JP5135744B2 - Dye-sensitized solar cell - Google Patents

Dye-sensitized solar cell Download PDF

Info

Publication number
JP5135744B2
JP5135744B2 JP2006253741A JP2006253741A JP5135744B2 JP 5135744 B2 JP5135744 B2 JP 5135744B2 JP 2006253741 A JP2006253741 A JP 2006253741A JP 2006253741 A JP2006253741 A JP 2006253741A JP 5135744 B2 JP5135744 B2 JP 5135744B2
Authority
JP
Japan
Prior art keywords
dye
solar cell
sensitized solar
electrode
glass substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006253741A
Other languages
Japanese (ja)
Other versions
JP2008077898A (en
Inventor
裕規 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2006253741A priority Critical patent/JP5135744B2/en
Publication of JP2008077898A publication Critical patent/JP2008077898A/en
Application granted granted Critical
Publication of JP5135744B2 publication Critical patent/JP5135744B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Description

本発明は色素増感太陽電池関するものである。 The present invention relates to a dye-sensitized solar cells.

色素増感太陽電池は、シリコン半導体のp−n接合による太陽電池とは異なるメカニズムによって作動し、変換効率が高く、コストが低いという利点がある。   The dye-sensitized solar cell operates by a mechanism different from that of a silicon semiconductor pn junction, and has an advantage of high conversion efficiency and low cost.

この太陽電池の一般的なセル内部には、図2に示すように、電解液25が封入されている。 As shown in FIG. 2, an electrolytic solution 25 is sealed inside a general cell of this solar battery.

図2では、太陽光が照射されるガラス基材21に透明導電層22が接続して電極を構成している。この透明導電層22は樹脂などの封止剤23により、半導体層24と接続し、透明導電層22、封止剤23、及び半導体層24が形成する空間に電解液25を保持している(例えば、特許文献1参照。)。
特開2000−173680号公報
In FIG. 2, a transparent conductive layer 22 is connected to a glass substrate 21 to which sunlight is irradiated to constitute an electrode. The transparent conductive layer 22 is connected to the semiconductor layer 24 by a sealing agent 23 such as a resin, and holds the electrolytic solution 25 in a space formed by the transparent conductive layer 22, the sealing agent 23, and the semiconductor layer 24 ( For example, see Patent Document 1.)
JP 2000-173680 A

上記太陽電池の構成では、両極間を樹脂などの封止剤23で固定しているのみなので、
(1)両極の接着強度が弱い。
(2)電解液25と封止剤23が直接接触するので電解液の溶媒が揮発してしまう。
(3)電解液25の腐食性により封止剤23が劣化し、結果として電解液25が漏れ出してしまう。
などの問題がある。したがって、長期的に安定な状態を保つことが困難である。
In the configuration of the solar cell, the gap between both electrodes is only fixed with a sealing agent 23 such as a resin.
(1) The adhesion strength between the two electrodes is weak.
(2) Since the electrolytic solution 25 and the sealant 23 are in direct contact, the solvent of the electrolytic solution is volatilized.
(3) The sealing agent 23 deteriorates due to the corrosiveness of the electrolytic solution 25, and as a result, the electrolytic solution 25 leaks out.
There are problems such as. Therefore, it is difficult to maintain a stable state in the long term.

また、電解液25は腐食性を有するので、銅や金などの導電材料を用いることができず、透明導電ガラス上に白金を蒸着したものを還元層として用いている。したがって、両極ともガラス基材を用いることとなり、結果として封止技術が制限されてしまう。   In addition, since the electrolytic solution 25 is corrosive, a conductive material such as copper or gold cannot be used, and a material obtained by depositing platinum on transparent conductive glass is used as the reducing layer. Therefore, a glass substrate is used for both electrodes, and as a result, the sealing technique is limited.

また、光電変換した電流を効率よく外部に出力するためには、透明導電層の面抵抗を下げる必要がある。しかし面抵抗を下げるために成膜厚を厚くすると、透過する太陽光が減少してしまい、これらはいわゆるトレードオフの関係にある。受光面積を大きくして透過する太陽光を増加させる場合には、図3に示すように集積線31が必要となる。しかし、電解質には腐食性があるため、ガラス等の保護材32で集積線31を保護する必要があり、受光の有効面積が減少してしまう。   Further, in order to efficiently output the photoelectrically converted current to the outside, it is necessary to reduce the surface resistance of the transparent conductive layer. However, when the film thickness is increased in order to reduce the surface resistance, the transmitted sunlight is reduced, and these are in a so-called trade-off relationship. When increasing the light receiving area and increasing the transmitted sunlight, the integrated line 31 is required as shown in FIG. However, since the electrolyte is corrosive, it is necessary to protect the integrated line 31 with a protective material 32 such as glass, and the effective area of light reception is reduced.

そこで、上記課題を解決可能な、太陽電池における電解液封止技術を提供する。   Then, the electrolyte solution sealing technique in a solar cell which can solve the said subject is provided.

そこで上記課題を解決するために、請求項1に記載の発明は、色素増感太陽電池であって、ステンレスまたはチタンの表面に白金成膜をして成る還元極を構成したセルと、そのセルに溶接させるためのコバール枠付のガラス基板から成り当該ガラス基板における前記還元極と対向した面に耐電解液性を有するチタン格子を形成してから透明導電膜が成膜された作動極と、を有し、前記還元極と作動極との間に電解液を保持させて、前記コバール枠とセルとを溶接して封止したことを特徴とする。 Accordingly, in order to solve the above-mentioned problems, the invention described in claim 1 is a dye-sensitized solar cell comprising a reduction electrode formed by forming a platinum film on the surface of stainless steel or titanium, and the cell A working electrode on which a transparent conductive film is formed after forming a titanium lattice having an electrolytic solution resistance on a surface of the glass substrate facing the reducing electrode, the glass substrate having a Kovar frame for welding to the glass substrate; The electrolytic solution is held between the reduction electrode and the working electrode, and the Kovar frame and the cell are welded and sealed .

また、請求項に記載の発明は、前記チタン格子は、前記ガラス基板に彫り込みを作成し、該チタン格子に50μm以上の膜厚を確保することを特徴とする。 Further, the invention described in claim 2 is characterized in that the titanium lattice is engraved in the glass substrate , and a film thickness of 50 μm or more is secured on the titanium lattice.

また、請求項に記載の発明は、前記コバール枠とセルとをYAGレーザー溶接して封止したことを特徴とする。 The invention according to claim 3 is characterized in that the Kovar frame and the cell are sealed by YAG laser welding.

また、請求項に記載の発明は、前記コバールの最外周部におけるガラス基板との溶着界面付近にV字溝を彫り込んだことを特徴とする。 The invention of claim 4 is characterized in that engraved the V-shaped groove in the vicinity of the welding interface between the glass substrate at the outermost peripheral portion of the Kovar frame.

また、請求項に記載の発明は、前記コバール枠のレーザー溶接部付近のつばを厚くしたことを特徴とする。 The invention described in Claim 5 is characterized in that thickened collar around the laser welds of the Kovar frame.

また、請求項に記載の発明は、前記コバール枠のレーザー溶接部付近のつばに溝を彫り込んだことを特徴とする。 The invention according to claim 6, characterized in that engraved grooves in collar around the laser welds of the Kovar frame.

請求項に記載の発明によれば、電解液による腐食を生じさせないセル構成を低コストで提供することが可能であり、また、作動極の面抵抗が低減し、エネルギー変換効率が向上するAccording to the invention described in claim 1, Ri can der to provide a cell structure that does not cause corrosion due to the electrolyte solution at a low cost, also the sheet resistance of the working electrode is reduced, the energy conversion efficiency is improved .

請求項に記載の発明によれば、チタン格子の厚さを厚くすることが可能であり、作動極の面抵抗が低減し、エネルギー変換効率が向上する。 According to the second aspect of the present invention, the thickness of the titanium lattice can be increased, the surface resistance of the working electrode is reduced, and the energy conversion efficiency is improved.

請求項に記載の発明によれば、溶接歪みの低減が可能となり、コストを低減することが可能となる。 According to the third aspect of the present invention, it is possible to reduce welding distortion and reduce costs.

請求項4、5、6に記載の発明によれば、セル封止を目的としたレーザー溶接時の応力が緩和され、歩留まりを向上することが可能である。 According to the invention described in claims 4 , 5, and 6 , the stress at the time of laser welding for the purpose of cell sealing is relaxed, and the yield can be improved.

(実施形態1)
色素増感太陽電池は、ヨウ素の酸化還元反応により光電変換を行っており、このヨウ素を還元する触媒として白金が有効であり、実用されている。
(Embodiment 1)
In the dye-sensitized solar cell, photoelectric conversion is performed by an oxidation-reduction reaction of iodine, and platinum is effective as a catalyst for reducing iodine, and is practically used.

しかし白金は非常に高価であるため、白金単体により電極を構成すると製造コストが増大してしまう。そこで、メッキ、真空蒸着、又はスパッタ等の手法により、白金と密着性のよいチタンに白金の薄膜層(2μm以下)を形成したものを還元極とした。   However, since platinum is very expensive, if the electrode is made of platinum alone, the manufacturing cost increases. Therefore, a reduction electrode was formed by forming a platinum thin film layer (2 μm or less) on titanium having good adhesion to platinum by a technique such as plating, vacuum deposition, or sputtering.

この電極の腐食速度を表1に示す。   The corrosion rate of this electrode is shown in Table 1.

Figure 0005135744
Figure 0005135744

表1に示すように、チタンに白金の薄膜層を形成した電極は、白金単体からなる電極と同様の耐腐食性を示した。   As shown in Table 1, an electrode in which a platinum thin film layer was formed on titanium exhibited the same corrosion resistance as an electrode made of platinum alone.

したがって、チタンに白金の薄膜層を形成した電極を用いることで、低コストで、白金単体からなる電極と同様の耐食性を有する電極を提供することが可能である。   Therefore, by using an electrode in which a thin film layer of platinum is formed on titanium, it is possible to provide an electrode having the same corrosion resistance as an electrode made of platinum alone at a low cost.

(実施形態2)
色素増感太陽電池は、ヨウ素の酸化還元反応により光電変換を行っており、このヨウ素を還元する触媒として白金が有効であり、用いられている。
(Embodiment 2)
The dye-sensitized solar cell performs photoelectric conversion by an oxidation-reduction reaction of iodine, and platinum is effective and used as a catalyst for reducing this iodine.

しかし白金は非常に高価であるため、白金単体により電極を構成すると製造コストが増大してしまう。そこで、ステンレスにパルス電源を用いて白金めっき(2μm以下)をしたものを還元極とした。   However, since platinum is very expensive, if the electrode is made of platinum alone, the manufacturing cost increases. Therefore, a reduction electrode was obtained by platinum plating (less than 2 μm) on stainless steel using a pulse power source.

この電極の腐食速度を表1に示す。   The corrosion rate of this electrode is shown in Table 1.

表1に示すように、ステンレスに白金めっきを形成した電極は、白金単体からなる電極と同様の耐腐食性を示した。   As shown in Table 1, the electrode in which platinum plating was formed on stainless steel showed the same corrosion resistance as the electrode made of platinum alone.

したがって、ステンレスに白金めっきを形成した電極を用いることで、低コストで、白金単体からなる電極と同様の耐食性を有する電極を提供することが可能である。   Therefore, by using an electrode in which platinum plating is formed on stainless steel, it is possible to provide an electrode having the same corrosion resistance as an electrode made of platinum alone at a low cost.

(実施形態3)
還元極とセル容器との接続について、チタンは機械加工が比較的困難であるため、還元極は平板チタンに白金を成膜したものを採用した。この電極と、太陽電池を構成するために必要な形状を加工したステンレス部品とをYAG溶接することで太陽電池を組み立てることとし、これまでは不可能とされていた、電解液保護材のない集電線を検討した。
(Embodiment 3)
Regarding the connection between the reduction electrode and the cell container, titanium is relatively difficult to machine, and therefore, the reduction electrode was formed by depositing platinum on a flat plate titanium. A solar cell is assembled by YAG welding this electrode and a stainless steel part processed to form the solar cell, and it has been considered impossible until now. The electric wire was examined.

(実施例3−1)
受光ガラスでもある作動極の、還元極と対向する面では、光電変換が行われるが、変換した電子を外部に取り出すために透明導電層が成膜されている。しかし、この透明導電層は面抵抗が高いため、電圧損失が大きく、変換効率の低下を引き起こす。そこで、透明導電膜を成膜する前に、直接ガラス基材上に耐電解液性を有するチタン格子を、真空蒸着やスパッタ等により、形成した後に、透明導電膜を成膜して、面抵抗の低減を試みた。
(Example 3-1)
Photoelectric conversion is performed on the surface of the working electrode, which is also the light receiving glass, facing the reduction electrode, but a transparent conductive layer is formed to take out the converted electrons to the outside. However, since this transparent conductive layer has a high surface resistance, the voltage loss is large and the conversion efficiency is lowered. Therefore, before forming the transparent conductive film, after forming a titanium grid having an electrolytic solution resistance directly on the glass substrate by vacuum deposition or sputtering, the transparent conductive film is formed and the surface resistance is increased. I tried to reduce it.

この作動極の面抵抗を表2に示す。   Table 2 shows the surface resistance of the working electrode.

Figure 0005135744
Figure 0005135744

表2に示すように、現状の作動極を比べるとシート抵抗が0.4(Ω/cm2)ほど減少した。 As shown in Table 2, when the current working electrode is compared, the sheet resistance is reduced by about 0.4 (Ω / cm 2 ).

(実施例3−2)
実施例1のチタン格子の成膜厚さは、電極の短絡を防ぐために電極間距離よりも薄くする必要があり、その距離は効率の面から、50μm以下とする必要がある。このチタン格子の性能をより引き出すために、ガラス基材にレーザー彫刻などで彫り込みを作成し、50μm以上の膜厚を確保することで、抵抗の低減を試みた。
(Example 3-2)
The film thickness of the titanium grid of Example 1 needs to be thinner than the distance between the electrodes in order to prevent short-circuiting of the electrodes, and the distance needs to be 50 μm or less from the viewpoint of efficiency. In order to draw out the performance of this titanium lattice more, engraving was made on a glass substrate by laser engraving or the like, and an attempt was made to reduce resistance by securing a film thickness of 50 μm or more.

この作動極の面抵抗を表2に示す。表2に示すように、現状の作動極を比べるとシート抵抗が0.6(Ω/cm2)ほど減少した。 Table 2 shows the surface resistance of the working electrode. As shown in Table 2, when the current working electrode is compared, the sheet resistance is reduced by about 0.6 (Ω / cm 2 ).

(実施形態4)
従来は電子ビームで溶接して電解液を封止していたが、この技術は高真空を必要とするために、量産性に劣るという問題があった。そこで、大気中での溶接を検討した。
(Embodiment 4)
Conventionally, the electrolyte solution is sealed by welding with an electron beam, but this technique has a problem that it is inferior in mass productivity because it requires a high vacuum. Therefore, welding in the atmosphere was examined.

(実施例4)
図1に色素増感太陽電池のセル構成(符号15はチタン格子、符号16は出力端子)を示す。コバール11枠付ガラス基板(作動極)12と、ステンレス又はチタン製の金属セル(還元極)13との電極間距離は25μm程度に保持する必要がある。
Example 4
FIG. 1 shows a cell configuration of a dye-sensitized solar cell (reference numeral 15 is a titanium lattice, and reference numeral 16 is an output terminal). The distance between the electrodes of the Kovar 11 framed glass substrate (working electrode) 12 and the stainless steel or titanium metal cell (reduction electrode) 13 needs to be maintained at about 25 μm.

そこで、少ない入熱、且つ、熱影響が局所的で済み、溶接歪みを極力抑えることが可能なYAGレーザー溶接で接合を試みた。   Therefore, joining was attempted by YAG laser welding, which requires only a small amount of heat input and a local heat effect and can suppress welding distortion as much as possible.

この溶接技術を採用することで、ガラス−コバール界面14への応力が緩和されて、この界面での亀裂破壊が減少し、作成速度も向上した。   By employing this welding technique, the stress on the glass-kovar interface 14 was relaxed, crack fracture at this interface was reduced, and the production speed was improved.

また、コバール付のガラス基板のガラス部に残留している応力には、ばらつきがある。従来のコバール断面形状では、レーザー溶接時に、残留応力の大きいガラス基板はガラス−コバール界面に亀裂が生じ、歩留まりが低下していた。   Further, the stress remaining in the glass portion of the glass substrate with kovar varies. In the conventional Kovar cross-sectional shape, during laser welding, a glass substrate having a large residual stress cracked at the glass-Kovar interface, resulting in a decrease in yield.

(実施形態5)
コバールの形状解析を行い、レーザー溶接時にガラス−コバール界面で発生する応力を緩和するコバール形状を表3に示す。
(Embodiment 5)
Table 3 shows the Kovar shape that performs shape analysis of Kovar and relaxes the stress generated at the glass-Kovar interface during laser welding.

Figure 0005135744
Figure 0005135744

表3に示すように、コバール側の最外周部はガラス溶着部よりも薄いつばを有する構造とし、このつばの最外周部を電子ビーム溶接部とすることで、必要以上の溶接応力を発生させない構造とした。   As shown in Table 3, the outermost peripheral portion on the Kovar side has a structure having a thinner rib than the glass welded portion, and the outermost peripheral portion of this collar is an electron beam welded portion, so that unnecessary welding stress is not generated. The structure.

この応力は、上に反る力(最大応力)と下に反る力(最小応力)があるため、最大値、最小値それぞれの絶対値が小さい程好ましい。   Since this stress has a force that warps upward (maximum stress) and a force that warps downward (minimum stress), the absolute value of each of the maximum and minimum values is preferably as small as possible.

実施例5−1は、ガラス溶着界面付近にV字溝を彫り込んだものである。この場合には、現状と比較して最大応力の絶対値は、3MPa増加し、最小応力の絶対値は7MPa減少する。また、加工が容易で歩留まりも良いという効果がある。   In Example 5-1, a V-shaped groove was carved in the vicinity of the glass weld interface. In this case, the absolute value of the maximum stress increases by 3 MPa and the absolute value of the minimum stress decreases by 7 MPa compared with the current state. Further, there is an effect that processing is easy and the yield is good.

実施例5−2は、レーザー溶接部付近のつばを厚くしたものである。この場合には、現状と比較して最大応力の絶対値は、2MPa減少し、最小応力の絶対値は3MPa減少する。また、他と比較して加工が最も容易で、歩留まりも良いという効果がある。   In Example 5-2, the collar near the laser welded portion is thickened. In this case, the absolute value of the maximum stress is reduced by 2 MPa and the absolute value of the minimum stress is reduced by 3 MPa as compared with the current state. In addition, there is an effect that the machining is the easiest and the yield is good compared to others.

実施例5−3は、レーザー溶接部付近のつばに溝を彫り込んだものである。この場合には、現状と比較して最大応力の絶対値は、4MPa減少し、最小応力の絶対値は4MPa減少する。また、加工は難しいが、応力が最も少ないという効果がある。   In Example 5-3, a groove is carved into the collar near the laser weld. In this case, the absolute value of the maximum stress is reduced by 4 MPa and the absolute value of the minimum stress is reduced by 4 MPa as compared with the current state. Moreover, although processing is difficult, there exists an effect that there is the least stress.

色素増感太陽電池のセル構成図。The cell block diagram of a dye-sensitized solar cell. 色素増感太陽電池のセル構成図。The cell block diagram of a dye-sensitized solar cell. 色素増感太陽電池の集電説明図。Current collection explanatory drawing of a dye-sensitized solar cell.

符号の説明Explanation of symbols

11…コバール
12…受光面
13…金属セル
14…ガラス−コバール界面
21…ガラス基材
22…透明導電層
23…封止剤
24…半導体層
25…電解液
DESCRIPTION OF SYMBOLS 11 ... Kovar 12 ... Light-receiving surface 13 ... Metal cell 14 ... Glass-Kovar interface 21 ... Glass base material 22 ... Transparent conductive layer 23 ... Sealant 24 ... Semiconductor layer 25 ... Electrolyte solution

Claims (6)

ステンレスまたはチタンの表面に白金成膜をして成る還元極を構成したセルと、そのセルに溶接させるためのコバール枠付のガラス基板から成り当該ガラス基板における前記還元極と対向した面に耐電解液性を有するチタン格子を形成してから透明導電膜が成膜された作動極と、を有し、A cell comprising a reducing electrode made of a platinum film formed on the surface of stainless steel or titanium, and a glass substrate with a Kovar frame for welding to the cell, the surface of the glass substrate facing the reducing electrode is resistant to electrolysis. And a working electrode on which a transparent conductive film is formed after forming a liquid titanium lattice,
前記還元極と作動極との間に電解液を保持させて、前記コバール枠とセルとを溶接して封止したことを特徴とする色素増感太陽電池。  A dye-sensitized solar cell, wherein an electrolytic solution is held between the reduction electrode and the working electrode, and the Kovar frame and the cell are welded and sealed.
前記チタン格子は、前記ガラス基板に彫り込みを作成し、該チタン格子に50μm以上の膜厚を確保したことを特徴とする請求項記載の色素増感太陽電池The titanium grating creates engraved on the glass substrate, a dye-sensitized solar cell according to claim 1, characterized in that to ensure a film thickness of at least 50μm into the titanium lattice. 前記コバール枠とセルとをYAGレーザー溶接して封止したことを特徴とする請求項1または2記載の色素増感太陽電池 The dye-sensitized solar cell according to claim 1 or 2, wherein the Kovar frame and the cell are sealed by YAG laser welding. 前記コバールの最外周部におけるガラス基板との溶着界面付近にV字溝を彫り込んだことを特徴とする請求項1〜3の何れかに記載の色素増感太陽電池 The dye-sensitized solar cell according to any one of claims 1 to 3, characterized in that engraved the V-shaped groove in the vicinity of the welding interface between the glass substrate at the outermost peripheral portion of the Kovar frame. 前記コバール枠のレーザー溶接部付近のつばを厚くしたことを特徴とする請求項1〜3の何れかに記載の色素増感太陽電池 The dye-sensitized solar cell according to any one of claims 1 to 3, wherein a collar near a laser welding portion of the Kovar frame is thickened. 前記コバール枠のレーザー溶接部付近のつばに溝を彫り込んだことを特徴とする請求項1〜3の何れかに記載の色素増感太陽電池 The dye-sensitized solar cell according to any one of claims 1 to 3, wherein a groove is carved into a collar in the vicinity of a laser welded portion of the Kovar frame .
JP2006253741A 2006-09-20 2006-09-20 Dye-sensitized solar cell Expired - Fee Related JP5135744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006253741A JP5135744B2 (en) 2006-09-20 2006-09-20 Dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006253741A JP5135744B2 (en) 2006-09-20 2006-09-20 Dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
JP2008077898A JP2008077898A (en) 2008-04-03
JP5135744B2 true JP5135744B2 (en) 2013-02-06

Family

ID=39349754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006253741A Expired - Fee Related JP5135744B2 (en) 2006-09-20 2006-09-20 Dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP5135744B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4843899B2 (en) * 2003-11-25 2011-12-21 ソニー株式会社 Photoelectric conversion element and manufacturing method thereof
JP2005353296A (en) * 2004-06-08 2005-12-22 Fujikura Ltd Photoelectric conversion element
JP2006147261A (en) * 2004-11-17 2006-06-08 Enplas Corp Counter electrode of dye-sensitized solar cell and dye-sensitized solar cell

Also Published As

Publication number Publication date
JP2008077898A (en) 2008-04-03

Similar Documents

Publication Publication Date Title
JP4439477B2 (en) Photovoltaic element and manufacturing method thereof
US20110121441A1 (en) Diode leadframe for solar module assembly
WO2011081090A1 (en) Concentrator solar cell, concentrator solar cell module and concentrator solar cell system, and method for manufacturing concentrator solar cell and concentrator solar cell module
JP5186192B2 (en) Solar cell module
WO2017177726A1 (en) Solar cell module and method for manufacturing same, assembly, and system
JPWO2007060744A1 (en) Solar cell and manufacturing method thereof
JP4075410B2 (en) Solar cell
JP5909667B2 (en) Solar cell module and manufacturing method thereof
JP5135744B2 (en) Dye-sensitized solar cell
JP2000277785A (en) Bypass diode for solar battery module
JP5600784B2 (en) Modularized alkali metal thermoelectric converter cell and manufacturing method thereof
JP2016152411A (en) Photovoltaic module and manufacturing method for the same
CN211480051U (en) Metal edge-sealed double-glass perovskite solar cell module
US8710356B2 (en) Photoelectric conversion module
CN103560154A (en) Back-contact solar cell assembly
CN109742196A (en) A kind of low-temperature welding method of monocrystalline silicon heterojunction solar cell
JP3376064B2 (en) Solar cell module
CN103943703A (en) Interconnector for solar battery and corresponding solar module
JP2016033932A (en) Solar cell module and manufacturing method of the same
CN219832668U (en) Tin electrode for solar cell and solar cell
JP5709784B2 (en) Solar cell and solar cell module
KR101349521B1 (en) Solar cell module
JP2012015362A (en) Method of connecting lead wire of solar battery cell
TWI668880B (en) Solar battery unit and solar battery module
KR20130051216A (en) Solar cell apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120918

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121029

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees