JP5132293B2 - Method for producing negative electrode material for non-aqueous secondary battery - Google Patents

Method for producing negative electrode material for non-aqueous secondary battery Download PDF

Info

Publication number
JP5132293B2
JP5132293B2 JP2007320010A JP2007320010A JP5132293B2 JP 5132293 B2 JP5132293 B2 JP 5132293B2 JP 2007320010 A JP2007320010 A JP 2007320010A JP 2007320010 A JP2007320010 A JP 2007320010A JP 5132293 B2 JP5132293 B2 JP 5132293B2
Authority
JP
Japan
Prior art keywords
precursor
negative electrode
secondary battery
electrode material
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007320010A
Other languages
Japanese (ja)
Other versions
JP2009146613A (en
Inventor
徹 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2007320010A priority Critical patent/JP5132293B2/en
Priority to KR1020080104347A priority patent/KR101049828B1/en
Publication of JP2009146613A publication Critical patent/JP2009146613A/en
Application granted granted Critical
Publication of JP5132293B2 publication Critical patent/JP5132293B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/006Compounds containing, besides vanadium, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

この発明は、均一な結晶構造を有し、充放電を繰り返しても結晶構造が安定な非水系二次電池用負極材料の製造方法に関するものである。   The present invention relates to a method for producing a negative electrode material for a non-aqueous secondary battery that has a uniform crystal structure and has a stable crystal structure even after repeated charge and discharge.

従来、非水系二次電池の負極活物質としては、リチウムの挿入/離脱が可能であることより、人造黒鉛、天然黒鉛、ハードカーボン等の種々の炭素材料が用いられており、非水系二次電池を高容量化するために、これら炭素材料の利用率向上、電極体積当たりの充填密度向上による性能の改善が図られてきた。しかし、実用量が黒鉛の理論容量(372mAh/g)に近づき、また充填密度向上も限界に近づいてきたため、現行の炭素材料を用いた電池の高容量化は困難になりつつある。   Conventionally, as a negative electrode active material of a non-aqueous secondary battery, various carbon materials such as artificial graphite, natural graphite, and hard carbon have been used because lithium can be inserted / removed. In order to increase the capacity of the battery, the performance has been improved by improving the utilization rate of these carbon materials and the packing density per electrode volume. However, since the practical amount has approached the theoretical capacity (372 mAh / g) of graphite, and the improvement in packing density has also approached the limit, it is becoming difficult to increase the capacity of batteries using current carbon materials.

このため、負極活物質として金属リチウムやシリコン合金材料の検討が盛んに行なわれているが、これらの材料は電極の膨張収縮に伴うストレスが大きく実用化には至っていない。   For this reason, metal lithium and silicon alloy materials have been actively studied as negative electrode active materials, but these materials are not put into practical use because of the stress associated with the expansion and contraction of the electrodes.

これに対して、電極の膨張収縮のストレスが小さく、高容量な材料として、リチウムバナジウム酸化物が注目されている(特許文献1、2)。
特開2003−68305 特開2007−173096
On the other hand, lithium vanadium oxide has been attracting attention as a high-capacity material that has a small expansion / contraction stress of the electrode (Patent Documents 1 and 2).
JP 2003-68305 A JP2007-173096

しかしながら、特許文献1、2に記載の製造方法により得られるリチウムバナジウム酸化物は、バナジウムに対して過剰に含まれるリチウムが結晶格子内の所定の位置に存在しないことがあるため、格子定数の変動が大きくなると共に充放電容量も変動するという問題点を有する。   However, the lithium vanadium oxide obtained by the manufacturing method described in Patent Documents 1 and 2 may not have lithium contained in excess in the crystal lattice at a predetermined position in the crystal lattice, so that the lattice constant varies. However, there is a problem that the charge / discharge capacity fluctuates with the increase.

更に、従来のリチウムバナジウム酸化物は、充放電時にリチウムイオンの挿入・脱離により結晶構造が大きく変化するために、充放電サイクル時の容量劣化が著しい。この問題を解決するには金属元素の添加によって結晶構造を強固にして、結晶構造の変化を抑制することが有効である。しかし、特許文献1、2に記載の製造方法では、金属元素を多量に添加すると、当該金属元素が結晶粒子内に偏在するために、金属元素の添加効果を充分に得られず、サイクル特性に課題が残る。   Furthermore, since the crystal structure of the conventional lithium vanadium oxide changes greatly due to the insertion / extraction of lithium ions during charge / discharge, the capacity deterioration during the charge / discharge cycle is significant. In order to solve this problem, it is effective to strengthen the crystal structure by adding a metal element and suppress the change of the crystal structure. However, in the manufacturing methods described in Patent Documents 1 and 2, when a large amount of a metal element is added, the metal element is unevenly distributed in the crystal grains, so that the effect of adding the metal element cannot be sufficiently obtained, and the cycle characteristics are improved. Issues remain.

そこで本発明は、上記現状に鑑み、均一な結晶構造を有し、充放電を繰り返しても結晶構造が安定な非水系二次電池用負極材料の製造方法を提供することを課題とする。   Accordingly, an object of the present invention is to provide a method for producing a negative electrode material for a non-aqueous secondary battery that has a uniform crystal structure and has a stable crystal structure even after repeated charge and discharge.

本発明者らは、バナジウムと、バナジウムに対して過剰に存在するリチウムと、他の添加元素と、酸素と、からなる層間にリチウムイオンが存在する六方晶系のリチウムバナジウム酸化物は、結晶構造の均一性が高くなると、各元素が結晶格子内の所定の位置に存在するので、格子定数a、cの比c/aが小さくなり、それに伴い、当該リチウムバナジウム酸化物を負極活物質として用いた二次電池の初期容量が向上することを解明した。そして、リチウム源やバナジウム源となる材料を水に溶解する工程を経て前駆体を作製すると、それぞれの元素が原子レベルで均一化して、結晶構造の均一化を図ることができることを見出し、当該知見に基づき本発明を完成した。   The inventors of the present invention have a crystal structure of a hexagonal lithium vanadium oxide in which lithium ions are present between layers composed of vanadium, lithium in excess relative to vanadium, other additive elements, and oxygen. When the uniformity of the element increases, each element is present at a predetermined position in the crystal lattice, so that the ratio c / a of the lattice constants a and c decreases, and accordingly, the lithium vanadium oxide is used as the negative electrode active material. It was clarified that the initial capacity of the rechargeable battery was improved. Then, when a precursor is prepared through a step of dissolving a material that becomes a lithium source or vanadium source in water, it is found that each element can be made uniform at the atomic level and the crystal structure can be made uniform. The present invention was completed based on the above.

すなわち本発明に係る非水系二次電池用負極材料の製造方法は、六方晶系のリチウムバナジウム酸化物からなる非水系二次電池用負極材料を製造する方法であって、VとLiCO3とを、リチウムとバナジウムのモル比が1.15≦Li/V≦1.35となるような比率で水に分散することで得られた中和塩の水溶液を乾燥して前駆体を調製する工程と、前記前駆体を粉砕して前駆体粉末を調製する工程と、前記前駆体粉末とカーボン粉末とを混合して、これらの混合物を調製する工程と、前記混合物を、前記前駆体の融点以上かつ前記リチウムバナジウム酸化物の融点以下の温度で、不活性雰囲気下において焼成する工程と、を備えることを特徴とする。 That is, the method for producing a negative electrode material for a non-aqueous secondary battery according to the present invention is a method for producing a negative electrode material for a non-aqueous secondary battery comprising a hexagonal lithium vanadium oxide, and includes V 2 O 5 and Li 2 CO 3 is dried into a precursor of an aqueous solution of a neutralized salt obtained by dispersing in water at a ratio such that the molar ratio of lithium to vanadium is 1.15 ≦ Li / V ≦ 1.35. Preparing the precursor powder by pulverizing the precursor, mixing the precursor powder and carbon powder to prepare a mixture thereof, and mixing the mixture with the precursor Firing in an inert atmosphere at a temperature not lower than the melting point of the body and not higher than the melting point of the lithium vanadium oxide.

このような本発明によれば、リチウム源やバナジウム源となる材料を水に溶解する工程を経て前駆体を作製することにより、それぞれの元素が原子レベルで均一化するので、結晶構造の均一化を図ることができる。   According to the present invention, since the precursors are produced through a process of dissolving a material that becomes a lithium source or vanadium source in water, each element is made uniform at the atomic level, so that the crystal structure is made uniform. Can be achieved.

なお、特許文献2には、有機酸塩混合物に還元剤を添加した混合水溶液を形成し、当該混合水溶液を乾燥して得られた有機酸塩前駆体を不活性雰囲気において焼成する方法が開示してあり、当該方法においても本発明と同様に水に原材料を溶解させて前駆体を作製するが、特許文献2に記載の方法では、還元剤として添加する有機酸が障害となり、焼成時にリチウムがバナジウム層間に挿入する反応が阻害されるため、一部のリチウムが粒子表面に留まり、格子定数比c/aが高くなる。   Patent Document 2 discloses a method of forming a mixed aqueous solution obtained by adding a reducing agent to an organic acid salt mixture, and baking the organic acid salt precursor obtained by drying the mixed aqueous solution in an inert atmosphere. In this method as well, the precursor is prepared by dissolving the raw material in water as in the present invention. However, in the method described in Patent Document 2, the organic acid added as a reducing agent is an obstacle, and lithium is not formed during firing. Since the reaction inserted between the vanadium layers is hindered, a part of lithium stays on the particle surface, and the lattice constant ratio c / a increases.

また、特許文献1の実施例には、原材料となる粉末を固相状態で混合することが記載されているが、当該方法によると金属元素が結晶粒子内に均一に分布せず、その一部が結晶粒子内に偏在することにより、格子定数比c/aが高くなる。   Moreover, although the Example of patent document 1 describes mixing the powder used as a raw material in a solid-phase state, according to the said method, a metal element is not distributed uniformly in a crystal particle, but a part Is unevenly distributed in the crystal grains, the lattice constant ratio c / a is increased.

これらの従来技術と比較して、本発明に係る製造方法によれば、結晶構造が均一で、格子定数比c/aの小さいリチウムバナジウム酸化物が得られるため、当該リチウムバナジウム酸化物を負極活物質として用いることにより二次電池の電池特性を向上することができる。   Compared with these prior arts, according to the manufacturing method according to the present invention, a lithium vanadium oxide having a uniform crystal structure and a small lattice constant ratio c / a can be obtained. By using it as a substance, the battery characteristics of the secondary battery can be improved.

本発明に係る製造方法によれば、リチウムバナジウム酸化物の結晶構造の均一性が向上するため、余剰なリチウム等がバナジウムと均一に置換されることにより、格子定数比c/aが小さくなり、それに伴い、当該リチウムバナジウム酸化物を負極活物質として用いた非水系二次電池の電池初期容量、サイクル特性を向上させることができる。   According to the production method of the present invention, the uniformity of the crystal structure of the lithium vanadium oxide is improved, so that excess lithium or the like is uniformly substituted with vanadium, thereby reducing the lattice constant ratio c / a, Accordingly, the battery initial capacity and cycle characteristics of a non-aqueous secondary battery using the lithium vanadium oxide as a negative electrode active material can be improved.

以下に本発明に係る非水系二次電池用負極材料の製造方法を詳述する。   Hereinafter, a method for producing a negative electrode material for a non-aqueous secondary battery according to the present invention will be described in detail.

本発明に係る製造方法は、(1)前駆体製造工程と、(2)粉砕工程と、(3)カーボン混合工程と、(4)焼成工程と、を備えている。   The production method according to the present invention includes (1) a precursor production process, (2) a pulverization process, (3) a carbon mixing process, and (4) a firing process.

(1)前駆体製造工程
前記前駆体製造工程においては、まず、VとLiCO3とを水に分散することで中和塩の水溶液を作製する。VとLiCO3とはともに水に難溶であるが、同時に水に分散して中和塩を形成すると水に溶解する。このようにバナジウム源であるVとリチウム源であるLiCO3とからなる中和塩を水に溶解することにより、それぞれの元素を原子レベルで均一化することができるので、得られるリチウムバナジウム酸化物の結晶構造が均一化し、格子定数比c/aを小さくすることができる。
(1) Precursor manufacturing process In the precursor manufacturing process, first, an aqueous solution of neutralized salt is prepared by dispersing V 2 O 5 and Li 2 CO 3 in water. Both V 2 O 5 and Li 2 CO 3 are poorly soluble in water, but simultaneously dissolve in water when dispersed in water to form a neutralized salt. Thus, by dissolving the neutralized salt composed of V 2 O 5 as the vanadium source and Li 2 CO 3 as the lithium source in water, the respective elements can be made uniform at the atomic level. The crystal structure of the obtained lithium vanadium oxide can be made uniform, and the lattice constant ratio c / a can be reduced.

前記水としては、例えば、純水、脱イオン水、超純水等が挙げられ、VとLiCO3との中和反応が進行しやすくなるように、60〜80℃程度の湯浴中で分散・溶解することが好ましい。 Examples of the water include pure water, deionized water, and ultrapure water. The water is about 60 to 80 ° C. so that the neutralization reaction between V 2 O 5 and Li 2 CO 3 can easily proceed. It is preferable to disperse and dissolve in a hot water bath.

とLiCO3とは、リチウムとバナジウムのモル比が1.15≦Li/V≦1.35となるような比率で水に分散して溶解する。Li/V<1.15であると、リチウムが少ないためリチウムイオンの挿入・脱離反応が起こりにくくなるので得られたリチウムバナジウム酸化物を負極活物質として使用できず、一方、Li/V>1.35であるとリチウムが著しく過剰であるため得られたリチウムバナジウム酸化物の結晶構造が不安定になる。 V 2 O 5 and Li 2 CO 3 are dispersed and dissolved in water at such a ratio that the molar ratio of lithium to vanadium is 1.15 ≦ Li / V ≦ 1.35. When Li / V <1.15, the lithium ion insertion / desorption reaction is difficult to occur due to a small amount of lithium, and thus the obtained lithium vanadium oxide cannot be used as the negative electrode active material, while Li / V> If it is 1.35, the crystal structure of the obtained lithium vanadium oxide becomes unstable because lithium is extremely excessive.

とLiCO3とを水に分散して中和塩の水溶液を得る際に、更に、長周期表のIIA族からIVB族に含まれる元素(以下Meという。)を含有し酸に可溶な化合物も、水に分散して溶解することが好ましい。前記Meを含有し酸に可溶な化合物を配合することにより、バナジウムの一部がMeで置換されて、得られたリチウムバナジウム酸化物の結晶構造がより安定化するので、充放電時に結晶構造が変化しにくくなり、電子伝導性も向上する。このため、当該リチウムバナジウム酸化物を負極活物質として用いた二次電池は、充放電サイクル時に容量が低下せず、サイクル特性が向上すると共に、初期容量も増加する。 When V 2 O 5 and Li 2 CO 3 are dispersed in water to obtain an aqueous solution of a neutralized salt, it further contains an element (hereinafter referred to as Me) contained in groups IIA to IVB of the long periodic table. The acid-soluble compound is also preferably dispersed and dissolved in water. By compounding the compound containing Me and soluble in acid, a part of vanadium is substituted with Me, and the crystal structure of the obtained lithium vanadium oxide is further stabilized. Is less likely to change, and the electron conductivity is improved. For this reason, the secondary battery using the lithium vanadium oxide as the negative electrode active material does not decrease in capacity during the charge / discharge cycle, improves cycle characteristics, and increases initial capacity.

前記Meとしては、例えば、Mg、Ti、Al、Zr、Mo、W等が挙げられ、前記Meを含有し酸に可溶な化合物としては、例えば、前記Meの炭酸塩等が挙げられる。前記Meは一種が配合されてもよく、2種以上が併用されてもよい。   Examples of the Me include Mg, Ti, Al, Zr, Mo, and W. Examples of the compound containing Me and soluble in an acid include the carbonate of Me. One kind of Me may be blended, or two or more kinds may be used in combination.

前記Meのなかでも特にMgが好ましく、この場合、Mgを含有し酸に可溶な化合物としては、例えば、炭酸水酸化マグネシウムが用いられる。   Among the Me, Mg is particularly preferable. In this case, as the compound containing Mg and soluble in acid, for example, magnesium carbonate hydroxide is used.

前記Meを含有し酸に可溶な化合物は、前記Meとバナジウムとのモル比が0.01≦Me/V≦0.06となるような比率で水に分散して溶解することが好ましい。Me/V<0.01であると、Meを添加した効果が現れず、一方、Me/V>0.06であると、得られたリチウムバナジウム酸化物の結晶構造が不安定になることがある。   The Me-containing compound that is soluble in acid is preferably dispersed and dissolved in water at a ratio such that the molar ratio of Me to vanadium is 0.01 ≦ Me / V ≦ 0.06. If Me / V <0.01, the effect of adding Me does not appear, whereas if Me / V> 0.06, the crystal structure of the obtained lithium vanadium oxide may become unstable. is there.

前記前駆体製造工程においては、次いで、得られた水溶液を乾燥して前駆体を調製する。前記前駆体を調製するための乾燥温度は、80〜150℃であることが好ましく、より好ましくは100〜140℃である。乾燥温度が80℃未満であると、前記前駆体を完全に析出させるのに長時間を要し、一方、乾燥温度が150℃を超えると、前駆体の一部が熱分解して組成が変動するため、その後の前駆体粉末とカーボン粉末とを混合する工程において、最適な重量比からずれることがあり、リチウムバナジウム酸化物の物性が安定しにくい。   In the precursor manufacturing step, the obtained aqueous solution is then dried to prepare a precursor. The drying temperature for preparing the precursor is preferably 80 to 150 ° C, more preferably 100 to 140 ° C. When the drying temperature is less than 80 ° C., it takes a long time to completely precipitate the precursor. On the other hand, when the drying temperature exceeds 150 ° C., a part of the precursor is thermally decomposed to change the composition. Therefore, in the subsequent step of mixing the precursor powder and the carbon powder, the optimal weight ratio may be deviated, and the physical properties of the lithium vanadium oxide are difficult to stabilize.

このような前駆体製造工程において得られる前駆体は、500〜700℃において単一の融点を有する化合物であることが好ましい。ここで、単一の融点を有するとは、混合物ではなく、単一の化合物であることを意味する。従って、融点が複数存在する場合は、得られた前駆体は複数化合物の混合物となっているため、その後の焼成工程を経て得られるリチウムバナジウム酸化物の結晶性が不均一になる。   The precursor obtained in such a precursor manufacturing process is preferably a compound having a single melting point at 500 to 700 ° C. Here, having a single melting point means not a mixture but a single compound. Therefore, when there are a plurality of melting points, the obtained precursor is a mixture of a plurality of compounds, so that the crystallinity of the lithium vanadium oxide obtained through the subsequent firing step becomes non-uniform.

(2)粉砕工程
前記粉砕工程においては、得られた前駆体を粉末状になるよう粉砕して前駆体粉末を調製する。このように粉末状にすることによって前駆体の表面積が大きくなり、後の還元反応を促進することができる。
(2) Pulverization step In the pulverization step, the obtained precursor is pulverized into a powder form to prepare a precursor powder. Thus, by making it into a powder form, the surface area of a precursor becomes large and a subsequent reduction reaction can be accelerated | stimulated.

(3)カーボン混合工程
前記カーボン混合工程においては、前記前駆体粉末とカーボン粉末とを混合して、これらの混合物を調製する。前記前駆体粉末とカーボン粉末とを混合すると、カーボン粉末が、前記前駆体粉末表面に付着して、引き続いて行なう焼成工程においてVの還元剤として機能すると共に、前記前駆体が溶融する際に微小な鋳型として機能して、前駆体が溶融しても流出してしまわないように保持し、還元反応が効率的に進行するよう機能する。後述する焼成工程において、カーボン粉末がないと得られたリチウムバナジウム酸化物はガラス状になり非晶質化してしまうが、カーボン粉末があると粉末状の六方晶系リチウムバナジウム酸化物が得られる。
(3) Carbon mixing step In the carbon mixing step, the precursor powder and the carbon powder are mixed to prepare a mixture thereof. When the precursor powder and the carbon powder are mixed, the carbon powder adheres to the surface of the precursor powder and functions as a V 2 O 5 reducing agent in the subsequent firing step, and the precursor melts. At this time, it functions as a minute mold, holds the precursor so that it does not flow out even if it melts, and functions so that the reduction reaction proceeds efficiently. In the firing step described below, the lithium vanadium oxide obtained without the carbon powder becomes glassy and becomes amorphous, but when the carbon powder is present, a powdered hexagonal lithium vanadium oxide is obtained.

前記カーボン粉末としては、例えば、アセチレンブラック等のカーボンブラック、天然黒鉛、人造黒鉛が挙げられる。   Examples of the carbon powder include carbon black such as acetylene black, natural graphite, and artificial graphite.

(4)焼成工程
前記焼成工程においては、前記前駆体粉末とカーボン粉末との混合物を、前記前駆体の融点以上かつ前記リチウムバナジウム酸化物の融点以下の温度で、不活性雰囲気下において焼成する。
(4) Firing step In the firing step, the mixture of the precursor powder and the carbon powder is fired in an inert atmosphere at a temperature not lower than the melting point of the precursor and not higher than the melting point of the lithium vanadium oxide.

前記混合物の焼成温度は、1000〜1250℃であることが好ましい。焼成温度が1000℃未満であると、Vの還元反応が不充分であるとともに、一部のカーボン粉末が気化せず残留することがある。一方、焼成温度が1250℃を超えると、バナジウムとカーボンが反応して炭化物VCを生成し、電池特性に悪影響を及ぼす。 The firing temperature of the mixture is preferably 1000 to 1250 ° C. When the firing temperature is less than 1000 ° C., the reduction reaction of V 2 O 5 is insufficient, and some carbon powder may remain without being vaporized. On the other hand, when the firing temperature exceeds 1250 ° C., vanadium and carbon react to generate carbide VC, which adversely affects battery characteristics.

当該焼成工程において用いられる不活性なガスとしては、例えば、N、アルゴン等が挙げられる。 Examples of the inert gas used in the baking step include N 2 and argon.

本発明に係る製造方法によれば、以上の各工程を経て粉末状の六方晶系リチウムバナジウム酸化物を得ることができる。得られたリチウムバナジウム酸化物は、均一な結晶構造を有し、格子定数比c/aが小さいものである。このため、当該リチウムバナジウム酸化物を負極活物質として用いると、初期容量が向上し、サイクル特性にも優れた非水系二次電池が得られる。   According to the production method of the present invention, a powdered hexagonal lithium vanadium oxide can be obtained through the above steps. The obtained lithium vanadium oxide has a uniform crystal structure and a small lattice constant ratio c / a. For this reason, when the lithium vanadium oxide is used as a negative electrode active material, a nonaqueous secondary battery with improved initial capacity and excellent cycle characteristics can be obtained.

以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれら実施例のみに限定されるものではない。   The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.

(実施例1)
70℃水浴中において、V(純度99.9%)40.3gを純水300gに分散した。その後、LiCO(純度99.0%)20.0gを添加し、15分間攪拌することで、中和塩の水溶液を調製した。これを130℃で10時間乾燥し、得られた乾燥物を粉砕することで前駆体粉末を調製した。更に前駆体粉末47.5g、デンカブラック(登録商標、電気化学工業製)2.5gを自動乳鉢にて1時間混合後、窒素気流中、1200℃で3時間焼成して、リチウムバナジウム酸化物Li1.10.9を得た。なお、図1は前駆体に対し示差熱分析(Differential Thermal Analysis:DTA)を行なった結果を示すものであるが、図1に示すように、600℃近傍に単一の融点が確認された。
Example 1
In a 70 ° C. water bath, 40.3 g of V 2 O 5 (purity 99.9%) was dispersed in 300 g of pure water. Thereafter, 20.0 g of Li 2 CO 3 (purity 99.0%) was added and stirred for 15 minutes to prepare an aqueous solution of neutralized salt. This was dried at 130 ° C. for 10 hours, and the resulting dried product was pulverized to prepare a precursor powder. Further, 47.5 g of the precursor powder and 2.5 g of Denka Black (registered trademark, manufactured by Denki Kagaku Kogyo) were mixed in an automatic mortar for 1 hour, and then calcined in a nitrogen stream at 1200 ° C. for 3 hours to obtain lithium vanadium oxide Li. 1.1 V 0.9 O 2 was obtained. FIG. 1 shows the result of differential thermal analysis (DTA) performed on the precursor. As shown in FIG. 1, a single melting point was confirmed in the vicinity of 600.degree.

(比較例1)
(純度99.9%)36.8g、LiCO 20.0gを自動乳鉢にて1時間混合した後、窒素気流中、1200℃で3時間焼成して、リチウムバナジウム酸化物Li1.10.9を得た。
(Comparative Example 1)
Lithium vanadium oxide was prepared by mixing 36.8 g of V 2 O 4 (purity 99.9%) and 20.0 g of Li 2 CO 3 in an automatic mortar for 1 hour and then firing at 1200 ° C. for 3 hours in a nitrogen stream. Li 1.1 V 0.9 O 2 was obtained.

(比較例2)
(純度99.9%)40.3g、LiCO 20.0g、シュウ酸2水和物118.1gを、純水300gに溶解し、混合水溶液を調製した。これを120℃で乾燥して前駆体となる混合シュウ酸塩を得た。更に得られた前駆体を窒素気流中1200℃で3時間焼成して、リチウムバナジウム酸化物Li1.10.9を得た。
(Comparative Example 2)
40.3 g of V 2 O 5 (purity 99.9%), 20.0 g of Li 2 CO 3 and 118.1 g of oxalic acid dihydrate were dissolved in 300 g of pure water to prepare a mixed aqueous solution. This was dried at 120 ° C. to obtain a mixed oxalate salt as a precursor. Furthermore, the obtained precursor was calcined at 1200 ° C. for 3 hours in a nitrogen stream to obtain lithium vanadium oxide Li 1.1 V 0.9 O 2 .

(実施例2)
70℃水浴中において、V(純度99.9%)39.0gを純水300gに分散する。その後、LiCO(純度99.0%)20.0g及び4MgCO・Mg(OH)・5HO(MgOとして42.8%)1.4gを添加し、15分間攪拌して、中和塩の水溶液を調製した。これを130℃で10時間乾燥し、得られた乾燥物を粉砕することで前駆体粉末を調製した。更に前駆体粉末47.5g、デンカブラック(登録商標、電気化学工業製)2.5gを自動乳鉢にて1時間混合後、窒素気流中、1200℃で3時間焼成して、リチウムバナジウム酸化物Li1.10.86Mg0.04を得た。
(Example 2)
In a 70 ° C. water bath, 39.0 g of V 2 O 5 (purity 99.9%) is dispersed in 300 g of pure water. Thereafter, 20.0 g of Li 2 CO 3 (purity 99.0%) and 1.4 g of 4MgCO 3 .Mg (OH) 2 .5H 2 O (42.8% as MgO) were added and stirred for 15 minutes. An aqueous solution of neutralized salt was prepared. This was dried at 130 ° C. for 10 hours, and the resulting dried product was pulverized to prepare a precursor powder. Further, 47.5 g of the precursor powder and 2.5 g of Denka Black (registered trademark, manufactured by Denki Kagaku Kogyo) were mixed in an automatic mortar for 1 hour, and then calcined in a nitrogen stream at 1200 ° C. for 3 hours to obtain lithium vanadium oxide Li. 1.1 V 0.86 Mg 0.04 O 2 was obtained.

(比較例3)
(純度99.9%)35.2g、LiCO 20.0g、4MgCO・Mg(OH)・5HO 1.8gを自動乳鉢にて1時間混合した後、窒素気流中、1200℃で3時間焼成して、リチウムバナジウム酸化物Li1.10.86Mg0.04を得た。
(Comparative Example 3)
V 2 O 4 (purity 99.9%) 35.2g, Li 2 CO 3 20.0g, was mixed 1 hour in an automatic mortar 4MgCO 3 · Mg (OH) 2 · 5H 2 O 1.8g, nitrogen The lithium vanadium oxide Li 1.1 V 0.86 Mg 0.04 O 2 was obtained by firing at 1200 ° C. for 3 hours in an air stream.

(比較例4)
(純度99.9%)39.0g、LiCO 20.0g、4MgCO・Mg(OH)・5HO 1.4g、シュウ酸2水和物118.1gを純水300gに溶解し、混合水溶液を調製した。これを120℃で乾燥して前駆体となる混合シュウ酸塩を得た。更に得られた前駆体を窒素気流中1200℃で3時間焼成して、リチウムバナジウム酸化物Li1.10.86Mg0.04を得た。
(Comparative Example 4)
V 2 O 5 (purity 99.9%) 39.0 g, Li 2 CO 3 20.0 g, 4MgCO 3 · Mg (OH) 2 · 5H 2 O 1.4 g, oxalic acid dihydrate 118.1 g Dissolved in 300 g of water to prepare a mixed aqueous solution. This was dried at 120 ° C. to obtain a mixed oxalate salt as a precursor. Furthermore, the obtained precursor was calcined at 1200 ° C. for 3 hours in a nitrogen stream to obtain lithium vanadium oxide Li 1.1 V 0.86 Mg 0.04 O 2 .

実施例及び比較例で得られたリチウムバナジウム酸化物の電池特性は以下のように評価した。得られたリチウムバナジウム酸化物は最大粒径が75μm以下の粉末になるように分級した。この粉末90wt%にデンカブラック(登録商標、電気化学工業製)6wt%、ポリフッ化ビニリデン4wt%を加え、更に溶媒としてN−メチルピロリドンを加えてスラリー状にして混合した。これを15μmの銅箔に10mg/cmとなるように塗布し、130℃で乾燥後、直径13mmの円板に打ち抜き、所定の厚みになるようにプレスして負極を作製した。この負極を用いて金属リチウムを正極としたコインセルを作製し、電池特性の評価を行った。コインセルにはセパレータとして20μmのポリエチレン多孔膜を、電解液としてエチレンカーボネート/ジエチルカーボネート=3/7 LiPF 1.2Mを使用した。 The battery characteristics of the lithium vanadium oxides obtained in the examples and comparative examples were evaluated as follows. The obtained lithium vanadium oxide was classified so as to be a powder having a maximum particle size of 75 μm or less. Denka black (registered trademark, manufactured by Denki Kagaku Kogyo Co., Ltd.) 6 wt% and polyvinylidene fluoride 4 wt% were added to 90 wt% of the powder, and N-methylpyrrolidone was further added as a solvent to form a slurry. This was applied to a 15 μm copper foil so as to have a concentration of 10 mg / cm 2 , dried at 130 ° C., punched into a disk having a diameter of 13 mm, and pressed to a predetermined thickness to produce a negative electrode. Using this negative electrode, a coin cell using metallic lithium as a positive electrode was produced, and the battery characteristics were evaluated. In the coin cell, a 20 μm polyethylene porous membrane was used as a separator, and ethylene carbonate / diethyl carbonate = 3/7 LiPF 6 1.2M was used as an electrolyte.

作製したコインセルを、定電流(0.5C)−定電圧(4.2V)で充電した後、放電終始電圧2.75Vまで0.5C放電を30サイクル実施して、1サイクル目の放電容量と、30サイクル終了後の放電容量を測定した。   The prepared coin cell is charged with a constant current (0.5 C) -constant voltage (4.2 V), and then subjected to 30 cycles of 0.5 C discharge to a discharge starting voltage of 2.75 V. The discharge capacity after the end of 30 cycles was measured.

また、実施例及び比較例で得られたリチウムバナジウム酸化物の結晶構造の評価として、高出力型X線回折装置により、Cuターゲットを使用して、電圧50kV、電流300mA、ステップ幅0.02°、スキャン速度1°毎分の条件において測定した結果を用いて、格子定数を計算した。これらの結果を表1に示した。なお、表1中の1サイクル目の放電容量は比較例1の値を100%とした時の割合を示す。   In addition, as an evaluation of the crystal structure of the lithium vanadium oxide obtained in Examples and Comparative Examples, a high power X-ray diffractometer was used, using a Cu target, a voltage of 50 kV, a current of 300 mA, and a step width of 0.02 °. The lattice constant was calculated using the results measured at a scan speed of 1 ° per minute. These results are shown in Table 1. In addition, the discharge capacity of the 1st cycle in Table 1 shows a ratio when the value of the comparative example 1 is set to 100%.

実施例1と比較例1、2、及び、実施例2と比較例3、4を比較すると、表1に示すように、いずれも実施例の方が格子定数比c/aが小さいことより、結晶構造の均一性が高いことが分かった。このことは、いずれも実施例の方が初期容量が大きいこととも合致した。また、いずれも実施例の方がサイクル特性も良好であった。このため本発明に係る実施例の方が、充放電サイクル時に結晶構造が乱れにくいと思われる。   When Example 1 and Comparative Examples 1 and 2 and Example 2 and Comparative Examples 3 and 4 are compared, as shown in Table 1, all of the examples have a smaller lattice constant ratio c / a. It was found that the crystal structure was highly uniform. This coincided with the fact that all of the examples had a larger initial capacity. Further, in all of the examples, the cycle characteristics were also better. For this reason, it is considered that the example according to the present invention is less likely to disturb the crystal structure during the charge / discharge cycle.

実施例1の前駆体の融点を示すDTAのチャート。3 is a DTA chart showing the melting point of the precursor of Example 1. FIG.

Claims (7)

六方晶系のリチウムバナジウム酸化物からなる非水系二次電池用負極材料を製造する方法であって、
とLiCOとを、リチウムとバナジウムのモル比が1.15≦Li/V≦1.35となるような比率で水に分散することで得られた中和塩の水溶液を乾燥して前駆体を調製する工程と、
前記前駆体を粉砕して前駆体粉末を調製する工程と、
前記前駆体粉末とカーボン粉末とを混合して、これらの混合物を調製する工程と、
前記混合物を、前記前駆体の融点以上かつ前記リチウムバナジウム酸化物の融点以下の温度で、不活性雰囲気下において焼成する工程と、を備える非水系二次電池用負極材料の製造方法。
A method for producing a negative electrode material for a non-aqueous secondary battery comprising a hexagonal lithium vanadium oxide,
An aqueous solution of a neutralized salt obtained by dispersing V 2 O 5 and Li 2 CO 3 in water at a ratio such that the molar ratio of lithium to vanadium is 1.15 ≦ Li / V ≦ 1.35. A step of preparing a precursor by drying,
Pulverizing the precursor to prepare a precursor powder;
Mixing the precursor powder and carbon powder to prepare a mixture thereof;
And baking the mixture at a temperature not lower than the melting point of the precursor and not higher than the melting point of the lithium vanadium oxide in an inert atmosphere, and a method for producing a negative electrode material for a non-aqueous secondary battery.
とLiCOとを水に分散して溶解する際に、更に、長周期表のIIA族からIVB族に含まれる元素からなる群より選ばれる少なくとも1種の元素Meを含有し酸に可溶な化合物を、前記Meとバナジウムのモル比が0.01≦Me/V≦0.06となるような比率で、水に分散して溶解する請求項1記載の非水系二次電池用負極材料の製造方法。 When V 2 O 5 and Li 2 CO 3 are dispersed and dissolved in water, they further contain at least one element Me selected from the group consisting of elements included in groups IIA to IVB of the long periodic table The non-aqueous two-component compound according to claim 1, wherein a compound soluble in sialic acid is dissolved and dissolved in water at a ratio such that the molar ratio of Me to vanadium is 0.01 ≦ Me / V ≦ 0.06. A method for producing a negative electrode material for a secondary battery. 前記Meが、Mg、Ti、Al、Zr、Mo、及び、Wからなる群より選ばれる少なくとも1種の元素である請求項2記載の非水系二次電池用負極材料の製造方法。   The method for producing a negative electrode material for a non-aqueous secondary battery according to claim 2, wherein the Me is at least one element selected from the group consisting of Mg, Ti, Al, Zr, Mo, and W. 前記Meを含有し酸に可溶な化合物が、炭酸水酸化マグネシウムである請求項2又は3記載の非水系二次電池用負極材料の製造方法。   The method for producing a negative electrode material for a non-aqueous secondary battery according to claim 2 or 3, wherein the compound containing Me and soluble in acid is magnesium carbonate hydroxide. 前記前駆体を調製するための乾燥温度が、80〜150℃である請求項1、2、3又は4記載の非水系二次電池用負極材料の製造方法。   The method for producing a negative electrode material for a non-aqueous secondary battery according to claim 1, wherein a drying temperature for preparing the precursor is 80 to 150 ° C. 前記混合物の焼成温度が、1000〜1250℃である請求項1、2、3、4又は5記載の非水系二次電池用負極材料の製造方法。   The method for producing a negative electrode material for a non-aqueous secondary battery according to claim 1, wherein the firing temperature of the mixture is 1000 to 1250 ° C. 前記前駆体は、500〜700℃において単一の融点を有する請求項1、2、3、4、5又は6記載の非水系二次電池用負極材料の製造方法。   The method for producing a negative electrode material for a non-aqueous secondary battery according to claim 1, wherein the precursor has a single melting point at 500 to 700 ° C. 7.
JP2007320010A 2007-12-11 2007-12-11 Method for producing negative electrode material for non-aqueous secondary battery Expired - Fee Related JP5132293B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007320010A JP5132293B2 (en) 2007-12-11 2007-12-11 Method for producing negative electrode material for non-aqueous secondary battery
KR1020080104347A KR101049828B1 (en) 2007-12-11 2008-10-23 Manufacturing method of negative electrode material for non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007320010A JP5132293B2 (en) 2007-12-11 2007-12-11 Method for producing negative electrode material for non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2009146613A JP2009146613A (en) 2009-07-02
JP5132293B2 true JP5132293B2 (en) 2013-01-30

Family

ID=40917001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007320010A Expired - Fee Related JP5132293B2 (en) 2007-12-11 2007-12-11 Method for producing negative electrode material for non-aqueous secondary battery

Country Status (2)

Country Link
JP (1) JP5132293B2 (en)
KR (1) KR101049828B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010108603A (en) * 2008-10-28 2010-05-13 Tayca Corp Manufacturing method of anode active material for lithium-ion battery
JP2024055325A (en) * 2022-10-07 2024-04-18 日本ケミコン株式会社 Method for producing lithium vanadium oxide crystal, lithium vanadium oxide crystal, electrode material and power storage device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100570648B1 (en) * 2004-01-26 2006-04-12 삼성에스디아이 주식회사 Negative active material for lithium secondary battery, method of preparing same, and lithium secondary battery comprising same
JP5207589B2 (en) * 2005-12-22 2013-06-12 三星エスディアイ株式会社 Method for producing negative electrode active material for lithium secondary battery

Also Published As

Publication number Publication date
KR20090061568A (en) 2009-06-16
KR101049828B1 (en) 2011-07-15
JP2009146613A (en) 2009-07-02

Similar Documents

Publication Publication Date Title
JP4998753B2 (en) Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
KR102005513B1 (en) positive active material for rechargeable lithium battery, method for preparing the same, electrode including the same, and rechargeable lithium battery including the electrode
JP5281765B2 (en) Method for producing lithium iron phosphorus-based composite oxide carbon composite and method for producing coprecipitate containing lithium, iron and phosphorus
JP2019040854A (en) Lithium manganese iron phosphate-based particulate for use in cathode of lithium battery, lithium manganese iron phosphate-based powdery material containing the same, and method for manufacturing the powdery material
JP2009032693A (en) Si/C COMPOSITE, ANODE ACTIVE MATERIAL CONTAINING THE SAME, AND LITHIUM BATTERY
JP2010086922A (en) Lithium complex compound particle powder and method of manufacturing the same, and nonaqueous electrolyte secondary battery
JP6688663B2 (en) Li-containing silicon oxide powder and method for producing the same
JPWO2018198410A1 (en) Positive electrode active material and battery
JP2015140292A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP7464102B2 (en) Metal composite hydroxide and its manufacturing method, positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery using the same
KR20160059948A (en) Positive active material for rechargeable lithium battery, and positive active material layer and rechargeable lithium battery including the same
JP2010238603A (en) Lithium iron fluorophosphate solid solution positive electrode active material powder, manufacturing method therefor, and lithium ion secondary battery
JP6345227B2 (en) Method for producing lithium vanadium phosphate
JP7402566B2 (en) Positive electrode active material, manufacturing method thereof, and lithium secondary battery including positive electrode containing the same
JP5132293B2 (en) Method for producing negative electrode material for non-aqueous secondary battery
JP4350496B2 (en) Method for producing electrode for lithium battery, electrode for lithium battery and lithium battery
JPWO2019189801A1 (en) Positive electrode active material, positive electrode and secondary battery using it, and method for manufacturing positive electrode active material
JP2020009560A (en) Positive electrode active material and method of producing positive electrode active material
JP2019212365A (en) Positive electrode active material for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery using the same
JP5152456B2 (en) Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery
JP5324731B2 (en) Method for producing secondary battery positive electrode material and secondary battery
JP4553095B2 (en) Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
JP4479874B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2002019449A1 (en) Positive active material for non-aqueous electrolyte secondary cell, method for preparation thereof and non-aqueous electrolyte secondary cell
JP4305613B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees