JP4951808B2 - Polishing liquid for metal and polishing method - Google Patents

Polishing liquid for metal and polishing method Download PDF

Info

Publication number
JP4951808B2
JP4951808B2 JP2000327296A JP2000327296A JP4951808B2 JP 4951808 B2 JP4951808 B2 JP 4951808B2 JP 2000327296 A JP2000327296 A JP 2000327296A JP 2000327296 A JP2000327296 A JP 2000327296A JP 4951808 B2 JP4951808 B2 JP 4951808B2
Authority
JP
Japan
Prior art keywords
metal
polishing
acid
polishing liquid
pyrimidine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000327296A
Other languages
Japanese (ja)
Other versions
JP2002134442A (en
Inventor
仁 天野倉
克之 増田
靖 倉田
剛 内田
裕樹 寺崎
康雄 上方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP2000327296A priority Critical patent/JP4951808B2/en
Publication of JP2002134442A publication Critical patent/JP2002134442A/en
Application granted granted Critical
Publication of JP4951808B2 publication Critical patent/JP4951808B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F3/00Brightening metals by chemical means
    • C23F3/04Heavy metals
    • C23F3/06Heavy metals with acidic solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F3/00Brightening metals by chemical means
    • C23F3/04Heavy metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Weting (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、特に半導体デバイスの配線工程において好適に用いられる金属用研磨液及びそれを用いた研磨法に関する。
【0002】
【従来の技術】
近年、半導体集積回路(LSI)の高集積化、高性能化に伴って新たな微細加工技術が開発されている。化学機械研磨(CMP)法もその一つであり、LSI製造工程、特に多層配線形成工程における層間絶縁膜の平坦化、金属プラグ形成、埋め込み配線形成において頻繁に利用される技術である。この技術は、例えば米国特許第4944836号明細書に開示されている。
【0003】
近年、LSIを高性能化するために、配線材料として銅合金の利用が試みられている。しかし、銅合金は従来のアルミニウム合金配線の形成で頻繁に用いられたドライエッチング法による微細加工が困難である。そこで、あらかじめ溝を形成してある絶縁膜上に銅合金薄膜を堆積して埋め込み、溝部以外の銅合金薄膜をCMPにより除去して埋め込み配線を形成する、いわゆるダマシン法が主に採用されている。この技術は、例えば特開平2−278822号公報に開示されている。
【0004】
金属のCMPの一般的な方法は、円形の研磨定盤(プラテン)上に研磨パッドを貼り付け、研磨パッド表面を金属用研磨液で浸し、基体の金属膜を形成した面を押し付けて、その裏面から所定の圧力(研磨圧力或いは研磨荷重)を加えた状態で研磨定盤を回し、研磨液と金属膜の凸部との機械的摩擦によって凸部の金属膜を除去するものである。
【0005】
CMPに用いられる金属用研磨液は、一般には酸化剤及び固体砥粒からなっており必要に応じてさらに酸化金属溶解剤、金属防食剤が添加される。まず酸化によって金属膜表面を酸化し、その酸化層を固体砥粒によって削り取るのが基本的なメカニズムと考えられている。凹部の金属表面の酸化層は研磨パッドにあまり触れず、固体砥粒による削り取りの効果が及ばないので、CMPの進行とともに凸部の金属層が除去されて基体表面は平坦化される。この詳細についてはジャ−ナル・オブ・エレクトロケミカルソサエティ誌(Journal of Electrochemical Society)の第138巻11号(1991年発行)の3460〜3464頁に開示されている。
【0006】
CMPによる研磨速度を高める方法として酸化金属溶解剤を添加することが有効とされている。固体砥粒によって削り取られた金属酸化物の粒を研磨液に溶解させてしまうと固体砥粒による削り取りの効果が増すためであると解釈できる。但し、凹部の金属膜表面の酸化層も溶解(エッチング)されて金属膜表面が露出すると、酸化剤によって金属膜表面がさらに酸化され、これが繰り返されると凹部の金属膜のエッチングが進行してしまい、平坦化効果が損なわれることが懸念される。これを防ぐためにさらに金属防食剤が添加される。平坦化特性を維持するためには、酸化金属溶解剤と金属防食剤の効果のバランスを取ることが重要であり、凹部の金属膜表面の酸化層はあまりエッチングされず、削り取られた酸化層の粒が効率良く溶解されCMPによる研磨速度が大きいことが望ましい。
【0007】
このように酸化金属溶解剤と金属防食剤を添加して化学反応の効果を加えることにより、CMPによる研磨速度が向上すると共に、CMPされる金属層表面の損傷(ダメ−ジ)も低減される効果が得られる。
【0008】
しかしながら、従来のCMPによる埋め込み配線形成は、(1)埋め込まれた金属配線の表面中央部分が等方的に腐食されて皿の様に窪む現象(ディッシング)の発生、配線密度の高い部分で絶縁膜も研磨されて金属配線の厚みが薄くなる現象(エロージョン或いはシニング)の発生、(2)研磨傷(スクラッチ)の発生、(3)研磨後の基体表面に残留する研磨カスを除去するための洗浄プロセスが複雑であること、(4)廃液処理に起因するコストアップ、(5)金属の腐食、等の問題が生じる。
【0009】
ディッシングや研磨中の銅合金の腐食を抑制し、信頼性の高いLSI配線を形成するために、グリシン等のアミノ酢酸又はアミド硫酸からなる酸化金属溶解剤及びBTA(ベンゾトリアゾ−ル)を含有する金属用研磨液を用いる方法が提唱されている。この技術は例えば特開平8−83780号公報に記載されている。
【0010】
銅または銅合金のダマシン配線形成やタングステン等のプラグ配線形成等の金属埋め込み形成においては、埋め込み部分以外に形成される層間絶縁膜である2酸化シリコン膜の研磨速度も大きい場合には、層間絶縁膜ごと配線の厚みが薄くなるエロージョンが発生する。その結果、配線抵抗の増加やパターン密度等により抵抗のばらつきが生じるために、研磨される金属膜に対して二酸化シリコン膜の研磨速度が十分小さい特性が要求される。そこで、酸の解離により生ずる陰イオンにより二酸化シリコンの研磨速度を抑制するため、研磨液のpHをpKa−0.5よりも大きくする方法が提唱されている。この技術は、例えば特許第2819196号公報に記載されている。
【0011】
一方、配線の銅或いは銅合金等の下層には、層間絶縁膜中への銅拡散防止のためにバリア層として、タングステンや窒化タングステン及びタングステン合金やその他のタングステン化合物等が形成される。したがって、銅或いは銅合金を埋め込む配線部分以外では、露出したバリア層をCMPにより取り除く必要がある。しかし、これらのバリア層導体膜は、銅或いは銅合金に比べ硬度が高いために、銅または銅合金用の研磨材料の組み合わせでは十分なCMP速度が得られず、バリア層をCMPにより取り除く間に銅または銅合金等がエッチングされ配線厚さが低下するという問題が生じる。
【0012】
【発明が解決しようとする課題】
本発明の目的は、金属の研磨速度が大きくエッチング速度が小さいため、生産性が高く、ディッシング及びエロージョンが小さい金属用研磨液を提供することにあり、微細化、薄膜化、寸法精度、電気特性に優れ、信頼性の高い半導体デバイスの製造に好適な金属用研磨液を提供することにある。
本発明の他の目的は、上記の発明の効果に加え、さらに金属の腐食が小さい金属用研磨液を提供することにあり、微細化、薄膜化、寸法精度、電気特性に優れ、信頼性の高い半導体デバイスの製造に好適な金属用研磨液を提供することにある。
本発明の他の目的は、上記の発明の効果に加え、さらに研磨速度が大きい金属用研磨液を提供することにあり、微細化、薄膜化、寸法精度、電気特性に優れ、信頼性の高い半導体デバイスの製造に好適な金属用研磨液を提供することにある。
本発明の他の目的は、上記の発明の効果に加え、さらに研磨速度が大きい金属用研磨液を提供することにあり、微細化、薄膜化、寸法精度、電気特性に優れ、信頼性の高い半導体デバイスの製造に好適な金属用研磨液を提供することにある。
本発明の他の目的は、上記の発明の効果に加え、さらに生産性が高くディッシング及びエロージョンが小さい金属用研磨液を提供することにあり、微細化、薄膜化、寸法精度、電気特性に優れ、信頼性の高い半導体デバイスの製造に好適な金属用研磨液を提供することにある。
本発明の他の目的は、上記の発明の効果に加え、さらに研磨の面内均一性が高い金属用研磨液を提供することにあり、微細化、薄膜化、寸法精度、電気特性に優れ、信頼性の高い半導体デバイスの製造に好適な金属用研磨液を提供することにある。
本発明の他の目的は、上記の発明の効果に加え、さらに研磨の面内均一性が高い金属用研磨液を提供することにあり、微細化、薄膜化、寸法精度、電気特性に優れ、信頼性の高い半導体デバイスの製造に好適な金属用研磨液を提供することにある。
本発明の他の目的は、上記の発明の効果に加え、さらに研磨傷(スクラッチ)が少なく、研磨後の基体表面に残留する研磨カスが少ない金属用研磨液を提供することにあり、微細化、薄膜化、寸法精度、電気特性に優れ、信頼性の高い半導体デバイスの製造に好適な金属用研磨液を提供することにある。
本発明の他の目的は、銅、銅合金及び銅又は銅合金の酸化物用として、上記の発明の効果を有する金属用研磨液を提供することにあり、微細化、薄膜化、寸法精度、電気特性に優れ、信頼性の高い半導体デバイスの製造に好適な金属用研磨液を提供することにある。
本発明の他の目的は、タングステン、窒化タングステン、タングステン合金、その他のタングステン化合物等のバリア層用として、上記の発明の効果を有する金属用研磨液を提供することにあり、微細化、薄膜化、寸法精度、電気特性に優れ、信頼性の高い半導体デバイスの製造に好適な金属用研磨液を提供することにある。
に好適である。
本発明の他の目的は、微細化、薄膜化、寸法精度、電気特性に優れ、信頼性の高い半導体デバイスの研磨方法を提供することにある。
本発明の他の目的は、上記の発明の効果に加え、さらに生産性に優れる半導体デバイスの研磨方法を提供することにある。
【0013】
【課題を解決するための手段】
本発明は、酸化剤、酸化金属溶解剤、金属防食剤、及び水を含有する研磨液であり、金属防食剤がピリミジン骨格を有する化合物であることを特徴とする金属用研磨液に関する。
本発明は、上記ピリミジン骨格を有する化合物が、4−アミノピラゾロ[3,4−d]ピリミジン、1,2,4−トリアゾロ[1,5−a]ピリミジン、2−メチル−5,7−ジフェニル−(1,2,4)トリアゾロ[1,5−a] ピリミジン及び2−メチルサルファニル−5,7−ジフェニル−(1,2,4)トリアゾロ[1,5−a]ピリミジンから選ばれる少なくとも1種の化合物である金属用研磨液に関する。
本発明は、上記金属防食剤が、ピリミジン骨格を有する化合物とトリアゾール骨格を有する化合物とを併用することを特徴とする金属用研磨液関する。
