pH of 1.5 to 4, and has a neutralization titration equivalent of 0 with potassium hydroxide. It is related with the abrasive | polishing agent for copper and copper alloy which are 0.05 mol / kg or more.
The present invention also relates to (2) the abrasive for copper and copper alloys according to (1), wherein the inorganic acid is at least one of sulfuric acid and phosphoric acid.
The present invention also relates to (3) amino acids, about copper and copper alloys for abrasives logarithm of the reciprocal of the first acid dissociation constant (pK 1) 2 to 3 amino acid (1) or (2).

また、本発明は、(4)金属表面に対する保護膜形成剤がベンゾトリアゾールおよびその誘導体から選ばれた1種類以上からなる前記(1)〜(3)のいずれかの銅及び銅合金用研磨剤に関する。
また、本発明は、(5)砥粒が、平均粒径100nm以下のコロイダルシリカ又はコロイダルアルミナからなる前記(1)〜(4)のいずれかの銅及び銅合金用研磨剤に関する。
また、本発明は、(6)酸化剤が、過酸化水素、過硫酸及び過硫酸塩より選ばれた少なくとも1種である前記(1)〜(5)のいずれかの銅及び銅合金用研磨剤に関する。
The present invention also provides (4) the polishing agent for copper and copper alloys according to any one of (1) to (3), wherein the protective film forming agent for the metal surface is at least one selected from benzotriazole and derivatives thereof. About.
The present invention also relates to (5) the abrasive for copper and copper alloy according to any one of (1) to (4), wherein the abrasive grains are made of colloidal silica or colloidal alumina having an average particle diameter of 100 nm or less.
Moreover, this invention is (6) Polishing for copper and copper alloys in any one of said (1)-(5) whose oxidizing agent is at least 1 sort (s) chosen from hydrogen peroxide, persulfuric acid, and persulfate. It relates to the agent.

また、本発明は、(7)前記成分の他に、さらに水溶性高分子を含有してなる前記(1)〜(6)のいずれかの銅及び銅合金用研磨剤に関する。
また、本発明は、(8)水溶性高分子が、ポリアクリル酸、その塩、ポリメタクリル酸及びその塩のいずれかである前記(7)の銅及び銅合金用研磨剤に関する。
さらに、本発明は、(9)前記(1)〜(8)のいずれかの銅及び銅合金用研磨剤を用いて銅膜、銅合金膜、銅または銅合金と他の金属との積層膜のいずれかからなる金属膜金属膜を研磨する工程によって前記金属膜の一部を除去することを特徴とする研磨方法に関する。
Moreover, this invention relates to the abrasive | polishing agent for copper and copper alloys in any one of said (1)-(6) which contains water-soluble polymer other than the said component (7).
The present invention also relates to (8) the abrasive for copper and copper alloy according to (7), wherein the water-soluble polymer is any one of polyacrylic acid, a salt thereof, polymethacrylic acid and a salt thereof.
Furthermore, the present invention provides (9) a copper film, a copper alloy film, a laminated film of copper or a copper alloy and another metal using the copper and copper alloy abrasive according to any one of (1) to (8). A polishing method characterized in that a part of the metal film is removed by a step of polishing the metal film made of any of the above.

本発明の銅及び銅合金用研磨剤は、溶解作用の強い無機酸を含むpHが1.5〜4の緩衝溶液であるため、被研磨物である銅及び銅合金が研磨剤中に溶解してもpH変動が起こりにくく、高い研磨速度を維持することができる。
また、本発明の研磨方法によれば、高い研磨速度と金属膜上の表面粗さの抑制とが可能であり、生産性の向上と、製品歩留まりの向上を両立できる。例えば高性能配線板などの厚い銅または銅合金膜の高速研磨が要求される用途に適する。
Since the polishing agent for copper and copper alloy according to the present invention is a buffer solution having a pH of 1.5 to 4 containing an inorganic acid having a strong dissolving action, the copper and copper alloy which are objects to be polished are dissolved in the polishing agent. However, it is difficult for pH fluctuation to occur, and a high polishing rate can be maintained.
Moreover, according to the polishing method of the present invention, it is possible to achieve a high polishing rate and to suppress the surface roughness on the metal film, and it is possible to achieve both improvement in productivity and improvement in product yield. For example, it is suitable for applications that require high-speed polishing of thick copper or copper alloy films such as high-performance wiring boards.

本発明の銅及び銅合金用研磨剤は、無機酸、アミノ酸、金属表面に対する保護膜形成剤、砥粒、酸化剤及び水を含み、pHが1.5〜4、水酸化カリウムによる中和滴定等量が0.05mol/kg以上に調整されている。   The abrasive for copper and copper alloy of the present invention contains an inorganic acid, an amino acid, a protective film-forming agent for metal surfaces, abrasive grains, an oxidizing agent and water, and has a pH of 1.5 to 4, neutralization titration with potassium hydroxide The equivalent amount is adjusted to 0.05 mol / kg or more.

前記無機酸としては、塩酸、臭化水素酸、ヨウ化水素酸、硫酸、リン酸等が挙げられ、この中で硫酸、リン酸、若しくは硫酸とリン酸との混合物がCMPによる研磨速度が大きく、銅及び銅合金膜の表面粗さを低減できるという点で好ましい。   Examples of the inorganic acid include hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, phosphoric acid, etc. Among them, sulfuric acid, phosphoric acid, or a mixture of sulfuric acid and phosphoric acid has a high polishing rate by CMP. It is preferable in that the surface roughness of the copper and copper alloy films can be reduced.

前記アミノ酸としては、グリシン、アラニン、バリン、ロイシン、イソロイシン、セリン、トレオニン、システイン、シシチン、メチオニン、アスパラギン酸、グルタミン酸、リシン、アルギニン、フェニルアラニン、チロシン、ヒスチジン、トリプトファン、プロリン、オキシプロリン等が挙げられる。   Examples of the amino acids include glycine, alanine, valine, leucine, isoleucine, serine, threonine, cysteine, cystein, methionine, aspartic acid, glutamic acid, lysine, arginine, phenylalanine, tyrosine, histidine, tryptophan, proline, oxyproline, and the like. .

これらの中では、第1酸解離定数Kの逆数の対数(pK)が2〜3のアミノ酸が、研磨剤のpHを1.5〜4に調整し易いという点で好ましい。具体的にはアラニン、アルギニン、イソロイシン、グリシン、グルタミン酸、トリプトファン、トレオニン、バリン、メチオニン、リシン、ロイシン等が挙げられ、特にグリシンが好ましい。 Among these, the first acid dissociation constant K 1 of the inverse of the logarithm (pK 1) amino acids 2-3 are preferable in view of easily adjusting the pH of the polishing agent 1.5-4. Specific examples include alanine, arginine, isoleucine, glycine, glutamic acid, tryptophan, threonine, valine, methionine, lysine, and leucine, with glycine being particularly preferred.

金属表面に対する保護膜形成剤としては、ベンゾトリアゾール(BTA)、BTA誘導体、トリアゾール、キナルジン酸、アントニル酸、サリチルアルドキシム等が挙げられる。
BTA誘導体として、例えばBTAのベンゼン環の一つの水素原子をメチル基で置換したもの(トリルトリアゾール)、カルボキシル基などで置換したもの(ベンゾトリアゾール−4−カルボン酸及びベンゾトリアゾール−4−カルボン酸のメチル、エチル、プロピル、ブチル及びオクチルエステル)等が挙げられる。これらの中では、BTAおよびその誘導体が好ましく、それらは単独であっても、二種以上選択した混合物であってもよい。
Examples of the protective film forming agent for the metal surface include benzotriazole (BTA), BTA derivatives, triazole, quinaldic acid, anthonylic acid, salicylaldoxime and the like.
Examples of BTA derivatives include those in which one hydrogen atom of the benzene ring of BTA is substituted with a methyl group (tolyltriazole), those substituted with a carboxyl group (benzotriazole-4-carboxylic acid and benzotriazole-4-carboxylic acid). Methyl, ethyl, propyl, butyl and octyl esters). In these, BTA and its derivative (s) are preferable, and they may be individual or the mixture selected 2 or more types.

前記砥粒としては、シリカ、アルミナ、ジルコニア、セリア、チタニア、炭化珪素等の無機物砥粒、ポリスチレン、ポリアクリル、ポリ塩化ビニル等の有機物砥粒のいずれでもよいが、研磨剤中での分散安定性が良く、CMPにより発生する研磨傷(スクラッチ)の発生数の少ない、平均粒径が100nm以下のコロイダルシリカ、コロイダルアルミナが好ましい。本発明で、粒子の平均粒径とは、レーザ回折式粒度分布計で測定したD50の値(体積分布のメジアン径、累積中央値)をいう。   The abrasive grains may be any of inorganic abrasive grains such as silica, alumina, zirconia, ceria, titania, silicon carbide, and organic abrasive grains such as polystyrene, polyacryl, polyvinyl chloride, etc., but are stable in the abrasive. Colloidal silica and colloidal alumina, which have good properties and have a small number of polishing scratches (scratches) generated by CMP and an average particle size of 100 nm or less, are preferred. In the present invention, the average particle diameter of the particles refers to the value of D50 (median diameter of volume distribution, cumulative median value) measured with a laser diffraction particle size distribution meter.

コロイダルシリカはシリコンアルコキシドの加水分解又は珪酸ナトリウムのイオン交換による製造方法が知られており、コロイダルアルミナは硝酸アルミニウムの加水分解による製造方法が知られている。   Colloidal silica is known for its production by hydrolysis of silicon alkoxide or ion exchange of sodium silicate, and colloidal alumina is known for its production by hydrolysis of aluminum nitrate.

本発明における酸化剤としては、過酸化水素(H)、過硫酸、過硫酸アンモニウム、過硫酸カリウム等の過硫酸塩、過ヨウ素酸、過ヨウ素酸カリウム等が挙げられ、その中でも過酸化水素、過硫酸、過硫酸塩が好ましい。これらは単独でも二種類以上組み合わせてもよい。 Examples of the oxidizing agent in the present invention include hydrogen sulfate (H 2 O 2 ), persulfates such as persulfuric acid, ammonium persulfate, and potassium persulfate, periodic acid, potassium periodate, and the like. Hydrogen, persulfuric acid and persulfate are preferred. These may be used alone or in combination of two or more.

本発明においては、研磨剤に水溶性高分子を添加することが好ましい。
水溶性高分子としては、ポリアクリル酸、ポリアクリル酸アンモニウム塩、ポリアクリル酸ナトリウム塩、ポリメタクリル酸、ポリメタクリル酸アンモニウム塩、ポリメタクリル酸ナトリウム塩、ポリアクリルアミド等のカルボキシル基を持つモノマーを基本構成単位とするポリマー及びその塩、ポリビニルアルコール、ポリビニルピロリドン等のビニル基を持つモノマーを基本構成単位とするポリマーが挙げられる。
In the present invention, it is preferable to add a water-soluble polymer to the abrasive.
As the water-soluble polymer, monomers having a carboxyl group such as polyacrylic acid, polyacrylic acid ammonium salt, polyacrylic acid sodium salt, polymethacrylic acid, polymethacrylic acid ammonium salt, polymethacrylic acid sodium salt, polyacrylamide are basically used. Examples of the polymer include a polymer having a structural unit and a monomer having a vinyl group such as a salt thereof, polyvinyl alcohol, and polyvinylpyrrolidone.

これらの中でポリアクリル酸、その塩、ポリメタクリル酸およびその塩のうちのいずれかであることが特に好ましい。これらの水溶性高分子を添加することにより、研磨速度を向上させることができる。   Among these, polyacrylic acid, a salt thereof, polymethacrylic acid and a salt thereof are particularly preferable. The polishing rate can be improved by adding these water-soluble polymers.

本発明における銅及び銅合金用研磨剤のpHは、銅及び銅合金のCMPによる研磨速度が大きく、銅及び銅合金膜に腐食を生じさせないという点でpH1.5〜pH4の範囲であり、pH2〜pH3の範囲が好ましい。pH1.5未満では銅及び銅合金膜の表面粗さが大きくなり、またpH4を超えるとCMPによる研磨速度が遅く実用的な研磨剤とはなり得ない。   The pH of the polishing agent for copper and copper alloy in the present invention is in the range of pH 1.5 to pH 4 in that the polishing rate of copper and copper alloy by CMP is large and does not cause corrosion in the copper and copper alloy film, and pH 2 A range of ˜pH 3 is preferred. If the pH is less than 1.5, the surface roughness of the copper and copper alloy film becomes large. If the pH exceeds 4, the polishing rate by CMP is slow and cannot be a practical abrasive.

pHは、無機酸とアミノ酸の添加量により調整することができる。
またアンモニア、水酸化ナトリウム、テトラメチルアンモニウムヒドロキシド等のアルカリ成分の添加によっても調整可能である。
本発明において研磨剤のpHは、pHメータ(例えば、横河電機株式会社製の型番PH81)で測定する。標準緩衝液(フタル酸塩pH緩衝液pH:4.01(25℃)、中性りん酸塩pH緩衝液pH6.86(25℃))を用いて、2点校正した後、電極を研磨剤に入れて、2分以上経過して安定した後の値を採用する。
pH can be adjusted with the addition amount of an inorganic acid and an amino acid.
It can also be adjusted by adding alkali components such as ammonia, sodium hydroxide and tetramethylammonium hydroxide.
In the present invention, the pH of the abrasive is measured with a pH meter (for example, model number PH81 manufactured by Yokogawa Electric Corporation). After calibrating two points using a standard buffer solution (phthalate pH buffer solution pH: 4.01 (25 ° C.), neutral phosphate pH buffer solution pH 6.86 (25 ° C.)), the electrode was polished. The value after 2 minutes or more has been stabilized is adopted.

本発明における銅及び銅合金用研磨剤は、無機酸成分を含むpH緩衝溶液であり、水酸化カリウムによる中和滴定等量は0.05mol/kg以上であることが好ましく、0.08mol/kg以上であることがより好ましい。。
ここでいう中和滴定等量は、研磨剤1kgのpH値を4まで増加するのに必要な水酸化カリウムのモル数である。無機酸は一般に強酸であり、多量に添加するとpHが低下してしまいpH1.5〜4の範囲に調整するのは困難である。そこで無機酸にアミノ酸を添加することにより、研磨剤をpH1.5〜4のpH緩衝溶液とすることができる。
The abrasive for copper and copper alloy in the present invention is a pH buffer solution containing an inorganic acid component, and the neutralization titration equivalent with potassium hydroxide is preferably 0.05 mol / kg or more, and is 0.08 mol / kg. More preferably. .
The neutralization titration equivalent here is the number of moles of potassium hydroxide required to increase the pH value of 1 kg of the abrasive to 4. Inorganic acids are generally strong acids, and when added in a large amount, the pH drops and it is difficult to adjust the pH to the range of 1.5-4. Therefore, by adding an amino acid to the inorganic acid, the abrasive can be made into a pH buffer solution having a pH of 1.5 to 4.

被研磨膜の銅及び銅合金は、研磨されるとCMP研磨剤中に陽イオンとして溶解する。ここで無機酸の添加量が少ないと、被研磨膜の溶解により水素イオンが消費され研磨剤のpHが上昇してしまう。これにより研磨速度が低下する。   When polished, the copper and copper alloy of the film to be polished dissolve as cations in the CMP abrasive. Here, if the amount of the inorganic acid added is small, hydrogen ions are consumed by dissolution of the film to be polished, and the pH of the polishing agent increases. This reduces the polishing rate.

一方、十分な量の無機酸を含有し、pH緩衝作用のある研磨剤を使用した場合は、銅イオン等の金属イオンが多量に溶解しても、pHの上昇は抑制され、安定した研磨が可能になる。そのために必要な研磨剤中の無機酸の量は、研磨速度、研磨中における研磨剤流量にもよるが水酸化カリウムによる中和滴定等量で0.05mol/kg以上に相当する量であれば、例えば8インチ(20.3cm)の円盤状の基板を研磨剤流量200ml/min付近で、高速研磨できる。   On the other hand, when a polishing agent containing a sufficient amount of inorganic acid and having a pH buffering action is used, even if a large amount of metal ions such as copper ions are dissolved, an increase in pH is suppressed and stable polishing is achieved. It becomes possible. For this purpose, the amount of inorganic acid in the polishing agent is an amount equivalent to 0.05 mol / kg or more by neutralization titration with potassium hydroxide although it depends on the polishing rate and the polishing agent flow rate during polishing. For example, a disk-shaped substrate of 8 inches (20.3 cm) can be polished at a high speed with an abrasive flow rate around 200 ml / min.

本発明における金属表面に対する保護膜形成剤の配合量は研磨剤全量に対して0.05質量%〜1質量%であることが好ましく、0.1質量%〜0.5質量%であることがより好ましい。0.05質量%未満では金属の表面粗さが大きくなる傾向があり、1質量%を超えると研磨速度が小さくなる傾向がある。   The blending amount of the protective film forming agent for the metal surface in the present invention is preferably 0.05% by mass to 1% by mass, and preferably 0.1% by mass to 0.5% by mass with respect to the total amount of the abrasive. More preferred. If it is less than 0.05% by mass, the surface roughness of the metal tends to increase, and if it exceeds 1% by mass, the polishing rate tends to decrease.

本発明における砥粒の配合量は、研磨剤全量に対して0.1質量%〜10質量%であることが好ましく、1質量%〜5質量%であることがより好ましい。砥粒の添加量が0.1質量%未満の場合は物理的な研削作用が小さいため研磨速度が小さくなる傾向があり、10質量%を超えると研磨速度は飽和し、それ以上加えても研磨速度の増加は認められない。   The blending amount of the abrasive grains in the present invention is preferably 0.1% by mass to 10% by mass and more preferably 1% by mass to 5% by mass with respect to the total amount of the abrasive. If the added amount of abrasive grains is less than 0.1% by mass, the polishing rate tends to be small because the physical grinding action is small. There is no increase in speed.

本発明における酸化剤の配合量は研磨剤全量に対して、0.1mol/kg〜5mol/kgとすることが好ましく、0.5mol/kg〜4mol/kgとすることがより好ましい。配合量が0.1mol/kg未満では研磨速度が低くなる傾向があり、また5mol/kgを超えても研磨速度が低下する傾向がある。   The blending amount of the oxidizing agent in the present invention is preferably 0.1 mol / kg to 5 mol / kg, and more preferably 0.5 mol / kg to 4 mol / kg with respect to the total amount of the abrasive. If the blending amount is less than 0.1 mol / kg, the polishing rate tends to be low, and if it exceeds 5 mol / kg, the polishing rate tends to decrease.

本発明における水溶性高分子の配合量は、全量に対して、0.01質量%〜2.0質量%とすることが好ましく、0.1質量%〜1.0質量%とすることがより好ましい。配合量が0.01質量%未満では、研磨速度を向上させる作用は認められ難く、また配合量が2.0質量%を超えると、砥粒の分散安定性を低下させる傾向がある。   The blending amount of the water-soluble polymer in the present invention is preferably 0.01% by mass to 2.0% by mass and more preferably 0.1% by mass to 1.0% by mass with respect to the total amount. preferable. When the blending amount is less than 0.01% by mass, the effect of improving the polishing rate is hardly recognized, and when the blending amount exceeds 2.0% by mass, the dispersion stability of the abrasive tends to be lowered.

本発明の研磨方法は、前記本発明の銅及び銅合金用研磨剤を用いて、金属膜を研磨する工程によって前記金属膜の一部を除去することを特徴とする。
研磨される金属膜は、銅膜、銅合金膜、銅または銅合金と他の金属との積層膜であり、例えば、パッケージ基板などの高性能・微細配線板の製造工程における厚い金属膜が例示される。
The polishing method of the present invention is characterized in that a part of the metal film is removed by the step of polishing the metal film using the copper and copper alloy polishing slurry of the present invention.
The metal film to be polished is a copper film, a copper alloy film, a laminated film of copper or a copper alloy and another metal, for example, a thick metal film in a manufacturing process of a high performance / fine wiring board such as a package substrate. Is done.

ここで、具体的な研磨方法は、被研磨面を有する基板を研磨定盤の研磨布(パッド)上に押圧した状態で研磨剤を供給しながら研磨定盤と基板とを相対的に動かすことによって被研磨面を研磨する方法が挙げられる。
他に、金属製又は樹脂製のブラシを接触させる方法、研磨剤を所定の圧力で吹きつける方法が挙げられる。
Here, a specific polishing method is to relatively move the polishing platen and the substrate while supplying the abrasive while the substrate having the surface to be polished is pressed onto the polishing cloth (pad) of the polishing platen. The method of grind | polishing a to-be-polished surface by is mentioned.
In addition, a method of bringing a metal or resin brush into contact with each other and a method of spraying an abrasive at a predetermined pressure can be mentioned.

研磨する装置としては、例えば研磨布により研磨する場合、回転数が変更可能なモータ等に接続していて研磨布を貼り付けられる定盤と、研磨される基板を保持できるホルダとを有する一般的な研磨装置が使用できる。研磨布としては、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂などが使用でき、特に制限はない。   As an apparatus for polishing, for example, when polishing with a polishing cloth, it is common to have a surface plate to which a polishing cloth is attached and a holder that can hold the substrate to be polished, connected to a motor whose rotation speed can be changed. A simple polishing apparatus can be used. As an abrasive cloth, a general nonwoven fabric, a polyurethane foam, a porous fluororesin, etc. can be used, and there is no restriction | limiting in particular.

研磨条件には制限はないが、定盤の回転速度は基板が飛び出さないように200min−1以下の低回転が好ましい。被研磨面を有する基板の研磨布への押し付け圧力(研磨圧力)は、1〜100kPaであることが好ましく、CMP速度の被研磨面内均一性及びパターンの平坦性を満足するためには、5〜50kPaであることがより好ましい。研磨している間、研磨布には研磨剤をポンプなどで連続的に供給する。この供給量に制限はないが、研磨布の表面が常に研磨剤で覆われていることが好ましい。   The polishing conditions are not limited, but the rotation speed of the surface plate is preferably a low rotation of 200 min-1 or less so that the substrate does not jump out. The pressing pressure (polishing pressure) of the substrate having the surface to be polished to the polishing cloth is preferably 1 to 100 kPa. In order to satisfy the uniformity in the surface to be polished at the CMP rate and the flatness of the pattern, 5 More preferably, it is -50kPa. During polishing, an abrasive is continuously supplied to the polishing cloth with a pump or the like. Although there is no restriction | limiting in this supply amount, it is preferable that the surface of polishing cloth is always covered with the abrasive | polishing agent.

研磨終了後の基板は、流水中でよく洗浄後、スピンドライなどを用いて基板上に付着した水滴を払い落としてから乾燥させることが好ましい。研磨布の表面状態を常に同一にしてCMPを行うために、研磨の前に研磨布のコンディショニング工程を入れるのが好ましい。例えば、ダイヤモンド粒子のついたドレッサを用いて少なくとも水を含む液で研磨布のコンディショニングを行う。
続いて本発明によるCMP研磨工程を実施し、さらに、基板洗浄工程を加えるのが好ましい。
本発明は、配線板の銅及び銅合金の研磨だけでなくLSI等の半導体の銅及び銅合金の研磨にも適用することができる。
The substrate after polishing is preferably washed in running water and then dried after removing water droplets adhering to the substrate using spin drying or the like. In order to perform CMP with the surface state of the polishing cloth always the same, it is preferable to perform a conditioning process of the polishing cloth before polishing. For example, the polishing cloth is conditioned with a liquid containing at least water using a dresser with diamond particles.
Subsequently, it is preferable to perform a CMP polishing process according to the present invention, and further add a substrate cleaning process.
The present invention can be applied not only to polishing copper and copper alloys of wiring boards, but also to polishing copper and copper alloys of semiconductors such as LSI.

以下、実施例により本発明を説明する。本発明はこれらの実施例により制限されるものではない。
実施例1
(銅及び銅合金用研磨剤の作製方法)
無機酸として硫酸0.05mol(96%硫酸5.1g)、アミノ酸としてグリシン25g、金属表面に対する保護膜形成剤としてBTA3g、砥粒としてテトラエトキシシランのアンモニア溶液中での加水分解により作製した平均粒径70nmのコロイダルシリカ20gに水646.9gに加えて溶解した。これに、過酸化水素水(試薬特級、30%水溶液)300gを加えて得られたものを銅及び銅合金用研磨剤とした。
Hereinafter, the present invention will be described by way of examples. The present invention is not limited by these examples.
Example 1
(Method for producing abrasive for copper and copper alloy)
0.05 mol of sulfuric acid (5.1 g of 96% sulfuric acid) as an inorganic acid, 25 g of glycine as an amino acid, 3 g of BTA as a protective film forming agent for the metal surface, and an average particle prepared by hydrolysis of tetraethoxysilane in an ammonia solution as an abrasive In 70 g of colloidal silica having a diameter of 70 nm, it was dissolved in 646.9 g of water. What was obtained by adding 300 g of hydrogen peroxide solution (special grade, 30% aqueous solution) to this was used as an abrasive for copper and copper alloys.

中和滴定等量の測定値は0.09mol/kg、pHは2.6であった。測定はpHメータ(横河電機株式会社製 PH81)を使用し、25℃の恒温水槽中で行った。
基板には直径8インチ(20.3cm)(φ)サイズに切り抜いた18μm厚さの銅箔を貼り付けたガラスエポキシ基板を用意した。この基板を使用し、上記研磨剤を、研磨装置の定盤に貼り付けたパッドに滴下しながら、下記に示す研磨条件でCMP処理を行い、下記に示す評価を行った。
The measured value of the neutralization titration equivalent was 0.09 mol / kg, and the pH was 2.6. The measurement was performed using a pH meter (PH81 manufactured by Yokogawa Electric Corporation) in a constant temperature water bath at 25 ° C.
As the substrate, a glass epoxy substrate was prepared by attaching a 18 μm thick copper foil cut out to a size of 8 inches (20.3 cm) (φ) in diameter. Using this substrate, CMP treatment was performed under the following polishing conditions while dropping the above-mentioned abrasive onto a pad attached to a surface plate of a polishing apparatus, and the following evaluation was performed.

(研磨条件)
研磨装置:定盤寸法は直径600mm(φ)、ロータリータイプ
研磨パッド:独立気泡を持つ発泡ポリウレタン樹脂
研磨圧力:35kPa
基板と研磨定盤との相対速度:70m/min
研磨剤流量:200ml/min
(Polishing conditions)
Polishing equipment: Surface plate size is 600mm (φ) in diameter, rotary type Polishing pad: Polyurethane resin with closed cells Polishing pressure: 35kPa
Relative speed between substrate and polishing surface plate: 70 m / min
Abrasive flow rate: 200ml / min

(評価項目及び評価方法)
CMPによる銅研磨速度:基板のCMP前後での膜厚差をシート抵抗変化から換算して求めた。
表面粗さ(算術平均粗さRa):研磨後の銅膜表面粗さをAFM(原子間力顕微鏡)で測定した。測定は基板中央部から半径方向に50mm離れた箇所において、5μm×5μmの面積範囲で行った。
評価の結果、銅の研磨速度は2.2μm/min、表面粗さはRaで2.7nmであった。
(Evaluation items and evaluation methods)
Copper polishing rate by CMP: The difference in film thickness of the substrate before and after CMP was calculated from the change in sheet resistance.
Surface roughness (arithmetic average roughness Ra): The surface roughness of the copper film after polishing was measured with an AFM (atomic force microscope). The measurement was performed in a 5 μm × 5 μm area range at a location 50 mm away from the center of the substrate in the radial direction.
As a result of the evaluation, the copper polishing rate was 2.2 μm / min, and the surface roughness Ra was 2.7 nm.

実施例2
リン酸を0.02M(85%リン酸2.3g)を加え、水の添加量を644.6gに減らした以外は実施例1と同様に銅及び銅化合物用研磨剤を作製した。中和滴定等量の測定値は0.11mol/kg、pHは2.5であった。上記研磨剤を使用して実施例1と同様にCMP処理を行い、評価を行った。
評価の結果、銅膜の研磨速度は2.7μm/min、表面粗さはRaで1.3nmであり、研磨速度が増加し表面粗さが向上した。
Example 2
A polishing agent for copper and a copper compound was prepared in the same manner as in Example 1 except that 0.02 M phosphoric acid (2.3 g of 85% phosphoric acid) was added and the amount of water added was reduced to 644.6 g. The measured value of neutralization titration equivalent was 0.11 mol / kg and pH was 2.5. A CMP process was performed in the same manner as in Example 1 using the above abrasive, and evaluation was performed.
As a result of the evaluation, the polishing rate of the copper film was 2.7 μm / min, the surface roughness was 1.3 nm in Ra, the polishing rate was increased, and the surface roughness was improved.

実施例3
水溶性高分子として分子量2万のポリアクリル酸を5g加え、水を639.6gに減らした以外は実施例2と同様に銅及び銅化合物用研磨剤を作製した。中和滴定等量の測定値は0.12mol/kg、pHは2.5であった。上記研磨剤を使用して実施例1と同様にCMP処理を行い、評価を行った。
評価の結果、銅膜の研磨速度は2.9μm/min、表面粗さはRaで1.1nmであり、研磨速度が増加し表面粗さが向上した。
Example 3
A polishing agent for copper and a copper compound was prepared in the same manner as in Example 2 except that 5 g of polyacrylic acid having a molecular weight of 20,000 was added as a water-soluble polymer and water was reduced to 639.6 g. The measured value of the neutralization titration equivalent was 0.12 mol / kg, and the pH was 2.5. A CMP process was performed in the same manner as in Example 1 using the above abrasive, and evaluation was performed.
As a result of the evaluation, the polishing rate of the copper film was 2.9 μm / min, the surface roughness was 1.1 nm in Ra, the polishing rate was increased, and the surface roughness was improved.

比較例1
アミノ酸としてのグリシンを加えず、水を664.6gに増加させた以外は実施例1と同様に銅及び銅合金膜用の研磨剤を作製した。中和滴定等量の測定値は0.09mol/kg、pHは1.2であった。上記研磨剤を使用して実施例1と同様にCMP処理を行い、評価を行った。
評価の結果、銅膜の研磨速度は2.1μm/min、表面粗さはRaで35.6nmであり、研磨速度の大きな変化は見られなかったが、表面粗さが低下した。
Comparative Example 1
A polishing agent for copper and copper alloy films was prepared in the same manner as in Example 1 except that glycine as an amino acid was not added and water was increased to 664.6 g. The measured value of the neutralization titration equivalent was 0.09 mol / kg, and the pH was 1.2. A CMP process was performed in the same manner as in Example 1 using the above abrasive, and evaluation was performed.
As a result of the evaluation, the polishing rate of the copper film was 2.1 μm / min, the surface roughness was 35.6 nm in Ra, and no significant change in the polishing rate was observed, but the surface roughness was reduced.

比較例2
無機酸として硫酸0.01mol(96%硫酸1.02g)に減らした以外は実施例1と同様に銅及び銅合金膜用の研磨剤を作製した。中和滴定等量の測定値は0.018mol/kg、pHは3.3であった。上記研磨剤を使用して実施例1と同様にCMP処理を行い、評価を行った。
評価の結果、銅膜の研磨速度は0.8μm/min、表面粗さはRaで2.1nmであり、研磨速度が大幅に低下した。
Comparative Example 2
A polishing agent for copper and copper alloy films was prepared in the same manner as in Example 1 except that the inorganic acid was reduced to 0.01 mol of sulfuric acid (96% sulfuric acid 1.02 g). The measured value of the neutralization titration equivalent was 0.018 mol / kg, and the pH was 3.3. A CMP process was performed in the same manner as in Example 1 using the above abrasive, and evaluation was performed.
As a result of the evaluation, the polishing rate of the copper film was 0.8 μm / min, the surface roughness was 2.1 nm in Ra, and the polishing rate was greatly reduced.

Claims (9)

無機酸、アミノ酸、金属表面に対する保護膜形成剤、砥粒、酸化剤及び水を含み、
pHが1.5〜3であり
前記アミノ酸の25℃における第一段の酸解離指数が2以上3以下であり、
水酸化カリウムによる中和滴定等量が0.05mol/kg以上である銅及び銅合金用研磨剤。
Inorganic acid, amino acid, protective film forming agent for metal surface, abrasive grains, oxidizing agent and water,
pH is 1.5 to 3,
The first-stage acid dissociation index of the amino acid at 25 ° C. is 2 or more and 3 or less,
A polishing agent for copper and copper alloys , wherein a neutralization titration equivalent with potassium hydroxide is 0.05 mol / kg or more.
無機酸が、硫酸およびリン酸の少なくとも一方である請求項1記載の銅及び銅合金用研磨剤。   The abrasive for copper and copper alloy according to claim 1, wherein the inorganic acid is at least one of sulfuric acid and phosphoric acid. アミノ酸が、アラニン、アルギニン、イソロイシン、グリシン、グルタミン酸、トリプトファン、トレオニン、バリン、メチオニン、リシン、及びロイシンからなる群から選ばれる、請求項1又は2記載の銅及び銅合金用研磨剤。
The polishing agent for copper and copper alloy according to claim 1 or 2, wherein the amino acid is selected from the group consisting of alanine, arginine, isoleucine, glycine, glutamic acid, tryptophan, threonine, valine, methionine, lysine, and leucine .
金属表面に対する保護膜形成剤が、ベンゾトリアゾールおよびその誘導体から選ばれた1種類以上からなる請求項1〜3のいずれかに記載の銅及び銅合金用研磨剤。   The abrasive | polishing agent for copper and copper alloys in any one of Claims 1-3 which the protective film formation agent with respect to a metal surface consists of 1 or more types chosen from the benzotriazole and its derivative (s). 砥粒が、平均粒径100nm以下のコロイダルシリカ又はコロイダルアルミナからなる請求項1〜4のいずれかに記載の銅及び銅合金用研磨剤。   The abrasive | polishing agent for copper and copper alloys in any one of Claims 1-4 in which an abrasive grain consists of colloidal silica or colloidal alumina with an average particle diameter of 100 nm or less. 酸化剤が、過酸化水素、過硫酸及び過硫酸塩より選ばれた少なくとも1種である請求項1〜5のいずれかに記載の銅及び銅合金用研磨剤。   The polishing agent for copper and copper alloy according to any one of claims 1 to 5, wherein the oxidizing agent is at least one selected from hydrogen peroxide, persulfuric acid and persulfate. さらに、水溶性高分子を含有してなる請求項1〜6のいずれかに記載の銅及び銅合金用研磨剤。   Furthermore, the abrasive | polishing agent for copper and copper alloys in any one of Claims 1-6 formed by containing water-soluble polymer. 水溶性高分子が、ポリアクリル酸、その塩、ポリメタクリル酸及びその塩のいずれかである請求項7記載の銅及び銅合金用研磨剤。   The abrasive for copper and copper alloy according to claim 7, wherein the water-soluble polymer is any one of polyacrylic acid, a salt thereof, polymethacrylic acid and a salt thereof. 請求項1〜8のいずれかに記載の銅及び銅合金用研磨剤を用いて銅膜、銅合金膜、銅または銅合金と他の金属との積層膜のいずれかからなる金属膜を研磨する工程によって前記金属膜の一部を除去することを特徴とする研磨方法。   A metal film comprising any one of a copper film, a copper alloy film, a laminated film of copper or a copper alloy and another metal is polished using the abrasive for copper and copper alloy according to claim 1. A polishing method, wherein a part of the metal film is removed by a process.
JP2006279685A 2005-10-21 2006-10-13 Polishing agent for copper and copper alloy and polishing method using the same Active JP5135755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006279685A JP5135755B2 (en) 2005-10-21 2006-10-13 Polishing agent for copper and copper alloy and polishing method using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005307056 2005-10-21
JP2005307056 2005-10-21
JP2006279685A JP5135755B2 (en) 2005-10-21 2006-10-13 Polishing agent for copper and copper alloy and polishing method using the same

Publications (2)

Publication Number Publication Date
JP2007142377A JP2007142377A (en) 2007-06-07
JP5135755B2 true JP5135755B2 (en) 2013-02-06

Family

ID=38204826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006279685A Active JP5135755B2 (en) 2005-10-21 2006-10-13 Polishing agent for copper and copper alloy and polishing method using the same

Country Status (1)

Country Link
JP (1) JP5135755B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201404531UA (en) 2012-02-01 2014-09-26 Hitachi Chemical Co Ltd Polishing liquid for metal and polishing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020027571A (en) * 1999-08-24 2002-04-13 갤반 마틴 Compositions for insulator and metal cmp and methods relating thereto
JP4010903B2 (en) * 2002-08-02 2007-11-21 Necエレクトロニクス株式会社 Chemical mechanical polishing slurry
US7300603B2 (en) * 2003-08-05 2007-11-27 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical planarization compositions for reducing erosion in semiconductor wafers
JP2005175218A (en) * 2003-12-11 2005-06-30 Nitta Haas Inc Slurry for polishing copper wiring
US20050136671A1 (en) * 2003-12-22 2005-06-23 Goldberg Wendy B. Compositions and methods for low downforce pressure polishing of copper

Also Published As

Publication number Publication date
JP2007142377A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
KR101494034B1 (en) Compositions and methods for modifying a surface suited for semiconductor fabrication
US8791019B2 (en) Metal polishing slurry and method of polishing a film to be polished
KR100510977B1 (en) Polishing compound for chemimechanical polishing and method for polishing substrate
TWI398473B (en) Compositions for polishing aluminum/copper and titanium in damascene structures
JP4775260B2 (en) Polishing liquid for metal and polishing method using the same
JP2007150264A (en) Organic insulating material, polishing material for copper film compound material, and polishing method
JP2010540759A (en) Improved silicon carbide particles and methods for making and using the same
WO2000000561A1 (en) Chemical mechanical polishing slurry useful for copper/tantalum substrates
JP5880524B2 (en) Abrasive and polishing method
TWI664280B (en) Elevated temperature cmp compositions and methods for use thereof
TWI294456B (en)
KR101273705B1 (en) Polishing solution for cmp, and method for polishing substrate using the polishing solution for cmp
JP5412706B2 (en) Polishing material and polishing method for copper film and insulating material film
JP2012028747A (en) Cmp polishing liquid and method of polishing substrate
JP5135755B2 (en) Polishing agent for copper and copper alloy and polishing method using the same
JP2006080406A (en) Composition for polishing
JP2013214786A (en) Copper film, polishing material for insulation material film and polishing method
WO2011077973A1 (en) Polishing agent for copper polishing and polishing method using the same
JP2001144063A (en) Polishing method
JP2001144044A (en) Metal polishing fluid and polishing method using it
JP2001144051A (en) Polishing solution for metal and method of polishing substrate using same
JP2002198333A (en) Metal polishing liquid and substrate polishing method using it
JP2004193477A (en) Cmp abrasive and polishing method of substrate
JP2004014998A (en) Polishing precess of substrate
JP2005116873A (en) Cmp abrasive and polishing method of substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121029

R151 Written notification of patent or utility model registration

Ref document number: 5135755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350