JP5412706B2 - Polishing material and polishing method for copper film and insulating material film - Google Patents

Polishing material and polishing method for copper film and insulating material film Download PDF

Info

Publication number
JP5412706B2
JP5412706B2 JP2006258796A JP2006258796A JP5412706B2 JP 5412706 B2 JP5412706 B2 JP 5412706B2 JP 2006258796 A JP2006258796 A JP 2006258796A JP 2006258796 A JP2006258796 A JP 2006258796A JP 5412706 B2 JP5412706 B2 JP 5412706B2
Authority
JP
Japan
Prior art keywords
film
abrasive
polishing
copper
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006258796A
Other languages
Japanese (ja)
Other versions
JP2007150263A (en
Inventor
康雄 上方
裕 小野
豊 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2006258796A priority Critical patent/JP5412706B2/en
Publication of JP2007150263A publication Critical patent/JP2007150263A/en
Application granted granted Critical
Publication of JP5412706B2 publication Critical patent/JP5412706B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、銅膜及び絶縁材料膜用研磨材及び研磨方法に関するものであり、特に高性能配線板の銅配線形成に適した化学機械研磨(以下、CMPという)工程で使用する研磨材およびそれを用いた研磨方法に関する。   The present invention relates to a polishing material for a copper film and an insulating material film, and a polishing method, and more particularly to a polishing material used in a chemical mechanical polishing (hereinafter referred to as CMP) process suitable for forming a copper wiring of a high performance wiring board. The present invention relates to a polishing method using stencil.

LSIを高性能化するために、配線材料として従来のアルミニウム合金配線に替わって銅合金配線の利用が進んでいる。銅合金配線は従来のアルミニウム合金配線の形成で頻繁に用いられたドライエッチング法による微細加工が困難であるため、あらかじめ溝を形成してある絶縁膜上に銅合金薄膜を堆積して埋め込み、溝部以外の銅合金薄膜をCMPにより除去して埋め込み配線を形成する、いわゆるダマシン法が主に採用されている(特許文献1)。銅や銅合金等の金属膜を研磨する金属CMPの一般的な方法は、円形の研磨定盤(プラテン)上に研磨パッドを貼り付け、研磨パッド表面を金属膜用研磨材で浸し、基板の金属膜を形成した面を押し付けて、その裏面から所定の圧力(以下研磨圧力と記す)を加えた状態で研磨定盤を回し、研磨材と金属膜の凸部との機械的摩擦によって凸部の金属膜を除去するものである。   In order to improve the performance of LSIs, the use of copper alloy wiring as a wiring material is progressing instead of conventional aluminum alloy wiring. Since copper alloy wiring is difficult to be finely processed by the dry etching method frequently used in the formation of conventional aluminum alloy wiring, a copper alloy thin film is deposited and embedded on an insulating film in which grooves have been formed in advance. A so-called damascene method is mainly employed in which a copper alloy thin film other than the above is removed by CMP to form a buried wiring (Patent Document 1). A general method of metal CMP for polishing a metal film such as copper or copper alloy is to apply a polishing pad on a circular polishing platen (platen), immerse the polishing pad surface with a metal film polishing material, and The surface on which the metal film is formed is pressed, and the polishing platen is rotated with a predetermined pressure (hereinafter referred to as polishing pressure) applied from the back surface, and the convex portion is caused by mechanical friction between the abrasive and the convex portion of the metal film. The metal film is removed.

CMP処理に用いられる金属膜用研磨材は、一般には酸化剤及び砥粒からなっている。酸化剤によって金属膜の表面を酸化し、その酸化層を砥粒によって削り取るのが基本的なメカニズムと考えられている。凹部の金属膜表面の酸化層は研磨パッドにあまり触れず、砥粒による削り取りの効果が及ばないので、CMP処理の進行とともに凸部の酸化層が除去されて基板表面は平坦化される。また、必要に応じてさらに酸などの酸化金属溶解剤、金属膜表面に対する保護膜形成剤が添加される。酸化金属溶解剤を添加すると研磨速度を向上させることが可能であり、併せて金属膜表面に対する保護膜形成剤を添加すると凹部の金属膜表面に保護膜を形成するので、実用的な研磨速度を保ちつつ平坦性を確保することができる(特許文献2)。   The metal film abrasive used in the CMP process is generally composed of an oxidizing agent and abrasive grains. It is considered that the basic mechanism is to oxidize the surface of the metal film with an oxidizing agent and scrape the oxidized layer with abrasive grains. Since the oxide layer on the surface of the metal film in the concave portion does not touch the polishing pad so much and the effect of scraping off by the abrasive grains does not reach, the oxide layer in the convex portion is removed and the substrate surface is flattened as the CMP process proceeds. Further, if necessary, a metal oxide solubilizer such as an acid and a protective film forming agent for the metal film surface are added. Adding a metal oxide solubilizer can improve the polishing rate, and adding a protective film forming agent for the metal film surface also forms a protective film on the concave metal film surface, so a practical polishing rate can be achieved. Flatness can be ensured while maintaining (Patent Document 2).

近年、LSIの製造に続いてパッケージ等の高性能・微細配線板においても、高精度の配線形成が可能なCMP法の適用が検討されている。LSIの製造において使用される銅または銅合金等の金属膜の厚さは1μm程度であるのに対し、高性能・微細配線版に使用される金属膜の厚さは10μm程度と厚いため、研磨速度0.5μm/min程度の従来のLSI用の研磨材を使用すると(特許文献3)、CMP処理に時間がかかり、生産性が悪くなるという問題があった。
特開平2−278822号公報 特開平8−83780号公報 特開2003−124160号公報
In recent years, following the manufacture of LSI, the application of a CMP method capable of forming wiring with high accuracy is also being studied for high-performance and fine wiring boards such as packages. The thickness of the metal film such as copper or copper alloy used in the manufacture of LSI is about 1 μm, whereas the thickness of the metal film used for high performance / fine wiring plate is as thick as about 10 μm. When a conventional LSI polishing material having a speed of about 0.5 μm / min is used (Patent Document 3), there is a problem that the CMP process takes time and the productivity deteriorates.
JP-A-2-278822 JP-A-8-83780 JP 2003-124160 A

本発明は、銅および銅合金膜を2μm/min以上の高い研磨速度で研磨することが可能で、高性能配線板などの厚い銅膜の研磨が必要とされる製品の製造においても、短時間で研磨処理が可能で十分な生産性を確保できる研磨材及び研磨方法を提供するものである。   The present invention makes it possible to polish copper and copper alloy films at a high polishing rate of 2 μm / min or more, and in a short time even in the manufacture of products that require polishing of thick copper films such as high-performance wiring boards. Therefore, the present invention provides an abrasive and a polishing method that can be polished and can ensure sufficient productivity.

本発明は、(1)水、砥粒、酸化剤、無機酸及びアミノ酸を含有し、pHが1.5以上3.5以下である研磨材であって、該研磨材のpHを4まで増加するのに要する水酸化カリウムの量が研磨材1kg当たり0.05mol以上であることを特徴とする銅膜及び絶縁材料膜用研磨材に関する。   The present invention is (1) an abrasive containing water, abrasive grains, an oxidizing agent, an inorganic acid and an amino acid and having a pH of 1.5 or more and 3.5 or less, and the pH of the abrasive is increased to 4. The present invention relates to an abrasive for a copper film and an insulating material film, characterized in that the amount of potassium hydroxide required for the treatment is 0.05 mol or more per kg of the abrasive.

また、本発明は、(2)前記砥粒が、平均粒径100nm以下のコロイダルシリカであることを特徴とする前記(1)記載の銅膜及び絶縁材料膜用研磨材に関する。   The present invention also relates to (2) the abrasive for copper film and insulating material film according to (1), wherein the abrasive grains are colloidal silica having an average particle diameter of 100 nm or less.

また、本発明は、(3)前記酸化剤が、過酸化水素、過硫酸または過硫酸塩より選ばれた少なくとも1種の酸化剤であることを特徴とする前記(1)記載の銅膜及び絶縁材料膜用研磨材に関する。   Moreover, this invention is (3) The copper film as described in said (1) characterized by the said oxidizing agent being at least 1 sort (s) of oxidizing agent chosen from hydrogen peroxide, persulfuric acid, or persulfate. The present invention relates to an insulating material film abrasive.

また、本発明は、(4)前記無機酸が、硫酸またはリン酸もしくはそれらの混合物であることを特徴とする前記(1)記載の銅膜及び絶縁材料膜用研磨材に関する。   The present invention also relates to (4) the abrasive for copper film and insulating material film according to (1), wherein the inorganic acid is sulfuric acid, phosphoric acid or a mixture thereof.

また、本発明は、(5)前記アミノ酸が、25℃における第一段の酸解離指数が2以上3以下であることを特徴とする前記(1)記載の銅膜及び絶縁材料膜用研磨材に関する。   In addition, the present invention provides: (5) The polishing material for copper film and insulating material film according to (1), wherein the amino acid has a first-stage acid dissociation index of 2 to 3 at 25 ° C. About.

また、本発明は、(6)銅表面に対する保護膜形成剤を含有することを特徴とする前記(1)〜(5)のいずれか一項に記載の銅膜及び絶縁材料膜用研磨材に関する。   The present invention also relates to (6) a polishing agent for a copper film and an insulating material film according to any one of (1) to (5) above, which contains a protective film forming agent for the copper surface. .

また、本発明は、(7)前記保護膜形成剤が、ベンゾトリアゾ−ル及びその誘導体から選ばれた少なくとも1種の保護膜形成剤であることを特徴とする前記(6)記載の銅膜及び絶縁材料膜用研磨材に関する。   The present invention is also directed to (7) the copper film according to (6), wherein the protective film forming agent is at least one protective film forming agent selected from benzotriazole and derivatives thereof. The present invention relates to an insulating material film abrasive.

また、本発明は、(8)水溶性高分子を含有することを特徴とする前記(1)〜(7)のいずれか一項に記載の銅膜及び絶縁材料膜用研磨材に関する。   Moreover, this invention relates to the abrasive | polishing material for copper films as described in any one of said (1)-(7) characterized by containing water-soluble polymer (8).

また、本発明は、(9)前記(1)〜(8)のいずれか一項に記載の銅膜及び絶縁材料膜用研磨材を用いて、銅膜及び絶縁材料膜が形成された基板を含む被研磨膜を研磨することを特徴とする研磨方法に関する。   In addition, the present invention provides (9) a substrate on which a copper film and an insulating material film are formed using the copper film and the insulating material film abrasive according to any one of (1) to (8). The present invention relates to a polishing method comprising polishing a film to be polished.

本発明の研磨材として、pHが1.5〜3.5の緩衝溶液を得ることができる。このため被研磨物である銅および銅合金が研磨材中に溶解してもpH変動が起こりにくく、高い研磨速度を維持することができる。本発明の研磨材及び研磨方法は、高い研磨速度と金属膜上の表面粗さの抑制が可能であり、生産性の向上と、製品歩留まりの向上を両立できるので、高性能配線板等の製造工程に適用できる。   As the abrasive of the present invention, a buffer solution having a pH of 1.5 to 3.5 can be obtained. For this reason, even if copper and a copper alloy, which are objects to be polished, are dissolved in the polishing material, pH fluctuation hardly occurs, and a high polishing rate can be maintained. The polishing material and polishing method of the present invention can suppress the surface roughness on the metal film with a high polishing rate, and can improve productivity and increase the product yield. Applicable to process.

本発明の銅膜及び絶縁材料膜用研磨材は、水、砥粒、酸化剤、無機酸及びアミノ酸を含有し、pHが1.5以上3.5以下である研磨材であって、該研磨材のpHを4まで増加するのに要する水酸化カリウムの量が研磨材1kg当たり0.05mol以上であることを特徴とする。   The abrasive for copper film and insulating material film of the present invention is an abrasive containing water, abrasive grains, oxidant, inorganic acid and amino acid, and having a pH of 1.5 or more and 3.5 or less. The amount of potassium hydroxide required to increase the pH of the material to 4 is 0.05 mol or more per kg of the abrasive.

本発明の銅膜及び絶縁材料膜用研磨材のpHは、銅膜のCMPによる研磨速度が大きく、銅膜に腐食を生じさせないという点でpH1.5以上3.5以下であり、pH2以上pH3以下が好ましい。pH1.5未満では、銅膜の表面粗さが大きくなり、また、pH3.5を超えるとCMPによる研磨速度が遅くなり実用的な研磨材とはなり得ない。本発明では、無機酸及びアミノ酸の配合量を適宜選択することにより研磨材のpHを上記範囲に調整する。無機酸は一般的に強酸であり、多量に添加するとpHが低下してしまいpHを所望の範囲に調整するのは困難であるが、アミノ酸を添加することによりpHを所望の範囲に容易に調整することができる。   The pH of the polishing material for copper film and insulating material film of the present invention is pH 1.5 or more and 3.5 or less, pH 2 or more and pH 3 in that the polishing rate by CMP of the copper film is large and the copper film is not corroded. The following is preferred. If the pH is less than 1.5, the surface roughness of the copper film becomes large. If the pH exceeds 3.5, the polishing rate by CMP becomes slow and cannot be a practical abrasive. In the present invention, the pH of the abrasive is adjusted to the above range by appropriately selecting the blending amounts of inorganic acid and amino acid. Inorganic acids are generally strong acids, and when added in large amounts, the pH drops and it is difficult to adjust the pH to the desired range, but it is easy to adjust the pH to the desired range by adding amino acids. can do.

本発明の銅膜及び絶縁材料膜用研磨材は、研磨材のpHを4まで増加するのに要する水酸化カリウムの量が研磨材1kg当たり0.05mol以上である。該水酸化カリウムの量が0.05mol未満では、研磨速度が低下してしまう。該水酸化カリウムの量を研磨材1kg当たり0.05mol以上とする方法は、添加する無機酸の配合量を適宜選択することにより行なわれる。   In the abrasive for copper film and insulating material film of the present invention, the amount of potassium hydroxide required to increase the pH of the abrasive to 4 is 0.05 mol or more per kg of abrasive. If the amount of potassium hydroxide is less than 0.05 mol, the polishing rate will decrease. The method of setting the amount of potassium hydroxide to 0.05 mol or more per 1 kg of the abrasive is performed by appropriately selecting the blending amount of the inorganic acid to be added.

CMP処理中には被研磨物である銅膜が研磨され、研磨材中に銅イオンとして溶解する。無機酸の配合量が少ないと、銅膜の溶解により水素イオンが消費され研磨材のpHが上昇し、研磨速度が低下してしまう。一方、無機酸の配合量が充分であると、研磨材はpH緩衝作用を有するため、銅イオンが多量に溶解しても、pHの上昇は抑制され、研磨速度は低下することなく安定した研磨が可能になる。そのために必要な研磨材中の無機酸の量は、研磨速度、研磨中における研磨材流量にもよるが8インチの円盤状の基板を研磨する場合には、研磨材のpHを4まで増加するのに要する水酸化カリウムの量として研磨材1kg当たり0.05mol以上に相当する量である。   During the CMP process, the copper film that is the object to be polished is polished and dissolved as copper ions in the polishing material. If the amount of the inorganic acid is small, hydrogen ions are consumed by dissolution of the copper film, the pH of the abrasive is increased, and the polishing rate is decreased. On the other hand, if the amount of the inorganic acid is sufficient, the abrasive has a pH buffering action, so even if a large amount of copper ions are dissolved, the increase in pH is suppressed, and stable polishing without decreasing the polishing rate. Is possible. The amount of inorganic acid in the polishing material required for that purpose increases the pH of the polishing material to 4 when polishing an 8-inch disk-shaped substrate, although it depends on the polishing rate and the polishing material flow rate during polishing. The amount of potassium hydroxide required for this is an amount corresponding to 0.05 mol or more per kg of the abrasive.

本発明における砥粒は、シリカ、アルミナ、ジルコニア、セリア、チタニア、炭化珪素等の無機物砥粒、ポリスチレン、ポリアクリル、ポリ塩化ビニル等の有機物砥粒のいずれでもよいが、研磨材中での分散安定性が良く、CMPにより発生する研磨傷(スクラッチ)の発生数の少ない、平均粒径が100nm以下のコロイダルシリカ、コロイダルアルミナが好ましく、平均粒径100nm以下のコロイダルシリカがより好ましい。コロイダルシリカはシリコンアルコキシドの加水分解または珪酸ナトリウムのイオン交換による製造方法が知られており、コロイダルアルミナは硝酸アルミニウムの加水分解による製造方法が知られている。   The abrasive grains in the present invention may be any of inorganic abrasive grains such as silica, alumina, zirconia, ceria, titania and silicon carbide, and organic abrasive grains such as polystyrene, polyacryl and polyvinyl chloride, but dispersed in the abrasive. Colloidal silica and colloidal alumina having an average particle size of 100 nm or less are preferred, and colloidal silica having an average particle size of 100 nm or less is more preferred, since the stability is good and the number of polishing scratches (scratches) generated by CMP is small. Colloidal silica is known for its production by hydrolysis of silicon alkoxide or ion exchange of sodium silicate, and colloidal alumina is known for its production by hydrolysis of aluminum nitrate.

本発明における砥粒の配合量は、研磨材全重量に対して0.1質量%〜10質量%であることが好ましく、1質量%〜5質量%であることがより好ましい。砥粒の配合量が0.1質量%未満である場合は、物理的な研削作用が小さいため研磨速度が低下する傾向にあり、10質量%を超える場合は、研磨速度は飽和し、それ以上加えても研磨速度の増加は認められない傾向にある。   The blending amount of the abrasive grains in the present invention is preferably 0.1% by mass to 10% by mass, and more preferably 1% by mass to 5% by mass with respect to the total weight of the abrasive. When the blending amount of the abrasive grains is less than 0.1% by mass, the polishing rate tends to decrease because the physical grinding action is small, and when it exceeds 10% by mass, the polishing rate is saturated and beyond. Even when added, the polishing rate tends not to increase.

本発明における酸化剤としては、過酸化水素(H)、過硫酸、過硫酸アンモニウム、過硫酸カリウム等の過硫酸塩、過ヨウ素酸、過ヨウ素酸カリウム等が挙げられ、これらの中でも過酸化水素、過硫酸、過硫酸塩が好ましく、過酸化水素がより好ましい。 Examples of the oxidizing agent in the present invention include hydrogen sulfate (H 2 O 2 ), persulfates such as persulfuric acid, ammonium persulfate, and potassium persulfate, periodic acid, potassium periodate, and the like. Hydrogen oxide, persulfuric acid and persulfate are preferable, and hydrogen peroxide is more preferable.

本発明における酸化剤の配合量は、研磨材全重量に対して、0.1mol/kg〜5mol/kgであることが好ましく、0.5mol/kg〜4mol/kgであることがより好ましい。酸化剤の配合量が0.1mol/kg未満である場合は、研磨速度が低下する傾向にあり、5mol/kgを超える場合も研磨速度が低下する傾向にある。   The blending amount of the oxidizing agent in the present invention is preferably 0.1 mol / kg to 5 mol / kg, and more preferably 0.5 mol / kg to 4 mol / kg with respect to the total weight of the abrasive. When the blending amount of the oxidizing agent is less than 0.1 mol / kg, the polishing rate tends to decrease, and when it exceeds 5 mol / kg, the polishing rate tends to decrease.

本発明における無機酸としては、硝酸、塩酸、臭化水素酸、ヨウ化水素酸、硫酸、リン酸等が挙げられ、これらの中でも硫酸またはリン酸もしくは硫酸とリン酸の混合物がCMPによる研磨速度が大きく、銅および銅合金膜の表面粗さを低減できるという点で好ましい。   Examples of the inorganic acid in the present invention include nitric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, phosphoric acid, etc. Among these, sulfuric acid or phosphoric acid or a mixture of sulfuric acid and phosphoric acid is a polishing rate by CMP. Is preferable in that the surface roughness of the copper and copper alloy films can be reduced.

本発明における無機酸の配合量は、研磨材のpHを4まで増加するのに要する水酸化カリウムの量が研磨材1kg当たり0.05mol以上となる量である。   The blending amount of the inorganic acid in the present invention is such that the amount of potassium hydroxide required to increase the pH of the abrasive to 4 is 0.05 mol or more per 1 kg of the abrasive.

本発明におけるアミノ酸としては、グリシン、アラニン、バリン、ロイシン、イソロイシン、セリン、トレオニン、システイン、シスチン、メチオニン、アスパラギン酸、グルタミン酸、リシン、アルギニン、フェニルアラニン、チロシン、ヒスチジン、トリプトファン、プロリン、オキシプロリン等が挙げられる。これらの中でも、25℃における第一段の酸解離指数(pK1)が2以上3以下であるアミノ酸が、銅膜及び絶縁材料膜用研磨材のpHを1.5以上4以下に調整しやすいという点で好ましい。具体的にはアラニン、アルギニン、イソロイシン、グリシン、グルタミン酸、トリプトファン、トレオニン、バリン、メチオニン、リシン、ロイシン、セリン、チロシン、フェニルアラニン等が好ましく、グリシンが特に好ましい。なお、本発明における酸解離指数(pKa)とは、酸解離定数の逆数の対数値で、例えば「化学便覧基礎編」改定4版(平成5年9月30日発行)、丸善株式会社、II−317〜321頁に詳細な記載がある。   Examples of amino acids in the present invention include glycine, alanine, valine, leucine, isoleucine, serine, threonine, cysteine, cystine, methionine, aspartic acid, glutamic acid, lysine, arginine, phenylalanine, tyrosine, histidine, tryptophan, proline, oxyproline and the like. Can be mentioned. Among these, the amino acid whose first-stage acid dissociation index (pK1) at 25 ° C. is 2 or more and 3 or less is easy to adjust the pH of the abrasive for the copper film and the insulating material film to 1.5 or more and 4 or less. This is preferable. Specifically, alanine, arginine, isoleucine, glycine, glutamic acid, tryptophan, threonine, valine, methionine, lysine, leucine, serine, tyrosine, phenylalanine and the like are preferable, and glycine is particularly preferable. The acid dissociation index (pKa) in the present invention is a logarithmic value of the reciprocal of the acid dissociation constant. For example, “Basic Manual of Chemistry” revised 4th edition (issued on September 30, 1993), Maruzen Co., Ltd., II There are detailed descriptions on pages 317 to 321.

本発明の研磨材は、銅表面に対する保護膜形成剤を含有することが好ましい。保護膜形成剤としては特に限定されず、例えば、ベンゾトリアゾール(BTA)、BTA誘導体、例えばBTAのベンゼン環の一つの水素原子をメチル基で置換したもの(トリルトリアゾール)もしくはカルボキシル基等で置換したもの(ベンゾトリアゾール−4−カルボン酸およびベンゾトリアゾール−4−カルボン酸のメチル、エチル、プロピル、ブチル及びオクチルエステル)、トリアゾール、キナルジン酸、アントニル酸、サリチルアルドキシム等が挙げられる。これらの中でも、BTAもしくはその誘導体もしくはそれらの混合物であることが好ましい。   The abrasive of the present invention preferably contains a protective film forming agent for the copper surface. The protective film forming agent is not particularly limited. For example, benzotriazole (BTA), BTA derivative, for example, one hydrogen atom of the benzene ring of BTA is substituted with a methyl group (tolyltriazole) or a carboxyl group is substituted. And the like (methyl, ethyl, propyl, butyl and octyl esters of benzotriazole-4-carboxylic acid and benzotriazole-4-carboxylic acid), triazole, quinaldic acid, anthonylic acid, salicylaldoxime and the like. Among these, BTA or a derivative thereof or a mixture thereof is preferable.

本発明における保護膜形成剤の配合量は、研磨材全重量に対して、0.05質量%から1質量%であることが好ましく、0.1質量%〜0.5質量%であることがより好ましい。保護膜形成剤の配合量が0.05質量%未満では研磨表面の表面粗さが大きくなる傾向があり、1質量%を超えると研磨速度が小さくなる傾向がある。   The blending amount of the protective film forming agent in the present invention is preferably 0.05% by mass to 1% by mass, and preferably 0.1% by mass to 0.5% by mass with respect to the total weight of the abrasive. More preferred. When the blending amount of the protective film forming agent is less than 0.05% by mass, the surface roughness of the polishing surface tends to increase, and when it exceeds 1% by mass, the polishing rate tends to decrease.

また、本発明の研磨材は、水溶性高分子を含有することが好ましい。水溶性高分子としては特に限定されず、例えば、ポリアクリル酸、ポリアクリル酸アンモニウム塩、ポリアクリル酸ナトリウム塩、ポリメタクリル酸、ポリメタクリル酸アンモニウム塩、ポリメタクリル酸ナトリウム塩、ポリアクリルアミド等のカルボキシル基を持つモノマーを基本構成単位とするポリマーおよびその塩、ポリビニルアルコール、ポリビニルピロリドン等のビニル基を持つモノマーを基本構成単位とするポリマーが挙げられる。これらの中でも、ポリアクリル酸もしくはその塩、ポリメタクリル酸もしくはその塩であることが好ましい。これら水溶性高分子の重量平均分子量は500以上であることが好ましい。これらの水溶性高分子を添加することにより、研磨速度および平坦性(銅膜/縁膜性樹膜間段差)が向上する傾向にある。   The abrasive of the present invention preferably contains a water-soluble polymer. The water-soluble polymer is not particularly limited, and examples thereof include polyacrylic acid, polyacrylic acid ammonium salt, polyacrylic acid sodium salt, polymethacrylic acid, polymethacrylic acid ammonium salt, polymethacrylic acid sodium salt, and polyacrylamide. Examples thereof include a polymer having a monomer having a group as a basic structural unit and a salt thereof, a polymer having a monomer having a vinyl group such as polyvinyl alcohol and polyvinylpyrrolidone as a basic structural unit. Among these, polyacrylic acid or a salt thereof, and polymethacrylic acid or a salt thereof are preferable. These water-soluble polymers preferably have a weight average molecular weight of 500 or more. The addition of these water-soluble polymers tends to improve the polishing rate and flatness (step between the copper film / rim film dendrite).

本発明における水溶性高分子の配合量は、研磨材全重量に対して、0.01質量%〜2.0質量%とすることが好ましく、0.1質量%〜1.0質量%とすることがより好ましい。水溶性高分子の配合量が0.01質量%未満では、研磨速度を向上させる作用は認められにくく、2.0質量%を超えると、砥粒の分散安定性を低下させる傾向がある。   The blending amount of the water-soluble polymer in the present invention is preferably 0.01% by mass to 2.0% by mass, and 0.1% by mass to 1.0% by mass with respect to the total weight of the abrasive. It is more preferable. If the blending amount of the water-soluble polymer is less than 0.01% by mass, the effect of improving the polishing rate is hardly recognized, and if it exceeds 2.0% by mass, the dispersion stability of the abrasive tends to be lowered.

本発明の研磨材は、砥粒が水中にスラリー状に分散したものである。水の配合量は前述した各種成分の合計量に対する残分となる。   The abrasive of the present invention is one in which abrasive grains are dispersed in water in a slurry form. The amount of water added is the remainder relative to the total amount of the various components described above.

本発明の研磨方法は、上記本発明の研磨材を用いて銅膜及び絶縁材料膜を含む被研磨膜が形成された基板を研磨することを特徴とする。研磨対象である被研磨膜は銅膜及び絶縁材料膜であり、これらそれぞれの膜は単層でも積層でも構わない。銅膜としては銅または銅合金である。銅膜はスパッタ法やメッキ法などの公知の方法により成膜される。   The polishing method of the present invention is characterized in that a substrate on which a film to be polished including a copper film and an insulating material film is formed is polished using the polishing material of the present invention. The target films to be polished are a copper film and an insulating material film, and each of these films may be a single layer or a stacked layer. The copper film is copper or a copper alloy. The copper film is formed by a known method such as sputtering or plating.

基板としては、半導体装置製造に係る基板、例えば回路素子と配線パターンが形成された段階の半導体基板、回路素子が形成された段階の半導体基板等の半導体基板上に、絶縁層が形成された基板などが挙げられる。   As the substrate, a substrate related to semiconductor device manufacture, for example, a substrate in which an insulating layer is formed on a semiconductor substrate such as a semiconductor substrate in which a circuit element and a wiring pattern are formed, a semiconductor substrate in a stage in which a circuit element is formed, etc. Etc.

被研磨膜の研磨は化学機械研磨により行なわれ、具体的には、被研磨面が形成された基板を研磨定盤の研磨布(パッド)上に押圧した状態で、本発明の研磨材を供給しながら研磨定盤と基板とを相対的に動かすことによって被研磨面を研磨する。他に、金属製または樹脂製のブラシを被研磨面に接触させる方法、研磨材を所定の圧力で吹きつける方法が挙げられる。   Polishing of the film to be polished is performed by chemical mechanical polishing. Specifically, the polishing material of the present invention is supplied in a state where the substrate on which the surface to be polished is formed is pressed onto the polishing cloth (pad) of the polishing surface plate. The surface to be polished is polished by relatively moving the polishing platen and the substrate. In addition, there are a method in which a metal or resin brush is brought into contact with the surface to be polished, and a method in which an abrasive is sprayed at a predetermined pressure.

研磨する装置としては、例えば研磨布により研磨する場合、研磨される基板を保持できるホルダと、回転数が変更可能なモータ等に接続し、研磨布を貼り付けられる定盤とを有する一般的な研磨装置が使用できる。例えば、株式会社荏原製作所製研磨装置:型番EPO111が使用できる。   As an apparatus for polishing, for example, when polishing with a polishing cloth, a general apparatus having a holder that can hold a substrate to be polished and a surface plate that is connected to a motor that can change the number of rotations and to which the polishing cloth is attached. A polishing apparatus can be used. For example, a polishing apparatus manufactured by Ebara Corporation: model number EPO111 can be used.

研磨布としては、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂などが使用でき、特に制限がない。研磨条件には制限はないが、定盤の回転速度は基板が飛び出さないように200rpm以下の低回転が好ましい。被研磨面を有する基板の研磨布への押し付け圧力(研磨圧力)が1〜100kPaであることが好ましく、CMP速度の被研磨面内均一性及びパターンの平坦性を満足するためには、5〜50kPaであることがより好ましい。   As an abrasive cloth, a general nonwoven fabric, a polyurethane foam, a porous fluororesin, etc. can be used, and there is no restriction | limiting in particular. The polishing conditions are not limited, but the rotation speed of the surface plate is preferably low rotation of 200 rpm or less so that the substrate does not jump out. The pressing pressure of the substrate having the surface to be polished on the polishing cloth (polishing pressure) is preferably 1 to 100 kPa, and in order to satisfy the uniformity of the polishing surface within the CMP rate and the flatness of the pattern, 5 to More preferably, it is 50 kPa.

研磨している間、研磨布には研磨材をポンプ等で連続的に供給する。この供給量に制限はないが、研磨布の表面が常に研磨材で覆われていることが好ましい。   During polishing, the abrasive is continuously supplied to the polishing cloth with a pump or the like. The supply amount is not limited, but it is preferable that the surface of the polishing pad is always covered with an abrasive.

研磨終了後の基板は、流水中でよく洗浄後、スピンドライ等を用いて基板上に付着した水滴を払い落としてから乾燥させることが好ましい。研磨布の表面状態を常に同一にしてCMPを行うために、研磨の前に研磨布のコンディショニング工程を入れるのが好ましい。例えば、ダイヤモンド粒子のついたドレッサを用いて少なくとも水を含む液で研磨布のコンディショニングを行う。続いて本発明によるCMP研磨工程を実施し、さらに、基板洗浄工程を加えるのが好ましい。   The substrate after polishing is preferably washed in running water and then dried after removing water droplets adhering to the substrate using spin drying or the like. In order to perform CMP with the surface state of the polishing cloth always the same, it is preferable to perform a conditioning process of the polishing cloth before polishing. For example, the polishing cloth is conditioned with a liquid containing at least water using a dresser with diamond particles. Subsequently, it is preferable to perform a CMP polishing process according to the present invention, and further add a substrate cleaning process.

以下、実施例により本発明を説明する。本発明はこれらの実施例により制限されるものではない。   Hereinafter, the present invention will be described by way of examples. The present invention is not limited by these examples.

(実施例1)
(銅および銅合金用研磨材の作製方法)
硫酸0.05mol(濃度96%の硫酸5.1g)、グリシン25g、ベンゾトリアゾール3g、平均粒径70nmのコロイダルシリカ20gに水646.9gを加えて溶解し、過酸化水素水(試薬特級、30%水溶液)300gを加え銅膜及び絶縁材料膜用研磨材(A)を作製した。
Example 1
(Method for producing abrasive for copper and copper alloy)
A solution of 646.9 g of water in 0.05 mol of sulfuric acid (5.1 g of 96% sulfuric acid), 25 g of glycine, 3 g of benzotriazole and 20 g of colloidal silica having an average particle size of 70 nm was dissolved in hydrogen peroxide (special grade, 30 % Aqueous solution) 300 g was added to produce a copper film and an insulating material film abrasive (A).

なお、コロイダルシリカは、常法に従いテトラエトキシシランのアンモニア溶液中での加水分解により作製した。   Colloidal silica was prepared by hydrolysis of tetraethoxysilane in an ammonia solution according to a conventional method.

研磨材(A)のpHは2.6であった。また、研磨材(A)のpHを4まで増加するのに要する水酸化カリウムの量は研磨材(A)1kg当たり0.09mol/kgであった。   The pH of the abrasive (A) was 2.6. The amount of potassium hydroxide required to increase the pH of the abrasive (A) to 4 was 0.09 mol / kg per kg of the abrasive (A).

上記研磨材(A)を定盤に貼り付けたパッドに滴下しながら、下記に示す基板を使用し、下記に示す研磨条件でCMP処理を行い、下記に示す評価を行った。   While dripping the above-mentioned abrasive (A) onto a pad attached to a surface plate, the following substrate was used, CMP treatment was performed under the following polishing conditions, and the following evaluation was performed.

(評価基板)
基板1:ガラスエポキシ基板上に厚さ18μmの銅膜を形成した直径(φ)8インチのブランケット基板。
(Evaluation board)
Substrate 1: A blanket substrate having a diameter (φ) of 8 inches in which a copper film having a thickness of 18 μm is formed on a glass epoxy substrate.

基板2:ガラスエポキシ基板上に感光性の永久レジストを使用して深さ5μm、溝幅100μmのストライプ状のパターンを形成後、スパッタ法によって厚さ0.2μmの銅のメッキシード層を形成し、続いてめっき法により厚さ10μmの銅膜を形成した、直径(φ)8インチのパターン形成基板。   Substrate 2: A striped pattern having a depth of 5 μm and a groove width of 100 μm is formed on a glass epoxy substrate using a photosensitive permanent resist, and then a copper plating seed layer having a thickness of 0.2 μm is formed by sputtering. Subsequently, a pattern forming substrate having a diameter (φ) of 8 inches, in which a copper film having a thickness of 10 μm is formed by plating.

(研磨条件)
研磨装置:定盤寸法600mmφ、ロータリータイプ
研磨パッド:独立気泡を持つ発泡ポリウレタン樹脂
研磨圧力:35kPa
基板と研磨定盤との相対速度:70m/min
研磨材流量:200ml/min
(評価項目および評価方法)
CMPによる銅研磨速度:基板1のCMP処理前後での膜厚差をシート抵抗変化から換算して求め、研磨時間とから算出した。
(Polishing conditions)
Polishing device: Surface plate size 600mmφ, Rotary type Polishing pad: Polyurethane resin with closed cells Polishing pressure: 35kPa
Relative speed between substrate and polishing surface plate: 70 m / min
Abrasive flow rate: 200ml / min
(Evaluation items and evaluation methods)
Copper polishing rate by CMP: The film thickness difference between before and after the CMP treatment of the substrate 1 was calculated from the sheet resistance change, and calculated from the polishing time.

表面粗さ(算術平均粗さRa):基板1のCMP処理後の銅膜表面粗さをAFM(原子間力顕微鏡)で測定した。   Surface roughness (arithmetic mean roughness Ra): The surface roughness of the copper film after the CMP treatment of the substrate 1 was measured with an AFM (atomic force microscope).

銅膜/縁膜性樹膜間段差:基板2のCMP処理後の銅膜/縁膜性樹膜間境界段差を触針式の段差計で評価した。   Step difference between copper film / rim film dendrite: The step difference between the copper film / edge film dendrite after the CMP process of the substrate 2 was evaluated with a stylus type step meter.

評価の結果、銅膜の研磨速度は2.2μm/min、表面粗さはRaで2.7nm、銅膜/縁膜性樹膜間段差は0.35μmであった。   As a result of the evaluation, the polishing rate of the copper film was 2.2 μm / min, the surface roughness Ra was 2.7 nm, and the step between the copper film / rim film dendritic film was 0.35 μm.

(実施例2)
リン酸を0.02mol(濃度85%のリン酸2.3g)をさらに加え、水の添加量を644.6gとすること以外は実施例1と同様に操作して銅膜及び絶縁材料膜用研磨材(B)を作製した。
(Example 2)
0.02 mol of phosphoric acid (2.3 g of phosphoric acid with a concentration of 85%) was further added, and the operation was performed in the same manner as in Example 1 except that the amount of water added was 644.6 g. An abrasive (B) was produced.

研磨材(B)のpHは2.5であった。また、研磨材(B)のpHを4まで増加するのに要する水酸化カリウムの量は研磨材(B)1kg当たり0.11mol/kgであった。   The pH of the abrasive (B) was 2.5. The amount of potassium hydroxide required to increase the pH of the abrasive (B) to 4 was 0.11 mol / kg per kg of the abrasive (B).

研磨材(B)を使用して実施例1と同様にCMP処理を行い、評価を行った。評価の結果、銅膜の研磨速度は2.7μm/min、表面粗さはRaで1.3nm、銅膜/縁膜性樹膜間段差は0.28μmであり、研磨速度が増加し表面粗さおよび銅膜/縁膜性樹膜間段差が向上した。   CMP was performed in the same manner as in Example 1 using the abrasive (B), and evaluation was performed. As a result of the evaluation, the polishing rate of the copper film was 2.7 μm / min, the surface roughness was 1.3 nm in Ra, and the step difference between the copper film / rim film dendritic film was 0.28 μm. And the step between the copper film / rim film dendritic membrane was improved.

(実施例3)
重量平均分子量2万のポリアクリル酸5gをさらに加え、水の添加量を639.6gとすること以外は実施例2と同様に操作して銅膜及び絶縁材料膜用研磨材(C)を作製した。
(Example 3)
A polishing material (C) for a copper film and an insulating material film was produced in the same manner as in Example 2 except that 5 g of polyacrylic acid having a weight average molecular weight of 20,000 was further added and the amount of water added was 639.6 g. did.

研磨材(C)のpHは2.5であった。また、研磨材(C)のpHを4まで増加するのに要する水酸化カリウムの量は研磨材(C)1kg当たり0.12mol/kgであった。   The pH of the abrasive (C) was 2.5. The amount of potassium hydroxide required to increase the pH of the abrasive (C) to 4 was 0.12 mol / kg per kg of the abrasive (C).

研磨材(C)を使用して実施例1と同様にCMP処理を行い、評価を行った。評価の結果、銅膜の研磨速度は2.9μm/min、表面粗さはRaで1.1nm、銅膜/縁膜性樹膜間段差は0.19μmであり、研磨速度が増加し表面粗さおよび銅膜/縁膜性樹膜間段差が向上した。   CMP was performed in the same manner as in Example 1 using the abrasive (C), and evaluation was performed. As a result of the evaluation, the polishing rate of the copper film was 2.9 μm / min, the surface roughness was 1.1 nm in terms of Ra, and the step difference between the copper film / rim film dendritic film was 0.19 μm. And the step between the copper film / rim film dendritic membrane was improved.

(比較例1)
グリシンを添加しないこと、水の添加量を664.6gとすること以外は実施例1と同様に操作して銅膜及び絶縁材料膜用研磨材(D)を作製した。
(Comparative Example 1)
A polishing material (D) for a copper film and an insulating material film was produced in the same manner as in Example 1 except that glycine was not added and the amount of water added was 664.6 g.

研磨材(D)のpHは1.2であった。また、研磨材(D)のpHを4まで増加するのに要する水酸化カリウムの量は研磨材(D)1kg当たり0.09mol/kgであった。   The pH of the abrasive (D) was 1.2. Further, the amount of potassium hydroxide required to increase the pH of the abrasive (D) to 4 was 0.09 mol / kg per 1 kg of the abrasive (D).

研磨材(D)を使用して実施例1と同様にCMP処理を行い、評価を行った。評価の結果、銅膜の研磨速度は2.1μm/min、表面粗さはRaで35.6nm、銅膜/縁膜性樹膜間段差は1.2μmであり、研磨速度の大きな変化は見られなかったが、表面粗さおよび銅膜/縁膜性樹膜間段差が低下した。   CMP was performed in the same manner as in Example 1 using the abrasive (D), and evaluation was performed. As a result of the evaluation, the polishing rate of the copper film was 2.1 μm / min, the surface roughness was 35.6 nm in Ra, and the step between the copper film / rim film dendritic film was 1.2 μm. Although not, the surface roughness and the step between the copper film / rim film dendrite decreased.

(比較例2)
硫酸の添加量を0.01mol(濃度96%の硫酸1.02g)とすること以外は実施例1と同様に操作して銅膜及び絶縁材料膜用研磨材(E)を作製した。
(Comparative Example 2)
A polishing material (E) for copper film and insulating material film was produced in the same manner as in Example 1 except that the addition amount of sulfuric acid was 0.01 mol (1.02 g of sulfuric acid having a concentration of 96%).

研磨材(E)のpHは3.3であった。また、研磨材(E)のpHを4まで増加するのに要する水酸化カリウムの量は研磨材(E)1kg当たり0.018mol/kgであった。   The pH of the abrasive (E) was 3.3. The amount of potassium hydroxide required to increase the pH of the abrasive (E) to 4 was 0.018 mol / kg per kg of the abrasive (E).

研磨材(E)を使用して実施例1と同様にCMP処理を行い、評価を行った。評価の結果、銅膜の研磨速度は0.8μm/min、表面粗さはRaで2.1nm、銅膜/縁膜性樹膜間段差は0.3μmであり、研磨速度が大幅に低下した。   CMP was performed in the same manner as in Example 1 using the abrasive (E), and evaluation was performed. As a result of the evaluation, the polishing rate of the copper film was 0.8 μm / min, the surface roughness was 2.1 nm in Ra, and the step difference between the copper film / rim film dendritic film was 0.3 μm, and the polishing rate was greatly reduced. .

Claims (9)

水、砥粒、酸化剤、無機酸及びアミノ酸を含有し、pHが1.5以上3.5以下である、銅膜及び絶縁材料膜を含む被研磨膜が形成された基板を研磨するための研磨材であって、
前記アミノ酸の25℃における第一段の酸解離指数が、2以上3以下であり、かつ、
前記無機酸の配合量は、前記研磨材のpHを4まで増加するのに要する水酸化カリウムの量が研磨材1kg当たり0.05mol以上となる量であることを特徴とする銅膜及び絶縁材料膜用研磨材。
For polishing a substrate on which a film to be polished, including a copper film and an insulating material film, containing water, abrasive grains, an oxidizing agent, an inorganic acid, and an amino acid and having a pH of 1.5 to 3.5 is formed. Abrasive,
The first-stage acid dissociation index of the amino acid at 25 ° C. is 2 or more and 3 or less, and
The amount of the inorganic acid, the copper film and insulating material, wherein the amount of potassium hydroxide required to increase the pH of the abrasive until 4 is an amount to be abrasive 1kg per 0.05mol more Membrane abrasive.
前記砥粒が、平均粒径100nm以下のコロイダルシリカであることを特徴とする請求項1記載の銅膜及び絶縁材料膜用研磨材。   The abrasive for copper film and insulating material film according to claim 1, wherein the abrasive grains are colloidal silica having an average particle diameter of 100 nm or less. 前記酸化剤が、過酸化水素、過硫酸または過硫酸塩より選ばれた少なくとも1種の酸化剤であることを特徴とする請求項1または2記載の銅膜及び絶縁材料膜用研磨材。   3. The polishing material for a copper film and an insulating material film according to claim 1, wherein the oxidizing agent is at least one oxidizing agent selected from hydrogen peroxide, persulfuric acid or persulfate. 前記無機酸が、硫酸またはリン酸もしくはそれらの混合物であることを特徴とする請求項1〜3のいずれか1項記載の銅膜及び絶縁材料膜用研磨材。   The said inorganic acid is a sulfuric acid, phosphoric acid, or mixtures thereof, The abrasive | polishing material for copper films and insulating material films | membranes of any one of Claims 1-3 characterized by the above-mentioned. 前記アミノ酸が、アラニン、アルギニン、イソロイシン、グリシン、グルタミン酸、トリプトファン、トレオニン、バリン、メチオニン、リシン、ロイシン、セリン、チロシン、及びフェニルアラニンからなる群から選ばれる少なくとも一種である、請求項1〜4のいずれか1項記載の銅膜及び絶縁材料膜用研磨材。   5. The method according to claim 1, wherein the amino acid is at least one selected from the group consisting of alanine, arginine, isoleucine, glycine, glutamic acid, tryptophan, threonine, valine, methionine, lysine, leucine, serine, tyrosine, and phenylalanine. 2. A polishing material for a copper film and an insulating material film according to claim 1. 銅表面に対する保護膜形成剤を含有することを特徴とする請求項1〜5のいずれか一項に記載の銅膜及び絶縁材料膜用研磨材。   It contains the protective film formation agent with respect to a copper surface, The abrasive | polishing material for copper films and insulating-material films | membranes as described in any one of Claims 1-5 characterized by the above-mentioned. 前記保護膜形成剤が、ベンゾトリアゾール及びその誘導体から選ばれた少なくとも1種の保護膜形成剤であることを特徴とする請求項6記載の銅膜及び絶縁材料膜用研磨材。   The abrasive for copper film and insulating material film according to claim 6, wherein the protective film forming agent is at least one protective film forming agent selected from benzotriazole and derivatives thereof. 水溶性高分子を含有することを特徴とする請求項1〜7のいずれか一項に記載の銅膜及び絶縁材料膜用研磨材。   The water-soluble polymer is contained, The abrasive | polishing material for copper films and insulation material films | membranes as described in any one of Claims 1-7 characterized by the above-mentioned. 請求項1〜8のいずれか一項に記載の銅膜及び絶縁材料膜用研磨材を用いて、銅膜及び絶縁材料膜を含む被研磨膜が形成された基板を研磨することを特徴とする研磨方法。   A substrate on which a film to be polished including a copper film and an insulating material film is formed is polished using the copper film and the insulating material film abrasive according to any one of claims 1 to 8. Polishing method.
JP2006258796A 2005-11-01 2006-09-25 Polishing material and polishing method for copper film and insulating material film Active JP5412706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006258796A JP5412706B2 (en) 2005-11-01 2006-09-25 Polishing material and polishing method for copper film and insulating material film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005318255 2005-11-01
JP2005318255 2005-11-01
JP2006258796A JP5412706B2 (en) 2005-11-01 2006-09-25 Polishing material and polishing method for copper film and insulating material film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013154788A Division JP2013214786A (en) 2005-11-01 2013-07-25 Copper film, polishing material for insulation material film and polishing method

Publications (2)

Publication Number Publication Date
JP2007150263A JP2007150263A (en) 2007-06-14
JP5412706B2 true JP5412706B2 (en) 2014-02-12

Family

ID=38211230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006258796A Active JP5412706B2 (en) 2005-11-01 2006-09-25 Polishing material and polishing method for copper film and insulating material film

Country Status (1)

Country Link
JP (1) JP5412706B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010092865A1 (en) 2009-02-16 2010-08-19 日立化成工業株式会社 Abrading agent and abrading method
US8889555B2 (en) 2009-02-16 2014-11-18 Hitachi Chemical Co., Ltd. Polishing agent for copper polishing and polishing method using same
JP5573234B2 (en) * 2010-03-03 2014-08-20 日立化成株式会社 CMP polishing liquid and substrate polishing method using this CMP polishing liquid
CN104093810B (en) 2012-02-01 2016-01-20 日立化成株式会社 Metal polishing slurry and Ginding process

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0995632A (en) * 1995-09-28 1997-04-08 Ricoh Co Ltd Regenerating method of recorded material, liquid for promoting image removal and its production
AU2003242397A1 (en) * 2003-06-13 2005-01-04 Hitachi Chemical Co., Ltd. Polishing fluid for metal and polishing method
JP2005064285A (en) * 2003-08-14 2005-03-10 Hitachi Chem Co Ltd Polishing solution and polishing method for cmp
JP2005079119A (en) * 2003-08-29 2005-03-24 Toshiba Corp Abrasive composition for cooper based metal and process for fabricating semiconductor device
JP4406554B2 (en) * 2003-09-30 2010-01-27 株式会社フジミインコーポレーテッド Polishing composition
JP4439866B2 (en) * 2003-10-02 2010-03-24 株式会社日本触媒 Polishing liquid composition
JP4464111B2 (en) * 2003-11-13 2010-05-19 旭硝子株式会社 Copper wiring polishing composition, semiconductor integrated circuit surface polishing method, and semiconductor integrated circuit copper wiring manufacturing method
JP2005175218A (en) * 2003-12-11 2005-06-30 Nitta Haas Inc Slurry for polishing copper wiring
US6971945B2 (en) * 2004-02-23 2005-12-06 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Multi-step polishing solution for chemical mechanical planarization
JP2005244123A (en) * 2004-02-27 2005-09-08 Fujimi Inc Polishing composition

Also Published As

Publication number Publication date
JP2007150263A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
KR100510977B1 (en) Polishing compound for chemimechanical polishing and method for polishing substrate
US8791019B2 (en) Metal polishing slurry and method of polishing a film to be polished
JP2007150264A (en) Organic insulating material, polishing material for copper film compound material, and polishing method
JP4775260B2 (en) Polishing liquid for metal and polishing method using the same
TWI294456B (en)
JP5880524B2 (en) Abrasive and polishing method
JP5412706B2 (en) Polishing material and polishing method for copper film and insulating material film
JP2001139937A (en) Liquid for polishing metal and method for polishing metal
WO2014112418A1 (en) Polishing solution for metal and polishing method
JP2013214786A (en) Copper film, polishing material for insulation material film and polishing method
JP5135755B2 (en) Polishing agent for copper and copper alloy and polishing method using the same
US20090053896A1 (en) Copper polishing slurry
JP4164941B2 (en) Polishing liquid for metal and polishing method
JP2001127018A (en) Metal polishing method
JP2001144044A (en) Metal polishing fluid and polishing method using it
JP3902897B2 (en) Substrate polishing method using metal polishing liquid
JP4845373B2 (en) Polishing liquid and polishing method
JP2008118099A (en) Polishing fluid for metal, and method of polishing film to be polished using the polishing fluid
WO2023007722A1 (en) Polishing liquid and polishing method
JPWO2011077973A1 (en) Abrasive for polishing copper and polishing method using the same
JP2001127027A (en) Metal polishing method
JP3902896B2 (en) Polishing liquid for metal and substrate polishing method using the same
JP2006191131A (en) Abrasive powder for chemical mechanical polishing and method for polishing substrate
JP2001127017A (en) Metal polishing method
JP2001144042A (en) Metal polishing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130725

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131028

R151 Written notification of patent or utility model registration

Ref document number: 5412706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350