本発明は、トリアゾール骨格を有する化合物が1,2,3−トリアゾール、1,2,4−トリアゾール、3−アミノ−1H−1,2,4−トリアゾール、ベンゾトリアゾール、1−ヒドロキシベンゾトリアゾールから選ばれる少なくとも1種の化合物である金属用研磨液に関する。
本発明は、上記金属の酸化剤が、過酸化水素、硝酸、過ヨウ素酸カリウム、次亜塩素酸及びオゾン水から選ばれる少なくとも1種の化合物である金属用研磨液に関する。
本発明は、重量平均分子量が500以上の水溶性ポリマーを含有する上記金属用研磨液に関する。
本発明は、重量平均分子量が500以上の水溶性ポリマーが、多糖類、ポリカルボン酸、ポリカルボン酸エステル及びそれらの塩、並びにビニル系ポリマーから選ばれた少なくとも1種のポリマーから選ばれた少なくとも1種のポリマーである上記金属用研磨液に関する。
本発明は、上記酸化金属溶解剤が、有機酸、有機酸エステル、有機酸のアンモニウム塩から選ばれる少なくとも1種の化合物である金属用研磨液に関する。
本発明は、研磨される金属が、銅、銅合金及び銅若しくは銅合金の酸化物から選ばれる少なくとも1種を含む金属である上記金属用研磨液に関する。
本発明は、研磨される金属のバリア層が、タングステン、窒化タングステン、タングステン合金、又はその他のタングステン化合物である上記金属用研磨液に関する。
本発明は、研磨定盤の研磨布上に上記金属用研磨液を供給しながら、被研磨膜を有する基板を研磨布に押圧した状態で研磨定盤と基板を相対的に動かすことによって被研磨膜を研磨することを特徴とする研磨方法に関する。
本発明は、研磨定盤の研磨布上に上記金属用研磨液を供給しながら、金属とバリア層を連続して研磨する上記研磨方法に関する。
【0014】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明の金属用研磨液は、主要構成成分として金属の酸化剤、酸化金属溶解剤、金属防食剤、及び水からなる。
【0015】
本発明の金属の酸化剤としては、過酸化水素(H)、硝酸、過ヨウ素酸カリウム、次亜塩素酸、オゾン水等が挙げられ、その中でも過酸化水素が特に好ましい。これらは1種類単独で、若しくは2種類以上混合して用いることができる。基体が集積回路用素子を含むシリコン基板である場合、アルカリ金属、アルカリ土類金属、ハロゲン化物などによる汚染は望ましくないので、不揮発成分を含まない酸化剤が望ましい。但し、オゾン水は組成の時間変化が激しいので過酸化水素が最も適している。但し、適用対象の基体が半導体素子を含まないガラス基板などである場合は不揮発成分を含む酸化剤であっても差し支えない。
【0016】
本発明の酸化金属溶解剤は、水溶性のものであれば特に制限はないが、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、2−メチル酪酸、n−ヘキサン酸、3,3−ジメチル酪酸、2−エチル酪酸、4−メチルペンタン酸、n−ヘプタン酸、2−メチルヘキサン酸、n−オクタン酸、2−エチルヘキサン酸、安息香酸、グリコ−ル酸、サリチル酸、グリセリン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フタル酸、リンゴ酸、酒石酸、クエン酸等の有機酸、これらの有機酸エステル及びこれら有機酸のアンモニウム塩等が挙げられる。また塩酸、硫酸、硝酸等の無機酸、これら無機酸のアンモニウム塩類、例えば過硫酸アンモニウム、硝酸アンモニウム、塩化アンモニウム等、クロム酸等が挙げられる。これらの中では、実用的なCMP速度を維持しつつ、エッチング速度を効果的に抑制できるという点でギ酸、マロン酸、リンゴ酸、酒石酸、クエン酸が銅、銅合金及び銅若しくは銅合金の酸化物から選ばれた少なくとも1種の金属層を含む積層膜に対して好適である。これらは1種類単独で、若しくは2種類以上混合して用いることができる。
【0017】
本発明の金属防食剤は、ピリミジン骨格を有するものであれば特に制限はなく、ピリミジン、1,2,4−トリアゾロ[1,5−a] ピリミジン、1,3,6,7,8−ヘキサハイドロ−2H−ピリミド[1,2−a] ピリミジン、1,3−ジフェニル−ピリミジン−2,4,6−トリオン、1,4,5,6−テトラハイドロピリミジン、2,4,5,6−テトラアミノピリミジンサルフェイト、2,4,5−トリハイドロキシピリミジン、2,4,6−トリアミノピリミジン、2,4,6−トリクロロピリミジン、2,4,6−トリメトキシピリミジン、2,4,6−トリフェニルピリミジン、2,4−ジアミノ−6−ヒドロキシルピリミジン、2,4−ジアミノピリミジン、2−アセトアミドピリミジン、2−アミノピリミジン、2−メチル−5,7−ジフェニル−(1,2,4)トリアゾロ(1,5−a)ピリミジン、2−メチルサルファニル−5,7−ジフェニル−(1,2,4)トリアゾロ(1,5−a) ピリミジン、2−メチルサルファニル−5,7−ジフェニル−4,7−ジヒドロ−(1,2,4)トリアゾロ(1,5−a)ピリミジン、4−アミノピラゾロ[3,4−d] ピリミジン等が挙げられ、特に、研磨速度、エッチング速度の点から4−アミノピラゾロ[3,4−d]ピリミジン、1,2,4−トリアゾロ[1,5−a]ピリミジン、2−メチル−5,7−ジフェニル−(1,2,4)トリアゾロ[1,5−a] ピリミジン、2−メチルサルファニル−5,7−ジフェニル−(1,2,4)トリアゾロ(1,5−a) ピリミジンが好ましい。これらは1種類単独で、若しくは2種類以上混合して用いることができる。
【0018】
また、ピリミジン骨格を有する金属防食剤と併用するトリアゾール骨格を有する化合物としては、特に制限はないが、2−メルカプトベンゾチアゾール、1,2,3−トリアゾール、1,2,4−トリアゾール、3−アミノ−1H−1,2,4−トリアゾール、ベンゾトリアゾール、1−ヒドロキシベンゾトリアゾール、1−ジヒドロキシプロピルベンゾトリアゾール、2,3−ジカルボキシプロピルベンゾトリアゾール、4−ヒドロキシベンゾトリアゾール、4−カルボキシル(−1H−)ベンゾトリアゾール、4−カルボキシル(−1H−)ベンゾトリアゾールメチルルエステル、4−カルボキシル(−1H−)ベンゾトリアゾールブチルエステル、4−カルボキシル(−1H−)ベンゾトリアゾールオクチルエステル、5−ヘキシルベンゾトリアゾール、[1,2,3−ベンゾトリアゾリル−1−メチル][1,2,4−トリアゾリル−1−メチル][2−エチルヘキシル]アミン、トリルトリアゾール、ナフトトリアゾール、ビス[(1−ベンゾトリアゾリル)メチル]ホスホン酸等が挙げられる。
【0019】
本発明において用いられる水溶性ポリマーとしては、重量平均分子量が500以上であれば特に制限はなく、例えばアルギン酸、ペクチン酸、カルボキシメチルセルロース、寒天、カードラン及びプルラン等の多糖類;ポリアスパラギン酸、ポリグルタミン酸、ポリリシン、ポリリンゴ酸、ポリメタクリル酸、ポリメタクリル酸アンモニウム塩、ポリメタクリル酸ナトリウム塩、ポリアミド酸、ポリマレイン酸、ポリイタコン酸、ポリフマル酸、ポリ(p−スチレンカルボン酸)、ポリアクリル酸、ポリアクリルアミド、アミノポリアクリルアミド、ポリアクリル酸アンモニウム塩、ポリアクリル酸ナトリウム塩、ポリアミド酸、ポリアミド酸アンモニウム塩、ポリアミド酸ナトリウム塩及びポリグリオキシル酸等のポリカルボン酸、ポリカルボン酸エステル及びそれらの塩;ポリビニルアルコ−ル、ポリビニルピロリドン及びポリアクロレイン等のビニル系ポリマー等が挙げられる。但し、適用する基体が半導体集積回路用シリコン基板などの場合はアルカリ金属、アルカリ土類金属、ハロゲン化物等による汚染は望ましくないため、酸若しくはそのアンモニウム塩が望ましい。基体がガラス基板等である場合はその限りではない。その中でもペクチン酸、寒天、ポリリンゴ酸、ポリメタクリル酸、ポリアクリル酸アンモニウム塩、ポリアクリルアミド、ポリビニルアルコール及びポリビニルピロリドン、それらのエステル及びそれらのアンモニウム塩が好ましい。
【0020】
本発明における金属の酸化剤の配合量は、金属の酸化剤、酸化金属溶解剤、金属防食剤、水溶性ポリマー及び水の総量100gに対して、0.1〜50gとすることが好ましく、0.2〜40gとすることがより好ましく、0.3〜30gとすることが特に好ましい。配合量が0.1g未満では、金属の酸化が不十分でCMP速度が低く、50gを超えると、研磨面に荒れが生じる傾向がある。
【0021】
本発明における酸化金属溶解剤成分の配合量は、金属の酸化剤、酸化金属溶解剤、金属防食剤、水溶性ポリマー及び水の総量100gに対して0.001〜10gとすることが好ましく、0.01〜8gとすることがより好ましく、0.02〜5gとすることが特に好ましい。この配合量が0.001g未満になると研磨カスが増加する傾向にあり、10gを超えると、エッチングの抑制が困難となる傾向がある。
【0022】
本発明における金属防食剤の配合量は、金属の酸化剤、酸化金属溶解剤、金属防食剤、水溶性ポリマー及び水の総量100gに対して0.001〜10gとすることが好ましく、0.01〜8gとすることがより好ましく、0.02〜5gとすることが特に好ましい。この配合量が0.001未満では、エッチングの抑制が困難となる傾向があり、10gを超えると研磨速度が低くなってしまう傾向がある。
【0023】
本発明における水溶性ポリマーの配合量は、金属の酸化剤、酸化金属溶解剤、金属防食剤、水溶性ポリマ及び水の総量100gに対して0〜10gとすることが好ましく、0.01〜8gとすることがより好ましく、0.02〜5gとすることが特に好ましい。この配合量が10gを超えると研磨速度が低下する傾向がある。
水溶性ポリマーの重量平均分子量は500以上とすることが好ましく、1500以上とすることがより好ましく5000以上とすることが特に好ましい。重量平均分子量の上限は特に規定するものではないが、溶解性の観点から500万以下である。重量平均分子量が500未満では高い研磨速度が発現しない傾向にある。本発明では、重量平均分子量が500以上である少なくとも1種以上の水溶性ポリマーを用いることが好ましい。
【0024】
本発明の金属用研磨液には、上述した材料のほかにアルミナ、シリカ、セリア等の固体砥粒、界面活性剤、ビクトリアピュアブルー等の染料、フタロシアニングリーン等の顔料等の着色剤を含有させてもよい。
【0025】
本発明を適用する金属としては、銅、銅合金及び銅若しくは銅合金の酸化物が挙げられ、公知のスパッタ法、メッキ法により成膜された金属膜に適用される。
【0026】
本発明を適用する金属のバリア層としては、タングステン、窒化タングステン、タングステン合金、その他のタングステン化合物、チタン、窒化チタン、チタン合金、その他のチタン化合物、タンタル、窒化タンタル、タンタル合金、その他のタンタル化合物、から選ばれた少なくとも1種の金属バリア層を含む積層膜である。
【0027】
本発明の研磨方法は、研磨定盤の研磨布上に前記の金属用研磨液を供給しながら、被研磨膜を有する基板を研磨布に押圧した状態で研磨定盤と基板を相対的に動かすことによって被研磨膜を研磨する研磨方法である。研磨する装置としては、半導体基板を保持するホルダと研磨布(パッド)を貼り付けた(回転数が変更可能なモータ等を取り付けてある)定盤を有する一般的な研磨装置が使用できる。研磨布としては、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂などが使用でき、特に制限がない。研磨条件には制限はないが、定盤の回転速度は基板が飛び出さないように200rpm以下の低回転が好ましい。被研磨膜を有する半導体基板の研磨布への押し付け圧力が1〜100KPaであることが好ましく、CMP速度のウエハ面内均一性及びパターンの平坦性を満足するためには、5〜50KPaであることがより好ましい。研磨している間、研磨布には金属用研磨液をポンプ等で連続的に供給する。この供給量に制限はないが、研磨布の表面が常に研磨液で覆われていることが好ましい。研磨終了後の半導体基板は、流水中でよく洗浄後、スピンドライ等を用いて半導体基板上に付着した水滴を払い落としてから乾燥させることが好ましい。
【0028】
【実施例】
以下、実施例により本発明を説明する。本発明はこれらの実施例により限定されるものではない。
(研磨液作製方法) 表1及び表2に示すような配合で実施例1〜8及び比較例1〜2で用いる金属用研磨液を作製した。
【0029】
【表1】

Figure 0004951808
【0030】
【表2】
Figure 0004951808
(研磨条件)
基体:厚さ1500nmの銅金属を形成したシリコン基板
厚さ200nmのタンタル膜を形成したシリコン基板
配線溝深さ0.5μm/バリア層:タンタル膜厚50nm/銅膜厚1.0μmのパターン付き基板
研磨パッド:(IC1000(ロデール社製))
研磨圧力:210g/cm(20.58KPa)、基体と研磨定盤との相対速度:36m/min(研磨品評価項目)
研磨速度:各膜の研磨前後での膜厚差を電気抵抗値から換算して求めた。
エッチング速度:攪拌した金属用研磨液(室温、25℃、攪拌100rpm)への浸漬前後の銅層膜厚差を電気抵抗値から換算して求めた。
ディッシング量:二酸化シリコン中に深さ0.5〜100μmの溝を形成して、公知のスパッタ法によってバリア層として厚さ50nmのタンタル膜を形成し、同様にスパッタ法により銅膜を1.0μm形成して公知の熱処理によって埋め込んだシリコン基板を用い、基体表面全面で二酸化シリコンが露出するまで研磨を行った。次に、触針式段差計で配線金属部幅100μm、絶縁膜部幅100μmが交互に並んだストライプ状パターン部の表面形状から、絶縁膜部に対する配線金属部の膜減り量を求めた。
エロージョン量:上記ディッシング量評価用基体に形成された配線金属部幅4.5μm、絶縁膜部幅0.5μmが交互に並んだ総幅2.5mmのストライプ状パターン部の表面形状を触針式段差計により測定し、ストライプ状パターン周辺の絶縁膜フィールド部に対するパターン中央付近の絶縁膜部の膜減り量を求めた。
配線抵抗量:基体表面全面で二酸化シリコンが露出するまで研磨を行った後に、配線抵抗値の測定を行った。ディッシング量測定部の幅100μm銅配線パターンにおいて、配線長さ1mmの配線抵抗値を測定した。また、エロージョン量測定部の幅4.5μm銅配線パターンにおいて、配線長さ1mmの配線抵抗値を測定した。
実施例1〜8及び比較例1〜2のCMPによる研磨速度、エッチング速度、ディッシング量、エロージョン量、及び配線抵抗値を表3及び表4に示した。
【0031】
【表3】
Figure 0004951808
【0032】
【表4】
Figure 0004951808
【0033】
比較例1では、タングステンバリア層のエッチング速度が大きいためにディッシング及びエロージョンが大きく配線抵抗値が増加している。また、比較例2では、銅金属及びタングステンバリア層のエッチング速度が大きいためにディッシング及びエロージョンが大きく配線抵抗値が増加している。それに対し実施例1〜8では、銅金属とタングステンバリア層のエッチング速度が小さいため良好なディッシング及びエロージョン特性により配線抵抗の増加が少ない。
【0034】
【発明の効果】
本発明により、金属の研磨速度が大きくエッチング速度が小さいため、生産性が高く、ディッシング及びエロージョンが小さい金属用研磨液が得られた。この金属用研磨液は、微細化、薄膜化、寸法精度、電気特性に優れ、信頼性の高い半導体デバイス及び機器に好適である。
本発明により、上記の発明の効果に加え、さらに金属の腐食が小さい金属用研磨液が得られた。この金属用研磨液は、微細化、薄膜化、寸法精度、電気特性に優れ、信頼性の高い半導体デバイス及び機器に好適である。
本発明により、上記の発明の効果に加え、さらに生産性が高くディッシング及びエロージョンが小さい金属用研磨液が得られた。この金属用研磨液は、微細化、薄膜化、寸法精度、電気特性に優れ、信頼性の高い半導体デバイス及び機器に好適である。
本発明により、上記の発明の効果に加え、さらに研磨の面内均一性が高い金属用研磨液が得られた。この金属用研磨液は、微細化、薄膜化、寸法精度、電気特性に優れ、信頼性の高い半導体デバイス及び機器に好適である。
本発明により、上記の発明の効果に加え、さらに研磨傷(スクラッチ)が少なく、研磨後の基体表面に残留する研磨カスが少ない金属用研磨液が得られた。この金属用研磨液は、微細化、薄膜化、寸法精度、電気特性に優れ、信頼性の高い半導体デバイス及び機器に好適である。
本発明により、銅、銅合金及び銅又は銅合金の酸化物用として、上記の発明の効果を有する金属用研磨液が得られた。この金属用研磨液は、微細化、薄膜化、寸法精度、電気特性に優れ、信頼性の高い半導体デバイス及び機器に好適である。
本発明により、タングステン、窒化タングステン、タングステン合金、その他のタングステン化合物等のバリア層用として、上記の発明の効果を有する金属用研磨液が得られた。この金属用研磨液は、微細化、薄膜化、寸法精度、電気特性に優れ、信頼性の高い半導体デバイス及び機器に好適である。
本発明により、微細化、薄膜化、寸法精度、電気特性に優れ、信頼性の高い半導体デバイスの研磨方法が得られた。
本発明により、上記の発明の効果に加え、さらに生産性に優れる半導体デバイスの研磨方法が得られた。[0001]
BACKGROUND OF THE INVENTION
In particular, the present invention relates to a metal polishing liquid suitably used in a wiring process of a semiconductor device and a polishing method using the same.
[0002]
[Prior art]
In recent years, new microfabrication techniques have been developed along with higher integration and higher performance of semiconductor integrated circuits (LSIs). The chemical mechanical polishing (CMP) method is one of them, and is a technique frequently used in the planarization of the interlayer insulating film, the formation of the metal plug, and the formation of the embedded wiring in the LSI manufacturing process, particularly in the multilayer wiring forming process. This technique is disclosed, for example, in US Pat. No. 4,944,836.
[0003]
In recent years, attempts have been made to use copper alloys as wiring materials in order to improve the performance of LSIs. However, it is difficult to finely process the copper alloy by the dry etching method frequently used in the formation of the conventional aluminum alloy wiring. Therefore, a so-called damascene method is mainly employed in which a copper alloy thin film is deposited and embedded on an insulating film in which grooves have been formed in advance, and the copper alloy thin film other than the grooves is removed by CMP to form embedded wiring. . This technique is disclosed, for example, in JP-A-2-278822.
[0004]
A general method of metal CMP is to apply a polishing pad on a circular polishing platen (platen), immerse the polishing pad surface with a metal polishing liquid, and press the surface on which the metal film of the substrate is formed. The polishing platen is rotated in a state where a predetermined pressure (polishing pressure or polishing load) is applied from the back surface, and the metal film on the convex portion is removed by mechanical friction between the polishing liquid and the convex portion of the metal film.
[0005]
The metal polishing liquid used in CMP is generally composed of an oxidizer and solid abrasive grains, and a metal oxide solubilizer and a metal anticorrosive are further added as necessary. It is considered that the basic mechanism is to first oxidize the surface of the metal film by oxidation and scrape the oxidized layer with solid abrasive grains. Since the oxide layer on the metal surface of the recess does not touch the polishing pad so much and does not have the effect of scraping off by the solid abrasive grains, the metal layer of the projection is removed and the substrate surface is flattened with the progress of CMP. The details are disclosed in Journal of Electrochemical Society, Vol. 138, No. 11 (published in 1991), pages 3460 to 3464.
[0006]
As a method for increasing the polishing rate by CMP, it is effective to add a metal oxide dissolving agent. It can be interpreted that the effect of scraping with the solid abrasive grains increases when the metal oxide grains scraped with the solid abrasive grains are dissolved in the polishing liquid. However, if the oxide layer on the surface of the metal film in the recess is dissolved (etched) and the metal film surface is exposed, the surface of the metal film is further oxidized by the oxidizing agent, and if this is repeated, the etching of the metal film in the recess proceeds. There is a concern that the flattening effect is impaired. In order to prevent this, a metal anticorrosive is further added. In order to maintain the flattening characteristics, it is important to balance the effects of the metal oxide solubilizer and the metal anticorrosive agent. The oxide layer on the metal film surface in the recess is not etched so much, and the etched oxide layer It is desirable that the grains are efficiently dissolved and the polishing rate by CMP is high.
[0007]
Thus, by adding a metal oxide solubilizer and a metal anticorrosive to add the effect of chemical reaction, the polishing rate by CMP is improved and damage (damage) on the surface of the metal layer to be CMP is also reduced. An effect is obtained.
[0008]
However, the conventional embedded wiring formation by CMP is (1) a phenomenon in which the central portion of the surface of the embedded metal wiring is isotropically corroded and becomes a dish-like recess (dishing), and the wiring density is high. In order to remove the phenomenon (erosion or thinning) that the insulating film is also polished and the metal wiring is thinned (erosion or thinning), (2) polishing scratches (scratches), and (3) polishing residue remaining on the substrate surface after polishing. (4) Cost increase caused by waste liquid treatment, (5) Corrosion of metal, and the like occur.
[0009]
Metals containing metal oxide solubilizers made of aminoacetic acid or amidosulfuric acid such as glycine and BTA (benzotriazole) to suppress corrosion of copper alloys during dishing and polishing and to form highly reliable LSI wiring A method of using a polishing liquid for the use has been proposed. This technique is described, for example, in JP-A-8-83780.
[0010]
In metal embedding formation such as damascene wiring formation of copper or copper alloy or plug wiring formation of tungsten or the like, when the polishing rate of the silicon dioxide film which is an interlayer insulating film formed other than the embedded portion is high, interlayer insulation Erosion occurs in which the thickness of the wiring is reduced with each film. As a result, resistance variation occurs due to an increase in wiring resistance, pattern density, and the like, so that a characteristic in which the polishing rate of the silicon dioxide film is sufficiently small with respect to the metal film to be polished is required. Therefore, in order to suppress the polishing rate of silicon dioxide by anions generated by acid dissociation, a method of increasing the pH of the polishing liquid to be higher than pKa-0.5 has been proposed. This technique is described in, for example, Japanese Patent No. 2819196.
[0011]
On the other hand, tungsten, tungsten nitride, a tungsten alloy, other tungsten compounds, or the like is formed as a barrier layer to prevent copper diffusion into the interlayer insulating film in the lower layer of copper or copper alloy of the wiring. Therefore, it is necessary to remove the exposed barrier layer by CMP except for the wiring portion in which copper or copper alloy is embedded. However, since these barrier layer conductor films have higher hardness than copper or copper alloy, a sufficient CMP rate cannot be obtained by a combination of polishing materials for copper or copper alloy, and the barrier layer is removed by CMP. A problem arises in that copper or copper alloy or the like is etched to reduce the wiring thickness.
[0012]
[Problems to be solved by the invention]
An object of the present invention is to provide a metal polishing liquid having high productivity and low dishing and erosion because the metal polishing rate is high and the etching rate is low, and miniaturization, thinning, dimensional accuracy, and electrical characteristics are provided. An object of the present invention is to provide a metal polishing slurry that is excellent in manufacturing a highly reliable semiconductor device.
Another object of the present invention is to provide a metal-polishing liquid that has further reduced metal corrosion in addition to the effects of the above-described invention, and is excellent in miniaturization, thinning, dimensional accuracy, electrical characteristics, and reliability. An object of the present invention is to provide a metal-polishing liquid suitable for manufacturing a high-semiconductor device.
Another object of the present invention is to provide a metal polishing liquid having a higher polishing rate in addition to the effects of the above-described invention, and is excellent in miniaturization, thinning, dimensional accuracy, electrical characteristics, and high reliability. An object of the present invention is to provide a metal polishing liquid suitable for manufacturing semiconductor devices.
Another object of the present invention is to provide a metal polishing liquid having a higher polishing rate in addition to the effects of the above-described invention, and is excellent in miniaturization, thinning, dimensional accuracy, electrical characteristics, and high reliability. An object of the present invention is to provide a metal polishing liquid suitable for manufacturing semiconductor devices.
Another object of the present invention is to provide a metal polishing liquid with high productivity and low dishing and erosion, in addition to the effects of the above-described invention, and is excellent in miniaturization, thinning, dimensional accuracy, and electrical characteristics. Another object of the present invention is to provide a metal polishing slurry suitable for manufacturing a highly reliable semiconductor device.
Another object of the present invention is to provide a metal polishing liquid having high in-plane uniformity of polishing, in addition to the effects of the above-described invention, and is excellent in miniaturization, thinning, dimensional accuracy, and electrical characteristics, An object of the present invention is to provide a metal polishing slurry suitable for manufacturing a highly reliable semiconductor device.
Another object of the present invention is to provide a metal polishing liquid having high in-plane uniformity of polishing, in addition to the effects of the above-described invention, and is excellent in miniaturization, thinning, dimensional accuracy, and electrical characteristics, An object of the present invention is to provide a metal polishing slurry suitable for manufacturing a highly reliable semiconductor device.
Another object of the present invention is to provide a metal-polishing liquid with less polishing scratches (scratches) and less polishing residue remaining on the polished substrate surface in addition to the effects of the above-described invention. An object of the present invention is to provide a metal-polishing liquid that is excellent in thin film formation, dimensional accuracy, and electrical characteristics, and suitable for manufacturing a highly reliable semiconductor device.
Another object of the present invention is to provide a metal-polishing liquid having the effects of the above-described invention for copper, copper alloy and copper or copper alloy oxide. An object of the present invention is to provide a metal-polishing liquid that is excellent in electrical characteristics and suitable for manufacturing a highly reliable semiconductor device.
Another object of the present invention is to provide a metal-polishing liquid having the effects of the above-mentioned invention as a barrier layer for tungsten, tungsten nitride, tungsten alloy, other tungsten compounds, etc. Another object of the present invention is to provide a metal polishing liquid that is excellent in dimensional accuracy and electrical characteristics and suitable for manufacturing a highly reliable semiconductor device.
It is suitable for.
Another object of the present invention is to provide a highly reliable semiconductor device polishing method that is excellent in miniaturization, thinning, dimensional accuracy, and electrical characteristics.
Another object of the present invention is to provide a method for polishing a semiconductor device that is excellent in productivity in addition to the effects of the above-described invention.
[0013]
[Means for Solving the Problems]
The present invention relates to a polishing liquid containing an oxidizing agent, a metal oxide dissolving agent, a metal anticorrosive, and water, wherein the metal anticorrosive is a compound having a pyrimidine skeleton.
In the present invention, the compound having the pyrimidine skeleton is 4-aminopyrazolo [3,4-d] pyrimidine, 1,2,4-triazolo [1,5-a] pyrimidine, 2-methyl-5,7-diphenyl- At least one selected from (1,2,4) triazolo [1,5-a] pyrimidine and 2-methylsulfanyl-5,7-diphenyl- (1,2,4) triazolo [1,5-a] pyrimidine. The present invention relates to a metal polishing slurry which is a seed compound.
The present invention relates to a metal polishing slurry, wherein the metal anticorrosive agent uses a compound having a pyrimidine skeleton and a compound having a triazole skeleton in combination.
In the present invention, the compound having a triazole skeleton is selected from 1,2,3-triazole, 1,2,4-triazole, 3-amino-1H-1,2,4-triazole, benzotriazole, and 1-hydroxybenzotriazole. It is related with the metal-polishing liquid which is the at least 1 sort (s) of compound.
The present invention relates to a metal polishing slurry, wherein the metal oxidizing agent is at least one compound selected from hydrogen peroxide, nitric acid, potassium periodate, hypochlorous acid, and ozone water.
The present invention relates to the above metal polishing slurry containing a water-soluble polymer having a weight average molecular weight of 500 or more.
In the present invention, the water-soluble polymer having a weight average molecular weight of 500 or more is at least selected from at least one polymer selected from polysaccharides, polycarboxylic acids, polycarboxylic acid esters and salts thereof, and vinyl polymers. It is related with the said metal polishing liquid which is 1 type of polymer.
The present invention relates to a metal polishing slurry, wherein the metal oxide solubilizer is at least one compound selected from organic acids, organic acid esters, and ammonium salts of organic acids.
The present invention relates to the above polishing liquid for metal, wherein the metal to be polished is a metal containing at least one selected from copper, copper alloys, and copper or copper alloy oxides.
The present invention relates to the above metal polishing liquid, wherein the metal barrier layer to be polished is tungsten, tungsten nitride, tungsten alloy, or other tungsten compounds.
The present invention provides a polishing target by moving the polishing surface plate and the substrate relatively while pressing the substrate having the film to be polished against the polishing cloth while supplying the metal polishing liquid onto the polishing cloth of the polishing surface plate. The present invention relates to a polishing method characterized by polishing a film.
The present invention relates to the above polishing method for continuously polishing a metal and a barrier layer while supplying the metal polishing liquid onto a polishing cloth of a polishing surface plate.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The metal polishing liquid of the present invention comprises a metal oxidizer, a metal oxide solubilizer, a metal anticorrosive, and water as main components.
[0015]
As the metal oxidizing agent of the present invention, hydrogen peroxide (H 2 O 2 ), Nitric acid, potassium periodate, hypochlorous acid, ozone water, etc., among which hydrogen peroxide is particularly preferred. These may be used alone or in combination of two or more. When the substrate is a silicon substrate including an integrated circuit element, contamination by alkali metal, alkaline earth metal, halide, etc. is not desirable, so an oxidizing agent that does not contain a nonvolatile component is desirable. However, hydrogen peroxide is most suitable because ozone water has a severe compositional change over time. However, when the substrate to be applied is a glass substrate or the like that does not include a semiconductor element, an oxidizing agent that includes a nonvolatile component may be used.
[0016]
The metal oxide solubilizer of the present invention is not particularly limited as long as it is water-soluble, but formic acid, acetic acid, propionic acid, butyric acid, valeric acid, 2-methylbutyric acid, n-hexanoic acid, 3,3-dimethylbutyric acid 2-ethylbutyric acid, 4-methylpentanoic acid, n-heptanoic acid, 2-methylhexanoic acid, n-octanoic acid, 2-ethylhexanoic acid, benzoic acid, glycolic acid, salicylic acid, glyceric acid, oxalic acid, Examples thereof include organic acids such as malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, maleic acid, phthalic acid, malic acid, tartaric acid and citric acid, organic acid esters thereof, and ammonium salts of these organic acids. Further, inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, and ammonium salts of these inorganic acids, for example, ammonium persulfate, ammonium nitrate, ammonium chloride and the like, chromic acid and the like can be mentioned. Among these, formic acid, malonic acid, malic acid, tartaric acid, and citric acid are copper, copper alloys, and oxidation of copper or copper alloys in that the etching rate can be effectively suppressed while maintaining a practical CMP rate. It is suitable for a laminated film including at least one metal layer selected from those. These may be used alone or in combination of two or more.
[0017]
The metal anticorrosive of the present invention is not particularly limited as long as it has a pyrimidine skeleton. Pyrimidine, 1,2,4-triazolo [1,5-a] pyrimidine, 1,3,6,7,8-hexa Hydro-2H-pyrimido [1,2-a] pyrimidine, 1,3-diphenyl-pyrimidine-2,4,6-trione, 1,4,5,6-tetrahydropyrimidine, 2,4,5,6- Tetraaminopyrimidine sulfate, 2,4,5-trihydroxypyrimidine, 2,4,6-triaminopyrimidine, 2,4,6-trichloropyrimidine, 2,4,6-trimethoxypyrimidine, 2,4,6 -Triphenylpyrimidine, 2,4-diamino-6-hydroxylpyrimidine, 2,4-diaminopyrimidine, 2-acetamidopyrimidine, 2-aminopyrimidine, 2- Tyl-5,7-diphenyl- (1,2,4) triazolo (1,5-a) pyrimidine, 2-methylsulfanyl-5,7-diphenyl- (1,2,4) triazolo (1,5- a) Pyrimidine, 2-methylsulfanyl-5,7-diphenyl-4,7-dihydro- (1,2,4) triazolo (1,5-a) pyrimidine, 4-aminopyrazolo [3,4-d] pyrimidine In particular, 4-aminopyrazolo [3,4-d] pyrimidine, 1,2,4-triazolo [1,5-a] pyrimidine, 2-methyl-5,7 in terms of polishing rate and etching rate. -Diphenyl- (1,2,4) triazolo [1,5-a] pyrimidine, 2-methylsulfanyl-5,7-diphenyl- (1,2,4) triazolo (1,5-a) pyrimidine is preferred . These may be used alone or in combination of two or more.
[0018]
Further, the compound having a triazole skeleton used in combination with the metal anticorrosive having a pyrimidine skeleton is not particularly limited, but 2-mercaptobenzothiazole, 1,2,3-triazole, 1,2,4-triazole, 3- Amino-1H-1,2,4-triazole, benzotriazole, 1-hydroxybenzotriazole, 1-dihydroxypropylbenzotriazole, 2,3-dicarboxypropylbenzotriazole, 4-hydroxybenzotriazole, 4-carboxyl (-1H -) Benzotriazole, 4-carboxyl (-1H-) benzotriazole methyl ester, 4-carboxyl (-1H-) benzotriazole butyl ester, 4-carboxyl (-1H-) benzotriazole octyl ester, 5-hexylbe Zotriazole, [1,2,3-benzotriazolyl-1-methyl] [1,2,4-triazolyl-1-methyl] [2-ethylhexyl] amine, tolyltriazole, naphthotriazole, bis [(1- Benzotriazolyl) methyl] phosphonic acid and the like.
[0019]
The water-soluble polymer used in the present invention is not particularly limited as long as the weight average molecular weight is 500 or more. For example, polysaccharides such as alginic acid, pectic acid, carboxymethylcellulose, agar, curdlan and pullulan; polyaspartic acid, poly Glutamic acid, polylysine, polymalic acid, polymethacrylic acid, polymethacrylic acid ammonium salt, polymethacrylic acid sodium salt, polyamic acid, polymaleic acid, polyitaconic acid, polyfumaric acid, poly (p-styrenecarboxylic acid), polyacrylic acid, polyacrylamide Aminopolyacrylamide, polyacrylic acid ammonium salt, polyacrylic acid sodium salt, polyamic acid, polyamic acid ammonium salt, polyamic acid sodium salt and polyglyoxylic acid Bon acid esters and salts thereof; polyvinyl alcohol - le, vinyl polymers such as polyvinyl pyrrolidone and acrolein and the like. However, when the substrate to be applied is a silicon substrate for a semiconductor integrated circuit or the like, contamination with an alkali metal, an alkaline earth metal, a halide or the like is not desirable, and therefore an acid or an ammonium salt thereof is desirable. This is not the case when the substrate is a glass substrate or the like. Among these, pectinic acid, agar, polymalic acid, polymethacrylic acid, ammonium polyacrylate, polyacrylamide, polyvinyl alcohol and polyvinylpyrrolidone, esters thereof and ammonium salts thereof are preferable.
[0020]
The compounding amount of the metal oxidizer in the present invention is preferably 0.1 to 50 g with respect to 100 g of the total amount of metal oxidizer, metal oxide solubilizer, metal anticorrosive, water-soluble polymer and water. It is more preferable to set it as 2-40g, and it is especially preferable to set it as 0.3-30g. If the blending amount is less than 0.1 g, metal oxidation is insufficient and the CMP rate is low, and if it exceeds 50 g, the polished surface tends to be rough.
[0021]
The compounding amount of the metal oxide solubilizer component in the present invention is preferably 0.001 to 10 g with respect to 100 g of the total amount of metal oxidizer, metal oxide solubilizer, metal anticorrosive, water-soluble polymer and water. More preferably, the content is 0.01 to 8 g, and particularly preferably 0.02 to 5 g. When this amount is less than 0.001 g, polishing residue tends to increase, and when it exceeds 10 g, it is difficult to suppress etching.
[0022]
The compounding amount of the metal anticorrosive in the present invention is preferably 0.001 to 10 g with respect to 100 g of the total amount of metal oxidizer, metal oxide solubilizer, metal anticorrosive, water-soluble polymer and water, 0.01 It is more preferable to set it as -8g, and it is especially preferable to set it as 0.02-5g. When the amount is less than 0.001, it is difficult to suppress etching, and when it exceeds 10 g, the polishing rate tends to be low.
[0023]
The blending amount of the water-soluble polymer in the present invention is preferably 0 to 10 g with respect to 100 g of the total amount of metal oxidizer, metal oxide solubilizer, metal anticorrosive, water-soluble polymer and water, and 0.01 to 8 g. Is more preferable, and 0.02 to 5 g is particularly preferable. If this amount exceeds 10 g, the polishing rate tends to decrease.
The weight average molecular weight of the water-soluble polymer is preferably 500 or more, more preferably 1500 or more, and particularly preferably 5000 or more. The upper limit of the weight average molecular weight is not particularly specified, but is 5 million or less from the viewpoint of solubility. When the weight average molecular weight is less than 500, a high polishing rate tends not to be exhibited. In the present invention, it is preferable to use at least one water-soluble polymer having a weight average molecular weight of 500 or more.
[0024]
In addition to the materials described above, the metal polishing slurry of the present invention contains solid abrasives such as alumina, silica, and ceria, surfactants, dyes such as Victoria Pure Blue, and colorants such as pigments such as phthalocyanine green. May be.
[0025]
Examples of the metal to which the present invention is applied include copper, a copper alloy, and an oxide of copper or a copper alloy, which are applied to a metal film formed by a known sputtering method or plating method.
[0026]
Metal barrier layers to which the present invention is applied include tungsten, tungsten nitride, tungsten alloys, other tungsten compounds, titanium, titanium nitride, titanium alloys, other titanium compounds, tantalum, tantalum nitride, tantalum alloys, and other tantalum compounds. A laminated film including at least one metal barrier layer selected from the above.
[0027]
The polishing method of the present invention moves the polishing platen and the substrate relatively while pressing the substrate having the film to be polished against the polishing cloth while supplying the metal polishing liquid onto the polishing cloth of the polishing platen. This is a polishing method for polishing the film to be polished. As a polishing apparatus, a general polishing apparatus having a holder for holding a semiconductor substrate and a surface plate to which a polishing cloth (pad) is attached (a motor or the like whose rotation speed can be changed) is attached. As an abrasive cloth, a general nonwoven fabric, a polyurethane foam, a porous fluororesin, etc. can be used, and there is no restriction | limiting in particular. The polishing conditions are not limited, but the rotation speed of the surface plate is preferably a low rotation of 200 rpm or less so that the substrate does not jump out. The pressure applied to the polishing cloth of the semiconductor substrate having the film to be polished is preferably 1 to 100 KPa, and 5 to 50 KPa in order to satisfy the uniformity in the wafer surface of the CMP rate and the flatness of the pattern. Is more preferable. During polishing, a polishing solution for metal is continuously supplied to the polishing cloth with a pump or the like. Although there is no restriction | limiting in this supply amount, it is preferable that the surface of polishing cloth is always covered with polishing liquid. The semiconductor substrate after completion of polishing is preferably washed in running water and then dried after removing water droplets adhering to the semiconductor substrate using spin drying or the like.
[0028]
【Example】
Hereinafter, the present invention will be described by way of examples. The present invention is not limited to these examples.
(Polishing liquid preparation method) The metal polishing liquid used by Examples 1-8 and Comparative Examples 1-2 by the mixing | blending as shown in Table 1 and Table 2 was produced.
[0029]
[Table 1]
Figure 0004951808
[0030]
[Table 2]
Figure 0004951808
(Polishing conditions)
Base: silicon substrate on which copper metal with a thickness of 1500 nm is formed
Silicon substrate on which a tantalum film having a thickness of 200 nm is formed
Wiring groove depth 0.5 μm / barrier layer: patterned substrate with tantalum film thickness 50 nm / copper film thickness 1.0 μm
Polishing pad: (IC1000 (Rodel))
Polishing pressure: 210 g / cm 2 (20.58 KPa), relative speed between substrate and polishing surface plate: 36 m / min (polishing product evaluation item)
Polishing speed: The film thickness difference before and after polishing of each film was calculated from the electric resistance value.
Etching rate: The copper layer thickness difference before and after immersion in the stirred metal polishing liquid (room temperature, 25 ° C., stirring 100 rpm) was calculated from the electrical resistance value.
Dishing amount: A groove having a depth of 0.5 to 100 μm is formed in silicon dioxide, and a tantalum film having a thickness of 50 nm is formed as a barrier layer by a known sputtering method. Similarly, a copper film is formed by 1.0 μm by sputtering. Polishing was performed using a silicon substrate formed and embedded by a known heat treatment until silicon dioxide was exposed on the entire surface of the substrate. Next, the film reduction amount of the wiring metal part with respect to the insulating film part was obtained from the surface shape of the stripe pattern part in which the wiring metal part width of 100 μm and the insulating film part width of 100 μm were alternately arranged with a stylus step meter.
Erosion amount: The surface shape of the stripe pattern portion having a total width of 2.5 mm in which the wiring metal portion width of 4.5 μm and the insulating film portion width of 0.5 μm are alternately arranged on the dishing amount evaluation base is a stylus type Measured with a step gauge, the amount of film loss of the insulating film portion near the center of the pattern relative to the insulating film field portion around the stripe pattern was determined.
Wiring resistance amount: Polishing was performed until silicon dioxide was exposed on the entire surface of the substrate, and then the wiring resistance value was measured. A wiring resistance value of a wiring length of 1 mm was measured in a copper wiring pattern having a width of 100 μm in the dishing amount measuring section. Moreover, the wiring resistance value of the wiring length of 1 mm was measured in the 4.5 μm wide copper wiring pattern of the erosion amount measuring part.
Tables 3 and 4 show the polishing rate, etching rate, dishing amount, erosion amount, and wiring resistance value by CMP of Examples 1 to 8 and Comparative Examples 1 and 2.
[0031]
[Table 3]
Figure 0004951808
[0032]
[Table 4]
Figure 0004951808
[0033]
In Comparative Example 1, since the etching rate of the tungsten barrier layer is high, dishing and erosion are large and the wiring resistance value is increased. Further, in Comparative Example 2, since the etching rate of the copper metal and tungsten barrier layers is high, dishing and erosion are large and the wiring resistance value is increased. On the other hand, in Examples 1-8, since the etching rate of a copper metal and a tungsten barrier layer is small, there is little increase in wiring resistance by favorable dishing and erosion characteristics.
[0034]
【Effect of the invention】
According to the present invention, a metal polishing liquid having high productivity and low dishing and erosion was obtained because the metal polishing rate was high and the etching rate was low. This metal polishing liquid is excellent in miniaturization, thinning, dimensional accuracy, and electrical characteristics, and is suitable for highly reliable semiconductor devices and equipment.
According to the present invention, in addition to the effects of the above-described invention, a metal-polishing liquid with further reduced metal corrosion was obtained. This metal polishing liquid is excellent in miniaturization, thinning, dimensional accuracy, and electrical characteristics, and is suitable for highly reliable semiconductor devices and equipment.
According to the present invention, in addition to the effects of the above-described invention, a metal polishing liquid with higher productivity and less dishing and erosion was obtained. This metal polishing liquid is excellent in miniaturization, thinning, dimensional accuracy, and electrical characteristics, and is suitable for highly reliable semiconductor devices and equipment.
According to the present invention, in addition to the effects of the above-described invention, a metal polishing liquid with higher in-plane uniformity of polishing was obtained. This metal polishing liquid is excellent in miniaturization, thinning, dimensional accuracy, and electrical characteristics, and is suitable for highly reliable semiconductor devices and equipment.
According to the present invention, in addition to the effects of the above-described invention, a metal-polishing liquid with fewer polishing scratches (scratches) and less polishing residue remaining on the polished substrate surface was obtained. This metal polishing liquid is excellent in miniaturization, thinning, dimensional accuracy, and electrical characteristics, and is suitable for highly reliable semiconductor devices and equipment.
By this invention, the metal polishing liquid which has the effect of said invention was obtained for copper, a copper alloy, and the oxide of copper or a copper alloy. This metal polishing liquid is excellent in miniaturization, thinning, dimensional accuracy, and electrical characteristics, and is suitable for highly reliable semiconductor devices and equipment.
According to the present invention, a metal-polishing liquid having the effects of the above-described invention was obtained for barrier layers of tungsten, tungsten nitride, tungsten alloys, other tungsten compounds, and the like. This metal polishing liquid is excellent in miniaturization, thinning, dimensional accuracy, and electrical characteristics, and is suitable for highly reliable semiconductor devices and equipment.
According to the present invention, a highly reliable semiconductor device polishing method having excellent miniaturization, thinning, dimensional accuracy, and electrical characteristics has been obtained.
According to the present invention, in addition to the effects of the above-described invention, a method for polishing a semiconductor device that is further excellent in productivity was obtained.

Claims (9)

過酸化水素、酸化金属溶解剤、金属防食剤、及び水を含有する研磨液であり、
前記金属防食剤が4−アミノピラゾロ[3,4−d]ピリミジン、1,2,4−トリアゾロ[1,5−a]ピリミジン及び2−メチル−5,7−ジフェニル−(1,2,4)トリアゾロ[1,5−a] ピリミジンから選ばれる少なくとも1種のピリミジン骨格を有する化合物を含有し、
前記酸化金属溶解剤が、有機酸及び有機酸のアンモニウム塩から選ばれる少なくとも1種の化合物を含有することを特徴とする金属用研磨液。
A polishing liquid containing hydrogen peroxide, a metal oxide solubilizer, a metal anticorrosive, and water,
The metal anticorrosive is 4-aminopyrazolo [3,4-d] pyrimidine, 1,2,4-triazolo [1,5-a] pyrimidine and 2-methyl-5,7-diphenyl- (1,2,4). triazolo containing [1,5-a] pyrimidine down or we compound having at least one pyrimidine skeleton selected,
A metal polishing slurry, wherein the metal oxide solubilizer contains at least one compound selected from organic acids and ammonium salts of organic acids.
金属防食剤が、ピリミジン骨格を有する化合物とトリアゾール骨格を有する化合物とを含有する請求項1記載の金属用研磨液。  The metal polishing slurry according to claim 1, wherein the metal anticorrosive contains a compound having a pyrimidine skeleton and a compound having a triazole skeleton. トリアゾール骨格を有する化合物が、1,2,3−トリアゾール、1,2,4−トリアゾール、3−アミノ−1H−1,2,4−トリアゾール、ベンゾトリアゾール及び1−ヒドロキシベンゾトリアゾールから選ばれる少なくとも1種の化合物である請求項2記載の金属用研磨液。  The compound having a triazole skeleton is at least one selected from 1,2,3-triazole, 1,2,4-triazole, 3-amino-1H-1,2,4-triazole, benzotriazole and 1-hydroxybenzotriazole. The metal polishing slurry according to claim 2, which is a seed compound. 重量平均分子量が500以上の水溶性ポリマーを含有する請求項1〜3いずれか記載の金属用研磨液。  The metal polishing slurry according to any one of claims 1 to 3, comprising a water-soluble polymer having a weight average molecular weight of 500 or more. 重量平均分子量が500以上の水溶性ポリマーが、多糖類、ポリカルボン酸、ポリカルボン酸エステル及びそれらの塩、並びにビニル系ポリマーから選ばれた少なくとも1種のポリマーである請求項4記載の金属用研磨液。  The water-soluble polymer having a weight average molecular weight of 500 or more is at least one polymer selected from polysaccharides, polycarboxylic acids, polycarboxylic acid esters and salts thereof, and vinyl-based polymers. Polishing fluid. 研磨される金属が、銅、銅合金及び銅若しくは銅合金の酸化物から選ばれる少なくとも1種を含む金属である請求項1〜5いずれか記載の金属用研磨液。  The metal polishing liquid according to any one of claims 1 to 5, wherein the metal to be polished is a metal containing at least one selected from copper, a copper alloy, and copper or an oxide of a copper alloy. 研磨される金属のバリア層が、タングステン、窒化タングステン、タングステン合金、又はその他のタングステン化合物である請求項1〜6いずれか記載の金属用研磨液。  The metal polishing liquid according to any one of claims 1 to 6, wherein the metal barrier layer to be polished is tungsten, tungsten nitride, a tungsten alloy, or other tungsten compounds. 研磨定盤の研磨布上に請求項1〜7いずれか記載の金属用研磨液を供給しながら、被研磨膜を有する基板を研磨布に押圧した状態で研磨定盤と基板を相対的に動かすことによって被研磨膜を研磨することを特徴とする研磨方法。  While supplying the metal polishing liquid according to any one of claims 1 to 7 onto the polishing cloth of the polishing surface plate, the polishing surface plate and the substrate are relatively moved while pressing the substrate having the film to be polished against the polishing cloth. A polishing method comprising polishing a film to be polished. 研磨定盤の研磨布上に請求項1〜7いずれか記載の一つの金属用研磨液を供給しながら、金属とバリア層を有する基板を連続して研磨する請求項8記載の研磨方法。  The polishing method according to claim 8, wherein the substrate having the metal and the barrier layer is continuously polished while supplying the metal polishing liquid according to any one of claims 1 to 7 onto the polishing cloth of the polishing surface plate.
JP2000327296A 2000-10-26 2000-10-26 Polishing liquid for metal and polishing method Expired - Fee Related JP4951808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000327296A JP4951808B2 (en) 2000-10-26 2000-10-26 Polishing liquid for metal and polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000327296A JP4951808B2 (en) 2000-10-26 2000-10-26 Polishing liquid for metal and polishing method

Publications (2)

Publication Number Publication Date
JP2002134442A JP2002134442A (en) 2002-05-10
JP4951808B2 true JP4951808B2 (en) 2012-06-13

Family

ID=18804340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000327296A Expired - Fee Related JP4951808B2 (en) 2000-10-26 2000-10-26 Polishing liquid for metal and polishing method

Country Status (1)

Country Link
JP (1) JP4951808B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2194570A1 (en) * 1998-12-28 2010-06-09 Hitachi Chemical Co., Ltd. Materials for polishing liquid for metal, polishing liquid for metal, mehtod for preparation thereof and polishing method using the same
WO2003094216A1 (en) * 2002-04-30 2003-11-13 Hitachi Chemical Co., Ltd. Polishing fluid and polishing method
KR100480797B1 (en) * 2002-07-26 2005-04-07 엘지.필립스 엘시디 주식회사 Etching solution to improve etch rate for copper molybdenum multilayers and etching method using the same
AU2003242397A1 (en) 2003-06-13 2005-01-04 Hitachi Chemical Co., Ltd. Polishing fluid for metal and polishing method
US7384871B2 (en) * 2004-07-01 2008-06-10 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing compositions and methods relating thereto
US7303993B2 (en) * 2004-07-01 2007-12-04 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing compositions and methods relating thereto
KR100601740B1 (en) 2005-04-11 2006-07-18 테크노세미켐 주식회사 Etchant for ito & izo thin film
JP4658825B2 (en) * 2006-02-23 2011-03-23 富士フイルム株式会社 Polishing liquid for metal
JP4992826B2 (en) * 2008-06-02 2012-08-08 日立化成工業株式会社 Polishing liquid and polishing method
JP5088352B2 (en) * 2009-08-24 2012-12-05 日立化成工業株式会社 Polishing liquid for metal and polishing method
EP3969639A1 (en) 2019-05-13 2022-03-23 Ecolab Usa Inc. 1,2,4-triazolo[1,5-a] pyrimidine derivative as copper corrosion inhibitor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604273B2 (en) * 1979-05-25 1985-02-02 日東紡績株式会社 Metal corrosion suppression method
JPS57152476A (en) * 1981-03-14 1982-09-20 Chiyoda Kagaku Kenkyusho:Kk Corrosion inhibitor
JP3970439B2 (en) * 1997-10-31 2007-09-05 株式会社ルネサステクノロジ Manufacturing method of semiconductor device
JP2000133621A (en) * 1998-10-27 2000-05-12 Tokyo Magnetic Printing Co Ltd Composition for chemical mechanical polishing
JP4816836B2 (en) * 1998-12-28 2011-11-16 日立化成工業株式会社 Polishing liquid for metal and polishing method using the same

Also Published As

Publication number Publication date
JP2002134442A (en) 2002-05-10

Similar Documents

Publication Publication Date Title
JP4449745B2 (en) Polishing liquid and polishing method
JP4568604B2 (en) Polishing liquid and polishing method
KR101418626B1 (en) Metal polishing liquid and polishing method
JP2008199036A (en) Polishing solution and polishing method
JP4400562B2 (en) Polishing liquid for metal and polishing method
JP2004031443A (en) Polishing solution and polishing method
JP4951808B2 (en) Polishing liquid for metal and polishing method
JP2005064285A (en) Polishing solution and polishing method for cmp
JP4992826B2 (en) Polishing liquid and polishing method
JP4850167B2 (en) Polishing liquid and polishing method
JP4618987B2 (en) Polishing liquid and polishing method
JP2004179294A (en) Polishing liquid and polishing method
JP2003068683A (en) Polishing liquid for metal and method for polishing
JP2004031442A (en) Polishing solution and polishing method
JP4935843B2 (en) Polishing liquid and polishing method
JP2006128552A (en) Polishing liquid for cmp and polishing method
JPWO2004012248A1 (en) Polishing liquid and polishing method
JP2005285944A (en) Polishing solution for metal, and polishing method
JP5088352B2 (en) Polishing liquid for metal and polishing method
JP2003188120A (en) Polishing liquid and polishing method for metal
JP2005217360A (en) Metal polishing solution and polishing method
JP2004363141A (en) Liquid and method for polishing metal
KR100679551B1 (en) Polishing fluid for metal and polishing method
JP2003183628A (en) Polishing liquid for metal and method for grinding
JP4774669B2 (en) Polishing liquid and polishing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees