JP2012002417A - Heat pipe - Google Patents

Heat pipe Download PDF

Info

Publication number
JP2012002417A
JP2012002417A JP2010137122A JP2010137122A JP2012002417A JP 2012002417 A JP2012002417 A JP 2012002417A JP 2010137122 A JP2010137122 A JP 2010137122A JP 2010137122 A JP2010137122 A JP 2010137122A JP 2012002417 A JP2012002417 A JP 2012002417A
Authority
JP
Japan
Prior art keywords
container
heat pipe
coil
working fluid
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010137122A
Other languages
Japanese (ja)
Other versions
JP5622449B2 (en
Inventor
Shigetoshi Ipposhi
茂俊 一法師
Tatsuro Hirose
達朗 廣瀬
Kazuo Kadowaki
一夫 門脇
Takumi Kijima
拓己 貴島
Takayuki Nakao
貴行 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010137122A priority Critical patent/JP5622449B2/en
Publication of JP2012002417A publication Critical patent/JP2012002417A/en
Application granted granted Critical
Publication of JP5622449B2 publication Critical patent/JP5622449B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat pipe that still shows good cooling properties even if used in a relatively low operating temperature.SOLUTION: The heat pipe 100 includes: a container 1 comprising a sealed pipe and having a first end and a second end; a coil 3 disposed in the container 1; a wick 2 held between the container 1 and the coil 3; and a working fluid retained in the container 1. The heat pipe 100 is configured such that the working fluid evaporated at the first end condenses at the second end for heat transfer from the first end to the second end. The coil 3 comprises a copper alloy whose surface is covered with a copper layer, or the coil 3 comprises a copper alloy and has a surface layer with a copper concentration higher than the central portion thereof.

Description

本発明はヒートパイプに関し、特に使用温度が比較的低温であるヒートパイプに関する。   The present invention relates to a heat pipe, and more particularly to a heat pipe having a relatively low operating temperature.

従来のヒートパイプは、銅製のパイプに水が封入された構造からなり、ヒートパイプの一端が熱源に接続され、他端が放熱器に接続される。熱源からヒートパイプに伝えられた熱は、熱輸送や熱拡散によりヒートパイプ中を伝わり、放熱器から放出される。一般に、使用温度は50〜100℃程度であり、銅製のパイプの内壁に多数の細線を内張りし、その内側をコイルを用いて押さえ、熱輸送能力を向上させた構造が用いられている(例えば、特許文献1参照)。   A conventional heat pipe has a structure in which water is enclosed in a copper pipe, and one end of the heat pipe is connected to a heat source and the other end is connected to a radiator. The heat transferred from the heat source to the heat pipe is transferred through the heat pipe by heat transport and heat diffusion, and is released from the radiator. In general, the operating temperature is about 50 to 100 ° C., and a structure in which a large number of thin wires are lined on the inner wall of a copper pipe and the inside thereof is pressed with a coil to improve the heat transport capability (for example, , See Patent Document 1).

特開平9−170888公報(5頁、図1)JP-A-9-170888 (page 5, FIG. 1)

しかしながら、近年、レーザダイオード素子等の冷却にヒートパイプが用いられ、使用温度(冷却部の温度)は、従来に比較して低い例えば40℃以下となる。このため、ヒートパイプ中での水蒸気の蒸気圧が、高温で使用する場合の10分の1以下となり、相対的にヒートパイプ中に混入していた水素等の微量の不凝縮ガス(動作温度において液化できない気体)の影響が大きくなり、冷却特性の低下等が問題となっていた。   However, in recent years, heat pipes are used for cooling laser diode elements and the like, and the use temperature (cooling part temperature) is lower than, for example, 40 ° C. or lower. For this reason, the vapor pressure of water vapor in the heat pipe is less than one-tenth of that used at high temperatures, and a relatively small amount of non-condensable gas (such as hydrogen) mixed in the heat pipe (at the operating temperature). The influence of the gas that cannot be liquefied) has become large, and deterioration of cooling characteristics has been a problem.

そこで、本発明は、比較的低い使用温度でも冷却特性の良好なヒートパイプの提供を目的とする。   Accordingly, an object of the present invention is to provide a heat pipe having good cooling characteristics even at a relatively low operating temperature.

本発明は、密閉されたパイプからなり、第1端部と第2端部とを有するコンテナと、コンテナの内部に配置されたコイルと、コンテナとコイルの間に保持されたウイックと、コンテナ内に保持された作動流体とを含み、第1端部で蒸発した作動流体が第2端部で凝縮して、第1端部から第2端部への熱移動を行うヒートパイプであって、コイルは、表面が銅の被覆層で覆われた銅合金からなることを特徴とするヒートパイプである。   The present invention comprises a sealed pipe, a container having a first end and a second end, a coil disposed inside the container, a wick held between the container and the coil, A working pipe that is held at the first end, the working fluid evaporated at the first end condenses at the second end, and performs heat transfer from the first end to the second end, The coil is a heat pipe characterized in that the surface is made of a copper alloy covered with a copper coating layer.

本発明にかかるヒートパイプでは、ヒートパイプ中での不凝縮ガスの発生に起因する放熱特性の劣化を抑制し、比較的低い使用温度でも信頼性の高いヒートパイプの提供が可能となる。   In the heat pipe according to the present invention, it is possible to suppress deterioration of heat dissipation characteristics due to generation of non-condensable gas in the heat pipe, and to provide a highly reliable heat pipe even at a relatively low operating temperature.

本発明の実施の形態にかかるヒートパイプの概略図である。It is the schematic of the heat pipe concerning embodiment of this invention. 本発明の実施の形態にかかるヒートパイプの断面図である。It is sectional drawing of the heat pipe concerning embodiment of this invention. 本発明の実施の形態にかかるコイルの断面図である。It is sectional drawing of the coil concerning embodiment of this invention. 本発明の実施の形態にかかる他のコイルの断面図である。It is sectional drawing of the other coil concerning embodiment of this invention.

図1は、全体が100で表される、本発明の実施の形態にかかるヒートパイプの概略図であり、一部に破断面を示す。また、図2は、図1をI−I方向に見た場合の断面図である。   FIG. 1 is a schematic view of a heat pipe according to an embodiment of the present invention, indicated as a whole by 100, partially showing a fracture surface. 2 is a cross-sectional view of FIG. 1 when viewed in the II direction.

ヒートパイプ100は、密閉したパイプからなるコンテナ1を含む。コンテナ1は、例えば銅、好適には無酸素銅からなる。ここでは、円筒状のコンテナ1を示したが、角柱等の形状でもよい。また、コンテナ1は屈曲した形状であっても良い。また、コンテナ1の内壁に多数の溝が設けられていても良い。   The heat pipe 100 includes a container 1 made of a sealed pipe. The container 1 is made of, for example, copper, preferably oxygen-free copper. Here, although the cylindrical container 1 was shown, shapes, such as a prism, may be sufficient. The container 1 may have a bent shape. In addition, a large number of grooves may be provided on the inner wall of the container 1.

コンテナ1の内部には、内壁に沿ってウイック2が配置される。ウイック2は、例えば銅や銅合金、好適には無酸素銅の細線や、網目状に編んだ細線からなる。   A wick 2 is arranged inside the container 1 along the inner wall. The wick 2 is made of, for example, copper or a copper alloy, preferably an oxygen-free copper fine wire, or a fine wire knitted in a mesh shape.

ウイック2の内側には、コイル3が設けられ、ウイック2は、コンテナ1の内壁とコイル3との間に挟まれて保持される。図3は、コイル3の断面図である。コイル3は、例えばバネ用りん青銅(JIS C5210)からなる本体部13と、その表面に形成され、例えば銅メッキからなる被覆部14からなる。コイル3の本体部13の材料として、銅を主成分として、亜鉛、りんを含む銅合金、銅を主成分として、すず、亜鉛、りんを含む銅合金、銅を主成分として、すず、亜鉛、りん、鉄を含む銅合金のような他の銅合金を用いることもできる。   A coil 3 is provided inside the wick 2, and the wick 2 is sandwiched and held between the inner wall of the container 1 and the coil 3. FIG. 3 is a cross-sectional view of the coil 3. The coil 3 includes a main body portion 13 made of, for example, spring phosphor bronze (JIS C5210) and a covering portion 14 formed on the surface thereof, for example, made of copper plating. As a material of the body portion 13 of the coil 3, copper is the main component, zinc, phosphorus-containing copper alloy, copper is the main component, tin, zinc, phosphorus-containing copper alloy, copper is the main component, tin, zinc, Other copper alloys such as phosphorus and iron containing copper alloys can also be used.

コイル3の中は、中空の蒸気通路4となり、蒸発した気体の作動流体が移動する。   Inside the coil 3, a hollow vapor passage 4 is formed, and the vaporized working fluid moves.

ヒートパイプ100の製造工程では、コンテナ1の内部にウイック2とコイル3を配置した後、コンテナ1の内部の気体(主に空気)を排気して真空状態にする。続いて、真空状態のコンテナ1中に例えば水からなる作動流体を入れ、端部を封止して密閉状態のパイプとする。これでヒートパイプ100が完成する。   In the manufacturing process of the heat pipe 100, after the wick 2 and the coil 3 are arranged inside the container 1, the gas (mainly air) inside the container 1 is exhausted to be in a vacuum state. Subsequently, a working fluid made of water, for example, is placed in the vacuum container 1 and the ends are sealed to form a sealed pipe. Thus, the heat pipe 100 is completed.

ヒートパイプ100は、図1中に示す第1端部を半導体素子等の発熱体に接触させ、第2端部を放熱フィンのような放熱器に接触させて使用する。第1端部で加熱された作動流体は蒸発し、蒸気通路4を通って第2端部に移動する。第2端部では作動流体が冷却されて凝縮し、液体に戻る。この蒸発と凝縮に伴う潜熱移動により、第1端部から第2端部に熱輸送が行われ、第1端部が冷却される。第2端部で液体に戻った作動流体は、ウイック2の毛管作用により、液体通路5を通って第1端部に環流される。   The heat pipe 100 is used with a first end shown in FIG. 1 in contact with a heating element such as a semiconductor element and a second end in contact with a radiator such as a radiation fin. The working fluid heated at the first end evaporates and moves through the vapor passage 4 to the second end. At the second end, the working fluid is cooled and condensed to return to the liquid. Due to the latent heat transfer accompanying the evaporation and condensation, heat is transferred from the first end to the second end, and the first end is cooled. The working fluid returned to the liquid at the second end is circulated to the first end through the liquid passage 5 by the capillary action of the wick 2.

ここで、上述のように、ヒートパイプ100は、製造過程で内部の気体(主に空気)を排出し、真空状態にしてから作動流体を封入する。このため、外気の侵入の無い構造であっても、真空引きする際に排出できずに一部の気体が残留する場合がある。また、コンテナ1の内壁等が気体を吸着、保持し、時間の経過と共に気体が流出する場合がある。更に、ヒートパイプ100を構成する材料と作動流体が化学的に反応し、気体が発生し続ける場合がある。   Here, as described above, the heat pipe 100 discharges the internal gas (mainly air) in the manufacturing process and encloses the working fluid after being in a vacuum state. For this reason, even if it is a structure without the penetration | invasion of external air, when evacuating, some gas may remain, without being discharged | emitted. Further, the inner wall or the like of the container 1 may adsorb and hold the gas, and the gas may flow out with time. Further, the material constituting the heat pipe 100 and the working fluid may react chemically, and gas may continue to be generated.

このような残留気体は不凝縮ガスとなり、ヒートパイプ100の中で凝縮することができず、凝縮部(第2端部)に停滞して放熱特性を劣化させる。通常、最初の2つの不凝縮ガスは、初期特性を低下させるが、経時変化が殆ど無いため、寿命に関しては大きな問題とならない。しかし、最後の不凝縮ガスは、化学反応にともない不凝縮ガスが発生し続けるため、時間と共に放熱特性を悪化させ、経年劣化として使用者が正しく認識していない場合、電子機器等の故障を引き起こす原因となる。   Such residual gas becomes a non-condensable gas, cannot be condensed in the heat pipe 100, and stays in the condensing part (second end part) to deteriorate the heat radiation characteristics. Usually, the first two non-condensable gases deteriorate the initial characteristics, but since there is almost no change with time, there is no big problem with respect to the lifetime. However, since the last non-condensable gas continues to be generated due to a chemical reaction, the heat dissipation characteristics deteriorate over time, and if the user does not correctly recognize it as aged deterioration, it will cause failure of electronic equipment etc. Cause.

かかる不凝縮ガスについては、最初の2つは、初期残留気体が原因であり、製造工程を改良することで低減できる。また、最後の1つは、ヒートパイプ100の材料と作動流体の組み合わせが原因であり、材料選択により低減できる。例えば作動流体として水を用いる場合は、コンテナ1やウイック2を構成する材料に無酸素銅を使用することにより低減できる。   For such non-condensable gases, the first two are due to the initial residual gas and can be reduced by improving the manufacturing process. The last one is caused by the combination of the material of the heat pipe 100 and the working fluid, and can be reduced by selecting the material. For example, when water is used as the working fluid, it can be reduced by using oxygen-free copper as a material constituting the container 1 and the wick 2.

従来はヒートパイプの使用温度は、上述のように50〜100℃程度であり、作動流体の蒸気圧が比較的高かったため、上述のような不凝縮ガスを減らす対策が有効であった。しかしながら、近年、発熱体としてレーザダイオード等が用いられる場合、冷却温度(第1端部の温度)は例えば室温から40℃程度となる。このため、作動流体の蒸気圧が低くなり相対的に不凝縮ガスの影響が大きくなり、従来では問題とならないような少量の不凝縮ガスでも問題となってきた。   Conventionally, the operating temperature of the heat pipe is about 50 to 100 ° C. as described above, and the vapor pressure of the working fluid is relatively high. Therefore, measures for reducing non-condensable gas as described above have been effective. However, in recent years, when a laser diode or the like is used as a heating element, the cooling temperature (the temperature at the first end) is, for example, about room temperature to about 40 ° C. For this reason, the vapor pressure of the working fluid is lowered, and the influence of the non-condensable gas becomes relatively large, and even a small amount of non-condensable gas which has not been a problem in the past has been a problem.

例えば、作動流体に水を用いる場合、従来のように50℃以上の高温環境下で使用すると蒸気圧が0.123bar以上となるが、電気−光変換素子(例えばレーザダイオード)の冷却のようにほぼ常温(20℃)に冷却しなければならない場合、蒸気圧は0.023bar程度となる。この結果、不凝縮ガスは、大気圧下における容積に比べて44倍になり、従来のように比較的高温で使用する場合に比べて、不凝縮ガスによる影響が大きくなる。   For example, when water is used as the working fluid, the vapor pressure becomes 0.123 bar or higher when used in a high temperature environment of 50 ° C. or higher as in the prior art, but like cooling of an electro-optical conversion element (for example, a laser diode). When it has to be cooled to approximately room temperature (20 ° C.), the vapor pressure is about 0.023 bar. As a result, the non-condensable gas is 44 times larger than the volume under the atmospheric pressure, and the influence of the non-condensable gas is greater than when used at a relatively high temperature as in the prior art.

即ち、作動流体として水を用いる場合、環境温度に対して対数的に蒸気圧が小さくなることから、低温領域での不凝縮ガスの膨張率は著しく大きくなる。このためヒートパイプを低温で使用する場合、不凝縮ガスが放熱部で停滞、膨張し、ヒートパイプの放熱部での熱交換面積を小さくし、放熱特性を悪化させるという問題が生じる。   That is, when water is used as the working fluid, the vapor pressure is logarithmically reduced with respect to the environmental temperature, so that the expansion rate of the non-condensable gas in the low temperature region is significantly increased. For this reason, when using a heat pipe at low temperature, the non-condensable gas stagnates and expands in the heat radiating section, thereby causing a problem that the heat exchange area in the heat radiating section of the heat pipe is reduced and the heat radiating characteristics are deteriorated.

このように、本発明は、従来のように比較的高温で使用する場合には問題とはならなかったが、室温から40℃程度の低温で使用する場合には問題となる不凝縮ガスを低減して、低温においても良好な放熱特性を有するヒートパイプを提供するものである。   As described above, the present invention did not cause a problem when used at a relatively high temperature as in the prior art, but reduced the non-condensable gas which becomes a problem when used at a low temperature of about 40 ° C. Thus, the present invention provides a heat pipe having good heat dissipation characteristics even at low temperatures.

本実施の形態では、図3に示すように、バネ用りん青銅(JIS C5210)からなる本体部13を銅メッキからなる被覆部14で覆ってコイル3を形成することにより、作動流体と本体部13の直接接触を防止している。この結果、バネ用りん青銅に含まれるりんや亜鉛と水が接触することによる不凝縮ガス(例えば水素)の発生を防止し、かかる不凝縮ガスの発生によるヒートパイプの放熱特性の経時変化(劣化)を防止できる。   In this embodiment, as shown in FIG. 3, the working fluid and the main body portion are formed by covering the main body portion 13 made of spring phosphor bronze (JIS C5210) with the covering portion 14 made of copper plating to form the coil 3. 13 direct contact is prevented. As a result, the generation of non-condensable gas (for example, hydrogen) due to the contact between phosphorus and zinc contained in phosphor bronze for springs and water is prevented, and the heat pipe heat dissipation characteristics change over time due to the generation of such non-condensable gas (deterioration). ) Can be prevented.

図4は、本発明の実施の形態にかかる他のコイル3の断面図である。図4のコイル3は、バネ用りん青銅からなるコイル3を予め水などの液体に直接浸漬して保持することにより、または高温の液に浸漬し化学反応を促進することにより、コイル表面に存在するりんや亜鉛を化学反応で除去し、コイル3の表面を空孔9を含む銅の含有率が高い表面層としたものである。   FIG. 4 is a cross-sectional view of another coil 3 according to the embodiment of the present invention. The coil 3 of FIG. 4 is present on the coil surface by holding the coil 3 made of phosphor bronze for spring directly immersed in a liquid such as water in advance or by immersing it in a high temperature liquid to promote a chemical reaction. Phosphorus and zinc are removed by a chemical reaction, and the surface of the coil 3 is made a surface layer having a high copper content including the holes 9.

このように、コイル3の表面からりんや亜鉛を除去し、銅の含有率の高い表面層とすることで、バネ用りん青銅に含まれるりんや亜鉛と水が接触することによる不凝縮ガスの発生を防止し、かかる不凝縮ガスの発生によるヒートパイプの放熱特性の経時変化(劣化)を防止できる。   In this way, phosphorus and zinc are removed from the surface of the coil 3 to form a surface layer having a high copper content, so that the non-condensable gas produced by the contact of phosphorus and zinc contained in the phosphor bronze for spring with water is obtained. Generation | occurrence | production can be prevented and the time-dependent change (deterioration) of the heat dissipation characteristic of a heat pipe by generation | occurrence | production of this noncondensable gas can be prevented.

なお、図3、4では、コイル3に含まれるりん7と亜鉛8の分子を、代表的な分子として模式的に表したが、更に、コイル3にすず等が含まれる場合にも、りん7や亜鉛8と同様に取り扱うことができる。また、コイル3の材料として、上述のような他の銅合金を用いても構わない。   3 and 4, the molecules of phosphorus 7 and zinc 8 contained in the coil 3 are schematically represented as typical molecules. However, when the coil 3 contains tin or the like, the phosphor 7 It can be handled in the same manner as zinc 8 and zinc. Further, as the material of the coil 3, other copper alloys as described above may be used.

なお、残留気体が原因である不凝縮ガスは、製造工程を改良することで低減できる。また、不凝縮ガスの抑制方法としては、コイル3の材料の変更も考えられるが、力学的特性と化学的特性(水素ガスの発生)の双方を満足する材料としては、バネ用りん青銅を用いるのが最も好ましい。   Non-condensable gas caused by residual gas can be reduced by improving the manufacturing process. As a method for suppressing the non-condensable gas, the material of the coil 3 can be changed. However, as a material satisfying both mechanical characteristics and chemical characteristics (hydrogen gas generation), phosphor bronze for springs is used. Is most preferred.

また、予め本体部13が被覆部14で覆われたコイル3を用いてもよく、またヒートパイプの封止前に、本体部13を被覆部14で被覆しても良い。   Alternatively, the coil 3 in which the main body 13 is previously covered with the covering portion 14 may be used, and the main body 13 may be covered with the covering portion 14 before the heat pipe is sealed.

更に、コンテナ1やウイック2が、亜鉛等を含む銅から形成される場合、これらの表面を銅メッキで被覆しても構わない。   Furthermore, when the container 1 and the wick 2 are formed from copper containing zinc or the like, these surfaces may be coated with copper plating.

1 コンテナ、2 ウイック、3 コイル、4 蒸気通路、5 液体通路、7 りん、8 亜鉛、9 空孔、13 本体部、14 被覆部、100 ヒートパイプ。   1 container, 2 wicks, 3 coils, 4 vapor passages, 5 liquid passages, 7 phosphorus, 8 zinc, 9 holes, 13 body, 14 covering, 100 heat pipe.

Claims (7)

密閉されたパイプからなり、第1端部と第2端部とを有するコンテナと、
コンテナの内部に配置されたコイルと、
コンテナとコイルの間に保持されたウイックと、
コンテナ内に保持された作動流体とを含み、
第1端部で蒸発した作動流体が第2端部で凝縮して、第1端部から第2端部への熱移動を行うヒートパイプであって、
コイルは、表面が銅の被覆層で覆われた銅合金からなることを特徴とするヒートパイプ。
A container comprising a sealed pipe and having a first end and a second end;
A coil arranged inside the container;
A wick held between the container and the coil;
A working fluid held in a container,
The working fluid evaporated at the first end is condensed at the second end, and heat transfer is performed from the first end to the second end,
The coil is made of a copper alloy whose surface is covered with a copper coating layer.
上記被覆層は、銅メッキ層であることを特徴とする請求項1に記載のヒートパイプ。   The heat pipe according to claim 1, wherein the coating layer is a copper plating layer. 密閉されたパイプからなり、第1端部と第2端部とを有するコンテナと、
コンテナの内部に配置されたコイルと、
コンテナとコイルの間に保持されたウイックと、
コンテナ内に保持された作動流体とを含み、
第1端部で蒸発した作動流体が第2端部で凝縮して、第1端部から第2端部への熱移動を行うヒートパイプであって、
コイルは銅合金からなり、含有銅濃度が中心部より高い表面層を含むことを特徴とするヒートパイプ。
A container comprising a sealed pipe and having a first end and a second end;
A coil arranged inside the container;
A wick held between the container and the coil;
A working fluid held in a container,
The working fluid evaporated at the first end is condensed at the second end, and heat transfer is performed from the first end to the second end,
The heat pipe characterized in that the coil is made of a copper alloy and includes a surface layer having a copper concentration higher than that of the central portion.
上記銅合金は、少なくとも亜鉛およびりんを含み、その濃度が中心部より表面層で低くなることを特徴とする請求項3に記載のヒートパイプ。   The heat pipe according to claim 3, wherein the copper alloy contains at least zinc and phosphorus, and the concentration thereof is lower in the surface layer than in the central portion. 上記銅合金は、バネ用りん青銅からなることを特徴とする請求項1〜4のいずれかに記載のヒートパイプ。   The heat pipe according to any one of claims 1 to 4, wherein the copper alloy is made of phosphor bronze for a spring. 上記第1端部の温度を40℃以下に冷却することを特徴とする請求項1〜5のいずれかに記載のヒートパイプ。   The heat pipe according to claim 1, wherein the temperature of the first end is cooled to 40 ° C. or less. 上記作作動流体は、水であることを特徴とする請求項1〜6のいずれかに記載のヒートパイプ。   The heat pipe according to claim 1, wherein the working fluid is water.
JP2010137122A 2010-06-16 2010-06-16 heat pipe Expired - Fee Related JP5622449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010137122A JP5622449B2 (en) 2010-06-16 2010-06-16 heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010137122A JP5622449B2 (en) 2010-06-16 2010-06-16 heat pipe

Publications (2)

Publication Number Publication Date
JP2012002417A true JP2012002417A (en) 2012-01-05
JP5622449B2 JP5622449B2 (en) 2014-11-12

Family

ID=45534613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010137122A Expired - Fee Related JP5622449B2 (en) 2010-06-16 2010-06-16 heat pipe

Country Status (1)

Country Link
JP (1) JP5622449B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018506009A (en) * 2015-12-16 2018-03-01 広州共鋳科技股▲フン▼有限公司 Planar vapor chamber, manufacturing method thereof, and vehicle headlight
JP2018506163A (en) * 2015-12-16 2018-03-01 広州共鋳科技股▲フン▼有限公司 Three-dimensional solid vapor chamber, manufacturing method thereof, and vehicle headlight

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021875U (en) * 1983-07-19 1985-02-15 三菱重工業株式会社 heat pipe
JPS61240094A (en) * 1985-04-16 1986-10-25 Matsushita Refrig Co Heat pipe
JPS6232700A (en) * 1985-08-05 1987-02-12 東北電力株式会社 Electronic equipment box body
JPH09170888A (en) * 1995-12-19 1997-06-30 Fujikura Ltd Heat pipe
JP2001073047A (en) * 1999-09-06 2001-03-21 Hitachi Metals Ltd Low thermal expansion copper alloy, semiconductor device using the same and production of low thermal expansion copper alloy
JP2005079119A (en) * 2003-08-29 2005-03-24 Toshiba Corp Abrasive composition for cooper based metal and process for fabricating semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021875U (en) * 1983-07-19 1985-02-15 三菱重工業株式会社 heat pipe
JPS61240094A (en) * 1985-04-16 1986-10-25 Matsushita Refrig Co Heat pipe
JPS6232700A (en) * 1985-08-05 1987-02-12 東北電力株式会社 Electronic equipment box body
JPH09170888A (en) * 1995-12-19 1997-06-30 Fujikura Ltd Heat pipe
JP2001073047A (en) * 1999-09-06 2001-03-21 Hitachi Metals Ltd Low thermal expansion copper alloy, semiconductor device using the same and production of low thermal expansion copper alloy
JP2005079119A (en) * 2003-08-29 2005-03-24 Toshiba Corp Abrasive composition for cooper based metal and process for fabricating semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018506009A (en) * 2015-12-16 2018-03-01 広州共鋳科技股▲フン▼有限公司 Planar vapor chamber, manufacturing method thereof, and vehicle headlight
JP2018506163A (en) * 2015-12-16 2018-03-01 広州共鋳科技股▲フン▼有限公司 Three-dimensional solid vapor chamber, manufacturing method thereof, and vehicle headlight

Also Published As

Publication number Publication date
JP5622449B2 (en) 2014-11-12

Similar Documents

Publication Publication Date Title
US20110303392A1 (en) Flat heat pipe
JP5750188B1 (en) heat pipe
JP2010054121A (en) Variable conductance heat pipe
TWI271501B (en) Heat pipe and method of manufacturing it
WO2005031238A1 (en) Flat plate heat transfer device
JP2020076554A (en) heat pipe
US20060274502A1 (en) Electronic package whereby an electronic assembly is packaged within an enclosure that is designed to act as a heat pipe
JP5622449B2 (en) heat pipe
JP2014115052A (en) Flat type heat pipe
JP2008267743A (en) Cooling device and its manufacturing method
JP2009024996A (en) Method of manufacturing heat pipe
JP6928860B1 (en) Vapor chamber
JP7444704B2 (en) Heat transfer member and cooling device having heat transfer member
KR102041014B1 (en) Cooling circuit board
CN105890412A (en) Plate type pulsating heat pipe and manufacturing method thereof
JP2004053186A (en) Flat heat pipe
JP4548806B1 (en) Light emitting device and heat dissipation method thereof
JP2017083130A (en) Evaporator and cooling device
JP2019039604A (en) heat pipe
WO2023106384A1 (en) Vapor chamber metal plate, vapor chamber metal strip, vapor chamber, and electronic device
US11800684B2 (en) Heat pipe with multiple stages of cooling
JPWO2013102974A1 (en) Cooling system
JP7444703B2 (en) Heat transfer member and cooling device having heat transfer member
TWI642891B (en) Heat pipe and radiator
JP7166892B2 (en) heat pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140922

R150 Certificate of patent or registration of utility model

Ref document number: 5622449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees