JP2003068683A - Polishing liquid for metal and method for polishing - Google Patents

Polishing liquid for metal and method for polishing

Info

Publication number
JP2003068683A
JP2003068683A JP2001251684A JP2001251684A JP2003068683A JP 2003068683 A JP2003068683 A JP 2003068683A JP 2001251684 A JP2001251684 A JP 2001251684A JP 2001251684 A JP2001251684 A JP 2001251684A JP 2003068683 A JP2003068683 A JP 2003068683A
Authority
JP
Japan
Prior art keywords
polishing
metal
agent
substrate
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001251684A
Other languages
Japanese (ja)
Inventor
Yasuo Kamigata
康雄 上方
Masanobu Hanehiro
昌信 羽廣
Hitoshi Amanokura
仁 天野倉
So Anzai
創 安西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2001251684A priority Critical patent/JP2003068683A/en
Publication of JP2003068683A publication Critical patent/JP2003068683A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Weting (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polishing liquid capable of rapidly polishing and high planarization, without bringing about interface release of a low permittivity insulating material layer, in polishing a metal suitable for a multilayer wiring manufacturing step using the low permittivity insulating film and a copper wiring, and to provide a method for polishing. SOLUTION: The polishing liquid for the metal comprises a metal oxidizer, a metal oxide dissolving agent, anticorrosives, water soluble polymer, and metal laminated film interface release inhibitor. The method for polishing comprises the steps of supplying the polishing liquid for the metal to a polishing cloth on a polishing platen, bringing the liquid into contact with a surface to be polished of a substrate 1 of a semiconductor chip having a metal laminated film formed to have a low permittivity material layer 2 and a copper layer 5, and relatively moving the surface to be polished and the polishing surface to polish the surface of the substrate 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体デバイスの
配線形成工程の研磨に使用される金属用研磨液及び研磨
方法に関する。特に、低誘電率絶縁膜と銅配線を用いた
多層配線製造工程に適する金属用研磨液に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal polishing liquid and a polishing method used for polishing a wiring forming process of a semiconductor device. In particular, the present invention relates to a metal polishing liquid suitable for a multilayer wiring manufacturing process using a low dielectric constant insulating film and copper wiring.

【0002】[0002]

【従来の技術】近年、半導体集積回路(以下LSIと記
す)の高集積化、高性能化に伴って新たな微細加工技術
が開発されている。化学機械研磨(以下CMPと記す)
法もその一つであり、LSI製造工程、特に多層配線形
成工程における層間絶縁膜の平坦化、金属プラグ形成、
埋め込み配線形成において頻繁に利用される技術であ
る。この技術は、例えば米国特許第4944836号公
報に開示されている。また、最近はLSIを高性能化す
るために、配線材料として銅合金の利用が試みられてい
る。しかし、銅合金は従来のアルミニウム合金配線の形
成で頻繁に用いられたドライエッチング法による微細加
工が困難である。そこで、あらかじめ溝を形成してある
絶縁膜上に銅合金薄膜を堆積して埋め込み、溝部以外の
銅合金薄膜をCMPにより除去して埋め込み配線を形成
する、いわゆるダマシン法が主に採用されている。この
技術は、例えば特開平2−278822号に開示されて
いる。
2. Description of the Related Art In recent years, a new fine processing technique has been developed in accordance with higher integration and higher performance of semiconductor integrated circuits (hereinafter referred to as LSI). Chemical mechanical polishing (hereinafter referred to as CMP)
The method is one of them, and flattening of the interlayer insulating film, metal plug formation,
This is a technique often used in the formation of embedded wiring. This technique is disclosed in, for example, US Pat. No. 4,944,836. Further, recently, in order to improve the performance of LSI, it has been attempted to use a copper alloy as a wiring material. However, it is difficult to perform fine processing on the copper alloy by the dry etching method which is frequently used in the conventional formation of aluminum alloy wiring. Therefore, a so-called damascene method is mainly adopted in which a copper alloy thin film is deposited and buried on an insulating film in which a groove is formed in advance, and the copper alloy thin film other than the groove portion is removed by CMP to form a buried wiring. . This technique is disclosed in, for example, Japanese Patent Laid-Open No. 2-278822.

【0003】銅合金等の金属CMPの一般的な方法は、
円形の研磨定盤(プラテン)上に研磨パッドを貼り付
け、研磨パッド表面を金属用研磨液で浸し、基体の金属
膜を形成した面を押し付けて、その裏面から20kPa
より高い圧力(以下研磨圧力と記す)を加えた状態で研
磨定盤を回し、研磨液と金属膜の凸部との機械的摩擦に
よって凸部の金属膜を除去するものである。
A general method of metal CMP such as copper alloy is
A polishing pad is attached to a circular polishing platen (platen), the surface of the polishing pad is dipped in a polishing liquid for metal, and the surface of the substrate on which the metal film is formed is pressed, and 20 kPa from the back surface thereof.
The polishing platen is rotated under a higher pressure (hereinafter referred to as polishing pressure), and the metal film on the convex portion is removed by mechanical friction between the polishing liquid and the convex portion of the metal film.

【0004】CMPに用いられる金属用研磨液は、一般
には酸化剤及び固体砥粒からなっており必要に応じてさ
らに酸化金属溶解剤、保護膜形成剤が添加される。まず
酸化剤によって金属膜表面を酸化し、その酸化層を固体
砥粒によって削り取るのが基本的なメカニズムと考えら
れている。凹部の金属表面の酸化層は研磨パッドにあま
り触れず、固体砥粒による削り取りの効果が及ばないの
で、CMPの進行とともに凸部の金属層が除去されて基
体表面は平坦化される。この詳細についてはジャーナル
・オブ・エレクトロケミカルソサエティ誌の第138巻
11号(1991年発行)の3460〜3464頁に開
示されている。
The metal-polishing liquid used for CMP generally comprises an oxidizing agent and solid abrasive grains, and if necessary, a metal oxide dissolving agent and a protective film forming agent are further added. First, it is considered that the basic mechanism is to oxidize the surface of the metal film with an oxidizing agent and scrape off the oxidized layer with solid abrasive grains. The oxide layer on the metal surface of the recess does not come into contact with the polishing pad so much that the effect of shaving by the solid abrasive is not exerted, so that the metal layer of the projection is removed and the substrate surface is flattened as CMP progresses. Details of this are disclosed in Journal of Electrochemical Society, Vol. 138, No. 11 (published in 1991), pages 3460-3464.

【0005】CMPによる研磨速度を高める方法として
酸化金属溶解剤を添加することが有効とされている。固
体砥粒によって削り取られた金属酸化物の粒を研磨液に
溶解(以下エッチングと記す)させてしまうと固体砥粒
による削り取りの効果が増すためであるためと解釈でき
る。酸化金属溶解剤の添加によりCMPによる研磨速度
は向上するが、一方、凹部の金属膜表面の酸化層もエッ
チング(溶解)されて金属膜表面が露出すると、酸化剤
によって金属膜表面がさらに酸化され、これが繰り返さ
れると凹部の金属膜のエッチングが進行してしまう。こ
のため研磨後に埋め込まれた金属配線の表面中央部分が
皿のように窪む現象(以下ディッシングと記す)が発生
し平坦化効果が損なわれる。これを防ぐためにさらに保
護膜形成剤が添加される。保護膜形成剤は金属膜表面の
酸化層上に保護膜を形成し、酸化層の研磨液中への溶解
を防止するものである。この保護膜は固体砥粒により容
易に削り取ることが可能で、CMPによる研磨速度を低
下させないことが望まれる。銅合金のディッシングや研
磨中の腐食を抑制し、信頼性の高いLSI配線を形成す
るために、グリシン等のアミノ酢酸又はアミド硫酸から
なる酸化金属溶解剤及び保護膜形成剤としてBTAを含
有する金属用研磨液を用いる方法が提唱されている。こ
の技術は、例えば特開平8−83780号に記載されて
いる。
It has been considered effective to add a metal oxide dissolving agent as a method for increasing the polishing rate by CMP. It can be interpreted that if the particles of the metal oxide scraped off by the solid abrasive grains are dissolved in the polishing liquid (hereinafter referred to as etching), the effect of scraping off by the solid abrasive grains increases. Although the polishing rate by CMP is improved by the addition of the metal oxide dissolving agent, on the other hand, when the oxide layer on the surface of the metal film in the recess is also etched (dissolved) to expose the metal film surface, the metal film surface is further oxidized by the oxidizing agent. When this is repeated, the etching of the metal film in the recess proceeds. For this reason, a phenomenon in which the central portion of the surface of the metal wiring embedded after polishing is depressed like a dish (hereinafter referred to as dishing) occurs and the flattening effect is impaired. To prevent this, a protective film forming agent is further added. The protective film forming agent forms a protective film on the oxide layer on the surface of the metal film and prevents the oxide layer from being dissolved in the polishing liquid. It is desirable that this protective film can be easily scraped off with solid abrasive grains and that the polishing rate by CMP is not reduced. A metal containing BTA as a protective film forming agent and a metal oxide dissolving agent composed of aminoacetic acid such as glycine or amidosulfuric acid in order to suppress corrosion during copper alloy dishing and polishing and to form a highly reliable LSI wiring. A method using a polishing liquid for polishing has been proposed. This technique is described in, for example, Japanese Patent Application Laid-Open No. 8-83780.

【0006】[0006]

【発明が解決しようとする課題】LSIをより高性能化
するためには、配線材料の低抵抗化に併せた絶縁材料の
低誘電率化が有効であり、配線材料のアルミニウム合金
から銅合金への変換に伴い、低誘電率絶縁材料の適用が
検討されている。一般に従来の酸化シリコン絶縁膜(比
誘電率4.1)に代わる低誘電率膜として種々の材料が
検討されているが、炭素を添加した酸化シリコンやベン
ゼン環を有する有機高分子材料が有力となっている。ま
たこれらの材料を多孔化し、さらに誘電率を下げる試み
がなされている。しかし、これらの低誘電率材料は材料
自身の強度が低く、他種積層膜材料との密着力が低いた
め、従来の金属用研磨液を使用し、通常CMP条件で研
磨を行うと界面で膜剥離が生じ、製品歩留まりが著しく
低化するという問題があった。そこで、このように材料
自身の強度が低く、他材料と密着力が低い低誘電率材料
を使用した基体であっても、従来の酸化シリコンを用い
た基体と同様に剥離の生じることなく研磨できる研磨液
が求められていた。本発明は、低誘電率絶縁膜材料層の
界面剥離を防止することを可能とする金属用研磨液及び
研磨方法を提供するものである。
In order to further improve the performance of LSI, it is effective to lower the dielectric constant of the insulating material along with the lower resistance of the wiring material. The application of low-dielectric-constant insulating materials is being considered along with the conversion. Generally, various materials have been studied as a low dielectric constant film that replaces the conventional silicon oxide insulating film (relative dielectric constant 4.1). However, carbon-doped silicon oxide and organic polymer materials having a benzene ring are considered to be effective. Has become. Attempts have also been made to reduce the dielectric constant by making these materials porous. However, since these low dielectric constant materials have low strength themselves and low adhesion to other type laminated film materials, when a conventional metal-polishing liquid is used and polishing is usually performed under the CMP conditions, the film is formed at the interface. There is a problem that peeling occurs and the product yield is significantly reduced. Therefore, even a substrate using a low dielectric constant material having low strength of the material itself and low adhesion to other materials can be polished without peeling as in the case of a conventional substrate using silicon oxide. A polishing liquid has been sought. The present invention provides a metal polishing liquid and a polishing method capable of preventing interfacial peeling of a low dielectric constant insulating film material layer.

【0007】[0007]

【課題を解決するための手段】本発明は、次のものに関
する。 (1)金属の酸化剤、酸化金属溶解剤、防食剤、水溶性
高分子、及び金属積層膜界面剥離防止剤を含む金属用研
磨液。 (2)研磨圧力7kPaにおける研磨速度が100nm
/min以下で、且つ研磨圧力14kPaにおける研磨
速度が400nm/min以上である(1)記載の金属
用研磨液。 (3)金属の酸化剤、酸化金属溶解剤、防食剤、水溶性
高分子、及び金属積層膜界面剥離防止剤を含む金属用研
磨液を研磨定盤上の研磨布に供給し、金属積層膜が形成
された半導体チップである基板の被研磨面と接触させ、
被研磨面と研磨布を相対的に動かすことにより、金属積
層膜界面に働く応力を緩和させ且つ20kPa未満の研
磨圧力で平坦化しながら基板表面を研磨することを特徴
とする研磨方法。 (4)金属積層膜が低誘電率材料層及び銅層又は銅合金
層を備えてなる(3)記載の研磨方法。
The present invention relates to the following. (1) A metal-polishing liquid containing a metal oxidizing agent, a metal oxide dissolving agent, an anticorrosive agent, a water-soluble polymer, and a metal laminated film interface peeling preventing agent. (2) Polishing rate at a polishing pressure of 7 kPa is 100 nm
/ Min or less and the polishing rate at a polishing pressure of 14 kPa is 400 nm / min or more, (1) The metal-polishing liquid. (3) A metal polishing solution containing a metal oxidizing agent, a metal oxide dissolving agent, an anticorrosive agent, a water-soluble polymer, and a metal laminate film interfacial peeling inhibitor is supplied to a polishing cloth on a polishing platen to form a metal laminate film. Contacting the surface to be polished of the substrate, which is a semiconductor chip formed with,
A polishing method characterized in that a substrate surface is polished by relatively moving a surface to be polished and a polishing cloth to reduce a stress acting on an interface of a metal laminated film and planarizing the surface with a polishing pressure of less than 20 kPa. (4) The polishing method according to (3), wherein the metal laminated film comprises a low dielectric constant material layer and a copper layer or a copper alloy layer.

【0008】上記CMP研磨液を用いて、低誘電率材料
層及び銅層又は銅合金層を備えてなる金属積層膜の研磨
を行うと、研磨液中の金属積層膜界面剥離防止剤の働き
により低誘電率材料層界面にかかる応力を緩和させるこ
とができる。さらに、この金属積層膜界面剥離防止剤を
用いたことにより、別の効果として20kPa未満の研
磨圧力でも実用性のある研磨速度と高平坦化効率の両立
が可能となることが分かった。例えば、研磨圧力7kP
aでは研磨速度が100nm/min以下と低く、研磨
圧力14kPaでは研磨速度が400nm/min以上
と高い特性を示す研磨液を用いると、印加される研磨圧
力が高い凸部では研磨が進み、研磨圧力が低い凹部では
研磨が抑制されるため、ディッシングを抑制した研磨を
行うことが可能である。しかも研磨圧力が14kPaと
低くてすむため、研磨膜と研磨布との摩擦力も低減され
る。よって、上記金属積層膜界面剥離防止剤の働きに加
え、研磨圧力低減効果により、低誘電率材料層界面にか
かる応力を著しく緩和させることができ、低誘電率絶縁
膜材料層の界面剥離を生じることのない研磨が可能とな
る。
When a metal laminated film having a low dielectric constant material layer and a copper layer or a copper alloy layer is polished by using the above CMP polishing liquid, a metal laminated film interface peeling preventive agent in the polishing liquid works. The stress applied to the interface of the low dielectric constant material layer can be relaxed. Further, it has been found that, by using this metal laminated film interface peeling preventive agent, as another effect, it is possible to achieve a practical polishing rate and high planarization efficiency even at a polishing pressure of less than 20 kPa. For example, polishing pressure 7kP
When a polishing liquid having a high polishing rate of 100 nm / min or less at a and a polishing rate of 400 nm / min or more at a polishing pressure of 14 kPa is used, polishing proceeds at a convex portion where the applied polishing pressure is high, and Since the polishing is suppressed in the concave portion having a low value, it is possible to perform the polishing while suppressing the dishing. Moreover, since the polishing pressure is as low as 14 kPa, the frictional force between the polishing film and the polishing cloth is also reduced. Therefore, in addition to the function of the interlaminar film interfacial peeling preventive agent, the polishing pressure reducing effect can remarkably reduce the stress applied to the interface of the low dielectric constant material layer, resulting in the interfacial peeling of the low dielectric constant insulating film material layer. Polishing can be done without any problems.

【0009】[0009]

【発明の実施の形態】本発明の金属用研磨液は、金属の
酸化剤、酸化金属溶解剤、防食剤、水溶性高分子、及び
金属積層膜界面剥離防止剤を含有する。
BEST MODE FOR CARRYING OUT THE INVENTION The metal-polishing liquid of the present invention contains a metal oxidizing agent, a metal oxide dissolving agent, an anticorrosive agent, a water-soluble polymer, and a metal laminated film interfacial peeling preventing agent.

【0010】金属の酸化剤としては、過酸化水素(H2
O2)、硝酸、過ヨウ素酸カリウム、次亜塩素酸、オゾ
ン水等が挙げられ、その中でも過酸化水素が特に好まし
い。基体が集積回路用素子を含むシリコン基板である場
合、アルカリ金属、アルカリ土類金属、ハロゲン化物な
どによる汚染は望ましくないので、不揮発成分を含まな
い酸化剤が望ましい。但し、オゾン水は組成の時間変化
が激しいので過酸化水素が最も適している。但し、適用
対象の基体が半導体素子を含まないガラス基板などであ
る場合は不揮発成分を含む酸化剤であっても差し支えな
い。
Hydrogen peroxide (H2
O2), nitric acid, potassium periodate, hypochlorous acid, ozone water and the like can be mentioned, of which hydrogen peroxide is particularly preferable. When the substrate is a silicon substrate containing an integrated circuit element, contamination with alkali metals, alkaline earth metals, halides, etc. is not desirable, so an oxidizer containing no non-volatile component is desirable. However, since the composition of ozone water changes drastically with time, hydrogen peroxide is most suitable. However, when the substrate to be applied is a glass substrate or the like that does not include a semiconductor element, an oxidizing agent containing a non-volatile component may be used.

【0011】本発明で使用する酸化金属溶解剤は、水溶
性のものが望ましい。以下の群から選ばれたものの水溶
液が適している。ギ酸、酢酸、プロピオン酸、酪酸、吉
草酸、2−メチル酪酸、n−ヘキサン酸、3,3−ジメ
チル酪酸、2−エチル酪酸、4−メチルペンタン酸、n
−ヘプタン酸、2−メチルヘキサン酸、n−オクタン
酸、2−エチルヘキサン酸、安息香酸、グリコール酸、
サリチル酸、グリセリン酸、シュウ酸、マロン酸、コハ
ク酸、グルタル酸、アジピン酸、ピメリン酸、マレイン
酸、フタル酸、リンゴ酸、酒石酸、クエン酸等、及びそ
れらの有機酸のアンモニウム塩等の塩、硫酸、硝酸、ア
ンモニア、アンモニウム塩類、例えば過硫酸アンモニウ
ム、硝酸アンモニウム、塩化アンモニウム等、クロム酸
等又はそれらの混合物等が挙げられる。これらの中では
ギ酸、マロン酸、リンゴ酸、酒石酸、クエン酸が好適で
ある。
The metal oxide dissolving agent used in the present invention is preferably water-soluble. Aqueous solutions of those selected from the following group are suitable. Formic acid, acetic acid, propionic acid, butyric acid, valeric acid, 2-methylbutyric acid, n-hexanoic acid, 3,3-dimethylbutyric acid, 2-ethylbutyric acid, 4-methylpentanoic acid, n
-Heptanoic acid, 2-methylhexanoic acid, n-octanoic acid, 2-ethylhexanoic acid, benzoic acid, glycolic acid,
Salicylic acid, glyceric acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, maleic acid, phthalic acid, malic acid, tartaric acid, citric acid, etc., and salts of these organic acids such as ammonium salts, Sulfuric acid, nitric acid, ammonia, ammonium salts such as ammonium persulfate, ammonium nitrate, ammonium chloride and the like, chromic acid and the like or a mixture thereof and the like can be mentioned. Of these, formic acid, malonic acid, malic acid, tartaric acid and citric acid are preferable.

【0012】防食剤は、以下の群から選ばれたものが好
適である。ベンゾトリアゾール、1−ヒドロキシベンゾ
トリアゾール、1−ジヒドロキシプロピルベンゾトリア
ゾール、2,3−ジカルボキシプロピルベンゾトリアゾ
ール、4−ヒドロキシベンゾトリアゾール、4−カルボ
キシル(−1H−)ベンゾトリアゾール、4−カルボキ
シル(−1H−)ベンゾトリアゾールメチルルエステ
ル、4−カルボキシル(−1H−)ベンゾトリアゾール
ブチルエステル、4−カルボキシル(−1H−)ベンゾ
トリアゾールオクチルエステル、5−ヘキシルベンゾト
リアゾール、[1,2,3−ベンゾトリアゾリル−1−
メチル][1,2,4−トリアゾリル−1−メチル]
[2−エチルヘキシル]アミン、トリルトリアゾール、
ナフトトリアゾール、ビス[(1−ベンゾトリアゾリ
ル)メチル]ホスホン酸等が挙げられる。その中でもベ
ンゾトリアゾール、4−ヒドロキシベンゾトリアゾー
ル、4−カルボキシル(−1H−)ベンゾトリアゾール
ブチルエステル、トリルトリアゾール、ナフトトリアゾ
ールが、低いエッチング速度を得る上で好ましい。
The anticorrosive agent is preferably selected from the following group. Benzotriazole, 1-hydroxybenzotriazole, 1-dihydroxypropylbenzotriazole, 2,3-dicarboxypropylbenzotriazole, 4-hydroxybenzotriazole, 4-carboxyl (-1H-) benzotriazole, 4-carboxyl (-1H- ) Benzotriazole methyl ester, 4-carboxyl (-1H-) benzotriazole butyl ester, 4-carboxyl (-1H-) benzotriazole octyl ester, 5-hexyl benzotriazole, [1,2,3-benzotriazolyl- 1-
Methyl] [1,2,4-triazolyl-1-methyl]
[2-ethylhexyl] amine, tolyltriazole,
Examples thereof include naphthotriazole and bis [(1-benzotriazolyl) methyl] phosphonic acid. Among them, benzotriazole, 4-hydroxybenzotriazole, 4-carboxyl (-1H-) benzotriazole butyl ester, tolyltriazole, and naphthotriazole are preferable for obtaining a low etching rate.

【0013】水溶性高分子としては、以下の群から選ば
れたものが好適である。アルギン酸、ペクチン酸、カル
ボキシメチルセルロース、寒天、カードラン及びプルラ
ン等の多糖類;グリシンアンモニウム塩及びグリシンナ
トリウム塩等のアミノ酸塩;ポリアスパラギン酸、ポリ
グルタミン酸、ポリリシン、ポリリンゴ酸、ポリメタク
リル酸、ポリメタクリル酸アンモニウム塩、ポリメタク
リル酸ナトリウム塩、ポリアミド酸、ポリマレイン酸、
ポリイタコン酸、ポリフマル酸、ポリ(p−スチレンカ
ルボン酸)、ポリアクリル酸、ポリアクリルアミド、ア
ミノポリアクリルアミド、ポリアクリル酸アンモニウム
塩、ポリアクリル酸ナトリウム塩、ポリアミド酸、ポリ
アミド酸アンモニウム塩、ポリアミド酸ナトリウム塩及
びポリグリオキシル酸等のポリカルボン酸及びその塩;
ポリビニルアルコール、ポリビニルピロリドン及びポリ
アクロレイン等のビニル系ポリマ等が挙げられる。但
し、適用する基体が半導体集積回路用シリコン基板など
の場合はアルカリ金属、アルカリ土類金属、ハロゲン化
物等による汚染は望ましくないため、酸もしくはそのア
ンモニウム塩が望ましい。基体がガラス基板等である場
合はその限りではない。その中でもペクチン酸、寒天、
ポリリンゴ酸、ポリメタクリル酸、ポリアクリル酸、ポ
リアクリルアミド、ポリビニルアルコール及びポリビニ
ルピロリドン、それらのエステル及びそれらのアンモニ
ウム塩が好ましい。
The water-soluble polymer is preferably selected from the following group. Polysaccharides such as alginic acid, pectic acid, carboxymethylcellulose, agar, curdlan and pullulan; amino acid salts such as glycine ammonium salt and glycine sodium salt; polyaspartic acid, polyglutamic acid, polylysine, polymalic acid, polymethacrylic acid, polymethacrylic acid Ammonium salt, polymethacrylic acid sodium salt, polyamic acid, polymaleic acid,
Polyitaconic acid, polyfumaric acid, poly (p-styrenecarboxylic acid), polyacrylic acid, polyacrylamide, aminopolyacrylamide, polyacrylic acid ammonium salt, polyacrylic acid sodium salt, polyamic acid, polyamic acid ammonium salt, polyamic acid sodium salt And polycarboxylic acids such as polyglyoxylic acid and salts thereof;
Examples thereof include polyvinyl alcohol, polyvinylpyrrolidone, and vinyl-based polymers such as polyacrolein. However, when the substrate to be applied is a silicon substrate for semiconductor integrated circuits or the like, contamination with alkali metals, alkaline earth metals, halides and the like is not desirable, and therefore acids or ammonium salts thereof are desirable. This is not the case when the substrate is a glass substrate or the like. Among them, pectic acid, agar,
Polymalic acid, polymethacrylic acid, polyacrylic acid, polyacrylamide, polyvinyl alcohol and polyvinylpyrrolidone, their esters and their ammonium salts are preferred.

【0014】金属積層膜界面剥離防止剤としては、以下
の群から選ばれたものが好適である。1,2,3−トリ
アゾール、1,2,4−トリアゾール、3−アミノ−1
H−1,2,4−トリアゾール等の脂肪族アゾール;2
−メチルイミダゾール、4−メチルイミダゾール、2−
エチルイミダゾール、2−(イソプロピル)イミダゾー
ル、2−プロピルイミダゾール、2−ブチルイミダゾー
ル等のイミダゾール;2−チオヒダントイン、1−(o
−トリル)−ビスグアニド、1H−1,2,3−トリア
ゾロ[4,5−b]ピリジン、1,2,4−トリアゾロ
[1,5−a]ピリミジン、3−メチル−5−ピラゾー
ル、3,5−ジメチルピラゾール、1,3−ジフェニル
グアニジン等のその他の含窒素化合物;2−メルカプト
ベンゾチアゾール、2−[2−(ベンゾチアゾリル)]
チオブチル酸、2−[2−(ベンゾチアゾリル)]チオ
プロピオン酸、4,5−ジメチルチアゾール、2−アミ
ノチアゾール等のチアゾール;ベンズイミダゾール−2
−チオール、トリアジンジチオール、トリアジントリチ
オール等のチオール;チオアセトアミド、チオベンズア
ミド等のチオアミド;エチレンチオ尿素、プロピレンチ
オ尿素等のチオ尿素;等が挙げられる。その中でも1H
−1,2,3−トリアゾロ[4,5−b]ピリジン、
1,3−ジフェニルグアニジン、3,5−ジメチルピラ
ゾール、4,5−ジメチルチアゾール、2−アミノチア
ゾールがより好ましい。
As the agent for preventing interfacial peeling of the metal laminated film, one selected from the following group is suitable. 1,2,3-triazole, 1,2,4-triazole, 3-amino-1
Aliphatic azoles such as H-1,2,4-triazole; 2
-Methylimidazole, 4-methylimidazole, 2-
Imidazoles such as ethylimidazole, 2- (isopropyl) imidazole, 2-propylimidazole, 2-butylimidazole; 2-thiohydantoin, 1- (o
-Tolyl) -bisguanide, 1H-1,2,3-triazolo [4,5-b] pyridine, 1,2,4-triazolo [1,5-a] pyrimidine, 3-methyl-5-pyrazole, 3, Other nitrogen-containing compounds such as 5-dimethylpyrazole and 1,3-diphenylguanidine; 2-mercaptobenzothiazole, 2- [2- (benzothiazolyl)]
Thiazoles such as thiobutyric acid, 2- [2- (benzothiazolyl)] thiopropionic acid, 4,5-dimethylthiazole and 2-aminothiazole; benzimidazole-2.
-Thiols such as thiol, triazinedithiol and triazinetrithiol; thioamides such as thioacetamide and thiobenzamide; thioureas such as ethylenethiourea and propylenethiourea; and the like. Among them, 1H
-1,2,3-triazolo [4,5-b] pyridine,
1,3-diphenylguanidine, 3,5-dimethylpyrazole, 4,5-dimethylthiazole and 2-aminothiazole are more preferable.

【0015】金属の酸化剤の配合量は、金属の酸化剤、
酸化金属溶解剤、防食剤、水溶性高分子、及び金属積層
膜界面剥離防止剤及び水の総量100gに対して、0.
003mol〜0.7molとすることが好ましく、
0.03mol〜0.5molとすることがより好まし
く、0.2mol〜0.3molとすることが特に好ま
しい。この配合量が0.003mol未満では、金属の
酸化が不十分で研磨速度が低く、0.7molを超える
と、研磨面に荒れが生じる傾向がある。
The compounding amount of the metal oxidizer is as follows.
With respect to the total amount of 100 g of the metal oxide dissolving agent, the anticorrosive agent, the water-soluble polymer, the metal laminated film interface peeling preventive agent and water,
It is preferably 003 mol to 0.7 mol,
It is more preferably 0.03 mol to 0.5 mol, and particularly preferably 0.2 mol to 0.3 mol. When the content is less than 0.003 mol, the oxidation of metal is insufficient and the polishing rate is low, and when it exceeds 0.7 mol, the polished surface tends to be rough.

【0016】本発明における酸化金属溶解剤の配合量
は、金属の酸化剤、酸化金属溶解剤、防食剤、水溶性高
分子、及び金属積層膜界面剥離防止剤及び水の総量10
0gに対して0〜0.005molとすることが好まし
く、0.00005mol〜0.0025molとする
ことがより好ましく、0.0005mol〜0.001
5molとすることが特に好ましい。この配合量が0.
005molを超えると、エッチングの抑制が困難とな
る傾向がある。
The compounding amount of the metal oxide dissolving agent in the present invention is such that the total amount of the metal oxidizing agent, the metal oxide dissolving agent, the anticorrosive agent, the water-soluble polymer, the interfacial peeling preventive agent for the metal laminated film and the water is 10.
It is preferably 0 to 0.005 mol, more preferably 0.00005 mol to 0.0025 mol, and 0.0005 mol to 0.001 with respect to 0 g.
It is particularly preferable to set it to 5 mol. This blending amount is 0.
If it exceeds 005 mol, it tends to be difficult to suppress etching.

【0017】防食剤の配合量は、金属の酸化剤、酸化金
属溶解剤、防食剤、水溶性高分子、及び金属積層膜界面
剥離防止剤及び水の総量100gに対して0.0001
mol〜0.05molとすることが好ましく0.00
03mol〜0.005molとすることがより好まし
く、0.0005mol〜0.0035molとするこ
とが特に好ましい。この配合量が0.0001mol未
満では、エッチングの抑制が困難となる傾向があり、
0.05molを超えると研磨速度が低くなってしまう
傾向がある。
The amount of the anticorrosive compounded is 0.0001 with respect to 100 g of the total amount of the metal oxidizing agent, the metal oxide dissolving agent, the anticorrosive agent, the water-soluble polymer, the interfacial peeling inhibitor for the metal laminated film and the water.
It is preferably 0.00 to 0.00 mol
The amount is more preferably 03 mol to 0.005 mol, and particularly preferably 0.0005 mol to 0.0035 mol. If the amount is less than 0.0001 mol, it tends to be difficult to suppress etching,
If it exceeds 0.05 mol, the polishing rate tends to be low.

【0018】水溶性高分子の配合量は、金属の酸化剤、
酸化金属溶解剤、防食剤、水溶性高分子、及び金属積層
膜界面剥離防止剤及び水の総量100gに対して0.0
01〜0.3重量%とすることが好ましく0.003重
量%〜0.1重量%とすることがより好ましく0.01
重量%〜0.08重量%とすることが特に好ましい。こ
の配合量が0.001重量%未満では、エッチング抑制
において防食剤との併用効果が現れない傾向があり0.
3重量%を超えると研磨速度が低下してしまう傾向があ
る。
The amount of the water-soluble polymer blended depends on the metal oxidizer,
Metal oxide dissolving agent, anticorrosive agent, water-soluble polymer, metal laminated film interfacial peeling preventive agent, and 0.0 per 100 g of water
It is preferably from 01 to 0.3% by weight, more preferably from 0.003% by weight to 0.1% by weight, and more preferably 0.01.
It is particularly preferable to set the content by weight to 0.08% by weight. If the blending amount is less than 0.001% by weight, the effect of combined use with the anticorrosive agent may not be exhibited in suppressing etching.
If it exceeds 3% by weight, the polishing rate tends to decrease.

【0019】水溶性高分子の重量平均分子量は500以
上とすることが好ましく、1500以上とすることがよ
り好ましく5000以上とすることが特に好ましい。重
量平均分子量の上限は特に規定するものではないが、溶
解性の観点から500万以下である。重量平均分子量が
500未満では高い研磨速度が発現しない傾向にある。
本発明では、水溶性高分子の重量平均分子量が500以
上の重量平均分子量が異なる少なくとも2種以上を用い
ることが好ましい。同種の水溶性高分子であっても、異
種の水溶性高分子であってもよい。
The weight average molecular weight of the water-soluble polymer is preferably 500 or more, more preferably 1500 or more, and particularly preferably 5000 or more. The upper limit of the weight average molecular weight is not particularly specified, but is 5,000,000 or less from the viewpoint of solubility. When the weight average molecular weight is less than 500, a high polishing rate tends not to appear.
In the present invention, it is preferable to use at least two kinds of water-soluble polymers having a weight average molecular weight of 500 or more and different in weight average molecular weight. The same type of water-soluble polymer or different types of water-soluble polymer may be used.

【0020】金属積層膜界面剥離防止剤の配合量は、金
属の酸化剤、酸化金属溶解剤、防食剤、水溶性高分子、
及び金属積層膜界面剥離防止剤及び水の総量100gに
対して0.0001mol〜0.05molとすること
が好ましく0.0003mol〜0.005molとす
ることがより好ましく、0.0005mol〜0.00
35molとすることが特に好ましい。この配合量が
0.0001mol未満では、20kPa以下の研磨圧
力での研磨速度が低下する傾向があり、0.05mol
を超えると界面剥離防止効果がなくなってしまう傾向が
ある。
The compounding amount of the interfacial peeling preventing agent for the metal laminated film is such that the metal oxidizing agent, the metal oxide dissolving agent, the anticorrosive agent, the water-soluble polymer,
Further, it is preferably 0.0001 mol to 0.05 mol, more preferably 0.0003 mol to 0.005 mol, and more preferably 0.0005 mol to 0.00 with respect to 100 g of the total amount of the metal laminated film interface peeling preventive agent and water.
It is particularly preferable to set it to 35 mol. If this amount is less than 0.0001 mol, the polishing rate at a polishing pressure of 20 kPa or less tends to decrease.
If it exceeds, the effect of preventing interfacial peeling tends to be lost.

【0021】CMP研磨剤には、必要に応じてさらに砥
粒を添加しても良い。砥粒としては、シリカ、アルミ
ナ、セリア、チタニア、ジルコニア、ゲルマニア、炭化
珪素等の無機物砥粒、ポリスチレン、ポリアクリル、ポ
リ塩化ビニル等の有機物砥粒が挙げられる。
Abrasive particles may be further added to the CMP polishing agent, if necessary. Examples of the abrasive grains include inorganic abrasive grains such as silica, alumina, ceria, titania, zirconia, germania and silicon carbide, and organic abrasive grains such as polystyrene, polyacryl and polyvinyl chloride.

【0022】本発明においては、表面に凹部を有する低
誘電率絶縁膜を形成した基板上に、Ta,Ti、W等の
高融点金属膜またはそれらの窒化物膜、続いて銅或いは
銅合金膜を形成・充填する。この基板を上記研磨液でC
MPすると、基板の凸部の金属膜が選択的にCMPされ
て、凹部に金属膜が残されて所望の導体パターンが得ら
れる。
In the present invention, a high melting point metal film of Ta, Ti, W or the like or a nitride film thereof, and subsequently a copper or copper alloy film is formed on a substrate on which a low dielectric constant insulating film having a concave portion is formed. Form and fill. This substrate is C with the above polishing liquid.
When the MP is performed, the metal film on the convex portion of the substrate is selectively CMP, and the metal film is left on the concave portion to obtain a desired conductor pattern.

【0023】低誘電率材料は、膜強度が低く、層間密着
力も低い。したがって、低誘電率材料を使用した基板の
CMP研磨に当たっては、低誘電率絶縁膜材料層の界面
剥離を防止するために低誘電率材料膜に印加される圧縮
応力、せん断応力を低くすることが必要があり、そのた
めにもできる限り研磨圧力を低くすることが望ましい。
The low dielectric constant material has low film strength and low interlayer adhesion. Therefore, in the CMP polishing of the substrate using the low dielectric constant material, the compressive stress and the shear stress applied to the low dielectric constant material film in order to prevent the interfacial separation of the low dielectric constant insulating film material layer can be reduced. It is necessary to make the polishing pressure as low as possible.

【0024】研磨速度については、研磨圧力が7kPa
以下の条件下では100nm/min以下であり、7〜
20kPaの範囲で研磨速度が急激に増大し400nm
/min以上となることが好ましい。このように研磨速
度が研磨圧力依存性を有する研磨液を用いて凹凸のある
金属表面を研磨する場合、研磨圧力が高くなる凸部では
研磨速度が高くなり、研磨圧力が低くなる凹部では研磨
速度が低くなるため、平坦化が促進され、配線のディッ
シングを抑制することができる。
Regarding the polishing rate, the polishing pressure is 7 kPa.
Under the following conditions, it is 100 nm / min or less, and 7 to
Polishing rate rapidly increased to 400 nm in the range of 20 kPa
/ Min or more is preferable. When polishing an uneven metal surface using a polishing liquid whose polishing rate depends on the polishing pressure in this way, the polishing rate becomes higher at the convex portion where the polishing pressure becomes higher and at the concave portion where the polishing pressure becomes lower. As a result, the planarization is promoted and the dishing of the wiring can be suppressed.

【0025】基板としては、例えば図1(a)(b)に
示す様に、半導体基板すなわち回路素子と配線パターン
が形成された段階の半導体基板、回路素子が形成された
段階の半導体基板等の半導体Si基板1の上に、低誘電
率絶材料層2、酸化珪素層3、バリアメタル層4を順に
形成し、最後に銅層5が表面に形成された基板が使用で
きる。このような半導体基板上に形成された銅層5を上
記研磨剤で研磨することによって、銅層5表面の凹凸を
解消し、図1(c)の様に半導体基板全面に渡って平滑
な面とする。具体的には、金属の酸化剤、酸化金属溶解
剤、防食剤、水溶性高分子、及び金属積層膜界面剥離防
止剤を含む金属用研磨液を研磨定盤上の研磨パッドに供
給し、銅層5が形成された半導体チップである基板の被
研磨面と接触させて被研磨面と研磨パッドを相対運動さ
せて基板表面を研磨する。金属層の凹凸を解消しながら
下層の金属層まで研磨することによって、埋め込んだ金
属層のみを残す。この際、ストッパーとなるバリアメタ
ル層との研磨速度比が大きければ、研磨のプロセスマー
ジンが大きくなる。また、研磨時に傷発生が少ないこと
も必要である。ここで、研磨する装置としては、半導体
基板を保持するホルダーと研磨布(パッド)を貼り付け
た(回転数が変更可能なモータ等を取り付けてある)定
盤を有する一般的な研磨装置が使用できる。
As the substrate, for example, as shown in FIGS. 1A and 1B, a semiconductor substrate, that is, a semiconductor substrate at a stage where circuit elements and wiring patterns are formed, a semiconductor substrate at a stage where circuit elements are formed, etc. A substrate in which a low dielectric constant material layer 2, a silicon oxide layer 3, and a barrier metal layer 4 are sequentially formed on a semiconductor Si substrate 1 and finally a copper layer 5 is formed on the surface can be used. By polishing the copper layer 5 formed on such a semiconductor substrate with the above-mentioned polishing agent, unevenness on the surface of the copper layer 5 is eliminated, and a smooth surface is formed over the entire surface of the semiconductor substrate as shown in FIG. 1 (c). And Specifically, a metal polishing liquid containing a metal oxidizing agent, a metal oxide dissolving agent, an anticorrosive agent, a water-soluble polymer, and a metal laminated film interfacial peeling inhibitor is supplied to a polishing pad on a polishing platen, The surface of the substrate, which is the semiconductor chip on which the layer 5 is formed, is brought into contact with the surface of the substrate and the polishing pad is relatively moved to polish the surface of the substrate. By polishing the lower metal layer while eliminating the unevenness of the metal layer, only the embedded metal layer is left. At this time, if the polishing rate ratio with the barrier metal layer serving as a stopper is large, the polishing process margin becomes large. It is also necessary that the number of scratches generated during polishing be small. Here, as a polishing device, a general polishing device having a holder for holding a semiconductor substrate and a surface plate to which a polishing cloth (pad) is attached (a motor or the like whose rotation speed is changeable) is used is used. it can.

【0026】図2は本発明において使用するCMP装置
例を示す概略図である。研磨定盤18の上に貼り付けら
れた研磨パッド17の上に、金属の酸化剤、酸化金属溶
解剤、防食剤、水溶性高分子、及び金属積層膜界面剥離
防止剤を含む金属用研磨液を供給し、半導体チップであ
る基板13に形成された銅層14を被研磨面としてウエ
ハホルダ11に貼り付け、銅層14を研磨パッドと接触
させ、被研磨面と研磨パッドを相対運動、具体的にはウ
エハホルダ11と研磨定盤18を回転させてCMPすな
わち基板の研磨を行う構造となっている。
FIG. 2 is a schematic diagram showing an example of a CMP apparatus used in the present invention. A metal polishing liquid containing a metal oxidizing agent, a metal oxide dissolving agent, an anticorrosive agent, a water-soluble polymer, and a metal laminated film interfacial peeling inhibitor on a polishing pad 17 attached on a polishing platen 18. Is supplied, and the copper layer 14 formed on the substrate 13, which is a semiconductor chip, is attached to the wafer holder 11 as the surface to be polished, the copper layer 14 is brought into contact with the polishing pad, and the surface to be polished and the polishing pad are moved relative to each other. The wafer holder 11 and the polishing platen 18 are rotated to perform CMP, that is, polishing of the substrate.

【0027】研磨パッドとしては、一般的な不織布、発
泡ポリウレタン、多孔質フッ素樹脂などが使用でき、特
に制限がない。また、研磨パッドには研磨剤が溜まる様
な溝加工を施すことが好ましい。研磨条件には制限はな
いが、定盤の回転速度は半導体が飛び出さない様に12
0rpm以下の低回転が好ましい。被研磨膜を有する半
導体基板の研磨パッドへの押しつけ圧力は、研磨速度の
ウエハ面内均一性及びパターンの平坦性を満足するため
には10〜50kPaであることが好ましい。研磨して
いる間、研磨パッドには研磨液をポンプ等で連続的に供
給する。この供給量には制限はないが、研磨パッドの表
面が常に研磨液で覆われていることが好ましい。
As the polishing pad, general non-woven fabric, foamed polyurethane, porous fluororesin, etc. can be used without any particular limitation. Further, it is preferable that the polishing pad is grooved so that the polishing agent is accumulated. There are no restrictions on the polishing conditions, but the rotation speed of the surface plate is 12 to prevent the semiconductor from jumping out.
A low rotation speed of 0 rpm or less is preferable. The pressing pressure of the semiconductor substrate having the film to be polished against the polishing pad is preferably 10 to 50 kPa in order to satisfy the in-plane uniformity of the polishing rate on the wafer and the flatness of the pattern. During polishing, the polishing liquid is continuously supplied to the polishing pad by a pump or the like. Although the supply amount is not limited, it is preferable that the surface of the polishing pad is always covered with the polishing liquid.

【0028】低誘電率絶縁膜にはプラズマCVD法で形
成した炭素添加酸化シリコンや、スピンコート法で形成
した水素添加あるいは炭素添加酸化シリコン、ベンゼン
環を有するポリマなどが上げられる。これらの材料の硬
度はプラズマCVD法で形成した酸化シリコンに比べて
1桁以上硬度が低いことが知られている。また、これら
の材料自体、酸化シリコンに比べて比誘電率が低いが、
膜中に微細な空孔を導入し見かけの密度を低化させるこ
とによってさらに比誘電率を下げることが可能である。
一方、膜硬度は空孔の導入量に従い低化することが知ら
れており、空孔の導入量に従い膜の強度は低化する。低
誘電率絶縁材量の比誘電率は、絶縁特性の点で低ければ
低いほど望ましい。比誘電率が4以下であることが好ま
しく、3以下であればより好ましい。また低誘電率絶縁
膜と金属層との密着力を向上させるため、低誘電率層と
金属層との間に酸化シリコン、窒化シリコン等の薄膜を
挿入することも可能である。
Examples of the low dielectric constant insulating film include carbon-added silicon oxide formed by plasma CVD, hydrogenated or carbon-added silicon oxide formed by spin coating, polymers having a benzene ring, and the like. It is known that the hardness of these materials is one digit or more lower than that of silicon oxide formed by the plasma CVD method. Also, although these materials themselves have a lower dielectric constant than silicon oxide,
It is possible to further lower the relative dielectric constant by introducing fine pores into the film to reduce the apparent density.
On the other hand, it is known that the film hardness decreases with the introduction amount of pores, and the strength of the film decreases with the introduction amount of pores. The relative permittivity of the low-dielectric-constant insulating material is preferably as low as possible in terms of insulation characteristics. The relative dielectric constant is preferably 4 or less, more preferably 3 or less. Further, in order to improve the adhesion between the low dielectric constant insulating film and the metal layer, it is possible to insert a thin film of silicon oxide, silicon nitride or the like between the low dielectric constant layer and the metal layer.

【0029】[0029]

【実施例】以下、実施例により本発明を説明する。 実施例1 (研磨速度評価用基板の作製)8インチシリコンウエハ
ーにプラズマCVD法で酸化シリコン膜を200nm形
成しスパッタ法でバリアメタルとしてタンタル膜を50
nm形成し、続いてメッキ膜のシード層としてスパッタ
法で銅を100nm、メッキ法で銅を800nm形成
し、絶縁膜上にタンタル、銅の2層膜をもつ研磨速度評
価用基板を作製した。 (研磨特性評価用基板の作製)8インチシリコンウエハ
ーにスピンコート法でSiLK(Dow Chemic
al製)を400nm形成し、プラズマCVD法で酸化
珪素膜を100nm形成し、フォトリソグラフィー法で
幅100μm、溝深さ500nmの凹部からなる埋め込
み配線形成部分と幅100μmの凸部からなるスペース
部を交互に形成したディッシング評価部を形成した。次
にスパッタ法でバリアメタルとしてタンタル膜を50n
m形成し、続いてメッキ膜のシード層としてスパッタ法
で銅を100nm、メッキ法で銅を800nm形成し、
凹凸を持つ絶縁膜上にタンタル、銅の2層膜をもつ研磨
特性評価用の基板を作製した。 (研磨液の調整)マロン酸(試薬特級)0.1重量部に
水70重量部を加えて溶解し、これにベンゾトリアゾー
ル0.05重量部、アミノチアゾール0.1重量部、分
子量5万のポリアクリル酸0.1重量部を加えた。最後
に過酸化水素水(試薬特級、30重量%水溶液)30重
量部を加えて得られたものを研磨液とした。 (研磨速度評価)上記研磨速度評価用基板と研磨液を使
用し、研磨パッドに独立気泡を持つ発泡ポリウレタン樹
脂を使用し、基体と支持基体との相対速度:36m/m
in、研磨液流量:300ml/minは一定とし、研
磨圧力を7kPa、14kPa、21kPaの3条件で
各々1分ずつ研磨を行い、研磨圧力と研磨速度の関係を
評価した。ブランケット膜による研磨速度は7kPaで
50nm/min、14kPaで500nm/min、
21kPaで600nm/minであった。 (研磨特性評価)上記研磨特性評価用基板と研磨液を使
用し、研磨パッドに独立気泡を持つ発泡ポリウレタン樹
脂を用い、基体と支持基体との相対速度:36m/mi
n、研磨液流量:300ml/min、研磨圧力を14
kPaの条件で2分10秒研磨を行った。研磨時間は銅
膜の残りを完全に除去するまで行った。CMP後の基体
の目視および光学顕微鏡による表面観察および触針式段
差計によるディッシングの評価を行った。目視及び光学
顕微鏡により表面観察をその結果、膜の剥離は観察され
ず、銅残りなく完全に研磨されていることが分かった。
触針式段差計でディッシング及びエロージョンを測定し
たところ、ディッシングは100/100μmライン/
スペース部で60nmであった。
EXAMPLES The present invention will be described below with reference to examples. Example 1 (Production of Polishing Rate Evaluation Substrate) A silicon oxide film having a thickness of 200 nm was formed on an 8-inch silicon wafer by a plasma CVD method, and a tantalum film was formed as a barrier metal by a sputtering method to 50 nm.
Then, 100 nm of copper was formed as a seed layer of the plating film by a sputtering method and 800 nm of copper was formed by a plating method as a seed layer of the plating film, and a substrate for polishing rate evaluation having a two-layer film of tantalum and copper on the insulating film was produced. (Preparation of substrate for polishing property evaluation) SiLK (Dow Chemical) was spin-coated on an 8-inch silicon wafer.
Al film) is formed to a thickness of 400 nm, a silicon oxide film is formed to a thickness of 100 nm by a plasma CVD method, and a space portion is formed by a photolithography method having a recessed portion having a width of 100 μm and a groove depth of 500 nm and a protrusion having a width of 100 μm. The dishing evaluation parts formed alternately were formed. Next, a tantalum film of 50 n is formed as a barrier metal by the sputtering method.
Then, as a seed layer of the plating film, copper is formed to a thickness of 100 nm by a sputtering method, and copper is formed to a thickness of 800 nm by a plating method.
A substrate for polishing property evaluation having a two-layer film of tantalum and copper on an insulating film having irregularities was prepared. (Preparation of polishing liquid) To 70 parts by weight of water was added to 0.1 part by weight of malonic acid (special grade reagent) and dissolved, and 0.05 part by weight of benzotriazole, 0.1 part by weight of aminothiazole, and 50,000 of molecular weight were added. 0.1 part by weight of polyacrylic acid was added. Finally, 30 parts by weight of hydrogen peroxide solution (special grade reagent, 30% by weight aqueous solution) was added to obtain a polishing solution. (Evaluation of polishing rate) Using the above polishing rate evaluation substrate and a polishing liquid, using a foamed polyurethane resin having closed cells in the polishing pad, the relative speed between the substrate and the supporting substrate: 36 m / m
In, polishing liquid flow rate: 300 ml / min was kept constant, and polishing was performed for 1 minute under each of three conditions of polishing pressure of 7 kPa, 14 kPa, and 21 kPa, and the relationship between the polishing pressure and the polishing rate was evaluated. The polishing rate by the blanket film is 50 nm / min at 7 kPa and 500 nm / min at 14 kPa.
It was 600 nm / min at 21 kPa. (Evaluation of Polishing Property) Using the above polishing property evaluation substrate and a polishing liquid, and using a foamed polyurethane resin having closed cells in the polishing pad, the relative speed between the substrate and the supporting substrate: 36 m / mi
n, polishing liquid flow rate: 300 ml / min, polishing pressure 14
Polishing was performed for 2 minutes and 10 seconds under the condition of kPa. The polishing time was until the remaining copper film was completely removed. Visual inspection of the substrate after CMP, surface observation with an optical microscope, and evaluation of dishing with a stylus profilometer were performed. As a result of visual observation and surface observation with an optical microscope, no peeling of the film was observed, and it was found that the film was completely polished without any copper residue.
When the dishing and erosion were measured with a stylus stepmeter, the dishing was 100/100 μm line /
It was 60 nm in the space portion.

【0030】比較例1 (評価用基板の作製)評価用基板については、研磨速度
用、研磨特性用ともに実施例1と同様にして作製したも
のを用いた。 (研磨液の調整)実施例1においてアミノチアゾールの
量を0.1重量部→0とし、これに伴い水の量を70→
70.1重量部とすること以外は全て同一にして、研磨
液を調整した。 (研磨速度評価)研磨圧力を21kPaで2分研磨した
以外は実施例と同様にディッシング評価用の基板を研磨
した。ブランケット膜による研磨速度は7kPaで45
nm/min、14kPaで65nm/min、21k
Paで550nm/minであった。 (研磨特性評価)上記研磨特性評価用基板と研磨液を使
用し、研磨パッドに独立気泡を持つ発泡ポリウレタン樹
脂を使用し、基体と支持基体との相対速度:36m/m
in、研磨液流量:300ml/min、研磨圧力を2
1kPaの条件で2分研磨を行った。研磨時間は銅膜の
残りを完全に除去するまで行った。目視及び光学顕微鏡
による表面観察の結果、ウエハ周辺部のSiLKと酸化
ケイ素膜界面で剥離が生じていることが分かった。触針
式段差計でディッシングを測定したところ、ディッシン
グは100/100μmライン/スペース部で70nm
であった。
Comparative Example 1 (Preparation of Evaluation Substrate) As the evaluation substrate, one prepared in the same manner as in Example 1 was used for both polishing speed and polishing characteristics. (Preparation of polishing liquid) In Example 1, the amount of aminothiazole was changed to 0.1 parts by weight → 0, and accordingly, the amount of water was changed to 70 →
A polishing liquid was prepared in the same manner except that the amount was 70.1 parts by weight. (Evaluation of Polishing Rate) A substrate for dishing evaluation was polished in the same manner as in Example except that polishing was performed at a polishing pressure of 21 kPa for 2 minutes. Polishing rate with blanket film is 45 at 7 kPa
65 nm / min, 21 k at nm / min, 14 kPa
It was 550 nm / min in Pa. (Evaluation of Polishing Property) Using the above polishing property evaluation substrate and a polishing liquid, using a foamed polyurethane resin having closed cells in the polishing pad, the relative speed between the substrate and the supporting substrate: 36 m / m
in, polishing liquid flow rate: 300 ml / min, polishing pressure 2
Polishing was performed for 2 minutes under the condition of 1 kPa. The polishing time was until the remaining copper film was completely removed. As a result of visual observation and surface observation with an optical microscope, it was found that peeling occurred at the interface between the SiLK and the silicon oxide film in the peripheral portion of the wafer. When the dishing was measured with a stylus type step meter, the dishing was 70 nm at 100/100 μm line / space part.
Met.

【0031】金属の酸化剤、酸化金属溶解剤、防食剤、
水溶性高分子、及び金属積層膜界面剥離防止剤を含むC
MP研磨液を用いた実施例1に対して、金属積層膜界面
剥離防止剤を含まない研磨液を用いた比較例1は、実用
的な研磨速度を得るためには20kPaより大きい研磨
圧力を要し、その結果、研磨により低誘電率絶縁膜材料
層の界面剥離が生じる。
Metal oxidizing agents, metal oxide dissolving agents, anticorrosive agents,
C containing water-soluble polymer and interfacial peeling preventive agent for metal laminated film
In contrast to Example 1 using the MP polishing liquid, Comparative Example 1 using the polishing liquid containing no interfacial peeling inhibitor for the metal laminated film requires a polishing pressure higher than 20 kPa to obtain a practical polishing rate. Then, as a result, the interface peeling of the low dielectric constant insulating film material layer occurs due to polishing.

【0032】[0032]

【発明の効果】本発明により、金属の酸化剤、酸化金属
溶解剤、防食剤、水溶性高分子、及び金属積層膜界面剥
離防止剤を含む金属用研磨液を提供することができる。
また、この研磨液を用いて、金属積層膜界面に働く応力
を緩和させ且つ20kPa未満の研磨圧力で平坦化しな
がら基盤表面を研磨することにより、低誘電率絶縁膜材
料層の界面剥離が生じることなく低研磨圧力で高速研磨
し、高平坦化することが可能な基板の研磨方法を適用で
きる。
According to the present invention, it is possible to provide a metal-polishing liquid containing a metal oxidizing agent, a metal oxide dissolving agent, an anticorrosive agent, a water-soluble polymer, and a metal laminated film interfacial peeling preventive agent.
Further, by using this polishing solution, the stress acting on the interface of the metal laminated film is relaxed and the surface of the substrate is polished while being flattened at a polishing pressure of less than 20 kPa, whereby the interface peeling of the low dielectric constant insulating film material layer occurs. It is possible to apply a method of polishing a substrate that is capable of performing high-speed polishing with a low polishing pressure and achieving high flatness.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基板表面の凹凸平坦化例を示す説明図
である。
FIG. 1 is an explanatory diagram showing an example of flattening unevenness on a substrate surface of the present invention.

【図2】本発明を実施したCMP装置例を示す図であ
る。
FIG. 2 is a diagram showing an example of a CMP apparatus embodying the present invention.

【符号の説明】[Explanation of symbols]

1.Si基板 2.低誘電率絶材
料層 3.酸化珪素層 4.バリアメタル
層 5.銅層 11.ウエハホルダ 12.リテーナ 13.半導体チップである基板 14.銅層 15.研磨液供給機構 16.金属用研磨
液 17.研磨パッド 18.研磨定盤
1. Si substrate 2. Low dielectric constant material layer 3. Silicon oxide layer 4. Barrier metal layer 5. Copper layer 11. Wafer holder 12. Retainer 13. Substrate that is a semiconductor chip 14. Copper layer 15. Polishing liquid supply mechanism 16. Metal polishing liquid 17. Polishing pad 18. Polishing surface plate

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C09K 3/14 550 C09K 3/14 550Z H01L 21/306 H01L 21/88 K 21/3205 21/306 M (72)発明者 安西 創 茨城県日立市東町四丁目13番1号 日立化 成工業株式会社山崎事業所内 Fターム(参考) 3C058 AA07 CB01 CB10 DA02 DA12 DA17 5F033 HH11 HH12 HH18 HH19 HH21 HH32 HH33 HH34 MM01 PP15 PP27 PP28 PP33 QQ09 QQ48 QQ50 RR01 RR04 RR06 RR21 RR29 SS15 SS21 WW00 WW05 XX01 XX24 5F043 AA27 BB18 DD16 FF07 GG10─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C09K 3/14 550 C09K 3/14 550Z H01L 21/306 H01L 21/88 K 21/3205 21/306 M ( 72) Inventor Hajime Anzai 4-13-1, Higashi-cho, Hitachi-shi, Ibaraki F-term in Yamazaki Works, Hitachi Chemical Co., Ltd. (reference) 3C058 AA07 CB01 CB10 DA02 DA12 DA17 5F033 HH11 HH12 HH18 HH19 HH21 HH32 HH33 HH34 MM01 PP15 PP27 PP28 PP33 QQ09 QQ48 QQ50 RR01 RR04 RR06 RR21 RR29 SS15 SS21 WW00 WW05 XX01 XX24 5F043 AA27 BB18 DD16 FF07 GG10

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 金属の酸化剤、酸化金属溶解剤、防食
剤、水溶性高分子、及び金属積層膜界面剥離防止剤を含
む金属用研磨液。
1. A metal polishing liquid containing a metal oxidizing agent, a metal oxide dissolving agent, an anticorrosive agent, a water-soluble polymer, and a metal laminate film interfacial peeling preventing agent.
【請求項2】 研磨圧力7kPaにおける研磨速度が1
00nm/min以下で、且つ研磨圧力14kPaにお
ける研磨速度が400nm/min以上である請求項1
記載の金属用研磨液。
2. A polishing rate at a polishing pressure of 7 kPa is 1
The polishing rate is 400 nm / min or more at a polishing pressure of 100 nm / min or less and a polishing pressure of 14 kPa.
The metal polishing liquid described.
【請求項3】 金属の酸化剤、酸化金属溶解剤、防食
剤、水溶性高分子、及び金属積層膜界面剥離防止剤を含
む金属用研磨液を研磨定盤上の研磨布に供給し、金属積
層膜が形成された半導体チップである基板の被研磨面と
接触させ、被研磨面と研磨布を相対的に動かすことによ
り、金属積層膜界面に働く応力を緩和させ且つ20kP
a未満の研磨圧力で平坦化しながら基板表面を研磨する
ことを特徴とする研磨方法。
3. A metal-polishing liquid containing a metal oxidizing agent, a metal oxide dissolving agent, an anticorrosive agent, a water-soluble polymer, and a metal laminated film interface peeling preventive agent is supplied to a polishing cloth on a polishing platen, By contacting the surface to be polished of the substrate which is the semiconductor chip on which the laminated film is formed and moving the surface to be polished and the polishing cloth relatively, the stress acting on the interface of the metal laminated film is relaxed and 20 kP
A polishing method which comprises polishing the surface of a substrate while flattening it with a polishing pressure of less than a.
【請求項4】 金属積層膜が低誘電率材料層及び銅層又
は銅合金層を備えてなる請求項3記載の研磨方法。
4. The polishing method according to claim 3, wherein the metal laminated film comprises a low dielectric constant material layer and a copper layer or a copper alloy layer.
JP2001251684A 2001-08-22 2001-08-22 Polishing liquid for metal and method for polishing Pending JP2003068683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001251684A JP2003068683A (en) 2001-08-22 2001-08-22 Polishing liquid for metal and method for polishing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001251684A JP2003068683A (en) 2001-08-22 2001-08-22 Polishing liquid for metal and method for polishing

Publications (1)

Publication Number Publication Date
JP2003068683A true JP2003068683A (en) 2003-03-07

Family

ID=19080290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001251684A Pending JP2003068683A (en) 2001-08-22 2001-08-22 Polishing liquid for metal and method for polishing

Country Status (1)

Country Link
JP (1) JP2003068683A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004095558A1 (en) * 2003-04-23 2004-11-04 Nikon Corporation Cmp polishing method and method for manufacturing semiconductor device
WO2005034448A1 (en) * 2003-09-22 2005-04-14 Nec Corporation Mobile communication system, device used for the same, and control program
JP2005123482A (en) * 2003-10-17 2005-05-12 Fujimi Inc Polishing method
JP2005136388A (en) * 2003-09-25 2005-05-26 Rohm & Haas Electronic Materials Cmp Holdings Inc Barrier polishing fluid
JP2005167199A (en) * 2003-09-25 2005-06-23 Rohm & Haas Electronic Materials Cmp Holdings Inc High-speed barrier polishing composition
JP2006019747A (en) * 2004-07-01 2006-01-19 Rohm & Haas Electronic Materials Cmp Holdings Inc Chemical mechanical polishing composition and related method
JP2006019746A (en) * 2004-07-01 2006-01-19 Rohm & Haas Electronic Materials Cmp Holdings Inc Chemical mechanical polishing composition and related method
JP2011254067A (en) * 2010-05-07 2011-12-15 Hitachi Chem Co Ltd Polishing liquid for cmp and polishing method using the same
US9022834B2 (en) 2008-12-11 2015-05-05 Hitachi Chemical Company, Ltd. Polishing solution for CMP and polishing method using the polishing solution

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004095558A1 (en) * 2003-04-23 2004-11-04 Nikon Corporation Cmp polishing method and method for manufacturing semiconductor device
CN100369212C (en) * 2003-04-23 2008-02-13 株式会社尼康 CMP polishing method and method for manufacturing semiconductor device
US7872998B2 (en) 2003-09-22 2011-01-18 Nec Corporation Mobile communication system and apparatus used for same, and control program
WO2005034448A1 (en) * 2003-09-22 2005-04-14 Nec Corporation Mobile communication system, device used for the same, and control program
JP2005136388A (en) * 2003-09-25 2005-05-26 Rohm & Haas Electronic Materials Cmp Holdings Inc Barrier polishing fluid
JP2005167199A (en) * 2003-09-25 2005-06-23 Rohm & Haas Electronic Materials Cmp Holdings Inc High-speed barrier polishing composition
KR101234331B1 (en) 2003-09-25 2013-02-18 롬 앤드 하스 일렉트로닉 머티리얼스 씨엠피 홀딩스 인코포레이티드 barrier polishing fluid
JP2005123482A (en) * 2003-10-17 2005-05-12 Fujimi Inc Polishing method
JP2006019746A (en) * 2004-07-01 2006-01-19 Rohm & Haas Electronic Materials Cmp Holdings Inc Chemical mechanical polishing composition and related method
JP2006019747A (en) * 2004-07-01 2006-01-19 Rohm & Haas Electronic Materials Cmp Holdings Inc Chemical mechanical polishing composition and related method
TWI394820B (en) * 2004-07-01 2013-05-01 羅門哈斯電子材料Cmp控股公司 Chemical mechanical polishing compositions and methods relating thereto
TWI396727B (en) * 2004-07-01 2013-05-21 羅門哈斯電子材料Cmp控股公司 Chemical mechanical polishing compositions and methods relating thereto
US9022834B2 (en) 2008-12-11 2015-05-05 Hitachi Chemical Company, Ltd. Polishing solution for CMP and polishing method using the polishing solution
JP2011254067A (en) * 2010-05-07 2011-12-15 Hitachi Chem Co Ltd Polishing liquid for cmp and polishing method using the same

Similar Documents

Publication Publication Date Title
JP4853494B2 (en) Polishing liquid and polishing method
EP1137056B1 (en) Abrasive liquid for metal and method for polishing
JP5472049B2 (en) Abrasives for chemical mechanical polishing
JP4568604B2 (en) Polishing liquid and polishing method
US8486837B2 (en) Polishing slurry for metal, and polishing method
JP2004031443A (en) Polishing solution and polishing method
JP2004031446A (en) Polishing solution and polishing method
TWI434881B (en) Polishing liquid for metal film and polishing method using the same
JP3780767B2 (en) Polishing liquid for metal and method for polishing substrate
JP4992826B2 (en) Polishing liquid and polishing method
JP4951808B2 (en) Polishing liquid for metal and polishing method
JP2003068683A (en) Polishing liquid for metal and method for polishing
JP4555990B2 (en) CMP polishing liquid for semiconductor metal film and method for polishing substrate
JP2004031442A (en) Polishing solution and polishing method
JP2010103409A (en) Metal polishing solution and polishing method using same
JPWO2004012248A1 (en) Polishing liquid and polishing method
US20060143990A1 (en) Polishing fluid for metal, and polishing method
JP2003188120A (en) Polishing liquid and polishing method for metal
JP5088352B2 (en) Polishing liquid for metal and polishing method
JP4684121B2 (en) Chemical mechanical polishing abrasive and substrate polishing method
JP2004363141A (en) Liquid and method for polishing metal
KR100679551B1 (en) Polishing fluid for metal and polishing method
JP2003183628A (en) Polishing liquid for metal and method for grinding
JP4774669B2 (en) Polishing liquid and polishing method
JPWO2008108301A1 (en) Polishing liquid for metal and polishing method of film to be polished