JP2005079119A - Abrasive composition for cooper based metal and process for fabricating semiconductor device - Google Patents

Abrasive composition for cooper based metal and process for fabricating semiconductor device Download PDF

Info

Publication number
JP2005079119A
JP2005079119A JP2003209658A JP2003209658A JP2005079119A JP 2005079119 A JP2005079119 A JP 2005079119A JP 2003209658 A JP2003209658 A JP 2003209658A JP 2003209658 A JP2003209658 A JP 2003209658A JP 2005079119 A JP2005079119 A JP 2005079119A
Authority
JP
Japan
Prior art keywords
copper
polishing
polishing composition
film
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003209658A
Other languages
Japanese (ja)
Inventor
Hideaki Hirabayashi
英明 平林
Naoaki Sakurai
直明 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003209658A priority Critical patent/JP2005079119A/en
Publication of JP2005079119A publication Critical patent/JP2005079119A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Weting (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an abrasive composition for copper based metal which does not dissolve Cu, and the like, at all when copper (Cu) or a copper alloy (Cu alloy) is immersed and can grind Cu or Cu alloy at a high rate in polishing process. <P>SOLUTION: The abrasive composition contains an organic solvent, an oxidizing agent, a pH conditioner, and water and has pH of 4.0 or less. The organic solvent is compatible with water and reacts on copper to produce a complex insoluble to the organic solvent, the oxidizing agent, and water compatible with the pH conditioner. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、銅系金属用研磨組成物および半導体装置の製造方法に関する。
【0002】
【従来の技術】
半導体装置の製造工程の一つである配線層形成においては、表面の段差を解消する目的でエッチバック技術が採用されている。このエッチバック技術は、半導体基板上の絶縁膜に配線形状の溝を形成し、前記溝を含む前記絶縁膜上にCu膜を堆積し、前記Cu膜をポリシング装置および研磨組成物を用いて研磨処理し、前記溝内のみにCu膜を残存させて埋め込み配線層を形成する方法である。
【0003】
ところで、前記研磨組成物としては従来よりコロイダルシリカのような研磨砥粒が分散された純水からなるものが用いられている。しかしながら、前記研磨組成物をポリシング装置の研磨パッドに供給して基板上に成膜されたCu膜を前記研磨パッドに所定の加重を与えながら研磨する場合には、単に前記研磨砥粒と研磨パッドによる機械的な研磨が前記Cu膜になされるのみである。このため、研磨速度が10nm/分と低いという問題があった。
【0004】
このようなことから非特許文献1〜3には、アミン系コロイダルシリカのスラリーまたはKFe(CN)、K(CN)、Co(NOが添加されたスラリーからなるCu膜またはCu合金膜の研磨組成物が開示されている。
【0005】
しかしながら、前記研磨組成物は浸漬時と研磨時との間でCu膜のエッチング速度に差がない。その結果、前述したエッチバック工程後において前記溝内のCu配線層は研磨組成物に接触されると、浸漬時と研磨時との間でCu膜のエッチング速度に差がないため、前記Cu配線層がさらに前記研磨組成物によりエッチングされる。したがって、前記溝内のCu配線層の表面位置が前記絶縁膜の表面より低くなるため、前記絶縁膜の表面と面一の配線層の形成が困難になり、平坦性が損なわれる。また、形成された埋め込みCu配線層は、絶縁膜の表面と面一に埋め込まれたCu配線層に比べて抵抗値が高くなる。
【0006】
また、特許文献1には乳化重合により得られたビニル化合物重合体粒子を含み、かつβ−ジケトン化合物と過酸化水素を含有する水性エマルジョンからなる半導体装置製造用研磨剤が開示されている。この研磨剤は、β−ジケトン化合物が過酸化水素の存在で銅と反応して錯体を形成し、この錯体をビニル化合物重合体粒子の研磨作用により研磨して結果的に銅膜を研磨する。
【0007】
しかしながら、特許文献1の研磨剤はビニル化合物重合体粒子を必須とし、この粒子を含まない研磨剤では段落[0032]における表1の比較例2のように銅膜を高速度で研磨することが困難である。
【0008】
一方、特許文献2には2−キノリンカルボン酸のような銅と反応して水に難溶性で、かつ銅よりも機械的に脆弱な銅錯体を生成する水溶性の有機酸と、研磨砥粒と、酸化剤と水とを含有する銅系金属用研磨液が開示されている。特許文献3には、2−キノリンカルボン酸のような銅と反応して水に難溶性で、かつ銅よりも機械的に脆弱な銅錯体を生成する水溶性の第1有機酸と、乳酸のようなカルボキシル基およびヒドロキシル基を有する第2有機酸と、研磨砥粒と、酸化剤と水とを含有する銅系金属用研磨液が開示されている。特許文献4には、酸化剤および硝酸鉄のような無機酸塩、グルコン酸塩などの有機酸塩から選ばれる多酸化部位を有する少なくとも1つの触媒を含有する化学機械研磨用組成物が開示されている。
【0009】
【非特許文献1】
J. Elctrochem. Soc., Vol 138.No11, 3460(1991)
【0010】
【非特許文献2】
VMIC Conference, ISMIC−101/92/0156(1992)
【0011】
【非特許文献3】
VMIC Conference, ISMIC−102/93/0205(1993)
【0012】
【特許文献1】
特開2000−1667
【0013】
【特許文献2】
特開平10−44047号公報
【0014】
【特許文献3】
特開2000−183003
【0015】
【特許文献4】
特開平10−265766号公報
【0016】
【発明が解決しようとする課題】
本発明は、銅(Cu)または銅合金(Cu合金)の浸漬時にCu等を溶解せず、研磨時に研磨砥粒が存在しなくても銅(Cu)または銅合金(Cu合金)を十分な速度で研磨することが可能な銅系金属用研磨組成物を提供しようとするものである。
【0017】
本発明は、半導体基板上の絶縁膜に溝および開口部から選ばれる少なくとも1つの埋込み用部材を形成し、前記絶縁膜上に銅(Cu)または銅合金(Cu合金)からなる配線材料膜を形成した後の研磨により短時間でエッチバックできると共に高精度の埋め込み配線層のような導電部材を形成することが可能な半導体装置の製造方法を提供しようとするものである。
【0018】
【課題を解決するための手段】
本発明の一つの態様は、有機溶剤と酸化剤とpH調整剤と水と含有し、pHが4.0以下の研磨組成物であって、
前記有機溶剤は、水に相溶し、かつ銅と反応してこの有機溶剤、前記酸化剤およびpH調整剤が相溶された水に対して難溶性の錯体を生成することを特徴とする銅系金属用研磨組成物を提供する。
【0019】
本発明の別の態様は、半導体基板上の絶縁膜に配線層の形状に相当する溝およびビアフィルの形状に相当する開口部から選ばれる少なくとも1つの埋込み用部材を形成する工程;
前記部材を含む前記絶縁膜上に銅または銅合金からなる配線材料膜を形成する工程;および
前記組成の銅系金属用研磨組成物を用いて前記配線材料膜を研磨し、前記埋込み用部材に配線層およびビアフィルから選ばれる少なくとも1つの導電部材を形成する工程;
を具備することを特徴とする半導体装置の製造方法を提供する。
【0020】
【発明の実施の形態】
以下、本発明に係わる銅系金属用研磨組成物を詳細に説明する。
【0021】
この銅系金属用研磨組成物は、有機溶剤と酸化剤とpH調整剤と水と含有し、pHが4.0以下である。前記有機溶剤は、水に相溶し、かつ銅と反応してこの有機溶剤、前記酸化剤およびpH調整剤が相溶された水に対して難溶性の錯体を生成する。
【0022】
前記有機溶剤としては、例えばジケトン系有機溶剤が挙げられる。このジケトン系有機溶剤としては、例えば下記化1に示す構造式を有するアセチルアセトン、トリフルオロアセチルアセトン、プロピオニルアセトン、ベンゾイルアセトン、ベンゾイルトリフルオロアセトン、ギベンゾイルメタン等を挙げることができる。
【0023】
【化1】

Figure 2005079119
【0024】
前記有機溶剤は、前記研磨組成物中に0.3重量%以上含有されることが好ましい。前記有機溶剤の含有量を0.3重量%未満にすると、CuまたはCu合金の表面に銅錯体を十分に生成することが困難になる。その結果、研磨時においてCuまたはCu合金の研磨速度を十分に高めることが困難になる。より好ましい前記有機溶剤の含有量は、0.5重量%以上である。
【0025】
前記酸化剤は、銅もしくは銅合金に前記研磨用組成物を接触させた際に表面に銅の水和物を生成する作用を有する。かかる酸化剤としては、例えば過酸化水素(H)、次亜塩素酸ソーダ(NaClO)のような酸化剤を用いることができる。
【0026】
前記酸化剤は、前記研磨組成物中に前記有機溶剤に対して重量割合で1倍以上含有することが好ましい。前記酸化剤の含有量を重量割合で前記有機溶剤に対して1倍未満にすると、CuまたはCu合金の表面への銅錯体生成を十分に促進することが困難になる。
【0027】
前記pH調整剤は、研磨組成物のpHが4.0以下になるように添加され、Cuの研磨速度を高める作用を有する。このpH調整剤としては、例えば乳酸、シュウ酸等を挙げることができ、特に乳酸を用いるが好ましい。
【0028】
本発明に係る銅系金属用研磨組成物は、さらに研磨砥粒を含有することを許容する。この研磨砥粒としては、例えばシリカ、ジルコニア、酸化セリウムおよびコロイダルアルミナのようなアルミナから選ばれる少なくとも1つの材料から作られる。
【0029】
前記研磨砥粒は、前記研磨組成物中に1〜20重量%含有されることが好ましい。前記研磨砥粒の含有量を1重量%未満にすると、その効果を十分に達成することが困難になる。一方、前記研磨砥粒の含有量が20重量%を越えると、研磨組成物の粘度等が高くなるなど取扱い難くなる。より好ましい研磨砥粒の含有量は、2〜10重量%である。
【0030】
本発明に係わる銅系金属用研磨組成物を用いて例えば基板上に成膜されたCu膜またはCu合金膜を研磨するには、図1に示すポリシング装置が用いられる。すなわち、ターンテーブル1上には例えば布、独立気泡を有するポリウレタン発泡体から作られた研磨パッド2が被覆されている。研磨組成物を供給するための供給管3は、前記研磨パッド2の上方に配置されている。上面に支持軸4を有する基板ホルダ5は、研磨パッド2の上方に上下動自在でかつ回転自在に配置されている。
【0031】
このようなポリシング装置において、前記ホルダ5により基板6をその研磨面(例えばCu膜)が前記研磨パッド2に対向するように保持し、前記供給管3から前述した組成の研摩液7を供給しながら、前記支持軸4により前記基板6を前記研磨パッド2に向けて所望の加重を与え、さらに前記ホルド5および前記ターンテーブル1をそれぞれ同方向に回転させることにより前記基板上のCu膜が研磨される。
【0032】
以上説明した本発明に係わる銅系金属用研磨組成物は、水に相溶し、かつ銅と反応して水に対して難溶性の錯体を生成する有機溶剤と、酸化剤と、pH調整剤と水と含有し、pHが4.0以下であるため、CuまたはCu合金の浸漬時において前記Cu等を全く溶解せず、研磨時においてCuまたはCu合金を実用的な速度で研磨することができる。特に、乳酸のようなpH調整剤により銅系金属用研磨組成物のpHを4.0以下にすることによって、このpH値を超える組成物に比べてCuまたはCu合金の研磨速度を飛躍的に向上することができる。
【0033】
すなわち、例えば図2の(A)に示すように基板11上に凹凸を有するCu膜12を形成し、予め調製された有機溶剤(例えばアセチルアセトン)、酸化剤(例えば過酸化水素)、pH調整剤(例えば乳酸)および水を含む銅系金属用研磨組成物に前記基板11を浸漬すると、その組成物中の酸化剤が水の存在下で銅と反応してCuの水和物(Cuイオン)を生成する。この時、前記研磨組成物中の有機溶剤(例えば前記化1に示す構造式アセチルアセトン)は、前記Cuの水和物(Cuイオン)と反応して図2の(B)に示すようにCu膜12表面に銅錯体層13が生成される。
【0034】
次いで、前述した図1に示すポリシング装置および前記研磨組成物を用いて図2の(B)に示す基板ホルダ5に銅錯体層13が表面に形成されたCu膜12を研磨パッド2側に対向するように逆さにして保持する。つづいて、支持軸4により前記基板を研磨パッド2に所定の荷重を与え、さらに前記ホルダ5およびターンテーブル1をそれぞれ同方向に回転させながら、前記研磨組成物を供給管3から前記研磨パッド2に供給する。この時、前記CuまたはCu合金の表面に生成された銅錯体層12は、水に溶解されないものの、Cuに比べて脆弱であるため、前記研磨パッド2に存在する研磨砥粒を含有する前記研磨組成物により、図2の(C)に示すようにCu膜12の凸部に対応する銅錯体層13が機械的に研磨される。
【0035】
したがって、本発明に係わる研磨組成物は銅水和物を生成する酸化剤と、この銅水和物と反応して銅の錯体を生成するアセチルアセトンのような有機溶剤と,pHを4.0以下に調整するための乳酸のようなpH調整剤を含むことによって、CuまたはCu合金を極めて高い速度で研磨することができる。
【0036】
また、本発明に係わる研磨組成物はCuまたはCu合金の浸漬時において前記Cu等を溶解しないため、研磨処理工程での研磨組成物の供給タイミング等によりCuのエッチング量が変動する等の問題を回避でき、その操作を簡便に行うことができる。
【0037】
さらに、前述した図1に示すポリシング装置によりCu膜またはCu合金膜を研磨する際、前記Cu膜またはCu合金膜は研磨パッド2が所定の荷重で当接(摺接)されている間のみ研磨され、前記研磨パッドが前記Cu膜から離れると、研磨が直ちに停止される。このため、研磨処理後においてCu膜またはCu合金膜がさらにエッチングされる、いわゆるオーバーエッチングを阻止することができる。
【0038】
次に、本発明に係わる半導体装置の製造方法を説明する。
【0039】
この半導体装置の製造方法は、半導体基板上の絶縁膜に配線層の形状に相当する溝およびビアフィルの形状に相当する開口部から選ばれる少なくとも1つの埋込み用部材を形成する。つづいて、この埋込み用部材を含む前記絶縁膜上に銅または銅合金からなる配線材料膜を形成する。ひきつづき、前述した銅系金属用研磨組成物を用いて前記配線材料膜を研磨し、それによって前記埋込み用部材に配線層およびビアフィルから選ばれる少なくとも1つの導電部材を形成する。
【0040】
前記絶縁膜としては、例えばシリコン酸化膜、ボロン添加ガラス膜(BPSG膜)、リン添加ガラス膜(PSG膜)等を用いることができる。この絶縁膜は、表面に窒化シリコン、炭素、アルミナ、窒化ホウ素、ダイヤモンド等からなる絶縁性の研磨ストッパ膜が被覆されることを許容する。
【0041】
前記絶縁膜は、low−k膜のような比誘電率が3.5以下の絶縁材料から作られることが好ましい。この低比誘電率絶縁材料としては、例えばSiOF、有機スピンオングラス、ポリイミド、フッ素添加ポリイミド、ポリテトラフルオロエチレン、フッ化ポリアリルエーテル、フッ素添加パレリン等を挙げることができる。このような低比誘電率絶縁膜を用いることによって、この絶縁膜に埋設された銅または銅合金からなる配線層の信号伝播速度を高めことが可能になる。
【0042】
前記Cu合金としては、例えばCu−Si合金、Cu−Al合金、Cu−Si−Al合金、Cu−Ag合金等を用いることができる。
【0043】
前記CuまたはCu合金からなる配線材料膜は、スパッタ蒸着、真空蒸着、または無電解メッキ等により形成される。具体的には、銅もしくは銅合金をスパッタ法またはCVD法により堆積し、さらに無電解銅メッキを施して銅または銅合金からなる配線材料膜を形成する。
【0044】
前記研磨組成物中の前記有機溶媒およびその含有量は、それぞれ前述した銅系金属用研磨組成物と同様なもの、同様な範囲にすることが好ましい。
【0045】
前記研磨組成物は、さらにシリカ、ジルコニア、酸化セリウムおよびアルミナから選ばれる少なくとも1つの研磨砥粒を含有することを許容する。
【0046】
前記研磨組成物による研磨処理は、例えば前述した図1に示すポリシング装置が用いて行われる。
【0047】
図1に示すポリシング装置を用いる研磨処理において、基板ホルダで保持された基板を前記研磨パッドに与える荷重は研磨組成物の組成により適宜選定されるが、例えば50〜1000g/cmにすることが好ましい。
【0048】
本発明に係わる半導体装置の製造において、前記半導体基板上の前記溝および開口部から選ばれる少なくとも1つの埋込み用部材を含む前記絶縁膜に前記配線材料膜を形成する前に導電性バリア層を形成することを許容する。このような導電性バリア層を前記埋込み用部材を含む前記絶縁膜に形成することによって、Cuのような配線材料膜の形成、エッチバックにより前記導電性バリア層で囲まれた前記溝および開口部から選ばれる少なくとも1つの埋込み用部材に配線層およびビアフィルから選ばれる少なくとも1つの埋め込み導電部材に形成することが可能になる。その結果、配線材料であるCuが前記絶縁膜に拡散するのを前記導電性バリア層で阻止し、Cuによる半導体基板の汚染を防止することが可能になる。
【0049】
前記導電性バリア層は、例えばTiN、Ti、Nb、W,WN,TaN,TaSiN,Ta,Co,Co,Zr,ZrNおよびCuTa合金から選ばれる1層または2層以上から作られる。このような導電性バリア層は、15〜50nmの厚さを有することが好ましい。
【0050】
以上説明した本発明に係わる半導体装置の製造方法は、まず、半導体基板上の絶縁膜に配線層に相当する溝およびビアフィルに相当する形状の開口部から選ばれる少なくとも1つの埋込み用部材を形成し、前記部材を含む前記絶縁膜上にCuまたはCu合金からなる配線材料膜を形成する。つづいて、水に相溶し、かつ銅と反応して水に対して難溶性の錯体を生成する有機溶剤と、酸化剤と、pH調整剤と水と含有し、pHが4.0以下である銅系金属用研磨組成物と例えば前述した図1に示すポリシング装置とを用いて前記配線材料膜を前記絶縁膜の表面が露出するまで研磨する。前記研磨組成物は、既述したようにCu膜またはCu合金膜の浸漬時において前記Cu膜またはCu合金膜を全く溶解せず、かつ研磨時においてCu膜またはCu合金膜を高い速度で研磨することができる。
【0051】
その結果、前記研磨工程において前記配線材料膜はその表面から順次ポリシングされる、いわゆるエッチバックがなされるため、前記絶縁膜の前記溝および開口部から選ばれる少なくとも1つの埋込み用部材にCuまたはCu合金からなる配線層およびビアフィルから選ばれる少なくとも1つの導電部材を例えば前記絶縁膜表面と面一に形成できる。また、エッチバック工程後の前記配線層は前記研磨組成物と接触されるが、前述したようにCuまたはCu合金を溶解しないため、前記導電部材が溶解(エッチング)されるのを回避できる。
【0052】
したがって、高精度の埋め込み配線層のような導電部材を有する半導体装置を製造することができる。
【0053】
また、前記絶縁膜に形成された埋め込み配線層のような導電部材の表面は、研磨組成物に接触して前述した銅錯体層が生成されるものの、その厚さは20nmと極めて薄いため、前記銅錯体層を除去して純Cu表面を露出させる際に埋め込み配線層のような導電部材が過度に膜減りするのを回避できる。
【0054】
【実施例】
以下、本発明の実施例を図面を参照しして詳細に説明する。
【0055】
(実施例1)
ポリシング装置(ムサシノ電子工業社製商品名;MA200)および下記組成の銅系金属用研磨組成物を用いてCu膜およびTa膜がそれぞれ成膜されたシリコンウェハをそのCu膜(またはTa膜)が研磨パッド側に対向するように逆さにして保持し、前記ウェハを研磨パッドに400gf/cmの荷重を与え、さらに前記ターンテーブルを152rpmの速度で回転させながら、銅系金属用研磨組成物を100mL/分の速度で前記研磨パッドに供給することによって、前記Cu膜およびTa膜の研磨を行なった。
【0056】
<銅系金属用研磨組成物;各成分量は水に対する割合>
・アセチルアセトン;配合量を変化(0.5重量%、1.0重量%、1.5重量%)、
・過酸化水素;5.64重量%、
・50%濃度の乳酸;pHを4.0に調整する量。
【0057】
実施例1の銅系金属用研磨組成物によるCu膜,Ta膜の研磨速度を測定した。その結果を図3に示す。図3から明らかなようにアセチルアセトンの添加量を増加させるに従ってCuおよびTaの研磨速度が向上することがわかる。また、Cu/Taの研磨速度比は約20倍で高い選択研磨性を有することがわかる。
【0058】
(実施例2)
アセチルアセトン1.0重量%に一定にし、過酸化水素を水100mL当り7mL、13mL、20mLに変化させ、50%濃度の乳酸をpHが4.0になるように添加した銅系金属用研磨組成物を用いた以外、実施例1と同様にCu膜,Ta膜を研磨しその研磨速度を測定した。その結果を図4に示す。
【0059】
図4から明らかなように過酸化水素を少量添加することによりCuの研磨速度が高くなり、過剰になるとCuの研磨速度が逆に抑制されることがわかる。また、Taの研磨速度は過酸化水素の添加量に関係なく一定で、かつその研磨速度が低いためにCu/Taが高い選択研磨性を示すことがわかる。
【0060】
(実施例3)
アセチルアセトンを1.0重量%、過酸化水素を2.3重量%と一定にし、50%濃度の乳酸の点加療を変えてpHを3.5、4.0、9.0に調整した銅系金属用研磨組成物を用いた以外、実施例1と同様にCu膜,Ta膜を研磨しその研磨速度を測定した。その結果を図5に示す。なお、pH9.0銅系金属用研磨組成物は乳酸が無添加である。
【0061】
図5から明らかなようにpHを4.0以下にすることによって、これより中性、アルカリ側に比べてCuの研磨速度を飛躍的に向上できることがわかる。また、Taの研磨速度はpHに関係なく一定で、かつその研磨速度が低いためにCu/Taが高い選択研磨性を示すことがわかる。
【0062】
(実施例4)
アセチルアセトン、50%濃度の過酸化水素(H)および乳酸を下記表1に示す割合で混合したpH3.25の銅系金属用研磨組成物を調製した。
【0063】
(比較例1)
アセチルアセトンおよび50%濃度の過酸化水素(H)を下記表1に示す割合で混合したpH4.04の銅系金属用研磨組成物を調製した。
【0064】
得られた実施例4および比較例1の銅系金属用研磨組成物にCu膜が成膜されたシリコンウェハを30分間浸漬し、その後XPS(VG社製商品名;ESCALAB−200)により銅膜表面の分析を行なった。その結果を図6に示す。なお、図6中のAは実施例4の銅系金属用研磨組成物に浸漬後の銅膜表面のXPS分析特性線、Bは比較例1の銅系金属用研磨組成物に浸漬後の銅膜表面のXPS分析特性線、Cは生の銅膜表面のXPS分析特性線(参照例)、を示す。また、前記XPS分析から得られたCu,O,Cの量(原子%)を下記表1に併記する。なお、Oは主にC−Oに由来し、Cは主にCHに由来している。
【0065】
【表1】
Figure 2005079119
【0066】
前記図6および表1から明らかなように実施例4の銅系金属用研磨組成物にCu膜が成膜されたシリコンウェハを浸漬した後のXPS分析において、比較例1および参照例に比べてCu量が減少され、かつO、Cが増加していることから十分な量のアセチルアセトンと銅との錯体が銅膜表面に生成されていることが明らかである。
【0067】
なお、実施例4の銅系金属用研磨組成物を用いて実施例1と同様にCu膜を研磨したところ、81nm/分と高い速度で銅膜を研磨することができた。
【0068】
(実施例5)
まず、図7の(A)に示すように表面に図示しないソース、ドレイン等の拡散層が形成されたシリコン基板21上にCVD法により層間絶縁膜としての例えば厚さ1000nmのSiO膜22を堆積した後、前記SiO膜22にフォトエッチング技術により配線層に相当する形状を有する深さ500nmの複数の溝23を形成した。つづいて、図7の(B)に示すように前記溝23を含む前記SiO膜22上にスパッタ蒸着により厚さ15nmのTiNからなるバリア層24および厚さ600nmのCu膜25をこの順序で形成した。
【0069】
次いで、ポリシング装置(ムサシノ電子工業社製商品名;MA200)の基板ホルダに図7の(B)に示す基板21を逆さにして保持し、前記ホルダにより前記基板をターンテーブル上のローデル社製商品名;IC1000からなる研磨パッドに400g/cmの荷重を与え、前記ターンテーブルおよびホルダをそれぞれ112rpm、152rpmの速度で同方向に回転させながら、銅系金属用研磨組成物を100ml/分の速度で前記研磨パッドに供給して前記基板21に形成したCu膜25を前記SiO膜22表面のバリア層24が露出するまで研磨した。ここで、前記銅系金属用研磨組成物としてアセチルアセトン1重量%、50%濃度の過酸化水素(H)7mL/100mLおよび乳酸1.7重量%および水の組成を有するpH3.25noものを用いた。前記研磨工程において、前記研磨組成物はCu膜との接触時のエッチングが全く起こらず、前記研磨パッドによる研磨時の研磨速度が81nm/分であった。この後、第2の研磨組成物を用いて露出したバリア層24がポリシングすることにより図7の(C)に示すように前記溝23内にバリア層24が残存すると共に、前記バリア層24で覆われた前記溝23内に前記SiO膜22表面と面一な埋め込みCu配線層26が形成された。
【0070】
本実施例5において、前記ポリシング装置のホルダによる前記研磨パッドへの荷重を解除し、かつターンテーブルおよびホルダの回転の停止した後に前記Cu配線層26が前記研磨組成物に接触されても溶解(エッチング)されることがなかった。
【0071】
【発明の効果】
以上説明したように、本発明によれば銅(Cu)または銅合金(Cu合金)の浸漬時において前記Cu等を溶解せず、かつ研磨処理時に前記CuまたはCu合金を実用的な速度で研磨することが可能な銅系金属用研磨組成物を提供することができる。
【0072】
また、本発明によれば半導体基板上の絶縁膜に溝および開口部から選ばれる少なくとも1つの埋込み用部材を形成し、前記絶縁膜上に銅(Cu)または銅合金(Cu合金)からなる配線材料膜を形成した後の研磨により短時間でエッチバックできると共に高精度の埋め込み配線層のような導電部材を形成することが可能な半導体装置の製造方法を提供できる。
【図面の簡単な説明】
【図1】本発明の研磨工程に使用されるポリシング装置を示す概略図。
【図2】本発明の研磨工程に使用されるポリシング装置を示す概略図。
【図3】本発明の実施例1におけるアセチルアセトンの添加量とCu膜,Ta膜の研磨速度を示す特性図。
【図4】本発明の実施例2における過酸化水素の添加量とCu膜,Ta膜の研磨速度を示す特性図。
【図5】本発明の実施例3におけるpHの変化とCu膜,Ta膜の研磨速度を示す特性図。
【図6】本発明の実施例4、比較例1および参照例における銅膜表面のXPS分析結果を示す図。
【図7】本発明の実施例5における半導体装置の製造工程を示す断面図。
【符号の説明】
1…ターンテーブル、2…研磨パッド、3…供給管、5…ホルダ、11,21…シリコン基板、12,25…Cu膜、13…銅錯体層、22…SiO膜、23…溝、24…バリア層、26…Cu配線層。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polishing composition for copper-based metal and a method for manufacturing a semiconductor device.
[0002]
[Prior art]
In the formation of a wiring layer, which is one of the manufacturing processes of a semiconductor device, an etch back technique is employed for the purpose of eliminating a surface level difference. This etch-back technique forms a wiring-shaped groove in an insulating film on a semiconductor substrate, deposits a Cu film on the insulating film including the groove, and polishes the Cu film using a polishing apparatus and a polishing composition. In this method, the buried wiring layer is formed by processing and leaving the Cu film only in the groove.
[0003]
By the way, as said polishing composition, what consists of the pure water in which the abrasive grain like colloidal silica was disperse | distributed conventionally is used. However, when the polishing composition is supplied to a polishing pad of a polishing apparatus and a Cu film formed on a substrate is polished while applying a predetermined load to the polishing pad, the polishing abrasive and the polishing pad are simply used. The mechanical polishing by is only performed on the Cu film. For this reason, there has been a problem that the polishing rate is as low as 10 nm / min.
[0004]
Therefore, Non-Patent Documents 1 to 3 include amine-based colloidal silica slurry or K 3 Fe (CN) 6 , K 4 (CN) 6 , Co (NO 3 ) 2 A polishing composition of a Cu film or a Cu alloy film made of a slurry to which is added is disclosed.
[0005]
However, the polishing composition has no difference in the etching rate of the Cu film between dipping and polishing. As a result, when the Cu wiring layer in the groove is brought into contact with the polishing composition after the above-described etch-back process, there is no difference in the etching rate of the Cu film between the time of immersion and the time of polishing. The layer is further etched with the polishing composition. Therefore, since the surface position of the Cu wiring layer in the groove is lower than the surface of the insulating film, it becomes difficult to form a wiring layer flush with the surface of the insulating film, and the flatness is impaired. Further, the formed embedded Cu wiring layer has a higher resistance value than the Cu wiring layer embedded flush with the surface of the insulating film.
[0006]
Patent Document 1 discloses an abrasive for manufacturing a semiconductor device comprising an aqueous emulsion containing vinyl compound polymer particles obtained by emulsion polymerization and containing a β-diketone compound and hydrogen peroxide. In this polishing agent, a β-diketone compound reacts with copper in the presence of hydrogen peroxide to form a complex, and this complex is polished by the polishing action of vinyl compound polymer particles, thereby polishing the copper film.
[0007]
However, the abrasive of Patent Document 1 requires vinyl compound polymer particles, and an abrasive that does not contain these particles can polish the copper film at high speed as in Comparative Example 2 of Table 1 in paragraph [0032]. Have difficulty.
[0008]
On the other hand, Patent Document 2 discloses a water-soluble organic acid that reacts with copper such as 2-quinolinecarboxylic acid to form a copper complex that is hardly soluble in water and mechanically weaker than copper, and abrasive grains. And the polishing liquid for copper-type metals containing an oxidizing agent and water is disclosed. Patent Document 3 discloses a water-soluble first organic acid that reacts with copper such as 2-quinolinecarboxylic acid to form a copper complex that is hardly soluble in water and mechanically weaker than copper, and lactic acid. A polishing liquid for copper-based metals containing such a second organic acid having a carboxyl group and a hydroxyl group, abrasive grains, an oxidizing agent and water is disclosed. Patent Document 4 discloses a chemical mechanical polishing composition containing an oxidizing agent and at least one catalyst having a polyoxidation site selected from inorganic acid salts such as iron nitrate and organic acid salts such as gluconate. ing.
[0009]
[Non-Patent Document 1]
J. et al. Elctrochem. Soc. , Vol 138. No11, 3460 (1991)
[0010]
[Non-Patent Document 2]
VMIC Conference, ISMIC-101 / 92/0156 (1992)
[0011]
[Non-Patent Document 3]
VMIC Conference, ISMIC-102 / 93/0205 (1993)
[0012]
[Patent Document 1]
JP2000-1667
[0013]
[Patent Document 2]
JP 10-44047 A
[0014]
[Patent Document 3]
JP2000-183003
[0015]
[Patent Document 4]
Japanese Patent Laid-Open No. 10-265766
[0016]
[Problems to be solved by the invention]
The present invention does not dissolve Cu or the like when immersing copper (Cu) or a copper alloy (Cu alloy), and sufficient copper (Cu) or copper alloy (Cu alloy) even if no abrasive grains exist during polishing. An object of the present invention is to provide a copper-based metal polishing composition capable of polishing at a high speed.
[0017]
In the present invention, at least one embedding member selected from a groove and an opening is formed in an insulating film on a semiconductor substrate, and a wiring material film made of copper (Cu) or a copper alloy (Cu alloy) is formed on the insulating film. An object of the present invention is to provide a method for manufacturing a semiconductor device, which can be etched back in a short time by polishing after the formation and can form a conductive member such as a highly accurate buried wiring layer.
[0018]
[Means for Solving the Problems]
One aspect of the present invention is a polishing composition containing an organic solvent, an oxidizing agent, a pH adjuster, and water, and having a pH of 4.0 or less,
The organic solvent is compatible with water and reacts with copper to form a sparingly soluble complex with water in which the organic solvent, the oxidizing agent and the pH adjusting agent are compatible. A polishing composition for a metallic metal is provided.
[0019]
Another aspect of the present invention is the step of forming at least one embedding member selected from a groove corresponding to the shape of the wiring layer and an opening corresponding to the shape of the via fill in the insulating film on the semiconductor substrate;
Forming a wiring material film made of copper or a copper alloy on the insulating film including the member; and
Polishing the wiring material film using a copper-based metal polishing composition having the above composition to form at least one conductive member selected from a wiring layer and via fill on the burying member;
A method for manufacturing a semiconductor device is provided.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the polishing composition for copper metal according to the present invention will be described in detail.
[0021]
This polishing composition for copper-based metals contains an organic solvent, an oxidizing agent, a pH adjuster, and water, and has a pH of 4.0 or less. The organic solvent is compatible with water and reacts with copper to form a sparingly soluble complex with water in which the organic solvent, the oxidizing agent, and the pH adjusting agent are compatible.
[0022]
Examples of the organic solvent include diketone organic solvents. Examples of the diketone organic solvent include acetylacetone, trifluoroacetylacetone, propionylacetone, benzoylacetone, benzoyltrifluoroacetone, and gibenzoylmethane having the structural formula shown in Chemical Formula 1 below.
[0023]
[Chemical 1]
Figure 2005079119
[0024]
The organic solvent is preferably contained in an amount of 0.3% by weight or more in the polishing composition. When the content of the organic solvent is less than 0.3% by weight, it is difficult to sufficiently generate a copper complex on the surface of Cu or Cu alloy. As a result, it becomes difficult to sufficiently increase the polishing rate of Cu or Cu alloy during polishing. A more preferable content of the organic solvent is 0.5% by weight or more.
[0025]
The oxidizing agent has an action of forming a copper hydrate on the surface when the polishing composition is brought into contact with copper or a copper alloy. As such an oxidizing agent, for example, hydrogen peroxide (H 2 O 2 ), An oxidizing agent such as sodium hypochlorite (NaClO) can be used.
[0026]
The oxidizing agent is preferably contained in the polishing composition in a weight ratio of 1 or more times with respect to the organic solvent. If the content of the oxidizer is less than 1 time by weight with respect to the organic solvent, it is difficult to sufficiently promote the formation of a copper complex on the surface of Cu or Cu alloy.
[0027]
The pH adjuster is added so that the pH of the polishing composition is 4.0 or less, and has an effect of increasing the polishing rate of Cu. Examples of the pH adjuster include lactic acid and oxalic acid, and lactic acid is particularly preferable.
[0028]
The copper-based metal polishing composition according to the present invention further contains abrasive grains. The abrasive grains are made of at least one material selected from alumina such as silica, zirconia, cerium oxide and colloidal alumina.
[0029]
The abrasive grains are preferably contained in the polishing composition in an amount of 1 to 20% by weight. If the content of the abrasive grains is less than 1% by weight, it is difficult to sufficiently achieve the effect. On the other hand, when the content of the abrasive grains exceeds 20% by weight, handling becomes difficult because the viscosity of the polishing composition is increased. A more preferable content of the abrasive grains is 2 to 10% by weight.
[0030]
A polishing apparatus shown in FIG. 1 is used to polish a Cu film or a Cu alloy film formed on a substrate, for example, using the copper-based metal polishing composition according to the present invention. That is, the turntable 1 is covered with a polishing pad 2 made of, for example, a cloth or a polyurethane foam having closed cells. A supply pipe 3 for supplying the polishing composition is disposed above the polishing pad 2. A substrate holder 5 having a support shaft 4 on its upper surface is disposed above the polishing pad 2 so as to be vertically movable and rotatable.
[0031]
In such a polishing apparatus, the substrate 5 is held by the holder 5 so that the polishing surface (for example, Cu film) faces the polishing pad 2, and the polishing liquid 7 having the above composition is supplied from the supply pipe 3. However, a desired load is applied to the polishing pad 2 by the support shaft 4 and the Cu film on the substrate is polished by rotating the hold 5 and the turntable 1 in the same direction. Is done.
[0032]
The copper-based metal polishing composition according to the present invention described above is an organic solvent that is compatible with water and reacts with copper to form a sparingly soluble complex with water, an oxidizing agent, and a pH adjuster. And water, and the pH is 4.0 or less, the Cu or the like is not dissolved at the time of immersion of the Cu or Cu alloy, and the Cu or Cu alloy can be polished at a practical speed at the time of polishing. it can. In particular, by reducing the pH of the copper-based metal polishing composition to 4.0 or less with a pH adjusting agent such as lactic acid, the polishing rate of Cu or Cu alloy is dramatically increased compared to a composition exceeding this pH value. Can be improved.
[0033]
That is, for example, as shown in FIG. 2A, a Cu film 12 having irregularities is formed on a substrate 11, and an organic solvent (for example, acetylacetone), an oxidizing agent (for example, hydrogen peroxide), and a pH adjuster prepared in advance. When the substrate 11 is immersed in a copper-based metal polishing composition containing (for example, lactic acid) and water, the oxidant in the composition reacts with copper in the presence of water to form a Cu hydrate (Cu ion). Is generated. At this time, the organic solvent in the polishing composition (for example, structural formula acetylacetone shown in Chemical Formula 1) reacts with the Cu hydrate (Cu ions) to form a Cu film as shown in FIG. A copper complex layer 13 is generated on the surface 12.
[0034]
Next, the Cu film 12 having the copper complex layer 13 formed on the surface of the substrate holder 5 shown in FIG. 2B is opposed to the polishing pad 2 using the polishing apparatus shown in FIG. 1 and the polishing composition. Hold upside down as you do. Subsequently, a predetermined load is applied to the polishing pad 2 by the support shaft 4 and the polishing composition is supplied from the supply pipe 3 to the polishing pad 2 while rotating the holder 5 and the turntable 1 in the same direction. To supply. At this time, the copper complex layer 12 formed on the surface of the Cu or Cu alloy is not dissolved in water, but is weaker than Cu, so the polishing containing abrasive grains present in the polishing pad 2 The copper complex layer 13 corresponding to the convex part of the Cu film 12 is mechanically polished by the composition as shown in FIG.
[0035]
Therefore, the polishing composition according to the present invention comprises an oxidizing agent that forms copper hydrate, an organic solvent such as acetylacetone that reacts with the copper hydrate to form a copper complex, and a pH of 4.0 or less. By containing a pH adjusting agent such as lactic acid for adjusting to Cu, Cu or Cu alloy can be polished at a very high speed.
[0036]
In addition, since the polishing composition according to the present invention does not dissolve Cu or the like during immersion of Cu or Cu alloy, there is a problem that the etching amount of Cu varies depending on the supply timing of the polishing composition in the polishing process. This can be avoided and the operation can be performed easily.
[0037]
Further, when the Cu film or Cu alloy film is polished by the polishing apparatus shown in FIG. 1, the Cu film or Cu alloy film is polished only while the polishing pad 2 is in contact (sliding contact) with a predetermined load. Then, when the polishing pad is separated from the Cu film, polishing is immediately stopped. For this reason, so-called over-etching, in which the Cu film or the Cu alloy film is further etched after the polishing process, can be prevented.
[0038]
Next, a method for manufacturing a semiconductor device according to the present invention will be described.
[0039]
In this semiconductor device manufacturing method, at least one embedding member selected from a groove corresponding to the shape of the wiring layer and an opening corresponding to the shape of the via fill is formed in the insulating film on the semiconductor substrate. Subsequently, a wiring material film made of copper or a copper alloy is formed on the insulating film including the embedding member. Subsequently, the wiring material film is polished using the above-described copper-based metal polishing composition, thereby forming at least one conductive member selected from a wiring layer and via fill on the burying member.
[0040]
As the insulating film, for example, a silicon oxide film, a boron-added glass film (BPSG film), a phosphorus-added glass film (PSG film), or the like can be used. This insulating film allows the surface to be coated with an insulating polishing stopper film made of silicon nitride, carbon, alumina, boron nitride, diamond or the like.
[0041]
The insulating film is preferably made of an insulating material having a relative dielectric constant of 3.5 or less, such as a low-k film. Examples of the low relative dielectric constant insulating material include SiOF, organic spin-on glass, polyimide, fluorine-added polyimide, polytetrafluoroethylene, fluorinated polyallyl ether, and fluorine-added parylene. By using such a low relative dielectric constant insulating film, it is possible to increase the signal propagation speed of the wiring layer made of copper or copper alloy embedded in the insulating film.
[0042]
As said Cu alloy, Cu-Si alloy, Cu-Al alloy, Cu-Si-Al alloy, Cu-Ag alloy etc. can be used, for example.
[0043]
The wiring material film made of Cu or Cu alloy is formed by sputtering deposition, vacuum deposition, electroless plating, or the like. Specifically, copper or a copper alloy is deposited by sputtering or CVD, and electroless copper plating is further performed to form a wiring material film made of copper or copper alloy.
[0044]
The organic solvent and the content thereof in the polishing composition are preferably the same as the above-described copper-based metal polishing composition and in the same range.
[0045]
The polishing composition further contains at least one polishing abrasive selected from silica, zirconia, cerium oxide and alumina.
[0046]
The polishing treatment with the polishing composition is performed using, for example, the polishing apparatus shown in FIG.
[0047]
In the polishing process using the polishing apparatus shown in FIG. 1, the load applied to the polishing pad with the substrate held by the substrate holder is appropriately selected depending on the composition of the polishing composition, for example, 50 to 1000 g / cm. 2 It is preferable to make it.
[0048]
In the manufacture of a semiconductor device according to the present invention, a conductive barrier layer is formed before forming the wiring material film on the insulating film including at least one embedding member selected from the groove and opening on the semiconductor substrate. Allow to do. By forming such a conductive barrier layer on the insulating film including the embedding member, the groove and the opening surrounded by the conductive barrier layer by forming and etching back a wiring material film such as Cu. It is possible to form at least one embedded conductive member selected from a wiring layer and via fill on at least one embedded member selected from the above. As a result, Cu that is a wiring material is prevented from diffusing into the insulating film by the conductive barrier layer, and contamination of the semiconductor substrate by Cu can be prevented.
[0049]
The conductive barrier layer is made of, for example, one layer or two or more layers selected from TiN, Ti, Nb, W, WN, TaN, TaSiN, Ta, Co, Co, Zr, ZrN, and CuTa alloy. Such a conductive barrier layer preferably has a thickness of 15 to 50 nm.
[0050]
In the method of manufacturing a semiconductor device according to the present invention described above, first, at least one embedding member selected from a groove corresponding to a wiring layer and an opening corresponding to a via fill is formed in an insulating film on a semiconductor substrate. A wiring material film made of Cu or Cu alloy is formed on the insulating film including the member. Subsequently, it contains an organic solvent that is compatible with water and reacts with copper to form a sparingly soluble complex with water, an oxidizing agent, a pH adjusting agent, and water, and the pH is 4.0 or less. The wiring material film is polished using a certain copper-based metal polishing composition and, for example, the polishing apparatus shown in FIG. 1 until the surface of the insulating film is exposed. As described above, the polishing composition does not dissolve the Cu film or Cu alloy film at all when the Cu film or Cu alloy film is immersed, and polishes the Cu film or Cu alloy film at a high speed during polishing. be able to.
[0051]
As a result, in the polishing step, the wiring material film is sequentially polished from the surface, so-called etch back is performed. For example, at least one conductive member selected from an alloy wiring layer and via fill can be formed flush with the insulating film surface. In addition, the wiring layer after the etch-back step is brought into contact with the polishing composition, but as described above, Cu or Cu alloy is not dissolved, so that the conductive member can be prevented from being dissolved (etched).
[0052]
Therefore, a semiconductor device having a conductive member such as a highly accurate buried wiring layer can be manufactured.
[0053]
In addition, although the surface of the conductive member such as the embedded wiring layer formed in the insulating film is in contact with the polishing composition and the copper complex layer described above is generated, its thickness is as extremely thin as 20 nm. When the copper complex layer is removed to expose the pure Cu surface, it is possible to avoid the conductive member such as the embedded wiring layer from being excessively thinned.
[0054]
【Example】
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0055]
(Example 1)
A Cu wafer (or Ta film) is formed on a silicon wafer in which a Cu film and a Ta film are formed using a polishing apparatus (trade name: MA200 manufactured by Musashino Electronics Co., Ltd.) and a copper-based metal polishing composition having the following composition. Holding the wafer upside down so as to face the polishing pad side, the wafer is put on the polishing pad at 400 gf / cm. 2 The Cu film and the Ta film are polished by supplying a polishing composition for copper-based metal to the polishing pad at a rate of 100 mL / min while rotating the turntable at a speed of 152 rpm. I did it.
[0056]
<Copper metal polishing composition; amount of each component is relative to water>
-Acetylacetone; the blending amount is changed (0.5 wt%, 1.0 wt%, 1.5 wt%),
Hydrogen peroxide; 5.64% by weight,
-50% concentration of lactic acid; amount to adjust pH to 4.0.
[0057]
The polishing rate of the Cu film and the Ta film with the copper-based metal polishing composition of Example 1 was measured. The result is shown in FIG. As apparent from FIG. 3, it can be seen that the polishing rate of Cu and Ta improves as the amount of acetylacetone added increases. Further, it can be seen that the polishing rate ratio of Cu / Ta is about 20 times and has a high selective polishing property.
[0058]
(Example 2)
Polishing composition for copper-based metal in which acetylacetone is kept constant at 1.0% by weight, hydrogen peroxide is changed to 7 mL, 13 mL, and 20 mL per 100 mL of water, and 50% concentration of lactic acid is added so that the pH is 4.0. The Cu film and the Ta film were polished in the same manner as in Example 1 except that the polishing rate was measured. The result is shown in FIG.
[0059]
As is apparent from FIG. 4, it can be seen that the addition of a small amount of hydrogen peroxide increases the Cu polishing rate, and if it is excessive, the Cu polishing rate is conversely suppressed. It can also be seen that the polishing rate of Ta is constant regardless of the amount of hydrogen peroxide added, and Cu / Ta exhibits high selective polishing properties because the polishing rate is low.
[0060]
(Example 3)
A copper system in which acetylacetone is kept constant at 1.0% by weight and hydrogen peroxide at 2.3% by weight, and the pH is adjusted to 3.5, 4.0, 9.0 by changing the point treatment of 50% lactic acid. The Cu film and the Ta film were polished in the same manner as in Example 1 except that the metal polishing composition was used, and the polishing rate was measured. The result is shown in FIG. The pH 9.0 copper-based metal polishing composition is free of lactic acid.
[0061]
As is apparent from FIG. 5, it can be seen that by setting the pH to 4.0 or less, the polishing rate of Cu can be dramatically improved as compared with the neutral and alkaline sides. It can also be seen that the polishing rate of Ta is constant regardless of pH, and Cu / Ta exhibits high selective polishing properties because the polishing rate is low.
[0062]
Example 4
Acetylacetone, 50% hydrogen peroxide (H 2 O 2 ) And lactic acid were mixed at a ratio shown in Table 1 below to prepare a polishing composition for copper-based metal having a pH of 3.25.
[0063]
(Comparative Example 1)
Acetylacetone and 50% strength hydrogen peroxide (H 2 O 2 ) Was mixed at a ratio shown in Table 1 below to prepare a polishing composition for copper-based metal having a pH of 4.04.
[0064]
The silicon wafer on which the Cu film was formed was immersed in the obtained polishing compositions for copper-based metals of Example 4 and Comparative Example 1 for 30 minutes, and then the copper film by XPS (trade name, manufactured by VG; ESCALAB-200). Surface analysis was performed. The result is shown in FIG. 6A is the XPS analysis characteristic line of the copper film surface after immersion in the copper-based metal polishing composition of Example 4, and B is copper after immersion in the copper-based metal polishing composition of Comparative Example 1. An XPS analysis characteristic line on the film surface, and C indicates an XPS analysis characteristic line (reference example) on the raw copper film surface. The amounts (atomic%) of Cu, O, and C obtained from the XPS analysis are also shown in Table 1 below. Note that O is mainly derived from C—O, and C is mainly CH. 2 Is derived from.
[0065]
[Table 1]
Figure 2005079119
[0066]
As apparent from FIG. 6 and Table 1, in the XPS analysis after immersing the silicon wafer on which the Cu film was formed in the polishing composition for copper-based metal of Example 4, compared with Comparative Example 1 and Reference Example From the fact that the amount of Cu is reduced and the amounts of O and C are increased, it is clear that a sufficient amount of a complex of acetylacetone and copper is formed on the surface of the copper film.
[0067]
When the Cu film was polished in the same manner as in Example 1 using the copper-based metal polishing composition of Example 4, the copper film could be polished at a high rate of 81 nm / min.
[0068]
(Example 5)
First, as shown in FIG. 7A, on a silicon substrate 21 on which diffusion layers such as source and drain (not shown) are formed on the surface as shown in FIG. 2 After the film 22 is deposited, the SiO 2 2 A plurality of grooves 23 having a depth corresponding to the wiring layer and having a depth of 500 nm were formed on the film 22 by a photoetching technique. Subsequently, as shown in FIG. 7B, the SiO including the groove 23 is formed. 2 A barrier layer 24 made of TiN having a thickness of 15 nm and a Cu film 25 having a thickness of 600 nm were formed in this order on the film 22 by sputtering deposition.
[0069]
Next, the substrate 21 shown in FIG. 7B is held upside down on a substrate holder of a polishing apparatus (trade name: MA200 manufactured by Musashino Electronics Co., Ltd.), and the substrate is held on the turntable by the holder. Name: 400 g / cm on a polishing pad made of IC1000 2 The copper-based metal polishing composition was supplied to the polishing pad at a speed of 100 ml / min while rotating the turntable and the holder in the same direction at a speed of 112 rpm and 152 rpm, respectively. The formed Cu film 25 is made of the SiO 2 Polishing was performed until the barrier layer 24 on the surface of the film 22 was exposed. Here, as the copper-based metal polishing composition, 1% by weight of acetylacetone and 50% hydrogen peroxide (H 2 O 2 ) 7mL / 100mL and 1.7wt% lactic acid and water having a composition of pH 3.25no were used. In the polishing step, the polishing composition did not etch at all when contacting the Cu film, and the polishing rate when polishing with the polishing pad was 81 nm / min. Thereafter, the barrier layer 24 exposed using the second polishing composition is polished, whereby the barrier layer 24 remains in the groove 23 as shown in FIG. In the covered groove 23, the SiO 2 A buried Cu wiring layer 26 flush with the surface of the film 22 was formed.
[0070]
In Example 5, the load applied to the polishing pad by the holder of the polishing apparatus is released, and the Cu wiring layer 26 is dissolved even if it contacts the polishing composition after the rotation of the turntable and the holder is stopped ( Etching).
[0071]
【The invention's effect】
As described above, according to the present invention, when Cu (Cu) or a copper alloy (Cu alloy) is immersed, the Cu or the like is not dissolved, and the Cu or Cu alloy is polished at a practical speed during the polishing process. It is possible to provide a copper-based metal polishing composition that can be used.
[0072]
Further, according to the present invention, at least one embedding member selected from a groove and an opening is formed in an insulating film on a semiconductor substrate, and a wiring made of copper (Cu) or a copper alloy (Cu alloy) is formed on the insulating film. It is possible to provide a method of manufacturing a semiconductor device that can etch back in a short time by polishing after forming a material film and can form a conductive member such as a highly accurate embedded wiring layer.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a polishing apparatus used in a polishing process of the present invention.
FIG. 2 is a schematic view showing a polishing apparatus used in the polishing process of the present invention.
FIG. 3 is a characteristic diagram showing the addition amount of acetylacetone and the polishing rate of Cu film and Ta film in Example 1 of the present invention.
FIG. 4 is a characteristic diagram showing the amount of hydrogen peroxide added and the polishing rate of a Cu film and a Ta film in Example 2 of the present invention.
FIG. 5 is a characteristic diagram showing a change in pH and a polishing rate of a Cu film and a Ta film in Example 3 of the present invention.
FIG. 6 is a diagram showing XPS analysis results on the surface of a copper film in Example 4, Comparative Example 1 and Reference Example of the present invention.
FIG. 7 is a cross-sectional view showing a manufacturing process of a semiconductor device in Example 5 of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Turntable, 2 ... Polishing pad, 3 ... Supply pipe, 5 ... Holder, 11, 21 ... Silicon substrate, 12, 25 ... Cu film | membrane, 13 ... Copper complex layer, 22 ... SiO 2 Membrane, 23 ... groove, 24 ... barrier layer, 26 ... Cu wiring layer.

Claims (10)

有機溶剤と酸化剤とpH調整剤と水と含有し、pHが4.0以下の研磨組成物であって、
前記有機溶剤は、水に相溶し、かつ銅と反応してこの有機溶剤、前記酸化剤およびpH調整剤が相溶された水に対して難溶性の錯体を生成することを特徴とする銅系金属用研磨組成物。
A polishing composition containing an organic solvent, an oxidizing agent, a pH adjuster, and water, and having a pH of 4.0 or less,
The organic solvent is compatible with water and reacts with copper to form a sparingly soluble complex with water in which the organic solvent, the oxidizing agent and the pH adjusting agent are compatible. -Based metal polishing composition.
前記有機溶剤は、ジケトン系有機溶剤であることを特徴とする請求項1記載の銅系金属用研磨組成物。The said organic solvent is a diketone type | system | group organic solvent, The polishing composition for copper type metals of Claim 1 characterized by the above-mentioned. 前記ジケトン系有機溶剤は、アセチルアセトンであることを特徴とする請求項2記載の銅系金属用研磨組成物。The said diketone type | system | group organic solvent is acetylacetone, The polishing composition for copper type metals of Claim 2 characterized by the above-mentioned. 前記酸化剤は、過酸化水素および過硫酸アンモニウムから選ばれる少なくとも1種であることを特徴とする請求項1記載の銅系金属用研磨組成物。The said oxidizing agent is at least 1 sort (s) chosen from hydrogen peroxide and ammonium persulfate, The polishing composition for copper-type metals of Claim 1 characterized by the above-mentioned. 前記pH調整剤は、乳酸であることを特徴とする請求項1記載の銅系金属用研磨組成物。The said pH adjuster is lactic acid, The polishing composition for copper-type metals of Claim 1 characterized by the above-mentioned. さらに研磨砥粒を含有することを特徴とする請求項1記載の銅系金属用研磨組成物。The polishing composition for copper-based metals according to claim 1, further comprising abrasive grains. 前記研磨砥粒は、シリカ、アルミナ、ジルコニア、酸化セリウム、酸化亜鉛および酸化マンガンから選ばれる少なくとも1つの材料から作られることを特徴とする請求項6記載の銅系金属用研磨組成物。The polishing composition for a copper-based metal according to claim 6, wherein the abrasive grains are made of at least one material selected from silica, alumina, zirconia, cerium oxide, zinc oxide and manganese oxide. 半導体基板上の絶縁膜に配線層の形状に相当する溝およびビアフィルの形状に相当する開口部から選ばれる少なくとも1つの埋込み用部材を形成する工程;
前記部材を含む前記絶縁膜上に銅または銅合金からなる配線材料膜を形成する工程;および
請求項1ないし10記載の銅系金属用研磨組成物を用いて前記配線材料膜を研磨し、前記埋込み用部材に配線層およびビアフィルから選ばれる少なくとも1つの導電部材を形成する工程;
を具備することを特徴とする半導体装置の製造方法。
Forming at least one embedding member selected from a groove corresponding to the shape of the wiring layer and an opening corresponding to the shape of the via fill in the insulating film on the semiconductor substrate;
Forming a wiring material film made of copper or a copper alloy on the insulating film including the member; and polishing the wiring material film using the copper-based metal polishing composition according to claim 1, Forming at least one conductive member selected from a wiring layer and via fill on the embedding member;
A method for manufacturing a semiconductor device, comprising:
前記絶縁膜は、比誘電率が3.5以下の絶縁材料から作られることを特徴とする請求項8記載の半導体装置の製造方法。9. The method of manufacturing a semiconductor device according to claim 8, wherein the insulating film is made of an insulating material having a relative dielectric constant of 3.5 or less. さらに前記配線材料膜を形成する前に前記埋込み用部材を含む前記絶縁膜上に導電性バリア層を形成することを特徴とする請求項8記載の半導体装置の製造方法。9. The method of manufacturing a semiconductor device according to claim 8, further comprising forming a conductive barrier layer on the insulating film including the burying member before forming the wiring material film.
JP2003209658A 2003-08-29 2003-08-29 Abrasive composition for cooper based metal and process for fabricating semiconductor device Pending JP2005079119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003209658A JP2005079119A (en) 2003-08-29 2003-08-29 Abrasive composition for cooper based metal and process for fabricating semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003209658A JP2005079119A (en) 2003-08-29 2003-08-29 Abrasive composition for cooper based metal and process for fabricating semiconductor device

Publications (1)

Publication Number Publication Date
JP2005079119A true JP2005079119A (en) 2005-03-24

Family

ID=34402507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003209658A Pending JP2005079119A (en) 2003-08-29 2003-08-29 Abrasive composition for cooper based metal and process for fabricating semiconductor device

Country Status (1)

Country Link
JP (1) JP2005079119A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066874A (en) * 2004-07-27 2006-03-09 Asahi Denka Kogyo Kk Polishing composition and polishing method for cmp
JP2007150263A (en) * 2005-11-01 2007-06-14 Hitachi Chem Co Ltd Copper film, polishing material for copper film compound material and polishing method
WO2007123235A1 (en) * 2006-04-24 2007-11-01 Hitachi Chemical Co., Ltd. Polishing liquid for cmp and method of polishing
JP2012002417A (en) * 2010-06-16 2012-01-05 Mitsubishi Electric Corp Heat pipe
JPWO2013137192A1 (en) * 2012-03-16 2015-08-03 株式会社フジミインコーポレーテッド Polishing composition
JPWO2014013977A1 (en) * 2012-07-17 2016-06-30 株式会社フジミインコーポレーテッド Composition for polishing alloy material and method for producing alloy material using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066874A (en) * 2004-07-27 2006-03-09 Asahi Denka Kogyo Kk Polishing composition and polishing method for cmp
JP2007150263A (en) * 2005-11-01 2007-06-14 Hitachi Chem Co Ltd Copper film, polishing material for copper film compound material and polishing method
WO2007123235A1 (en) * 2006-04-24 2007-11-01 Hitachi Chemical Co., Ltd. Polishing liquid for cmp and method of polishing
JP2012002417A (en) * 2010-06-16 2012-01-05 Mitsubishi Electric Corp Heat pipe
JPWO2013137192A1 (en) * 2012-03-16 2015-08-03 株式会社フジミインコーポレーテッド Polishing composition
JPWO2014013977A1 (en) * 2012-07-17 2016-06-30 株式会社フジミインコーポレーテッド Composition for polishing alloy material and method for producing alloy material using the same

Similar Documents

Publication Publication Date Title
EP0747939B1 (en) Copper-based metal polishing solution and method for manufacturing a semiconductor device
KR100357894B1 (en) Copper-based metal polishing composition, and method for manufacturing a semiconductor device
KR100510977B1 (en) Polishing compound for chemimechanical polishing and method for polishing substrate
JP3192968B2 (en) Polishing liquid for copper-based metal and method for manufacturing semiconductor device
US6858540B2 (en) Selective removal of tantalum-containing barrier layer during metal CMP
KR101372208B1 (en) Iodate-containing chemical-mechanical polishing compositions and methods
CN1753962A (en) Modular barrier removal polishing slurry
JP2002141314A (en) Slurry for chemical mechanical polishing and manufacturing method of semiconductor device
JP4864402B2 (en) Manufacturing method of semiconductor device
KR101273705B1 (en) Polishing solution for cmp, and method for polishing substrate using the polishing solution for cmp
TWI459456B (en) Cmp slurry/method for polishing ruthenium and other films
JP2006203188A (en) Polishing composition and polishing method
JP2002231667A (en) Polishing agent slurry for chemical-mechanical polishing of metal, and dielectric structural body
JP3780767B2 (en) Polishing liquid for metal and method for polishing substrate
JP2005079119A (en) Abrasive composition for cooper based metal and process for fabricating semiconductor device
JP2001127019A (en) Polishing fluid for metal and method for polishing substrate using the same
US20060084271A1 (en) Systems, methods and slurries for chemical mechanical polishing
JP4713767B2 (en) Cleaning liquid and method for manufacturing semiconductor device
JP2002305198A (en) Method for manufacturing electronic device
JP2002158194A (en) Slurry for chemically and mechanically polishing and method for manufacturing semiconductor device
JP2004152785A (en) Abrasive composition for copper diffusion preventive film and method for manufacturing semiconductor device
JP2001085376A (en) Method for polishing substrate
KR100850878B1 (en) Chemical Mechanical Polishing Slurry Composition For Metal Layers
JP2004022855A (en) Process for producing semiconductor device
JP2004123931A (en) Polishing solution and polishing method