JP2004193477A - Cmp abrasive and polishing method of substrate - Google Patents

Cmp abrasive and polishing method of substrate Download PDF

Info

Publication number
JP2004193477A
JP2004193477A JP2002362172A JP2002362172A JP2004193477A JP 2004193477 A JP2004193477 A JP 2004193477A JP 2002362172 A JP2002362172 A JP 2002362172A JP 2002362172 A JP2002362172 A JP 2002362172A JP 2004193477 A JP2004193477 A JP 2004193477A
Authority
JP
Japan
Prior art keywords
polishing
metal
acid
cmp
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002362172A
Other languages
Japanese (ja)
Inventor
Yoshikazu Omori
義和 大森
Masanobu Hanehiro
昌信 羽廣
Takenori Narita
武憲 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2002362172A priority Critical patent/JP2004193477A/en
Publication of JP2004193477A publication Critical patent/JP2004193477A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an abrasive, capable of polishing a face to be polished of a metal film at high speed, without causing flaws on the face, and to provide a polishing method of substrate. <P>SOLUTION: The CMP abrasive for semiconductor metal film contains a metal-weakening agent, abrasive grain, an oxidizing agent for metals, a protective film forming agent applied to metal surface, an acid, a water-soluble high polymer, and water. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、特に半導体デバイスの配線工程における金属用研磨液及びそれを用いた研磨方法に関する。
【0002】
【従来の技術】
近年、半導体集積回路(以下LSIと記す)の高集積化、高性能化に伴って新たな微細加工技術が開発されている。化学機械研磨(以下CMPと記す)法もその一つであり、LSI製造工程、特に多層配線形成工程における層間絶縁膜の平坦化、金属プラグ形成、埋め込み配線形成において頻繁に利用される技術である。この技術は、(例えば、特許文献1参照)に開示されている。
【0003】
また、最近はLSIを高性能化するために、配線材料として銅合金の利用が試みられている。しかし、銅合金は従来のアルミニウム合金配線の形成で頻繁に用いられたドライエッチング法による微細加工が困難である。そこで、あらかじめ溝を形成してある絶縁膜上に銅合金薄膜を堆積して埋め込み、溝部以外の銅合金薄膜をCMPにより除去して埋め込み配線を形成する、いわゆるダマシン法が主に採用されている。この技術は、(例えば、特許文献2参照)に開示されている。
【0004】
金属のCMPの一般的な方法は、円形の研磨定盤(プラテン)上に研磨パッドを貼り付け、研磨パッド表面を金属用研磨液で浸し、基体の金属膜を形成した面を押し付けて、その裏面から所定の圧力(以下研磨圧力と記す)を加えた状態で研磨定盤を回し、研磨液と金属膜の凸部との機械的摩擦によって凸部の金属膜を除去するものである。
【0005】
CMPに用いられる金属用研磨液は、一般には酸化剤及び固体砥粒からなっており必要に応じてさらに酸化金属溶解剤、保護膜形成剤が添加される。まず酸化によって金属膜表面を酸化し、その酸化層を固体砥粒によって削り取るのが基本的なメカニズムと考えられている。凹部の金属表面の酸化層は研磨パッドにあまり触れず、固体砥粒による削り取りの効果が及ばないので、CMPの進行とともに凸部の金属層が除去されて基体表面は平坦化される。この詳細については(例えば、非特許文献1)に開示されている。
【0006】
CMPによる研磨速度を高める方法として酸化金属溶解剤を添加することが有効とされている。固体砥粒によって削り取られた金属酸化物の粒を研磨液に溶解させてしまうと固体砥粒による削り取りの効果が増すためであると解釈できる。但し、凹部の金属膜表面の酸化層も溶解(以下エッチングと記す)されて金属膜表面が露出すると、酸化剤によって金属膜表面がさらに酸化され、これが繰り返されると凹部の金属膜のエッチングが進行してしまい、平坦化効果が損なわれることが懸念される。これを防ぐためにさらに保護膜形成剤が添加される。酸化金属溶解剤と保護膜形成剤の効果のバランスを取ることが重要であり、凹部の金属膜表面の酸化層はあまりエッチングされず、削り取られた酸化層の粒が効率良く溶解されCMPによる研磨速度が大きいことが望ましい。
【0007】
このように酸化金属溶解剤と保護膜形成剤を添加して化学反応の効果を加えることにより、CMP速度(CMPによる研磨速度)が向上すると共に、CMPされる金属層表面の損傷(ダメ−ジ)も低減される効果が得られる。
【0008】
【特許文献1】
米国特許第4944836号
【特許文献2】
特開平2−278822号公報
【非特許文献1】
「ジャ−ナル・オブ・エレクトロケミカルソサエティ誌(Journal of Electrochemical Society)」、1991年、第138巻11号、p.3460−3464
【0009】
【発明が解決しようとする課題】
しかしながら、従来の固体砥粒を含む金属用研磨液を用いてCMPによる埋め込み配線形成を行う場合、高速研磨が可能であるが、金属膜表面に多くの研磨傷がついてしまう。従って、研磨後に研磨傷が発生しない金属用研磨液が望まれていた。
本発明は、金属膜の被研磨面を傷なく高速に研磨することが可能な研磨材、基板の研磨方法を提供するものである。
【0010】
【課題を解決するための手段】
本発明は次のものに関する。
(1) 金属脆弱化剤、砥粒、金属の酸化剤、金属表面に対する保護膜形成剤、酸、水溶性高分子及び水を含有する半導体金属膜用CMP研磨材。
(2) 金属脆弱化剤がフッ化水素酸である請求項1記載の半導体金属膜用CMP研磨材。
(3) 研磨する膜を形成した基板を研磨定盤の研磨布に押し当て、金属脆弱化剤、砥粒、金属の酸化剤、金属表面に対する保護膜形成剤、酸、水溶性高分子及び水を含有する半導体金属膜用CMP研磨材を、研磨膜と研磨布との間に供給しながら、基板と研磨定盤を相対的に移動させて、研磨膜を脆弱化しながら研磨する基板の研磨方法。
【0011】
上記の半導体用CMP研磨材を用いてCMPによる埋め込み配線形成を行うと、CMP研磨中は、金属脆弱化剤が被研磨表面に化学的に作用し脆弱化させ、より化学作用の大きいCMP研磨を行うことによって研磨傷を低減することを可能とする。
【0012】
【発明の実施の形態】
本発明のCMP研磨材には、金属脆弱化剤、砥粒、金属の酸化剤、金属表面に対する保護膜形成剤、酸、水溶性高分子及び水を分散させることによって得られる。
本発明の研磨液中における砥粒濃度は、0.1〜10重量%であることが好ましい。
砥粒は、シリカ、アルミナ、セリア、チタニア、ジルコニア、ゲルマニアより選ばれた1種であることが好ましく、平均粒径100nm以下のコロイダルシリカまたはコロイダルアルミナであることが好ましい。
金属脆弱化剤は、フッ化水素酸を用いる。
【0013】
導体の酸化剤は、過酸化水素、硝酸、過ヨウ素酸カリウム、次亜塩素酸及びオゾン水から選ばれた少なくとも一種が好ましい。
保護膜形成剤は、従来から広く用いられてきたベンゾトリアゾール及びベンゾトリアゾールの誘導体から選ばれた少なくとも1種(BTA類)であることが好ましい。
【0014】
酸は、有機酸であることが好ましく、リンゴ酸、クエン酸、酒石酸、グリコール酸から選ばれる少なくとも1種であることが好ましい。
水溶性高分子は、ポリアクリル酸及びポリアクリル酸の塩から選ばれた少なくとも1種が好ましい。
導体は、銅または銅合金及び銅又は銅合金の酸化物から選ばれる少なくとも1種の金属層を含む堆積膜からなる金属膜である。
本発明の基板の研磨方法は、銅または銅合金を研磨する研磨方法であると好ましい。
【0015】
本発明の研磨方法は、研磨定盤の研磨布上に前記の研磨液を供給しながら、被研磨膜を有する基板を研磨布に押圧した状態で研磨定盤と基板を相対的に動かすことによって被研磨膜を研磨することができる。
本発明では、金属脆弱化剤が被研磨膜表面に化学的に作用し脆弱化させ、より化学作用の大きいCMP研磨を行うことによって研磨傷を低減させることを可能とする。
【0016】
本発明においては、表面に凹部を有する基体上に銅、銅合金(銅/クロム等)を含む金属膜を形成・充填する。この基体を本発明による金属用研磨液を用いてCMPすると、基体の凸部の金属膜が選択的にCMPされて、凹部に金属膜が残されて所望の導体パタ−ンが得られる。
【0017】
本発明の研磨方法は、金属脆弱化剤、砥粒、導体の酸化剤、金属表面に対する保護膜形成剤、酸、水溶性高分子及び水を含有する研磨液を研磨膜と研磨布との間に供給しながら、基板と研磨定盤を相対的に移動させて、研磨膜を脆弱化しながら研磨する基板の研磨方法である。
【0018】
本発明の研磨材の砥粒濃度は、0.01重量%〜10重量%が好ましく0.05重量%から5重量%の範囲であることがより好ましい。この配合量が0.01重量%未満では砥粒を含まない場合の研磨速度と有意差がなく、10重量%を超えるとCMPによる研磨速度は飽和し、それ以上加えても増加は見られない。
【0019】
本発明の研磨材の砥粒としては、シリカ、アルミナ、セリア、チタニア、ジルコニア、ゲルマニア、炭化珪素等の無機物砥粒、ポリスチレン、ポリアクリル、ポリ塩化ビニル等の有機物砥粒のいずれでもよいが、研磨液中での分散安定性が良く、CMPにより発生する研磨傷(スクラッチ)の発生数が少ない、平均粒径が100nm以下のコロイダルシリカ、コロイダルアルミナが好ましい。コロイダルシリカはシリコンアルコキシドの加水分解または珪酸ナトリウムのイオン交換による製造方法が知られており。コロイダルアルミナは硝酸アルミニウムの加水分解による製造法が知られている。
【0020】
金属脆弱化剤としては、フッ化水素酸を使用する。
本発明の研磨材の導体の酸化剤としては、過酸化水素(H)、硝酸、過ヨウ素酸カリウム、次亜塩素酸、オゾン水等が挙げられ、その中でも過酸化水素が特に好ましい。基体が集積回路用素子を含むシリコン基板である場合、アルカリ金属、アルカリ土類金属、ハロゲン化物などによる汚染は望ましくないので、不揮発成分を含まない酸化剤が望ましい。但し、オゾン水は組成の時間変化が激しいので過酸化水素が最も適している。但し、適用対象の基体が半導体素子を含まないガラス基板などである場合は不揮発成分を含む酸化剤であっても差し支えない。
【0021】
研磨液の保護膜形成剤としては、ベンゾトリアゾール(BTA)、BTA誘導体、例えばBTAのベンゼン環の一つの水素原子をメチル基で置換したもの(トリルトリアゾール)もしくはカルボキシル基で置換したもの(ベンゾトリアゾール−4−カルボン酸のメチル、エチル、プロピル、ブチル及びオクチルエステル)、又はナフトトリアゾール、ナフトトリアゾール誘導体及びこれらを含む混合物の中から選ばれる。
【0022】
研磨液の酸としては、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、2−メチル酪酸、n−ヘキサン酸、3,3−ジメチル酪酸、2−エチル酪酸、4−メチルペンタン酸、n−ヘプタン酸、2−メチルヘキサン酸、n−オクタン酸、2−エチルヘキサン酸、安息香酸、グリコ−ル酸、サリチル酸、グリセリン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フタル酸、リンゴ酸、酒石酸、クエン酸等、及びそれらの有機酸のアンモニウム塩等の塩、硫酸、硝酸、アンモニア、アンモニウム塩類、例えば過硫酸アンモニウム、硝酸アンモニウム、塩化アンモニウム等、クロム酸等又はそれらの混合物等が挙げられる。これらの中では、実用的なCMP研磨速度が得られるという点で、リンゴ酸、酒石酸、クエン酸、グリコール酸が好ましい。
【0023】
研磨液の水溶性高分子としては、以下の群から選ばれたものが好適であり、ポリアクリル酸、ポリアクリル酸アンモニウム塩、ポリアクリル酸ナトリウム塩、ポリメタクリル酸、ポリメタクリル酸アンモニウム塩、ポリメタクリル酸ナトリウム塩、ポリアクリルアミド等のカルボキシル基を持つモノマーを基本構成単位とするポリマーおよびその塩、ポリビニルアルコール、ポリビニルピロリドン等のビニル基を持つモノマーを基本構成単位とするポリマーが挙げられる。但し、適用する基板が半導体集積回路用シリコン基板などの場合はアルカリ金属、アルカリ土類金属、ハロゲン化物等による汚染は望ましくないため、酸もしくはそのアンモニウム塩が望ましい。基板がガラス基板等である場合はその限りではない。
【0024】
これらの水溶性高分子は、金属の表面保護膜形成効果を持ち、保護膜形成剤との相乗効果および水溶性高分子の基材表面への保護膜形成効果により、ディッシング等の平坦化特性を向上させることができる。
本発明を適用する導体膜としては、銅または銅合金及び銅又は銅合金の酸化物から選ばれる少なくとも1種の金属層を含む堆積膜からなる金属膜である。
【0025】
本発明のCMP研磨材は、研磨材のpHが1〜5が好ましく、1.5〜4がより好ましく、2〜4がさらに好ましい。pH1未満では酸化膜の表面荒れが顕著に表れ、pHが5より大きいと研磨速度が低下する。
【0026】
本発明のCMP研磨材の金属脆弱化剤の配合量は、金属脆弱化剤、砥粒、金属の酸化剤、酸化金属溶解剤、保護膜形成剤、水溶性ポリマ及び水の総量100gに対して0〜0.05molとすることが好ましく、0.00005mol〜0.005molとすることがより好ましい。この配合量が0.05molをを超えると、前述したCMP研磨剤のpHを好ましい範囲内に調節するのが困難となる。
【0027】
本発明のCMP研磨材の金属の酸化剤の配合量は、金属脆弱化剤、砥粒、金属の酸化剤、酸化金属溶解剤、保護膜形成剤、水溶性ポリマ及び水の総量100gに対して、0.003mol〜0.7molとすることが好ましく、0.03mol〜0.5molとすることがより好ましく、0.2mol〜0.3molとすることが特に好ましい。この配合量が 0.003mol未満では、金属の酸化が不十分でCMP速度が低く、0.7molを超えると、研磨面に荒れが生じる傾向がある。
【0028】
本発明のCMP研磨材の保護膜形成剤の配合量は、金属脆弱化剤、砥粒、金属の酸化剤、酸、保護膜形成剤、水溶性高分子及び水の総量100gに対して0.0001mol〜0.05molとすることが好ましく0.0003mol〜0.005molとすることがより好ましく、0.0005mol〜0.0035molとすることが特に好ましい。この配合量が0.0001mol未満では、エッチングの抑制が困難となる傾向があり、0.05molを超えるとCMP速度が低くなってしまう傾向がある。
【0029】
本発明のCMP研磨材の酸の配合量は、金属脆弱化剤、砥粒、金属の酸化剤、酸、保護膜形成剤、水溶性高分子及び水の総量100gに対して0〜0.005molとすることが好ましく、0.00005mol〜0.0025molとすることがより好ましく、0.0005mol〜0.0015molとすることが特に好ましい。この配合量が0.005molを超えると、エッチングの抑制が困難となる傾向がある。
【0030】
本発明のCMP研磨材の水溶性高分子の配合量は、金属脆弱化剤、砥粒、金属の酸化剤、酸、保護膜形成剤、水溶性高分子及び水の総量に対して0.001〜0.3重量%とすることが好ましく0.003重量%〜0.1重量%とすることがより好ましく0.01重量%〜0.08重量%とすることが特に好ましい。この配合量が0.001重量%未満では、エッチング抑制において保護膜形成剤との併用効果が現れない傾向があり0.3重量%を超えるとCMP速度が低下してしまう傾向がある。
【0031】
研磨装置としては、半導体基板を保持するホルダーと研磨布(パッド)を貼り付けた(回転数が変更可能なモータ等を取り付けてある)定盤を有する一般的な研磨装置が使用できる。研磨布としては、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂などが使用でき、特に制限がない。また、研磨布にはCMP研磨材がたまるような溝加工を施すことが好ましい。研磨条件に制限はないが、定盤の回転速度は半導体基板が飛び出さないように200min−1以下の低回転が好ましく、半導体基板にかける圧力は研磨後に傷が発生しないように9.8×10Pa以下が好ましい。研磨している間、研磨布にはスラリーをポンプ等で連続的に供給する。この供給量に制限はないが、研磨布の表面が常にスラリーで覆われていることが好ましい。研磨終了後の半導体基板は、流水中でよく洗浄後、スピンドライ等を用いて半導体基板上に付着した水滴を払い落としてから乾燥させることが好ましい。
【0032】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例により制限されるものではない。
【0033】
(研磨液1の作製方法)
テトラエトキシシランのアンモニア水溶液中での加水分解により作製した平均粒径20nmのコロイダルシリカを砥粒として0.3重量部、保護膜形成剤としてBTA0.29重量部、リンゴ酸0.21重量部、水溶性高分子としてポリアクリル酸アンモニウム0.57重量部、メタノール0.71重量部、2.5重量%フッ化水素酸28.57重量部、脱イオン水69.35重量部を加えて溶解した混合液を作成した。上記混合液と過酸化水素(試薬特級、30%水溶液)を7:3の重量比率で混合した。
【0034】
(研磨液2の作成方法)
テトラエトキシシランのアンモニア水溶液中での加水分解により作製した平均粒径20nmのコロイダルシリカを砥粒として0.3重量部、保護膜形成剤としてBTA0.29重量部、リンゴ酸0.21重量部、水溶性高分子としてポリアクリル酸アンモニウム0.57重量部、メタノール0.71重量部、脱イオン水97.92重量部を加えて溶解した混合液を作製した。上記混合液と過酸化水素(試薬特級、30%水溶液)を7:3の重量比率で混合した。
【0035】
(研磨条件)
基材:厚さ1μmの銅膜を形成したシリコン基板
研磨パッド:独立気泡を持つ発泡ポリウレタン樹脂
研磨圧力:140gf/cm
基板と研磨定盤との相対速度:100m/min
(研磨品評価項目)
CMP速度:銅膜のCMP前後での膜厚差を電気抵抗値から換算して求めた。
CMP後の基板の目視、光学顕微鏡観察により研磨傷発生の有無を確認した。
【0036】
(実施例1)
初めに研磨液1を用いて、基板の銅膜を1分間研磨した。CMP後の基板を目視、及び光学顕微鏡観察により研磨傷発生の有無を確認した。その結果、研磨傷の発生は見られなかった。
【0037】
(比較例1)
研磨液2を用いて、基板の銅膜を1分間研磨した。CMP後の基板を目視、及び光学顕微鏡観察により研磨傷発生の有無を確認した。その結果、20個の研磨傷があった。
実施例1及び比較例1における、CMP速度の評価結果は表1に示す様であった。
【0038】
【表1】

Figure 2004193477
実施例1が示したように、金属脆弱化剤を含む研磨材は、CMP後の基板の研磨傷が無く、CMP速度は、金属脆弱化材を含まない研磨材と同等の値を有する。
【0039】
【発明の効果】
本発明のCMP研磨材は、金属脆弱化剤を含有することにより、金属膜の被研磨面を傷なく高速に研磨することが可能となる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention particularly relates to a polishing liquid for metal in a wiring step of a semiconductor device and a polishing method using the same.
[0002]
[Prior art]
2. Description of the Related Art In recent years, a new fine processing technology has been developed in accordance with high integration and high performance of a semiconductor integrated circuit (hereinafter, referred to as LSI). A chemical mechanical polishing (hereinafter, referred to as CMP) method is one of the techniques, and is a technique frequently used in an LSI manufacturing process, particularly, in planarizing an interlayer insulating film, forming a metal plug, and forming an embedded wiring in a multilayer wiring forming process. . This technique is disclosed in, for example, Patent Document 1.
[0003]
Recently, use of a copper alloy as a wiring material has been attempted in order to improve the performance of an LSI. However, it is difficult to finely process a copper alloy by a dry etching method frequently used in forming a conventional aluminum alloy wiring. Therefore, a so-called damascene method of depositing and embedding a copper alloy thin film on an insulating film in which a groove has been formed in advance and removing the copper alloy thin film other than the groove portion by CMP to form an embedded wiring is mainly adopted. . This technique is disclosed in, for example, Patent Document 2.
[0004]
A general method of metal CMP is to attach a polishing pad on a circular polishing platen (platen), immerse the polishing pad surface with a metal polishing solution, and press the surface of the base on which the metal film is formed, and press the surface. The polishing platen is rotated while applying a predetermined pressure (hereinafter, referred to as a polishing pressure) from the back surface, and the metal film of the convex portion is removed by mechanical friction between the polishing liquid and the convex portion of the metal film.
[0005]
The metal polishing liquid used for CMP generally comprises an oxidizing agent and solid abrasive grains, and a metal oxide dissolving agent and a protective film forming agent are further added as necessary. It is considered that the basic mechanism is to first oxidize the surface of the metal film by oxidation and to scrape off the oxidized layer with solid abrasive grains. Since the oxide layer on the metal surface of the concave portion does not substantially touch the polishing pad and does not have the effect of the shaving by the solid abrasive grains, the metal layer of the convex portion is removed with the progress of the CMP, and the substrate surface is flattened. The details are disclosed in, for example, Non-Patent Document 1.
[0006]
It has been considered effective to add a metal oxide dissolving agent as a method of increasing the polishing rate by CMP. It can be interpreted that dissolving the metal oxide particles removed by the solid abrasive grains in the polishing liquid increases the effect of the solid abrasive grains. However, when the oxide layer on the surface of the metal film in the recess is also dissolved (hereinafter referred to as etching) and the surface of the metal film is exposed, the surface of the metal film is further oxidized by the oxidizing agent. It is feared that the flattening effect is impaired. In order to prevent this, a protective film forming agent is further added. It is important to balance the effects of the metal oxide dissolving agent and the protective film forming agent. The oxide layer on the surface of the metal film in the concave portion is not etched much, and the particles of the oxide layer that have been removed are efficiently dissolved and polished by CMP. High speed is desirable.
[0007]
As described above, by adding the metal oxide dissolving agent and the protective film forming agent to add the effect of the chemical reaction, the CMP speed (polishing speed by CMP) is improved, and the surface of the metal layer to be CMP is damaged (damaged). ) Is also obtained.
[0008]
[Patent Document 1]
U.S. Pat. No. 4,944,836 [Patent Document 2]
JP-A-2-278822 [Non-Patent Document 1]
"Journal of Electrochemical Society", 1991, Vol. 138, No. 11, p. 3460-3644
[0009]
[Problems to be solved by the invention]
However, when a buried wiring is formed by CMP using a conventional metal polishing slurry containing solid abrasive grains, high-speed polishing is possible, but many polishing flaws are formed on the metal film surface. Therefore, there has been a demand for a metal polishing liquid which does not cause polishing scratches after polishing.
SUMMARY OF THE INVENTION The present invention provides a polishing material and a substrate polishing method capable of polishing a surface to be polished of a metal film at high speed without scratches.
[0010]
[Means for Solving the Problems]
The present invention relates to the following.
(1) A CMP abrasive for semiconductor metal films containing a metal embrittlement agent, abrasive grains, a metal oxidizing agent, a protective film forming agent for a metal surface, an acid, a water-soluble polymer and water.
(2) The CMP abrasive for semiconductor metal films according to claim 1, wherein the metal embrittlement agent is hydrofluoric acid.
(3) The substrate on which the film to be polished is formed is pressed against the polishing cloth of the polishing platen, and a metal weakener, abrasive grains, a metal oxidizing agent, a protective film forming agent for the metal surface, an acid, a water-soluble polymer, and water are used. Polishing method for polishing while polishing a polishing film by weakening a polishing film by relatively moving a substrate and a polishing platen while supplying a CMP polishing material for a semiconductor metal film containing between the polishing film and the polishing cloth. .
[0011]
When the buried wiring is formed by CMP using the above-mentioned semiconductor CMP polishing material, during the CMP polishing, the metal embrittlement agent chemically acts on the surface to be polished to make the surface to be polished, and the CMP polishing having a larger chemical action is performed. This makes it possible to reduce polishing scratches.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The CMP abrasive of the present invention can be obtained by dispersing a metal embrittlement agent, abrasive grains, a metal oxidizing agent, a protective film forming agent for the metal surface, an acid, a water-soluble polymer, and water.
The abrasive concentration in the polishing liquid of the present invention is preferably 0.1 to 10% by weight.
The abrasive is preferably one selected from silica, alumina, ceria, titania, zirconia, and germania, and is preferably colloidal silica or colloidal alumina having an average particle size of 100 nm or less.
Hydrofluoric acid is used as the metal embrittlement agent.
[0013]
The oxidizing agent for the conductor is preferably at least one selected from hydrogen peroxide, nitric acid, potassium periodate, hypochlorous acid and ozone water.
The protective film forming agent is preferably at least one kind (BTAs) selected from benzotriazole and benzotriazole derivatives which have been widely used in the past.
[0014]
The acid is preferably an organic acid, and is preferably at least one selected from malic acid, citric acid, tartaric acid, and glycolic acid.
The water-soluble polymer is preferably at least one selected from polyacrylic acid and salts of polyacrylic acid.
The conductor is a metal film made of a deposited film including at least one metal layer selected from copper or a copper alloy and an oxide of copper or a copper alloy.
The substrate polishing method of the present invention is preferably a polishing method for polishing copper or a copper alloy.
[0015]
The polishing method of the present invention, while supplying the polishing liquid on the polishing cloth of the polishing platen, while relatively moving the polishing platen and the substrate while pressing the substrate having the film to be polished against the polishing cloth The film to be polished can be polished.
According to the present invention, the metal embrittlement agent chemically acts on the surface of the film to be polished to weaken the surface thereof, and the polishing scratches can be reduced by performing the CMP with greater chemical action.
[0016]
In the present invention, a metal film containing copper or a copper alloy (copper / chromium or the like) is formed and filled on a substrate having a concave portion on the surface. When this substrate is subjected to CMP using the polishing slurry for metal according to the present invention, the metal film on the convex portion of the substrate is selectively CMPed, leaving the metal film in the concave portion to obtain a desired conductor pattern.
[0017]
The polishing method of the present invention comprises a polishing liquid containing a metal embrittlement agent, abrasive grains, an oxidizing agent for a conductor, a protective film forming agent for a metal surface, an acid, a water-soluble polymer, and water between a polishing film and a polishing cloth. This is a method of polishing a substrate in which a substrate and a polishing platen are relatively moved while being supplied to the substrate to polish the polishing film while weakening the polishing film.
[0018]
The abrasive concentration of the abrasive of the present invention is preferably 0.01% by weight to 10% by weight, more preferably 0.05% by weight to 5% by weight. When the amount is less than 0.01% by weight, there is no significant difference from the polishing rate when no abrasive grains are contained. When the amount exceeds 10% by weight, the polishing rate by CMP saturates, and no increase is observed even if more than 10% by weight is added. .
[0019]
As the abrasive grains of the abrasive of the present invention, silica, alumina, ceria, titania, zirconia, germania, inorganic abrasive grains such as silicon carbide, polystyrene, polyacryl, may be any of organic abrasive grains such as polyvinyl chloride, Colloidal silica or colloidal alumina having good dispersion stability in a polishing liquid, a small number of polishing scratches (scratch) generated by CMP, and an average particle diameter of 100 nm or less is preferable. It is known that colloidal silica is produced by hydrolysis of silicon alkoxide or ion exchange of sodium silicate. A method for producing colloidal alumina by hydrolysis of aluminum nitrate is known.
[0020]
Hydrofluoric acid is used as the metal embrittlement agent.
Examples of the oxidizing agent for the conductor of the abrasive of the present invention include hydrogen peroxide (H 2 O 2 ), nitric acid, potassium periodate, hypochlorous acid, and ozone water. Among them, hydrogen peroxide is particularly preferable. . When the substrate is a silicon substrate including an element for an integrated circuit, contamination by an alkali metal, an alkaline earth metal, a halide, or the like is not desirable. Therefore, an oxidizing agent containing no nonvolatile component is desirable. However, hydrogen peroxide is most suitable because the composition of ozone water changes drastically with time. However, when the substrate to be applied is a glass substrate or the like containing no semiconductor element, an oxidizing agent containing a nonvolatile component may be used.
[0021]
Examples of the protective film forming agent of the polishing liquid include benzotriazole (BTA) and BTA derivatives, for example, those in which one hydrogen atom of the benzene ring of BTA is substituted with a methyl group (tolyltriazole) or those in which one hydrogen atom is substituted with a carboxyl group (benzotriazole) -4-carboxylic acid methyl, ethyl, propyl, butyl and octyl esters) or naphthotriazole, naphthotriazole derivatives and mixtures containing these.
[0022]
As the acid of the polishing liquid, formic acid, acetic acid, propionic acid, butyric acid, valeric acid, 2-methylbutyric acid, n-hexanoic acid, 3,3-dimethylbutyric acid, 2-ethylbutyric acid, 4-methylpentanoic acid, n-heptane Acid, 2-methylhexanoic acid, n-octanoic acid, 2-ethylhexanoic acid, benzoic acid, glycolic acid, salicylic acid, glyceric acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, Maleic acid, phthalic acid, malic acid, tartaric acid, citric acid and the like, and salts of such organic acids such as ammonium salt, sulfuric acid, nitric acid, ammonia, ammonium salts such as ammonium persulfate, ammonium nitrate, ammonium chloride, chromic acid and the like or And mixtures thereof. Among these, malic acid, tartaric acid, citric acid, and glycolic acid are preferable in that a practical CMP polishing rate can be obtained.
[0023]
As the water-soluble polymer of the polishing liquid, those selected from the following group are preferable, and polyacrylic acid, ammonium polyacrylate, sodium polyacrylate, polymethacrylic acid, polyammonium polymethacrylate, Examples thereof include polymers having a basic structural unit of a monomer having a carboxyl group such as sodium methacrylate and polyacrylamide, and salts thereof, and polymers having a basic structural unit of a monomer having a vinyl group such as polyvinyl alcohol and polyvinylpyrrolidone. However, when the substrate to be applied is a silicon substrate for a semiconductor integrated circuit or the like, an acid or an ammonium salt thereof is preferable because contamination by an alkali metal, an alkaline earth metal, a halide, or the like is not desirable. This is not the case when the substrate is a glass substrate or the like.
[0024]
These water-soluble polymers have a metal surface protective film forming effect, and due to the synergistic effect with the protective film forming agent and the protective film forming effect of the water-soluble polymer on the substrate surface, flattening characteristics such as dishing are provided. Can be improved.
The conductor film to which the present invention is applied is a metal film made of a deposited film including at least one metal layer selected from copper or a copper alloy and an oxide of copper or a copper alloy.
[0025]
In the CMP abrasive of the present invention, the pH of the abrasive is preferably from 1 to 5, more preferably from 1.5 to 4, and even more preferably from 2 to 4. If the pH is less than 1, the surface roughness of the oxide film becomes remarkable, and if the pH is more than 5, the polishing rate decreases.
[0026]
The compounding amount of the metal embrittlement agent of the CMP abrasive of the present invention is based on 100 g of the total amount of the metal embrittlement agent, abrasive grains, metal oxidizing agent, metal oxide dissolving agent, protective film forming agent, water-soluble polymer and water. It is preferably from 0 to 0.05 mol, more preferably from 0.00005 mol to 0.005 mol. If the amount exceeds 0.05 mol, it becomes difficult to adjust the pH of the above-mentioned CMP polishing agent within a preferable range.
[0027]
The compounding amount of the metal oxidizing agent of the CMP abrasive of the present invention is based on the total amount of 100 g of the metal weakening agent, abrasive grains, metal oxidizing agent, metal oxide dissolving agent, protective film forming agent, water-soluble polymer and water. , 0.003 mol to 0.7 mol, more preferably 0.03 mol to 0.5 mol, and particularly preferably 0.2 mol to 0.3 mol. When the amount is less than 0.003 mol, the metal is not sufficiently oxidized and the CMP rate is low. When the amount exceeds 0.7 mol, the polished surface tends to be rough.
[0028]
The compounding amount of the protective film forming agent of the CMP abrasive of the present invention is 0.1 to 100 g of the total amount of the metal embrittlement agent, abrasive grains, metal oxidizing agent, acid, protective film forming agent, water-soluble polymer and water. It is preferably from 0001 mol to 0.05 mol, more preferably from 0.0003 mol to 0.005 mol, and particularly preferably from 0.0005 mol to 0.0035 mol. If the amount is less than 0.0001 mol, the suppression of etching tends to be difficult. If the amount exceeds 0.05 mol, the CMP rate tends to be low.
[0029]
The compounding amount of the acid of the CMP abrasive of the present invention is 0 to 0.005 mol based on 100 g of the total amount of the metal embrittlement agent, abrasive grains, metal oxidizing agent, acid, protective film forming agent, water-soluble polymer and water. Is preferably set to 0.00005 mol to 0.0025 mol, and particularly preferably set to 0.0005 mol to 0.0015 mol. If the amount exceeds 0.005 mol, the suppression of etching tends to be difficult.
[0030]
The compounding amount of the water-soluble polymer in the CMP abrasive of the present invention is 0.001 to the total amount of the metal embrittlement agent, abrasive grains, metal oxidizing agent, acid, protective film forming agent, water-soluble polymer and water. , Preferably from 0.003 to 0.1% by weight, more preferably from 0.01 to 0.08% by weight. When the amount is less than 0.001% by weight, the effect of using the protective film forming agent in combination with the protective film does not tend to be exerted in suppressing etching, and when the amount exceeds 0.3% by weight, the CMP rate tends to decrease.
[0031]
As the polishing apparatus, a general polishing apparatus having a holder for holding a semiconductor substrate and a platen on which a polishing cloth (pad) is attached (a motor or the like whose rotation speed can be changed) is attached can be used. As the polishing cloth, a general nonwoven fabric, foamed polyurethane, porous fluororesin, or the like can be used, and there is no particular limitation. Further, it is preferable that the polishing cloth is subjected to a groove processing for accumulating the CMP abrasive. The polishing conditions are not particularly limited, but the rotation speed of the platen is preferably 200 min -1 or less so that the semiconductor substrate does not jump out, and the pressure applied to the semiconductor substrate is 9.8 × so as not to cause scratches after polishing. It is preferably 10 4 Pa or less. During polishing, the slurry is continuously supplied to the polishing cloth by a pump or the like. Although the supply amount is not limited, it is preferable that the surface of the polishing pad is always covered with the slurry. After the polishing is completed, the semiconductor substrate is preferably washed well in running water, and then dried by spin-drying or the like to remove water droplets attached to the semiconductor substrate.
[0032]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples.
[0033]
(Method of preparing polishing liquid 1)
0.3 parts by weight of colloidal silica having an average particle size of 20 nm produced by hydrolysis of tetraethoxysilane in an aqueous ammonia solution as abrasive grains, 0.29 parts by weight of BTA as a protective film forming agent, 0.21 parts by weight of malic acid, As a water-soluble polymer, 0.57 parts by weight of ammonium polyacrylate, 0.71 part by weight of methanol, 28.57 parts by weight of 2.5% by weight hydrofluoric acid, and 69.35 parts by weight of deionized water were added and dissolved. A mixture was prepared. The above mixture and hydrogen peroxide (special grade reagent, 30% aqueous solution) were mixed at a weight ratio of 7: 3.
[0034]
(Method of preparing polishing liquid 2)
0.3 parts by weight of colloidal silica having an average particle diameter of 20 nm produced by hydrolysis of tetraethoxysilane in an aqueous ammonia solution as abrasive grains, 0.29 parts by weight of BTA as a protective film forming agent, 0.21 parts by weight of malic acid, A mixed solution was prepared by adding 0.57 parts by weight of ammonium polyacrylate, 0.71 part by weight of methanol, and 97.92 parts by weight of deionized water as water-soluble polymers. The above mixture and hydrogen peroxide (special grade reagent, 30% aqueous solution) were mixed at a weight ratio of 7: 3.
[0035]
(Polishing conditions)
Substrate: Silicon substrate polishing pad with 1 μm thick copper film Polishing pad: Foamed polyurethane resin with closed cells Polishing pressure: 140 gf / cm 2
Relative speed between substrate and polishing platen: 100 m / min
(Abrasive product evaluation items)
CMP speed: The difference in film thickness before and after the CMP of the copper film was calculated from the electrical resistance value.
The presence or absence of polishing scratches was confirmed by visual observation of the substrate after CMP and observation by an optical microscope.
[0036]
(Example 1)
First, the polishing film 1 was used to polish the copper film of the substrate for one minute. The presence or absence of polishing flaws was confirmed by visual inspection of the substrate after CMP and observation with an optical microscope. As a result, no polishing scratches were found.
[0037]
(Comparative Example 1)
Using the polishing liquid 2, the copper film on the substrate was polished for 1 minute. The presence or absence of polishing flaws was confirmed by visual inspection of the substrate after CMP and observation with an optical microscope. As a result, there were 20 polishing scratches.
Table 1 shows the evaluation results of the CMP rate in Example 1 and Comparative Example 1.
[0038]
[Table 1]
Figure 2004193477
As shown in Example 1, the abrasive containing the metal embrittlement agent has no polishing scratches on the substrate after CMP, and the CMP speed has a value equivalent to that of the abrasive containing no metal embrittlement material.
[0039]
【The invention's effect】
Since the CMP abrasive of the present invention contains a metal embrittlement agent, the surface to be polished of the metal film can be polished at high speed without being damaged.

Claims (3)

金属脆弱化剤、砥粒、金属の酸化剤、金属表面に対する保護膜形成剤、酸、水溶性高分子及び水を含有する半導体金属膜用CMP研磨材。A CMP abrasive for semiconductor metal films containing a metal embrittlement agent, abrasive grains, a metal oxidizing agent, a protective film forming agent for a metal surface, an acid, a water-soluble polymer and water. 金属脆弱化剤がフッ化水素酸である請求項1記載の半導体金属膜用CMP研磨材。The CMP polishing material for a semiconductor metal film according to claim 1, wherein the metal embrittlement agent is hydrofluoric acid. 研磨する膜を形成した基板を研磨定盤の研磨布に押し当て、金属脆弱化剤、砥粒、金属の酸化剤、金属表面に対する保護膜形成剤、酸、水溶性高分子及び水を含有する半導体金属膜用CMP研磨材を、研磨膜と研磨布との間に供給しながら、基板と研磨定盤を相対的に移動させて、研磨膜を脆弱化しながら研磨する基板の研磨方法。The substrate on which the film to be polished is formed is pressed against the polishing cloth of the polishing platen, and contains a metal weakening agent, abrasive grains, a metal oxidizing agent, a protective film forming agent for the metal surface, an acid, a water-soluble polymer and water. A substrate polishing method for polishing a semiconductor metal film by polishing the weakened polishing film by relatively moving the substrate and the polishing platen while supplying the CMP polishing material for the semiconductor metal film between the polishing film and the polishing cloth.
JP2002362172A 2002-12-13 2002-12-13 Cmp abrasive and polishing method of substrate Pending JP2004193477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002362172A JP2004193477A (en) 2002-12-13 2002-12-13 Cmp abrasive and polishing method of substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002362172A JP2004193477A (en) 2002-12-13 2002-12-13 Cmp abrasive and polishing method of substrate

Publications (1)

Publication Number Publication Date
JP2004193477A true JP2004193477A (en) 2004-07-08

Family

ID=32760698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002362172A Pending JP2004193477A (en) 2002-12-13 2002-12-13 Cmp abrasive and polishing method of substrate

Country Status (1)

Country Link
JP (1) JP2004193477A (en)

Similar Documents

Publication Publication Date Title
KR100510977B1 (en) Polishing compound for chemimechanical polishing and method for polishing substrate
JP2004031443A (en) Polishing solution and polishing method
JPWO2004030062A1 (en) Abrasive composition, method for producing the same, and polishing method
JP3780767B2 (en) Polishing liquid for metal and method for polishing substrate
JP4992826B2 (en) Polishing liquid and polishing method
JP4951808B2 (en) Polishing liquid for metal and polishing method
JP4555990B2 (en) CMP polishing liquid for semiconductor metal film and method for polishing substrate
JP2002270546A (en) Polishing liquid for conductor and polishing method using the same
JP4164941B2 (en) Polishing liquid for metal and polishing method
JP2004031442A (en) Polishing solution and polishing method
JP2003068683A (en) Polishing liquid for metal and method for polishing
JP4759779B2 (en) Substrate polishing method
JP4683681B2 (en) Polishing liquid for metal and substrate polishing method using the same
JP4684121B2 (en) Chemical mechanical polishing abrasive and substrate polishing method
JPWO2004012248A1 (en) Polishing liquid and polishing method
JP2001068437A (en) Polishing liquid and polishing method for metal
JP4224221B2 (en) Polishing liquid for conductor and polishing method using the same
JP2004193477A (en) Cmp abrasive and polishing method of substrate
JP2004123931A (en) Polishing solution and polishing method
JP2005116873A (en) Cmp abrasive and polishing method of substrate
JP2009152647A (en) Metal polishing solution and substrate polishing method using the same
JP4710915B2 (en) Polishing method
JP4774669B2 (en) Polishing liquid and polishing method
JP2004014998A (en) Polishing precess of substrate
JP2006191132A (en) Abrasive powder for chemical mechanical polishing and method for polishing substrate