JP4406554B2 - Polishing composition - Google Patents

Polishing composition Download PDF

Info

Publication number
JP4406554B2
JP4406554B2 JP2003396171A JP2003396171A JP4406554B2 JP 4406554 B2 JP4406554 B2 JP 4406554B2 JP 2003396171 A JP2003396171 A JP 2003396171A JP 2003396171 A JP2003396171 A JP 2003396171A JP 4406554 B2 JP4406554 B2 JP 4406554B2
Authority
JP
Japan
Prior art keywords
polishing
component
copper
mass
polishing composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003396171A
Other languages
Japanese (ja)
Other versions
JP2005129880A (en
Inventor
剛 松田
達彦 平野
俊輝 呉
篤紀 河村
謙児 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujimi Inc
Original Assignee
Fujimi Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujimi Inc filed Critical Fujimi Inc
Priority to JP2003396171A priority Critical patent/JP4406554B2/en
Priority to US10/952,672 priority patent/US7485162B2/en
Priority to TW093129391A priority patent/TWI347969B/en
Priority to CN2007101994230A priority patent/CN101215447B/en
Priority to CN200710199425XA priority patent/CN101186784B/en
Priority to EP04023363A priority patent/EP1520892B1/en
Priority to EP11186467A priority patent/EP2418260B1/en
Priority to CN2007101941623A priority patent/CN101177592B/en
Priority to EP11186466A priority patent/EP2418259B1/en
Priority to AT04023363T priority patent/ATE538188T1/en
Priority to KR1020040077822A priority patent/KR101110707B1/en
Priority to SG200406144A priority patent/SG110211A1/en
Priority to CNB2004100834419A priority patent/CN100393833C/en
Publication of JP2005129880A publication Critical patent/JP2005129880A/en
Application granted granted Critical
Publication of JP4406554B2 publication Critical patent/JP4406554B2/en
Priority to KR1020110057408A priority patent/KR101216514B1/en
Priority to KR1020110057412A priority patent/KR101074875B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F3/00Brightening metals by chemical means
    • C23F3/04Heavy metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

本発明は、半導体装置の配線構造を形成するための研磨に用いられる研磨用組成物に関するものである。   The present invention relates to a polishing composition used for polishing for forming a wiring structure of a semiconductor device.

近年、コンピュータに使用されるULSI等の高集積化及び高速化に伴い、半導体装置のデザインルールは微細化が進んでいる。よって、半導体装置の配線構造の微細化による配線抵抗の増大に対処するために、銅を含有する金属材料を配線材料として使用することが検討されている。   In recent years, along with the high integration and high speed of ULSI used in computers, the design rules of semiconductor devices have been miniaturized. Therefore, in order to cope with an increase in wiring resistance due to miniaturization of the wiring structure of a semiconductor device, it has been studied to use a metal material containing copper as a wiring material.

銅を含有する金属材料を配線材料として使用する場合、異方性エッチングによる配線構造の形成は金属材料の性質上難しい。このため、配線構造はCMP(Chemical Mechanical Polishing)法を用いた方法等によって形成される。具体的には、タンタルや窒化タンタル等のタンタル含有化合物により形成されているバリア膜を、表面に配線溝が凹設された絶縁膜上に成膜する。次いで、銅を含有する金属材料により形成されている導体膜を、少なくとも配線溝内が完全に埋まるようにバリア膜上に成膜する。続いて、第1の研磨工程で導体膜の一部を研磨する。そして、第2の研磨工程で、導体膜を配線溝以外の箇所のバリア膜が露出するまで研磨する。次いで、第3の研磨工程でバリア膜を配線溝以外の箇所の絶縁膜が露出するまで研磨することにより、配線溝内に配線部を形成する。   When a metal material containing copper is used as a wiring material, it is difficult to form a wiring structure by anisotropic etching because of the nature of the metal material. For this reason, the wiring structure is formed by a method using a CMP (Chemical Mechanical Polishing) method or the like. Specifically, a barrier film made of a tantalum-containing compound such as tantalum or tantalum nitride is formed on an insulating film having a wiring groove formed on the surface thereof. Next, a conductor film formed of a metal material containing copper is formed on the barrier film so that at least the inside of the wiring groove is completely filled. Subsequently, a part of the conductor film is polished in the first polishing step. Then, in the second polishing step, the conductor film is polished until the barrier film in a portion other than the wiring groove is exposed. Next, in the third polishing step, the barrier film is polished until the insulating film in a portion other than the wiring groove is exposed, thereby forming a wiring portion in the wiring groove.

従来、研磨用組成物は、二酸化ケイ素等の研磨材、α−アラニン、過酸化水素及び水を含有している(例えば特許文献1参照。)。また、アルミナ等の研磨材、過酢酸等の酸化剤、クエン酸等の錯生成剤及びイミダゾール等の膜生成剤を含有しているものもある(例えば特許文献2参照。)。これら研磨用組成物は、研磨材により被研磨面を機械的に研磨するとともに、α−アラニンや錯生成剤等により銅を含有する金属材料に対する研磨を促進する。
特開2000−160141号公報 特開平11−21546号公報
Conventionally, the polishing composition contains an abrasive such as silicon dioxide, α-alanine, hydrogen peroxide, and water (see, for example, Patent Document 1). In addition, some contain an abrasive such as alumina, an oxidizing agent such as peracetic acid, a complexing agent such as citric acid, and a film forming agent such as imidazole (see, for example, Patent Document 2). These polishing compositions mechanically polish the surface to be polished with an abrasive and promote polishing of a metal material containing copper with α-alanine, a complexing agent or the like.
JP 2000-160141 A Japanese Patent Laid-Open No. 11-21546

ところが、これら研磨用組成物は、第2の研磨工程で用いられたときには、銅を含有する金属材料に対する研磨速度が高いために導体膜を過剰に研磨する。このため、研磨後の被研磨面には、配線溝に対応する箇所の導体膜の表面がバリア膜の表面に比べて内方へ後退する現象、即ちディッシングが発生するという問題があった。   However, when these polishing compositions are used in the second polishing step, the conductive film is excessively polished because the polishing rate for the metal material containing copper is high. Therefore, the polished surface after polishing has a problem that the surface of the conductor film corresponding to the wiring groove retreats inward compared to the surface of the barrier film, that is, dishing occurs.

本発明は、このような従来技術に存在する問題点に着目してなされたものである。その目的とするところは、ディッシングの発生を抑制することができるとともに、銅を含有する金属材料に対する研磨速度を高く維持することができる研磨用組成物を提供することにある。   The present invention has been made paying attention to such problems existing in the prior art. An object of the present invention is to provide a polishing composition capable of suppressing the occurrence of dishing and maintaining a high polishing rate for a metal material containing copper.

上記の目的を達成するために、請求項1に記載の発明の研磨用組成物は、半導体基板の研磨に用いられ、下記(a)〜(f)の各成分を含有するものである。
(a):α−アミノ酸を0.01〜2質量%
(b):下記一般式(2)〜(5)のいずれか一つにより示されるベンゾトリアゾール誘導体であって、ベンゾトリアゾール誘導体が一般式(2)で示されるときは、0.0005〜0.01質量%、一般式(3)で示されるときは、0.00005〜0.005質量%、一般式(4)又は一般式(5)で示されるときは、0.001〜0.1質量%に設定される

Figure 0004406554
Figure 0004406554
Figure 0004406554
Figure 0004406554
(式中、Yはアルキレン基を示す。) In order to achieve the above object, the polishing composition of the invention described in claim 1 is used for polishing a semiconductor substrate and contains the following components (a) to (f).
(A): 0.01-2 mass% of α-amino acid
(B): A benzotriazole derivative represented by any one of the following general formulas (2) to (5), and when the benzotriazole derivative is represented by the general formula (2), 0.0005 to 0.00. 01 mass%, when expressed by general formula (3), 0.00005 to 0.005 mass%, when expressed by general formula (4) or general formula (5), 0.001 to 0.1 mass Set to%
Figure 0004406554
Figure 0004406554
Figure 0004406554
Figure 0004406554
(In the formula, Y represents an alkylene group.)

c):酸化ケイ素
(d):界面活性剤
(e):酸化剤
(f):
( C): Silicon oxide (d): Surfactant (e): Oxidizing agent (f): Water

求項に記載の発明の研磨用組成物は、請求項1に記載の発明において、成分(a)がアラニンである。 The polishing composition of the invention according to Motomeko 2 is the invention according to claim 1, component (a) it is alanine.

本発明の研磨用組成物によれば、ディッシングの発生を抑制することができるとともに、銅を含有する金属材料に対する研磨速度を高く維持することができる。   According to the polishing composition of the present invention, the occurrence of dishing can be suppressed, and the polishing rate for a metal material containing copper can be kept high.

以下、本発明を具体化した実施形態を図面に基づいて詳細に説明する。
図1(a)に示すように、半導体装置を構成する半導体基板11上の絶縁膜12表面には、回路設計に基づく所定のパターンの配線溝13が公知のリソグラフィ技術やパターンエッチング技術等により形成されている。絶縁膜12としてはTEOS(テトラエトキシシラン)を用いたCVD(Chemical Vapor Deposition)法等の方法によって形成されるSiO2膜の他、SiOF膜、SiOC膜等が挙げられる。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments embodying the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1A, a wiring groove 13 having a predetermined pattern based on circuit design is formed on the surface of an insulating film 12 on a semiconductor substrate 11 constituting a semiconductor device by a known lithography technique or pattern etching technique. Has been. Examples of the insulating film 12 include a SiOF film, a SiOC film, and the like in addition to a SiO 2 film formed by a method such as a CVD (Chemical Vapor Deposition) method using TEOS (tetraethoxysilane).

絶縁膜12上には、所定の厚みのバリア膜14がスパッタリング法等により成膜されている。このバリア膜14は、タンタルや窒化タンタル等のタンタル含有化合物により形成されている。バリア膜14表面の配線溝13に対応する箇所は凹状に形成されている。バリア膜14上には、少なくとも配線溝13内が完全に埋まるように導体膜15が成膜されている。この導体膜15は、銅、銅−アルミニウム合金、銅−チタン合金等の銅を含有する金属材料(以下、銅含有金属という。)により形成されている。導体膜15表面の配線溝13に対応する箇所には、一般に初期段差と呼ばれる配線溝13由来の初期凹溝16が形成されている。   A barrier film 14 having a predetermined thickness is formed on the insulating film 12 by sputtering or the like. The barrier film 14 is formed of a tantalum-containing compound such as tantalum or tantalum nitride. A portion corresponding to the wiring groove 13 on the surface of the barrier film 14 is formed in a concave shape. A conductor film 15 is formed on the barrier film 14 so that at least the inside of the wiring trench 13 is completely filled. The conductor film 15 is formed of a metal material containing copper (hereinafter referred to as a copper-containing metal) such as copper, a copper-aluminum alloy, or a copper-titanium alloy. In a portion corresponding to the wiring groove 13 on the surface of the conductor film 15, an initial concave groove 16 derived from the wiring groove 13 generally called an initial step is formed.

半導体装置の配線構造は、前記半導体基板11がCMP法によって研磨されることにより形成されている。具体的には、図1(b)に示すように、第1の研磨工程で導体膜15が研磨される。この第1の研磨工程による導体膜15の研磨は、バリア膜14が露出する前に終了される。第1の研磨工程後、図1(c)に示すように、第2の研磨工程で配線溝13以外の箇所のバリア膜14が露出するまで導体膜15が研磨される。続いて、図1(d)に示すように、第3の研磨工程で絶縁膜12が露出するまでバリア膜14が研磨されることにより、配線溝13内に配線部17が形成される。本実施形態では、前記第2の研磨工程に用いられる研磨用組成物を示す。   The wiring structure of the semiconductor device is formed by polishing the semiconductor substrate 11 by a CMP method. Specifically, as shown in FIG. 1B, the conductor film 15 is polished in the first polishing step. The polishing of the conductor film 15 by the first polishing process is finished before the barrier film 14 is exposed. After the first polishing process, as shown in FIG. 1C, the conductor film 15 is polished in the second polishing process until the barrier film 14 at portions other than the wiring grooves 13 is exposed. Subsequently, as shown in FIG. 1D, the barrier film 14 is polished until the insulating film 12 is exposed in the third polishing step, whereby the wiring portion 17 is formed in the wiring groove 13. In the present embodiment, a polishing composition used in the second polishing step is shown.

本実施形態の研磨用組成物には、(a)α−アミノ酸、(b)ベンゾトリアゾール誘導体、(c)酸化ケイ素、(d)界面活性剤、(e)酸化剤及び(f)水の各成分が含有されている。   The polishing composition of the present embodiment includes (a) an α-amino acid, (b) a benzotriazole derivative, (c) silicon oxide, (d) a surfactant, (e) an oxidizing agent, and (f) water. Contains ingredients.

成分(a)のα−アミノ酸はディッシング量低減作用を有し、ディッシング量を低減してディッシングの発生を抑制する。このディッシングが発生したときには、配線部17の断面積が小さくなるために配線抵抗が増大するとともに、半導体基板11表面の平坦性が低下するために配線構造の多層化が困難になるといった不具合が生じる。図2(a)に示すように、ディッシング量とは、バリア膜14の配線溝13以外の箇所の表面と導体膜15表面との間の深さ方向の距離(高さの差)dのことである。   The α-amino acid of the component (a) has a dishing amount reducing action and reduces the dishing amount to suppress the occurrence of dishing. When this dishing occurs, the cross-sectional area of the wiring portion 17 decreases, so that the wiring resistance increases, and the flatness of the surface of the semiconductor substrate 11 decreases, so that it is difficult to make the wiring structure multi-layered. . As shown in FIG. 2A, the dishing amount is a depth direction distance (height difference) d between the surface of the barrier film 14 other than the wiring groove 13 and the surface of the conductor film 15. It is.

さらに成分(a)は、銅含有金属に対する研磨速度を銅含有金属の研磨除去に適した範囲に高める研磨促進作用を有している。これは、成分(a)が研磨中に銅とキレート結合することにより発揮される。α−アミノ酸としてはアラニン、グリシン、バリン等が挙げられる。これらは単独で含有されてもよいし、二種以上が組み合わされて含有されてもよい。これらの中でも、アラニンが、ディッシング量低減作用が強いとともに成分(f)に対する溶解性が高いために好ましい。   Furthermore, the component (a) has a polishing promoting action for increasing the polishing rate for the copper-containing metal to a range suitable for polishing and removing the copper-containing metal. This is exhibited by component (a) chelating with copper during polishing. Examples of the α-amino acid include alanine, glycine, and valine. These may be contained alone or in combination of two or more. Among these, alanine is preferable because it has a strong dishing amount reducing effect and high solubility in the component (f).

研磨用組成物中の成分(a)の含有量は0.01〜2質量%が好ましく、0.4〜1.5質量%がより好ましい。成分(a)の含有量が0.01質量%未満では、ディッシング量低減作用は弱く、ディッシングの発生を抑制するのが困難である。一方、2質量%を超えると、銅含有金属に対する研磨が成分(a)により抑制され、銅含有金属に対する研磨速度が低下する。さらに、研磨後の被研磨面上には、銅含有金属の研磨除去が不十分となるために銅含有金属が残留する。よって、被研磨面の平坦性を示すクリアー性が悪化するおそれが高まる。   The content of the component (a) in the polishing composition is preferably 0.01 to 2% by mass, and more preferably 0.4 to 1.5% by mass. When the content of the component (a) is less than 0.01% by mass, the effect of reducing the dishing amount is weak and it is difficult to suppress the occurrence of dishing. On the other hand, when it exceeds 2 mass%, the grinding | polishing with respect to a copper containing metal will be suppressed by the component (a), and the grinding | polishing rate with respect to a copper containing metal will fall. Furthermore, the copper-containing metal remains on the polished surface after polishing because the removal of the copper-containing metal by polishing becomes insufficient. Therefore, there is an increased possibility that the clearness indicating the flatness of the surface to be polished will deteriorate.

成分(b)のベンゾトリアゾール誘導体は下記一般式(1)により示され、銅含有金属を成分(e)による腐食から保護することにより導体膜15表面の腐食を防止する。さらに、成分(b)は、導体膜15表面の保護作用によって導体膜15の過剰の研磨を抑制し、ディッシングの発生を抑制する。   The benzotriazole derivative of component (b) is represented by the following general formula (1), and prevents corrosion of the surface of the conductor film 15 by protecting the copper-containing metal from corrosion by the component (e). Furthermore, the component (b) suppresses excessive polishing of the conductor film 15 by the protective action on the surface of the conductor film 15 and suppresses the occurrence of dishing.

Figure 0004406554
(式中、Rはカルボキシル基を含有するアルキル基、ヒドロキシル基と3級アミノ基とを含有するアルキル基、ヒドロキシル基を含有するアルキル基又はアルキル基を示す。)
上記一般式(1)で示されるベンゾトリアゾール誘導体において、Rがカルボキシル基を含有するアルキル基を示すものとしては下記一般式(2)で示されるものが挙げられ、具体例としては下記式(6)で示される1−(1,2−ジカルボキシエチル)ベンゾトリアゾールが挙げられる。
Figure 0004406554
(In the formula, R represents an alkyl group containing a carboxyl group, an alkyl group containing a hydroxyl group and a tertiary amino group, an alkyl group containing a hydroxyl group, or an alkyl group.)
In the benzotriazole derivative represented by the above general formula (1), examples in which R represents an alkyl group containing a carboxyl group include those represented by the following general formula (2). Specific examples thereof include the following formula (6) 1- (1,2-dicarboxyethyl) benzotriazole represented by formula (1).

Figure 0004406554
Figure 0004406554

Figure 0004406554
また、Rがヒドロキシル基と3級アミノ基とを含有するアルキル基を示すものとしては下記一般式(3)で示されるものが挙げられ、具体例としては下記式(7)で示される1−[N,N−ビス(ヒドロキシエチル)アミノメチル]ベンゾトリアゾールが挙げられる。
Figure 0004406554
Moreover, as what shows R the alkyl group containing a hydroxyl group and a tertiary amino group, what is shown by following General formula (3) is mentioned, As a specific example, 1-type shown by following formula (7) is mentioned. [N, N-bis (hydroxyethyl) aminomethyl] benzotriazole.

Figure 0004406554
Figure 0004406554

Figure 0004406554
Rがヒドロキシル基を含有するアルキル基を示すものとしては下記一般式(4)又は下記一般式(5)で示されるものが挙げられる。これら具体例としては、下記式(8)で示される1−(2,3−ジヒドロキシプロピル)ベンゾトリアゾール又は下記式(9)で示される1−(ヒドロキシメチル)ベンゾトリアゾールが挙げられる。
Figure 0004406554
As what shows R the alkyl group containing a hydroxyl group, what is shown by following General formula (4) or following General formula (5) is mentioned. Specific examples thereof include 1- (2,3-dihydroxypropyl) benzotriazole represented by the following formula (8) or 1- (hydroxymethyl) benzotriazole represented by the following formula (9).

Figure 0004406554
Figure 0004406554

Figure 0004406554
Figure 0004406554

Figure 0004406554
Figure 0004406554

Figure 0004406554
前記一般式(2)〜(5)において、Yはアルキレン基を示す。前記一般式(2)〜(5)で示されるベンゾトリアゾール誘導体は単独で含有されてもよいし、二種以上が組み合わされて含有されてもよい。成分(b)は、前記一般式(2)〜(5)で示されるものが、導体膜15表面の保護作用がより強いために好ましい。
Figure 0004406554
In the general formulas (2) to (5), Y represents an alkylene group. The benzotriazole derivatives represented by the general formulas (2) to (5) may be contained alone or in combination of two or more. The component (b) is preferably represented by the general formulas (2) to (5) because the protective action of the surface of the conductor film 15 is stronger.

研磨用組成物中の成分(b)の含有量は0.1質量%以下が好ましい。さらに、成分(b)が前記一般式(2)で示されるときには0.0005〜0.01質量%がより好ましく、0.002〜0.008質量%が最も好ましい。一方、成分(b)が前記一般式(3)で示されるときには0.00005〜0.005質量%がより好ましく、0.0001〜0.001質量%が最も好ましい。成分(b)が前記一般式(4)又は一般式(5)で示されるときには0.001〜0.1質量%がより好ましく、0.003〜0.005質量%が最も好ましい。成分(b)の含有量が前記範囲未満では、導体膜表面の保護効果及びディッシング量低減効果は低く、研磨後の導体膜表面に面荒れが発生するとともにディッシングが発生するおそれが高まる。一方、成分(b)の含有量が前記範囲を超えると、銅含有金属に対する研磨が抑制され、銅含有金属に対する研磨速度が低下するとともに被研磨面のクリアー性が悪化するおそれが高まる。   The content of the component (b) in the polishing composition is preferably 0.1% by mass or less. Furthermore, 0.0005-0.01 mass% is more preferable when a component (b) is shown by the said General formula (2), and 0.002-0.008 mass% is the most preferable. On the other hand, when the component (b) is represented by the general formula (3), 0.00005 to 0.005 mass% is more preferable, and 0.0001 to 0.001 mass% is most preferable. When the component (b) is represented by the general formula (4) or the general formula (5), 0.001 to 0.1% by mass is more preferable, and 0.003 to 0.005% by mass is most preferable. When the content of the component (b) is less than the above range, the effect of protecting the conductor film surface and the effect of reducing the dishing amount are low, and the surface of the conductor film after polishing is roughened and the risk of dishing is increased. On the other hand, when the content of the component (b) exceeds the above range, polishing of the copper-containing metal is suppressed, and the polishing rate for the copper-containing metal is lowered and the clearness of the surface to be polished is likely to be deteriorated.

成分(c)の酸化ケイ素は、被研磨面に対する機械的研磨作用を有する。酸化ケイ素としては、コロイダルシリカ(Colloidal SiO2)、ヒュームドシリカ(Fumed SiO2)、沈殿法シリカ(Precipitated SiO2)等の製造方法や性状の異なる種々のものが挙げられる。これらは単独で含有されてもよいし二種以上が組み合わされて含有されてもよい。これらの中でも、銅含有金属に対する研磨速度が高いために、コロイダルシリカ又はヒュームドシリカが好ましく、コロイダルシリカがより好ましい。 The component (c) silicon oxide has a mechanical polishing action on the surface to be polished. Examples of the silicon oxide include colloidal silica (Colloidal SiO 2 ), fumed silica (Fumed SiO 2 ), precipitated silica (Precipitated SiO 2 ), and other production methods and various types having different properties. These may be contained alone or in combination of two or more. Among these, colloidal silica or fumed silica is preferable, and colloidal silica is more preferable because the polishing rate for the copper-containing metal is high.

成分(c)の粒子径は、レーザー回折散乱法により求められる平均粒子径(DN4)で0.01〜0.5μmが好ましく、0.03〜0.3μmがより好ましい。DN4が0.01μm未満では、成分(c)の機械的研磨作用は弱く、銅含有金属に対する研磨速度が低下するとともに被研磨面のクリアー性が悪化するおそれが高まる。一方、0.5μmを超えると、銅含有金属に対する研磨速度は過剰に高くなり、ディッシング量が増加する。さらに導体膜15だけでなくバリア膜14や絶縁膜12も研磨され、エロージョン量が増加する。加えて、成分(c)の沈降性が高くなるために、研磨用組成物は成分(c)の分散状態を維持するのが困難になり安定性が低下するおそれが高まる。 The particle diameter of the component (c) is preferably 0.01 to 0.5 μm, more preferably 0.03 to 0.3 μm in terms of the average particle diameter (D N4 ) determined by the laser diffraction scattering method. When DN 4 is less than 0.01 μm, the mechanical polishing action of the component (c) is weak, and the polishing rate for the copper-containing metal is lowered and the clearness of the polished surface is likely to be deteriorated. On the other hand, when it exceeds 0.5 μm, the polishing rate for the copper-containing metal becomes excessively high, and the dishing amount increases. Furthermore, not only the conductor film 15 but also the barrier film 14 and the insulating film 12 are polished, and the amount of erosion increases. In addition, since the sedimentation property of the component (c) is increased, it is difficult for the polishing composition to maintain the dispersed state of the component (c), and the possibility that the stability is lowered is increased.

ここで、エロージョンとは、図2(b)に示すように、配線溝13が密に形成されている領域内のバリア膜14及び絶縁膜12が研磨されることによって、その領域の表面が他の領域のバリア膜14表面に比べて内方へ後退することをいう。このエロージョンが発生すると、ディッシングと同様に配線抵抗が増大するとともに配線構造の多層化が困難になるといった不具合が生じる。エロージョン量とは、配線溝13が密に形成されている領域の表面と、配線溝13が疎に形成されている領域のバリア膜14の表面との間の深さ方向の距離(高さの差)eのことである。エロージョンは、このエロージョン量の増加に起因して発生する。   Here, as shown in FIG. 2B, the erosion is caused by polishing the barrier film 14 and the insulating film 12 in the region where the wiring trenches 13 are densely formed, so that the surface of the region is different. This means that the area of the barrier film 14 recedes inward compared with the surface of the barrier film 14. When this erosion occurs, the wiring resistance increases as in the case of dishing, and it becomes difficult to make the wiring structure multi-layered. The amount of erosion is the distance (height in the depth direction) between the surface of the region where the wiring grooves 13 are densely formed and the surface of the barrier film 14 in the region where the wiring grooves 13 are sparsely formed. Difference) e. The erosion occurs due to the increase in the erosion amount.

研磨用組成物中の成分(c)の含有量は0.01〜10質量%が好ましく、0.1〜3質量%がより好ましい。成分(c)の含有量が0.01質量%未満では、被研磨面に対する十分な研磨速度が得られないとともに被研磨面のクリアー性が悪化するおそれが高まる。一方、10質量%を超えると、銅含有金属等に対する研磨速度が過剰に高くなり、ディッシング及びエロージョンが発生するおそれが高まる。   0.01-10 mass% is preferable and, as for content of the component (c) in polishing composition, 0.1-3 mass% is more preferable. When the content of component (c) is less than 0.01% by mass, a sufficient polishing rate for the surface to be polished cannot be obtained, and the clearness of the surface to be polished is likely to deteriorate. On the other hand, if it exceeds 10% by mass, the polishing rate for a copper-containing metal or the like becomes excessively high, and the risk of causing dishing and erosion increases.

成分(d)の界面活性剤はディッシング量低減作用を有し、ディッシングの発生を抑制する。界面活性剤としては、下記式(10)で示されるヤシ油脂肪酸サルコシントリエタノールアミン、下記式(11)で示されるヤシ油脂肪酸メチルタウリンナトリウム、下記式(12)で示されるポリオキシエチレンヤシ油脂肪酸モノエタノールアミド硫酸ナトリウム、下記式(13)で示されるポリオキシエチレンアルキルフェニルエーテルリン酸、下記式(14)で示されるドデシルベンゼンスルホン酸トリエタノールアミン、下記式(15)で示されるポリオキシエチレンアルキル(12〜14)スルホコハク酸二ナトリウム、下記式(16)で示されるスルホコハク酸塩(ジオクチル系)、下記式(17)で示されるポリオキシエチレンラウリルエーテル硫酸トリエタノールアミン、下記式(18)で示されるジイソブチルジメチルブチンジオールポリオキシエチレングリコールエーテル等が挙げられる。   The surfactant of component (d) has a dishing amount reducing action and suppresses the occurrence of dishing. As the surfactant, coconut oil fatty acid sarcosine triethanolamine represented by the following formula (10), coconut oil fatty acid methyl taurine sodium represented by the following formula (11), polyoxyethylene coconut oil represented by the following formula (12) Fatty acid monoethanolamide sodium sulfate, polyoxyethylene alkylphenyl ether phosphoric acid represented by the following formula (13), dodecylbenzenesulfonic acid triethanolamine represented by the following formula (14), polyoxy represented by the following formula (15) Ethylene alkyl (12-14) disodium sulfosuccinate, sulfosuccinate (dioctyl) represented by the following formula (16), polyoxyethylene lauryl ether sulfate triethanolamine represented by the following formula (17), ) Diisobutyldimethylbutane Emissions diol polyoxyethylene glycol ether.

Figure 0004406554
Figure 0004406554

Figure 0004406554
Figure 0004406554

Figure 0004406554
Figure 0004406554

Figure 0004406554
Figure 0004406554

Figure 0004406554
Figure 0004406554

Figure 0004406554
Figure 0004406554

Figure 0004406554
Figure 0004406554

Figure 0004406554
Figure 0004406554

Figure 0004406554
研磨用組成物中の成分(d)の含有量は0.025〜0.2質量%が好ましく、0.03〜0.1質量%がより好ましい。成分(d)の含有量が0.025質量%未満では、ディッシング量低減効果が低い。一方、0.2質量%を超えると、銅含有金属に対する研磨が成分(d)により抑制されるおそれが高い。
Figure 0004406554
The content of the component (d) in the polishing composition is preferably 0.025 to 0.2 mass%, more preferably 0.03 to 0.1 mass%. When the content of the component (d) is less than 0.025% by mass, the dishing amount reducing effect is low. On the other hand, when it exceeds 0.2 mass%, there is a high possibility that polishing of the copper-containing metal is suppressed by the component (d).

成分(e)の酸化剤は、銅含有金属を酸化させることにより剥ぎ取られやすい酸化膜を被研磨面上に生成し、成分(c)による機械的研磨を促進する。酸化剤は一般的に銅を酸化するのに十分な酸化力を持つものが用いられ、その具体例としては過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム等の過硫酸塩、過ヨウ素酸、過酢酸、過塩素酸、過炭酸アンモニウム、過酸化水素等が挙げられる。これらの中でも、銅に対する酸化力が強いために過硫酸塩が好ましく、過硫酸アンモニウムがより好ましい。   The oxidizing agent of component (e) generates an oxide film that is easily peeled off by oxidizing the copper-containing metal, and promotes mechanical polishing by component (c). The oxidizing agent generally has an oxidizing power sufficient to oxidize copper. Specific examples thereof include persulfates such as ammonium persulfate, potassium persulfate, and sodium persulfate, periodic acid, and peracetic acid. , Perchloric acid, ammonium percarbonate, hydrogen peroxide and the like. Among these, persulfate is preferable because of its strong oxidizing power against copper, and ammonium persulfate is more preferable.

研磨用組成物中の成分(e)の含有量は0.5〜10質量%が好ましく、1〜5質量%がより好ましい。0.5質量%未満では、研磨促進効果は低く、銅含有金属に対する研磨速度が低下するおそれが高まる。一方、10質量%を超えると、銅含有金属に対する研磨速度が過剰に高くなり、ディッシングが発生するおそれが高まる。   0.5-10 mass% is preferable and, as for content of the component (e) in polishing composition, 1-5 mass% is more preferable. If it is less than 0.5% by mass, the polishing promoting effect is low, and the possibility that the polishing rate for the copper-containing metal is lowered increases. On the other hand, if it exceeds 10% by mass, the polishing rate for the copper-containing metal becomes excessively high and the risk of dishing increases.

成分(f)の水は、他の成分を溶解又は分散させる。成分(f)は他の成分の作用を阻害するのを防止するために不純物をできるだけ含有しないものが好ましい。具体的には、成分(f)は、イオン交換樹脂にて不純物イオンを除去した後にフィルターを通して異物を除去した純水や超純水、又は蒸留水が好ましい。研磨用組成物中の成分(f)の含有量は、研磨用組成物中の他の成分の含有量に対する残量である。   The water of component (f) dissolves or disperses other components. The component (f) preferably contains as little impurities as possible in order to prevent the action of other components from being inhibited. Specifically, component (f) is preferably pure water, ultrapure water, or distilled water from which foreign ions are removed through a filter after removing impurity ions with an ion exchange resin. The content of component (f) in the polishing composition is the remaining amount with respect to the content of other components in the polishing composition.

研磨用組成物は、安定化、研磨加工上の必要性等に応じ、前記各成分以外にもその他の添加成分として増粘剤、消泡剤、防腐剤等を含有してもよい。研磨用組成物中のその他の添加成分の含有量は、研磨用組成物の常法に従って決定される。研磨用組成物は、成分(f)に他の成分を混合し、例えば翼式撹拌機による撹拌や超音波分散等によって、各成分を分散又は溶解させることにより調製される。ここで、成分(f)に対する他の成分の混合順序は限定されない。   The polishing composition may contain a thickener, an antifoaming agent, a preservative, and the like as other additive components in addition to the above-described components, depending on the necessity for stabilization and polishing processing. Content of the other additional component in polishing composition is determined in accordance with the normal method of polishing composition. The polishing composition is prepared by mixing the component (f) with other components and dispersing or dissolving each component by, for example, stirring with a blade-type stirrer or ultrasonic dispersion. Here, the mixing order of the other components with respect to the component (f) is not limited.

研磨用組成物のpHは7以上が好ましく、7〜12がより好ましく、8〜10が最も好ましい。研磨用組成物のpHが7未満では、銅含有金属の研磨除去が十分進まず、研磨速度が低下する。一方、12を超えると、銅含有金属に対する研磨速度が過剰に高くなり、ディッシングが発生するおそれがある。研磨用組成物のpHの調整は、アンモニア等の配合により行われる。   The pH of the polishing composition is preferably 7 or more, more preferably 7 to 12, and most preferably 8 to 10. When the pH of the polishing composition is less than 7, polishing removal of the copper-containing metal does not proceed sufficiently and the polishing rate decreases. On the other hand, if it exceeds 12, the polishing rate for the copper-containing metal becomes excessively high, and dishing may occur. Adjustment of pH of polishing composition is performed by mixing | blending ammonia etc.

さて、第2の研磨工程において本実施形態の研磨用組成物を用いて導体膜15を研磨するときには、第1の研磨工程後の導体膜15表面に研磨用組成物を供給しながら研磨パッドを導体膜15表面に押し付けて回転させる。このとき、研磨用組成物は、成分(c)によって被研磨面を機械的研磨することにより、導体膜15を研磨することができる。従って、実施形態の研磨用組成物は(a)、(b)及び(d)の各成分を含有しているために、これら成分によりディッシングの発生を抑制することができる。さらに研磨用組成物は、(a)及び(e)の各成分により銅含有金属に対する研磨速度を高く維持することができる。   When polishing the conductor film 15 using the polishing composition of the present embodiment in the second polishing step, the polishing pad is supplied while supplying the polishing composition to the surface of the conductor film 15 after the first polishing step. The conductor film 15 is pressed against the surface and rotated. At this time, the polishing composition can polish the conductor film 15 by mechanically polishing the surface to be polished with the component (c). Therefore, since the polishing composition of the embodiment contains the components (a), (b) and (d), the occurrence of dishing can be suppressed by these components. Further, the polishing composition can maintain a high polishing rate for the copper-containing metal by the components (a) and (e).

(試験例1〜33及び比較例1〜16)
試験例1においては、成分(a)としてのアラニン(0.01質量%)、成分(b)としての1−(2,3ジヒドロキシプロピル)ベンゾトリアゾール(0.01質量%)、成分(c)としてのコロイダルシリカ(0.5質量%)、成分(d)としてのヤシ油脂肪酸サルコシントリエタノールアミン(0.02質量%)及びポリオキシエチレンラウリルエーテル硫酸トリエタノールアミン(0.015質量%)、成分(e)としての過硫酸アンモニウム(1質量%)及び成分(f)の水を混合して研磨用組成物を調製した。ここで、コロイダルシリカは、N4 Plus Submicron Particle Sizer(Beckman Coulter, Inc.の製品名)で測定されがDN4で0.05μmであり、20質量%水溶液中における鉄、ニッケル、銅、クロム、亜鉛及びカルシウムの含有量の合計は20ppb以下であった。
(Test Examples 1-33 and Comparative Examples 1-16)
In Test Example 1, alanine (0.01% by mass) as component (a), 1- (2,3dihydroxypropyl) benzotriazole (0.01% by mass), component (c) as component (b) Colloidal silica as a component (0.5% by mass), coconut oil fatty acid sarcosine triethanolamine (0.02% by mass) and polyoxyethylene lauryl ether sulfate triethanolamine (0.015% by mass) as component (d), A polishing composition was prepared by mixing ammonium persulfate (1% by mass) as component (e) and water of component (f). Here, colloidal silica, N4 Plus Submicron Particle Sizer (Beckman Coulter, Inc. product name) was measured at but 0.05μm at D N4, iron in the 20 wt% aqueous solution of nickel, copper, chromium, zinc And the total content of calcium was 20 ppb or less.

試験例2〜33及び比較例1〜16においては、各成分の種類又は含有量を表1又は表2に示すように変更した以外は、試験例1と同様にして研磨用組成物を調製した。そして、各研磨用組成物のpHを測定するとともに、下記各項目について評価を行った。その結果を表1及び表2に示す。尚、各表において含有量(質量%)を「量」で示し、含有量の記載が省略されている成分は試験例1と同じ含有量である。ただし、試験例27においては、A1の含有量を0.035質量%とした。   In Test Examples 2-33 and Comparative Examples 1-16, a polishing composition was prepared in the same manner as in Test Example 1, except that the type or content of each component was changed as shown in Table 1 or Table 2. . And while measuring pH of each polishing composition, it evaluated about each following item. The results are shown in Tables 1 and 2. In addition, in each table | surface, content (mass%) is shown by "amount", and the component in which description of content is abbreviate | omitted is the same content as Test Example 1. However, in Test Example 27, the content of A1 was set to 0.035% by mass.

<研磨速度:R>
銅ブランケットウエハの厚みを、シート抵抗機(VR−120;国際電気システムサービス株式会社製)を用いて測定した。次いで、銅ブランケットウエハ表面に、各例の研磨用組成物を用いるとともに下記研磨条件1により1分間研磨を施した。そして、研磨後の銅ブランケットウエハの厚みを前記と同様にして測定した後、下記計算式に基づいて研磨速度を求めた。
<Polishing rate: R>
The thickness of the copper blanket wafer was measured using a sheet resistance machine (VR-120; manufactured by Kokusai Electric System Service Co., Ltd.). Next, the copper blanket wafer surface was polished for 1 minute using the polishing composition of each example and the following polishing condition 1. And after measuring the thickness of the copper blanket wafer after grinding | polishing similarly to the above, the grinding | polishing speed | rate was calculated | required based on the following formula.

研磨速度[nm/分]=(研磨前の銅ブランケットウエハの厚み[nm]−研磨後の銅ブランケットウエハの厚み[nm])÷研磨時間[分]
<研磨条件1>
研磨機:片面CMP用研磨機(Mirra;アプライドマテリアルズ社製)、被研磨物:銅ブランケットウエハ(電解メッキ法により銅を成膜された8インチシリコンウエハ)、研磨パッド:ポリウレタン製の積層研磨パッド(IC−1000/Suba400;ロデール社製)、研磨加工圧力:2psi(=約13.8kPa)、定盤回転数:60rpm、研磨用組成物の供給速度:200ml/min、キャリア回転数:60rpm
<ディッシング量:d及び被研磨面のクリアー性:C>
銅パターンウエハ表面に、第1の研磨工程用の研磨用組成物(PLANERELITE−7102;株式会社フジミインコーポレーテッド製)を用いるとともに下記研磨条件2により研磨を施した。研磨量は初期膜厚の70%(700nm)とした。上記研磨後、銅パターンウエハ表面に、各例の研磨用組成物を用いるととも前記研磨条件1により、エンドポイントシグナルが現れてから銅膜の研磨量にして200nmオーバーの研磨を施した。次いで、第2研磨後の銅パターンウエハ表面の100μm幅の孤立配線部において、接触式の表面測定装置であるプロフィラ(HRP340;ケーエルエー・テンコール社製)を用いてディッシング量(nm)を測定した。さらに、微分干渉顕微鏡(OPTIPHOTO300;NIKON製)を用いて銅配線部以外のバリア膜上に残る銅含有金属の量を目視にて観察した。
Polishing rate [nm / min] = (thickness of copper blanket wafer before polishing [nm] −thickness of copper blanket wafer after polishing [nm]) ÷ polishing time [min]
<Polishing condition 1>
Polishing machine: Polishing machine for single-sided CMP (Mirra; manufactured by Applied Materials), polishing target: copper blanket wafer (8-inch silicon wafer on which copper is formed by electrolytic plating), polishing pad: laminated polishing made of polyurethane Pad (IC-1000 / Suba400; manufactured by Rodel), polishing pressure: 2 psi (= about 13.8 kPa), platen rotation speed: 60 rpm, polishing composition supply speed: 200 ml / min, carrier rotation speed: 60 rpm
<Dishing amount: d and clearness of polished surface: C>
The copper pattern wafer surface was polished under the following polishing condition 2 while using a polishing composition for the first polishing step (PLANERELITE-7102; manufactured by Fujimi Incorporated). The polishing amount was 70% (700 nm) of the initial film thickness. After the polishing, the polishing pattern of each example was used on the surface of the copper pattern wafer, and under the polishing condition 1, after the end point signal appeared, the copper film was polished over 200 nm. Next, the dishing amount (nm) was measured using a profila (HRP340; manufactured by KLA-Tencor Corporation), which is a contact-type surface measuring device, in an isolated wiring portion having a width of 100 μm on the surface of the copper pattern wafer after the second polishing. Furthermore, the amount of the copper-containing metal remaining on the barrier film other than the copper wiring portion was visually observed using a differential interference microscope (OPTIPHOTO300; manufactured by NIKON).

そして、被研磨面のクリアー性について、(◎)銅含有金属の残留が全く見られない、(○)斑点状の銅含有金属の残留がわずかに見られる、(△)全体的に斑点状の銅含有金属の残留が見られるが第3の研磨工程で研磨除去できる範囲、(×)全体に銅含有金属が残留して配線部が見えず第3の研磨工程で研磨除去するのが困難の4段階で評価した。
<研磨条件2>
研磨機:片面CMP用研磨機(Mirra;アプライドマテリアルズ社製)、被研磨物:銅パターンウエハ(SEMATECH社製、854マスクパターン、成膜厚さ1000nm、初期凹溝800nm)、研磨パッド:ポリウレタン製の積層研磨パッド(IC−1400;ロデール社製)、研磨加工圧力:2.0psi(=約13.8kPa)、定盤回転数:100rpm、研磨用組成物の供給速度:200ml/min、キャリア回転数:100rpm
<ポットライフ:P>
研磨用組成物の調製直後に前記項目<研磨速度>と同様にして研磨速度を求めた。次いで、研磨用組成物を密閉容器にて保存し、保存開始後一定期間経過毎に前記と同様にして研磨速度を求めた。続いて、調製直後の研磨速度に対して研磨速度が90%低下したときの経過時間をポットライフとした。そして、ポットライフについて、(◎)2週間以上、(○)1週間以上2週間未満、(△)3日以上1週間未満、(×)3日未満の4段階で評価した。
And about the clearness of the surface to be polished, (◎) No copper-containing metal residue is observed, (○) Spot-like copper-containing metal residue is slightly observed, (△) Overall spot-like Although the copper-containing metal remains, the range that can be polished and removed in the third polishing step, (x) the copper-containing metal remains in the whole and the wiring part is not visible, and it is difficult to polish and remove in the third polishing step Evaluation was made in 4 stages.
<Polishing condition 2>
Polishing machine: single-side CMP polishing machine (Mirra; manufactured by Applied Materials), polishing target: copper pattern wafer (manufactured by SEMATECH, 854 mask pattern, film thickness 1000 nm, initial concave groove 800 nm), polishing pad: polyurethane Laminated polishing pad (IC-1400; manufactured by Rodel), polishing pressure: 2.0 psi (= about 13.8 kPa), platen rotation speed: 100 rpm, polishing composition supply rate: 200 ml / min, carrier Rotation speed: 100rpm
<Pot life: P>
Immediately after the preparation of the polishing composition, the polishing rate was determined in the same manner as in the above item <Polishing rate>. Next, the polishing composition was stored in a sealed container, and the polishing rate was determined in the same manner as described above every time a fixed period elapsed after the start of storage. Subsequently, the elapsed time when the polishing rate decreased by 90% with respect to the polishing rate immediately after preparation was defined as the pot life. The pot life was evaluated in four stages: (◎) 2 weeks or more, (◯) 1 week or more and less than 2 weeks, (Δ) 3 days or more and less than 1 week, (x) less than 3 days.

Figure 0004406554
Figure 0004406554

Figure 0004406554
<成分(a)及び研磨促進剤>Ala:アラニン、Gly:グリシン、Val:バリン、Cit:クエン酸、LA:乳酸、Oxa:シュウ酸、NA:硝酸、SA:硫酸
<成分(b)及び防食剤>G:1−(2,3ジヒドロキシプロピル)ベンゾトリアゾール、H:1−[N,N−ビス(ヒドロキシジメチル)アミノメチル]−ベンゾトリアゾール、I:1−(1,2−ジカルボキシエチル)ベンゾトリアゾール、J:ベンゾトリアゾール
<成分(c)>CS1:DN4が0.03μmのコロイダルシリカ、CS2:DN4が0.05μmのコロイダルシリカ、CS3:DN4が0.07μmのコロイダルシリカ、FS3:DN4が0.07μmのフュームドシリカ
<成分(d)>A1:ヤシ油脂肪酸サルコシントリエタノールアミン、A2:ヤシ油脂肪酸メチルタウリンナトリウム、A3:ポリオキシエチレンヤシ油脂肪酸モノエタノールアミド硫酸ナトリウム、B1:ポリオキシエチレンアルキルフェニルエーテルリン酸、B2:ドデシルベンゼンスルホン酸トリエタノールアミン、C1:ポリオキシエチレンアルキル(12〜14)スルホコハク酸二ナトリウム、C2:スルホコハク酸塩、D:ポリオキシエチレンラウリルエーテル硫酸トリエタノールアミン、E:ジイソブチルジメチルブチンジオールポリオキシエチレングリコールエーテル
<成分(e)>APS:過硫酸アンモニウム、HPO:過酸化水素
表1に示すように、試験例1〜33においては、ディッシング量を低減してディッシングの発生を抑制するとともに、銅含有金属に対する研磨速度を高く維持することができた。試験例1〜5に示すように、成分(a)の含有量を0.5〜1.5質量%にすることにより、銅含有金属に対する研磨速度を高く維持しつつディッシング量を特に低減することができた。一方、試験例6〜8に示すように、成分(b)の含有量を0.005〜0.02質量%にすることにより、ディッシング量を特に低減することができた。
Figure 0004406554
<Component (a) and polishing accelerator> Ala: alanine, Gly: glycine, Val: valine, Cit: citric acid, LA: lactic acid, Oxa: oxalic acid, NA: nitric acid, SA: sulfuric acid <component (b) and anticorrosion Agent> G: 1- (2,3-dihydroxypropyl) benzotriazole, H: 1- [N, N-bis (hydroxydimethyl) aminomethyl] -benzotriazole, I: 1- (1,2-dicarboxyethyl) Benzotriazole, J: Benzotriazole <Component (c)> CS1: Colloidal silica with D N4 of 0.03 μm, CS2: Colloidal silica with D N4 of 0.05 μm, CS3: Colloidal silica with D N4 of 0.07 μm, FS3 : D N4 is fumed silica 0.07 .mu.m <component (d)> A1: coconut oil fatty acid sarcosine triethanolamine, A2: coconut oil fatty Methyl taurine sodium, A3: sodium polyoxyethylene coconut oil fatty acid monoethanolamide sulfate, B1: polyoxyethylene alkylphenyl ether phosphate, B2: triethanolamine dodecylbenzenesulfonate, C1: polyoxyethylene alkyl (12-14) Disodium sulfosuccinate, C2: sulfosuccinate, D: polyoxyethylene lauryl ether triethanolamine sulfate, E: diisobutyldimethylbutynediol polyoxyethylene glycol ether <component (e)> APS: ammonium persulfate, HPO: hydrogen peroxide As shown in Table 1, in Test Examples 1 to 33, the dishing amount was reduced to suppress the occurrence of dishing, and the polishing rate for the copper-containing metal could be kept high. As shown in Test Examples 1 to 5, by reducing the content of the component (a) to 0.5 to 1.5 mass%, particularly reducing the dishing amount while maintaining a high polishing rate for the copper-containing metal. I was able to. On the other hand, as shown in Test Examples 6 to 8, the dishing amount could be particularly reduced by setting the content of the component (b) to 0.005 to 0.02% by mass.

尚、本実施形態は、次のように変更して具体化することも可能である。
・ 前記研磨用組成物を、調製されるときには成分(f)の含有量が研磨工程に用いられるときに比べて少なく設定されることにより成分(f)以外の成分が濃縮され、研磨工程に用いられるときには成分(f)が加えられて希釈されるように構成してもよい。このように構成した場合は、研磨用組成物の管理を容易に行なうとともに輸送効率を向上させることができる。
In addition, this embodiment can also be changed and embodied as follows.
-When the polishing composition is prepared, the content of the component (f) is set lower than when used in the polishing step, so that components other than the component (f) are concentrated and used in the polishing step. It may be configured such that component (f) is added and diluted when applied. When comprised in this way, management of polishing composition can be performed easily and transportation efficiency can be improved.

・ 前記成分(e)と他の成分とを別々に分けた状態で研磨用組成物を調製及び保管し、使用する直前に成分(e)を他の成分に加えても良い。このように構成した場合は、研磨用組成物を長期間保管するときに、成分(e)の分解を抑制することができる。   The polishing composition may be prepared and stored in a state where the component (e) and the other component are separately separated, and the component (e) may be added to the other component immediately before use. When comprised in this way, decomposition | disassembly of a component (e) can be suppressed when a polishing composition is stored for a long period of time.

・ 前記配線構造を形成するときには、第1の研磨工程で配線溝13以外の箇所のバリア膜14が露出するまで導体膜15を研磨する。次いで、第2の研磨工程で絶縁膜12が露出するまで研磨してもよい。このとき、研磨用組成物は第1の研磨工程に用いられる。   When forming the wiring structure, the conductor film 15 is polished in the first polishing process until the barrier film 14 at a portion other than the wiring groove 13 is exposed. Next, polishing may be performed until the insulating film 12 is exposed in the second polishing step. At this time, the polishing composition is used in the first polishing step.

(a)〜(d)は本実施形態の研磨方法を模式的に示す部分拡大端面図。(A)-(d) is a partial expanded end view which shows the grinding | polishing method of this embodiment typically. (a)はディッシングを模式的に示す部分拡大端面図、(b)はエロージョンを模式的に示す部分拡大端面図。(A) is a partial enlarged end view schematically showing dishing, and (b) is a partially enlarged end view schematically showing erosion.

符号の説明Explanation of symbols

11…半導体基板。   11: Semiconductor substrate.

Claims (2)

半導体基板の研磨に用いられ、下記(a)〜(f)の各成分を含有する研磨用組成物。
(a):α−アミノ酸を0.01〜2質量%
(b):下記一般式(2)〜(5)のいずれか一つにより示されるベンゾトリアゾール誘導体であって、ベンゾトリアゾール誘導体が一般式(2)で示されるときは、0.0005〜0.01質量%、一般式(3)で示されるときは、0.00005〜0.005質量%、一般式(4)又は一般式(5)で示されるときは、0.001〜0.1質量%に設定される
Figure 0004406554
Figure 0004406554
Figure 0004406554
Figure 0004406554
(式中、Yはアルキレン基を示す。)
(c):酸化ケイ素
(d):界面活性剤
(e):酸化剤
(f):水
A polishing composition used for polishing a semiconductor substrate and containing the following components (a) to (f).
(A): 0.01-2 mass% of α-amino acid
(B): A benzotriazole derivative represented by any one of the following general formulas (2) to (5), and when the benzotriazole derivative is represented by the general formula (2), 0.0005 to 0.00. 01 mass%, when expressed by general formula (3), 0.00005 to 0.005 mass%, when expressed by general formula (4) or general formula (5), 0.001 to 0.1 mass Set to%
Figure 0004406554
Figure 0004406554
Figure 0004406554
Figure 0004406554
(In the formula, Y represents an alkylene group.)
(C): Silicon oxide (d): Surfactant (e): Oxidizing agent (f): Water
成分(a)がアラニンである請求項1に記載の研磨用組成物。 The polishing composition according to claim 1, wherein the component (a) is alanine .
JP2003396171A 2003-09-30 2003-11-26 Polishing composition Expired - Lifetime JP4406554B2 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
JP2003396171A JP4406554B2 (en) 2003-09-30 2003-11-26 Polishing composition
TW093129391A TWI347969B (en) 2003-09-30 2004-09-29 Polishing composition
US10/952,672 US7485162B2 (en) 2003-09-30 2004-09-29 Polishing composition
CNB2004100834419A CN100393833C (en) 2003-09-30 2004-09-30 Polishing composition
EP04023363A EP1520892B1 (en) 2003-09-30 2004-09-30 Polishing composition
EP11186467A EP2418260B1 (en) 2003-09-30 2004-09-30 Polishing composition
CN2007101941623A CN101177592B (en) 2003-09-30 2004-09-30 Composition for polishing
EP11186466A EP2418259B1 (en) 2003-09-30 2004-09-30 Polishing composition
CN2007101994230A CN101215447B (en) 2003-09-30 2004-09-30 Composition for polishing
KR1020040077822A KR101110707B1 (en) 2003-09-30 2004-09-30 Polishing composition
SG200406144A SG110211A1 (en) 2003-09-30 2004-09-30 Polishing composition
CN200710199425XA CN101186784B (en) 2003-09-30 2004-09-30 Polishing composition
AT04023363T ATE538188T1 (en) 2003-09-30 2004-09-30 POLISHING COMPOSITION
KR1020110057408A KR101216514B1 (en) 2003-09-30 2011-06-14 Polishing composition
KR1020110057412A KR101074875B1 (en) 2003-09-30 2011-06-14 Polishing composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003342531 2003-09-30
JP2003396171A JP4406554B2 (en) 2003-09-30 2003-11-26 Polishing composition

Publications (2)

Publication Number Publication Date
JP2005129880A JP2005129880A (en) 2005-05-19
JP4406554B2 true JP4406554B2 (en) 2010-01-27

Family

ID=34655743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003396171A Expired - Lifetime JP4406554B2 (en) 2003-09-30 2003-11-26 Polishing composition

Country Status (1)

Country Link
JP (1) JP4406554B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006287002A (en) * 2005-04-01 2006-10-19 Jsr Corp Chemical mechanical polishing aqueous dispersion material and chemical mechanical polishing method
JPWO2007026862A1 (en) * 2005-09-02 2009-03-12 株式会社フジミインコーポレーテッド Polishing composition
JP5412706B2 (en) * 2005-11-01 2014-02-12 日立化成株式会社 Polishing material and polishing method for copper film and insulating material film
JP2012069785A (en) * 2010-09-24 2012-04-05 Fujimi Inc Polishing composition and polishing method
JP6393227B2 (en) * 2015-03-31 2018-09-19 株式会社フジミインコーポレーテッド Polishing composition and method for producing polished article

Also Published As

Publication number Publication date
JP2005129880A (en) 2005-05-19

Similar Documents

Publication Publication Date Title
EP2418260B1 (en) Polishing composition
JP4075985B2 (en) Polishing composition and polishing method using the same
JP3981616B2 (en) Polishing composition
US7785487B2 (en) Polymeric barrier removal polishing slurry
KR101110723B1 (en) Polishing composition and polishing method
KR101110714B1 (en) Polishing composition and polishing method
US8080476B2 (en) Polishing composition and polishing process
US20080276543A1 (en) Alkaline barrier polishing slurry
JP4608196B2 (en) Polishing composition
WO2009056491A1 (en) Cmp slurry composition and process for planarizing copper containing surfaces provided with a diffusion barrier layer
KR101278666B1 (en) Polishing composition
JP2005123482A (en) Polishing method
JP4759219B2 (en) Polishing composition
JP2006086462A (en) Polishing composition and manufacturing method of wiring structure using the same
JP4406554B2 (en) Polishing composition
JP2005116987A (en) Polishing composition
JP4541674B2 (en) Polishing composition
KR101134588B1 (en) Chemical mechanical polishing composition for metal circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4406554

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term