JP5130718B2 - Negative electrode for nickel-hydrogen storage battery and nickel-hydrogen storage battery - Google Patents

Negative electrode for nickel-hydrogen storage battery and nickel-hydrogen storage battery Download PDF

Info

Publication number
JP5130718B2
JP5130718B2 JP2007004168A JP2007004168A JP5130718B2 JP 5130718 B2 JP5130718 B2 JP 5130718B2 JP 2007004168 A JP2007004168 A JP 2007004168A JP 2007004168 A JP2007004168 A JP 2007004168A JP 5130718 B2 JP5130718 B2 JP 5130718B2
Authority
JP
Japan
Prior art keywords
battery
hydrogen storage
carbon powder
nickel
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007004168A
Other languages
Japanese (ja)
Other versions
JP2007273453A (en
Inventor
相龍 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007004168A priority Critical patent/JP5130718B2/en
Publication of JP2007273453A publication Critical patent/JP2007273453A/en
Application granted granted Critical
Publication of JP5130718B2 publication Critical patent/JP5130718B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、ニッケル−水素蓄電池に関し、特に水素吸蔵合金を主成分とする負極の改良に関するものである。   The present invention relates to a nickel-hydrogen storage battery, and more particularly to improvement of a negative electrode mainly composed of a hydrogen storage alloy.

水素吸蔵合金を含む負極を用いたニッケル−水素蓄電池は、従来のニッケル−カドミウム蓄電池に比べて、環境に優しくエネルギー密度が高いという特徴を有し、通信機器・パソコンなど各種のコードレス機器や電子機器の電源として、あるいは大電流での充放電が不可欠な電動工具や電気自動車の電源として用いられている。このような用途の拡大に相応して、さらなる充放電特性の向上が望まれている。   Nickel-hydrogen storage batteries using negative electrodes containing hydrogen storage alloys are characterized by being environmentally friendly and high in energy density compared to conventional nickel-cadmium storage batteries. Various cordless and electronic devices such as communication devices and personal computers It is used as a power source for electric tools and electric vehicles, which are indispensable for charging and discharging with a large current. Corresponding to such expansion of applications, further improvement of charge / discharge characteristics is desired.

従来のニッケル−水素蓄電池用負極は、微粉化した水素吸蔵合金粉末にポリテトラフルオロエチレン、スチレンブタジエンラバーのような結着剤、メチルセルロース、カルボキシルメチルセルロース、ポリビニルアルコールのような増粘剤を加え、これらを水で混練してペースト化し、そのペーストを芯材であるパンチングメタルに塗着、乾燥・加圧して活物質層を形成することにより構成される。   Conventional negative electrodes for nickel-metal hydride storage batteries add fine binders such as polytetrafluoroethylene and styrene butadiene rubber, thickeners such as methylcellulose, carboxymethylcellulose, and polyvinyl alcohol to finely divided hydrogen storage alloy powders. The paste is kneaded with water to form a paste, and the paste is applied to a punching metal as a core material, dried and pressed to form an active material layer.

このようにして製造されたニッケル−水素蓄電池用負極の水素吸蔵合金粉末は、表面が結着剤で被覆されるために合金粉末間の導電性の低下を招きやすい。導電性が低下すると、充放電に関与しない合金粉末の割合が増加することによって、電池の過充電時の内圧上昇や大電流放電特性の低下を招くという問題がある。   Since the surface of the hydrogen storage alloy powder of the negative electrode for nickel-hydrogen storage battery manufactured in this way is coated with a binder, the conductivity between the alloy powders is likely to decrease. When the conductivity is lowered, there is a problem that the ratio of the alloy powder not involved in charging / discharging increases, leading to an increase in internal pressure during battery overcharge and a decrease in large current discharge characteristics.

上記問題を解決するために、導電剤として負極内に炭素粉末を添加する技術(例えば特許文献1)により水素吸蔵合金粉末間の導電性を高める方法が報告されている。ただし単に導電性を高めるだけでは過充電時の内圧上昇を抑えるには不十分であり、炭素粉末の表面の少なくとも一部の領域を金属被膜で被う技術(例えば特許文献2)や、導電剤として0.2〜3重量%の炭素が含有されているニッケル粉末を用いる技術(例えば特許文献3)を用いることにより、併せてガス吸収反応を促進することが有効と考えられる。
特開平11−185745号公報 特開平11−111298号公報 特開平07−065826号公報
In order to solve the above problem, a method of increasing the conductivity between the hydrogen storage alloy powders by a technique (for example, Patent Document 1) in which carbon powder is added to the negative electrode as a conductive agent has been reported. However, simply increasing the conductivity is not sufficient to suppress an increase in internal pressure during overcharge, and a technique for covering at least a part of the surface of the carbon powder with a metal film (for example, Patent Document 2) or a conductive agent It is considered effective to promote the gas absorption reaction by using a technique (for example, Patent Document 3) using nickel powder containing 0.2 to 3% by weight of carbon.
JP 11-185745 A Japanese Patent Laid-Open No. 11-111298 Japanese Patent Laid-Open No. 07-0665826

しかしながらニッケル−水素蓄電池を急速で充電した場合、特許文献2の技術を用いてもなお十分に電池内圧を抑制できないという問題があった。また特許文献3は急速充電における電池内圧の抑制効果は高いが、大電流放電特性を十分に向上できないという問題があった。   However, when the nickel-hydrogen storage battery is rapidly charged, there is a problem that the internal pressure of the battery cannot be sufficiently suppressed even if the technique of Patent Document 2 is used. Moreover, although patent document 3 has a high effect of suppressing the internal pressure of the battery in rapid charging, there is a problem that the large current discharge characteristics cannot be sufficiently improved.

本発明は上記課題を解決するもので、電池の内圧上昇を抑制するとともに、大電流放電特性に優れた大容量なニッケル−水素蓄電池を提供することを目的とする。   The present invention solves the above-described problems, and an object of the present invention is to provide a large-capacity nickel-hydrogen storage battery that suppresses an increase in internal pressure of the battery and is excellent in large current discharge characteristics.

上記課題を解決するために本発明のニッケル−水素蓄電池用負極は、導電性支持体上に水素吸蔵合金粉末と炭素粉末とを含む活物質層を設けた構成において、前記炭素粉末の少なくとも一部にイオウおよびリンから選ばれる少なくとも1つの非金属元素を含有させたことを特徴とする。   In order to solve the above problems, the negative electrode for nickel-hydrogen storage battery according to the present invention has a structure in which an active material layer containing a hydrogen storage alloy powder and a carbon powder is provided on a conductive support, and at least a part of the carbon powder. And at least one nonmetallic element selected from sulfur and phosphorus.

導電剤である炭素粉末の内部に非金属元素を含有させることによって、理由は不明だが電池内で発生する酸素ガスとの親和性と導電性の双方が高まる。導電性が高まることによって大電流放電特性が向上するだけでなく急速充電時のロス反応(ガス発生反応)が抑制できる。また急速充電時に発生した酸素ガスは本発明の炭素材料が有するガス親和性によって水に還元されるので、電池内圧の上昇を大幅に低減できる)。   By including a nonmetallic element in the carbon powder, which is a conductive agent, both the affinity with the oxygen gas generated in the battery and the conductivity are increased for unknown reasons. By increasing the conductivity, not only the large current discharge characteristics are improved, but also a loss reaction (gas generation reaction) during rapid charging can be suppressed. In addition, since the oxygen gas generated at the time of rapid charging is reduced to water by the gas affinity of the carbon material of the present invention, the increase in battery internal pressure can be greatly reduced).

上述の本発明の構成によれば、炭素粉末に良好な導電性とガス親和性とが付与できるので、急速充電を行った場合でも内圧上昇が抑止でき、かつ大電流放電特性に優れたニッケル−水素蓄電池を提供できる。   According to the above-described configuration of the present invention, since good conductivity and gas affinity can be imparted to the carbon powder, the increase in internal pressure can be suppressed even when rapid charging is performed, and nickel- A hydrogen storage battery can be provided.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

第1の発明は、導電性支持体上に水素吸蔵合金粉末と炭素粉末とを含む活物質層を設けた構成において、前記炭素粉末の少なくとも一部にイオウおよびリンから選ばれる少なくとも1つの非金属元素を含有させたことを特徴とするニッケル−水素蓄電池用負極に関する。導電剤である炭素粉末の内部に非金属元素を含有させることによって、理由は不明だが電池内で発生する酸素ガスとの親和性と導電性の双方が高まる。導電性が高まることによって大電流放電特性が向上するだけでなく急速充電時のロス反応(ガス発生反応)が抑制できる。また急速充電時に発生した酸素ガス本発明の炭素材料が有するガス親和性によって負極に導かれた後、水素吸蔵合金に吸蔵された水素と反応して水に還元されるので、電池内圧の上昇を大幅に低減できる。   1st invention is the structure which provided the active material layer containing hydrogen storage alloy powder and carbon powder on the electroconductive support body, At least 1 nonmetal chosen from sulfur and phosphorus in at least one part of the said carbon powder The present invention relates to a negative electrode for a nickel-hydrogen storage battery characterized by containing an element. By including a nonmetallic element in the carbon powder, which is a conductive agent, both the affinity with the oxygen gas generated in the battery and the conductivity are increased for unknown reasons. By increasing the conductivity, not only the large current discharge characteristics are improved, but also a loss reaction (gas generation reaction) during rapid charging can be suppressed. In addition, oxygen gas generated during rapid charging is led to the negative electrode by the gas affinity of the carbon material of the present invention, and then reacts with hydrogen stored in the hydrogen storage alloy to be reduced to water, thus increasing the internal pressure of the battery. It can be greatly reduced.

第1の発明において、炭素粉末の全てが非金属元素を含有する必要はなく、少なくとも粉末の一部が非金属元素を含有していれば、第1の発明の効果は発現される。また上記非金属元素のうち1種のみを炭素粉末に含有させてもよく、非金属元素を2種とも炭素粉末に含有させてもよい。   In the first invention, it is not necessary for all of the carbon powder to contain a nonmetallic element, and if at least a part of the powder contains a nonmetallic element, the effect of the first invention is exhibited. Moreover, only 1 type may be contained in a carbon powder among the said nonmetallic elements, and both nonmetallic elements may be contained in a carbon powder.

なおこの炭素粉末の比表面積は特に限定されないが、1000〜5000m2/gの範囲であるのが好ましい。本発明においてガス親和性は炭素粉末の比表面積に比例するので、比表面積が1000m2/g未満の場合はガス親和性が不十分となり、過充電時の内圧上昇が増大する。一方で比表面積が5000m2/gを超えると、活物質層を形状保持する役割を担う結着剤が炭素粉末に過剰に吸収されるために強度が損なわれ、導電性基板からの活物質層の剥離を生じやすくなる。なお比表面積の好適範囲は全ての炭素粉末に対する平均値として計算されるものであって、全ての炭素粉末がこの好適範囲内である必要はない。 The specific surface area of the carbon powder is not particularly limited, but is preferably in the range of 1000 to 5000 m 2 / g. In the present invention, since the gas affinity is proportional to the specific surface area of the carbon powder, when the specific surface area is less than 1000 m 2 / g, the gas affinity becomes insufficient and the increase in internal pressure during overcharge increases. On the other hand, when the specific surface area exceeds 5000 m 2 / g, the binder that plays the role of maintaining the shape of the active material layer is excessively absorbed by the carbon powder, so that the strength is impaired, and the active material layer from the conductive substrate. It becomes easy to produce peeling. The preferred range of the specific surface area is calculated as an average value for all the carbon powders, and it is not necessary for all the carbon powders to be within this preferred range.

また炭素粉末の嵩密度は特に限定されないが、0.05〜0.09g/cm3の範囲であるのが好ましい。嵩密度が0.05g/cm3未満の場合、活物質層の前駆体である炭素粉末を含むペーストを調整する際にペースト粘度が高くなりすぎて活物質層の作製が困難となる。逆に嵩密度が0.09g/cm3を越える場合、炭素粉末が凝集しやすくなって負極内での分散が不均一となり、導電性が若干低下する。なお嵩密度の好適範囲は全ての炭素粉末に対する平均値として計算されるものであって、全ての炭素粉末がこの好適範囲内である必要はない。 The bulk density of the carbon powder is not particularly limited, but is preferably in the range of 0.05 to 0.09 g / cm 3 . When the bulk density is less than 0.05 g / cm 3 , the paste viscosity becomes too high when preparing a paste containing carbon powder that is a precursor of the active material layer, making it difficult to produce the active material layer. On the other hand, when the bulk density exceeds 0.09 g / cm 3 , the carbon powder tends to aggregate and the dispersion in the negative electrode becomes non-uniform, resulting in a slight decrease in conductivity. The preferable range of the bulk density is calculated as an average value for all the carbon powders, and it is not necessary that all the carbon powders are within this preferable range.

さらに炭素粉末の添加量は特に限定されないが、水素吸蔵合金100重量部に対し0.1〜1.0重量部の範囲であるのが好ましい。添加量が0.1重量部未満になると水素吸蔵合金粉末間に炭素粉末が均一に配置されないので、導電性およびガス親和性が十分に向
上できない。一方添加量が1.0重量部を超えると負極の単位体積当たりの水素吸蔵合金量が減少するだけでなく活物質層を形状保持する役割を担う結着剤が炭素粉末に過剰に吸収されるために強度が損なわれ、導電性基板からの活物質層の剥離を生じやすくなる。
Furthermore, although the addition amount of carbon powder is not specifically limited, It is preferable that it is the range of 0.1-1.0 weight part with respect to 100 weight part of hydrogen storage alloys. If the addition amount is less than 0.1 parts by weight, the carbon powder is not uniformly arranged between the hydrogen storage alloy powders, and therefore the conductivity and gas affinity cannot be sufficiently improved. On the other hand, when the addition amount exceeds 1.0 part by weight, not only the amount of hydrogen storage alloy per unit volume of the negative electrode is reduced, but also the binder that plays the role of maintaining the shape of the active material layer is excessively absorbed by the carbon powder. Therefore, the strength is impaired, and the active material layer is easily peeled off from the conductive substrate.

第2の発明は、第1の発明において、炭素粉末における非金属元素の含有量を0.001〜1.50重量%としたことを特徴とする。この含有量が0.001重量%未満の場合はガス親和性が低下するので好ましくなく、1.50重量部を超える場合はこれらの非金属元素を炭素粉末中に添加しづらくなるので好ましくない。なおこの含有量の好適範囲は全ての炭素粉末に対する平均値として計算されるものであって、全ての炭素粉末がこの好適範囲内である必要はない。   The second invention is characterized in that, in the first invention, the content of the nonmetallic element in the carbon powder is 0.001 to 1.50% by weight. When the content is less than 0.001% by weight, the gas affinity is lowered, which is not preferable. When the content exceeds 1.50 parts by weight, it is difficult to add these nonmetallic elements to the carbon powder. Note that the preferable range of the content is calculated as an average value for all the carbon powders, and it is not necessary that all the carbon powders are within this preferable range.

第3の発明は、第1の発明において、炭素粉末の少なくとも一部に、さらにNi、Co、Ca、Fe、Mg、Mn、TiおよびVからなる群より選ばれる少なくとも1つの金属元素を含有させたことを特徴とする。上述した金属元素を添加することにより炭素粉末の導電性を高めることができるので、大電流放電特性をさらに向上させることが可能となる。なお炭素粉末の全てが金属元素を含有する必要はなく、少なくとも粉末の一部が金属元素を含有していれば、第3の発明の効果は発現される。   According to a third invention, in the first invention, at least a part of the carbon powder further contains at least one metal element selected from the group consisting of Ni, Co, Ca, Fe, Mg, Mn, Ti and V. It is characterized by that. Since the conductivity of the carbon powder can be increased by adding the above-described metal element, it is possible to further improve the large current discharge characteristics. Note that it is not necessary for all of the carbon powder to contain a metal element, and if at least a part of the powder contains a metal element, the effect of the third invention is manifested.

なお第3の発明において、炭素粉末における金属元素の含有量は特に限定されないが、0.001〜1.50重量%の範囲であるのが好ましい。この含有量が0.001重量%未満の場合は炭素粉末の導電性がさほど向上しないので好ましくなく、1.50重量部を超える場合は炭素粉末に含有しにくくなる。なおこの含有量の好適範囲は全ての炭素粉末に対する平均値として計算されるものであって、全ての炭素粉末がこの好適範囲内である必要はない。   In the third invention, the content of the metal element in the carbon powder is not particularly limited, but is preferably in the range of 0.001 to 1.50% by weight. When the content is less than 0.001% by weight, the conductivity of the carbon powder is not improved so much, which is not preferable. When the content exceeds 1.50 parts by weight, the carbon powder is hardly contained. Note that the preferable range of the content is calculated as an average value for all the carbon powders, and it is not necessary that all the carbon powders are within this preferable range.

第4の発明は、第1の発明において、炭素粉末のジブチルフタレート吸収量(以下DBP吸油量と称する)を400ml/100g以上としたことを特徴とする。DBP吸油量は炭素粉末の導電性の尺度であり、この値が400ml/100gの炭素粉末を用いることにより、高い導電性を有するニッケル−水素蓄電池用負極を作製することができる。なお本発明の炭素粉末に関するDBP吸油量の上限値は特にないが、製造時のハンドリングを考慮すると、一般的には450ml/100g以下の炭素粉末が実用的である。またDBP吸油量の好適範囲は全ての炭素粉末に対する平均値として計算されるものであって、全ての炭素粉末がこの好適範囲内である必要はない。   According to a fourth invention, in the first invention, the carbon powder has a dibutyl phthalate absorption amount (hereinafter referred to as DBP oil absorption amount) of 400 ml / 100 g or more. The DBP oil absorption is a measure of the conductivity of the carbon powder. By using a carbon powder having this value of 400 ml / 100 g, a negative electrode for a nickel-hydrogen storage battery having high conductivity can be produced. There is no particular upper limit on the DBP oil absorption amount for the carbon powder of the present invention, but in consideration of handling during production, carbon powder of 450 ml / 100 g or less is generally practical. Moreover, the suitable range of DBP oil absorption is calculated as an average value with respect to all the carbon powders, and all the carbon powders do not need to be in this suitable range.

第5の発明は、第1の発明において、炭素粉末を一次粒子が凝集した二次凝集粒としたことを特徴とする。このような炭素粉末は適度な大きさのため極板を製造し易いという利点を有する。ここで特に限定されないが一次粒子の平均粒子径が5〜30nm、二次凝集粒の平均粒子径が5〜20μmの範囲であるのが好ましい。一次粒子の平均粒子径が30nmを超えると導電性を確保するための鎖状の形成が不十分となり、炭素粉末の導電性がやや低下する。また一次粒子の平均粒子径が5nm未満になると炭素粉末の導電性やガス吸収性は十分なものの炭素粉末の製造が困難となるので、実用的ではない。一方凝集粒の平均粒子径が20μmを超えると分散性が低下して負極内で水素吸蔵合金粉末との接触が不均一になり、導電性がやや不十分になる。逆に凝集粒の平均粒子径が5μm未満になると炭素粉末の導電性やガス吸収性は十分なもののペーストの粘度が過剰になって負極の製造が困難となるので、実用的ではない。   A fifth invention is characterized in that, in the first invention, the carbon powder is a secondary agglomerate in which primary particles are agglomerated. Such carbon powder has an advantage that it is easy to manufacture an electrode plate because of its moderate size. Although it does not specifically limit here, it is preferable that the average particle diameter of a primary particle is 5-30 nm, and the average particle diameter of a secondary aggregate is 5-20 micrometers. When the average particle diameter of the primary particles exceeds 30 nm, the formation of a chain for ensuring conductivity is insufficient, and the conductivity of the carbon powder is slightly lowered. On the other hand, if the average particle size of the primary particles is less than 5 nm, it is not practical because the carbon powder has sufficient conductivity and gas absorption, but it becomes difficult to produce the carbon powder. On the other hand, when the average particle diameter of the aggregated particles exceeds 20 μm, the dispersibility is lowered, and the contact with the hydrogen storage alloy powder is not uniform in the negative electrode, and the conductivity becomes slightly insufficient. Conversely, if the average particle size of the aggregated particles is less than 5 μm, the carbon powder has sufficient conductivity and gas absorbability, but the viscosity of the paste becomes excessive and it becomes difficult to produce the negative electrode, which is not practical.

第5の発明における炭素粉末は、芳香族炭化水素を高温下にて噴霧して作製できる。このような方法として代表的なのは不完全燃焼法であるオイルファーネス法である。以下この作製法について詳述する。まず2000℃以上の耐熱性を有する炉を1800℃近傍に昇温する。次に原料油として所定量の非金属元素を添加した芳香族炭化水素油を炉内にお
ける高温の反応部に連続的に噴霧し、空気と反応させる。得られた炭素粉末を捕集した後、粉砕・分級することにより第5の発明の炭素粉末が得られる。なお温度、時間および粉砕の条件を制御することにより、炭素粉末の粒子径を制御することができる。
The carbon powder in the fifth invention can be produced by spraying aromatic hydrocarbons at a high temperature. A typical example of such a method is an oil furnace method which is an incomplete combustion method. Hereinafter, this production method will be described in detail. First, the temperature of a furnace having a heat resistance of 2000 ° C. or higher is raised to around 1800 ° C. Next, an aromatic hydrocarbon oil to which a predetermined amount of a nonmetallic element is added as a raw material oil is continuously sprayed on a high-temperature reaction section in the furnace and reacted with air. After collecting the obtained carbon powder, the carbon powder of the fifth invention is obtained by pulverization and classification. The particle size of the carbon powder can be controlled by controlling the temperature, time, and pulverization conditions.

製造した炭素粉末は、個々の粒子どうしが融着した連鎖状となる。個々の球状粒子は凝集ユニット表面の凹凸を特徴づけていて炭素粉末の粒子径はこれらを単一粒子(1次粒子)と見なして表される。このような粒子の数個ないし数百個から成る連鎖状凝集体は二次凝集粒と見なして表される。   The produced carbon powder has a chain shape in which individual particles are fused. Individual spherical particles characterize the irregularities on the surface of the agglomeration unit, and the particle diameter of the carbon powder is expressed by regarding these as single particles (primary particles). Such a chain aggregate consisting of several to several hundred particles is expressed as a secondary aggregate.

本発明のニッケル−水素蓄電池用負極は、例えば以下の方法によって作製できる。まず本発明の炭素粉末を、水素吸蔵合金粉末、結着剤および純水と共に混練してペーストを調製し、作製したペーストを導電性支持体に塗着して活物質層を形成させ、乾燥した後、圧延成形するという方法である。   The negative electrode for nickel-hydrogen storage batteries of the present invention can be produced, for example, by the following method. First, the carbon powder of the present invention was kneaded with a hydrogen storage alloy powder, a binder and pure water to prepare a paste, and the prepared paste was applied to a conductive support to form an active material layer and dried. Then, it is a method of rolling and forming.

水素吸蔵合金粉末の組成は特に限定されるものではない。例えばCaCu5型構造を有するAB5系合金、ラーベス相構造(MgCu2型又はMgZn2型)を有するAB2系合金、CsCl型構造を有するAB系合金、またはMg2Ni型構造を有するA2B系合金などを使用するのが好ましい。これらの水素吸蔵合金粉末の平均粒子径は、活物質層における充填性などを考慮すると、10〜50μmであるのが好ましい。 The composition of the hydrogen storage alloy powder is not particularly limited. For example AB 5 type alloy having a CaCu 5 type structure, A 2 having AB 2 type alloy having a Laves phase structure (MgCu 2 type or MgZn 2 type), AB-based alloy having a CsCl type structure, or a Mg 2 Ni structure It is preferable to use a B alloy or the like. The average particle diameter of these hydrogen storage alloy powders is preferably 10 to 50 μm in view of the filling properties in the active material layer.

結着剤にはスチレン−ブタジエン共重合体(SBR)、ポリテトラフルオロエチレン(PTFE)などを用いることができる。また上述したペーストを塗着しやすいものにするために、カルボキシメチルセルロース誘導体(CMC)やポリビニルアルコール(PVA)などの増粘剤を添加するのも好ましい。   As the binder, styrene-butadiene copolymer (SBR), polytetrafluoroethylene (PTFE), or the like can be used. It is also preferable to add a thickener such as carboxymethylcellulose derivative (CMC) or polyvinyl alcohol (PVA) in order to make the above-mentioned paste easy to apply.

導電性支持体にはニッケル−水素蓄電池の負極電位下において電気化学的に安定な構成を有するものを用いることができる。具体的には箔、穿孔板や三次元多孔体でニッケル製のものや、表面がニッケルメッキされているものなどを挙げることができる。   A conductive support having an electrochemically stable structure under the negative electrode potential of a nickel-hydrogen battery can be used. Specific examples include a foil, a perforated plate, a three-dimensional porous body made of nickel, and a nickel-plated surface.

第6の発明は、上述した第1〜5のいずれかの発明のニッケル−水素蓄電池用負極を用いたことを特徴とするニッケル−水素蓄電池に関する。具体的には、第1〜5のいずれかの発明のニッケル−水素蓄電池用負極を、水酸化ニッケルを活物質とする正極とセパレータ(親水基を付与したポリプロピレン不織布など)を介して対峙させ、アルカリ水溶液(KOH、NaOH、LiOHなど)を注入することにより、本発明のニッケル−水素蓄電池が構成される。   6th invention is related with the nickel-hydrogen storage battery characterized by using the negative electrode for nickel-hydrogen storage batteries of the invention in any one of 1-5 mentioned above. Specifically, the negative electrode for a nickel-hydrogen storage battery according to any one of the first to fifth inventions is opposed to a positive electrode using nickel hydroxide as an active material and a separator (such as a polypropylene nonwoven fabric having a hydrophilic group), The nickel-hydrogen storage battery of the present invention is configured by injecting an alkaline aqueous solution (KOH, NaOH, LiOH, etc.).

以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明は下記実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。   Hereinafter, the present invention will be described in more detail on the basis of examples. However, the present invention is not limited to the following examples, and can be implemented with appropriate modifications without departing from the scope of the present invention. It is.

(電池A1)
(i)炭素粉末の作製
上述したオイルファーネス法に基づき、以下のように作製した。まず2000℃の耐熱性を有する炉を1800℃に昇温した。次に原料油としてプソイドクメン(芳香族炭化水素油C63(CH33)に0.045重量%の白リンを添加したものを炉内における高温の反応部に連続的に噴霧した。得られた炭素粉末を捕集して乳鉢で磨り潰し、325メッシュのふるいで分級し、非金属元素としてリンを含有する炭素粉末を作製した。
(Battery A1)
(I) Preparation of carbon powder Based on the oil furnace method mentioned above, it produced as follows. First, a furnace having a heat resistance of 2000 ° C. was heated to 1800 ° C. Next, pseudocumene (aromatic hydrocarbon oil C 6 H 3 (CH 3 ) 3 ) added with 0.045% by weight of white phosphorus as a raw material oil was continuously sprayed to a high-temperature reaction section in the furnace. The obtained carbon powder was collected, ground in a mortar, and classified with a 325 mesh sieve to produce carbon powder containing phosphorus as a nonmetallic element.

この炭素粉末について元素分析したところ、炭素粉末に対し0.05重量%相当のリン
が存在することが分かった。このリンの分布を調べるため、電子線マイクロアナライザ(EPMA)を用いて炭素粉末の断面を分析したところ、炭素粉末の内部からリンが検出された。この結果から、リンは炭素粉末の層間に侵入しているものと推定される。続いてJIS−K−6217に準拠した方法で、C.W.Brabender社製Absorpmeter−E型を用いたDBP吸油量の測定結果は410ml/100gであった。また島津製ASAP2000比表面積測定装置を用いたガス吸収法での比表面積の測定結果は2100m2であった。加えて嵩密度測定機(島津製乾式密度計アキュピック1330)を用いた嵩密度の測定結果は0.065g/cm3であった。さらに島津製SALD−2001レーザ式粒度分布測定装置(レーザ回折法)を用いた平均粒子径の測定結果は11.5μmであった。この炭素粉末を日本電子製JEOL JSM−5900LV電子顕微鏡を用いて観察したところ一次粒子が凝集した二次凝集粒であったので、同装置を用いて一次粒子の平均粒子径を測定した結果、13nmであった。
Elemental analysis of this carbon powder revealed that phosphorus equivalent to 0.05% by weight was present in the carbon powder. In order to examine this phosphorus distribution, the cross section of the carbon powder was analyzed using an electron beam microanalyzer (EPMA), and phosphorus was detected from the inside of the carbon powder. From this result, it is presumed that phosphorus penetrates between layers of carbon powder. Subsequently, in a method according to JIS-K-6217, C.I. W. The measurement result of DBP oil absorption using an Absorpmeter-E type manufactured by Brabender was 410 ml / 100 g. Moreover, the measurement result of the specific surface area by the gas absorption method using the Shimadzu ASAP2000 specific surface area measuring apparatus was 2100 m 2 . In addition, the measurement result of the bulk density using a bulk density measuring machine (Shimadzu dry density meter Accupic 1330) was 0.065 g / cm 3 . Furthermore, the measurement result of the average particle diameter using a Shimadzu SALD-2001 laser particle size distribution measuring apparatus (laser diffraction method) was 11.5 μm. When this carbon powder was observed using a JEOL JSM-5900LV electron microscope manufactured by JEOL, it was a secondary agglomerated particle in which primary particles were agglomerated. Met.

(ii)負極の作製
組成がMmNi3.55Co0.75Mn0.4Al0.3で表わされる水素吸蔵合金をボールミルで粉砕して平均粒子径24μmの粉末を得た。この水素吸蔵合金粉末の100重量部と、上述した炭素粉末を0.3重量部と、増粘剤であるCMCを0.15重量部と、結着剤であるSBRを0.8重量部とを分散媒である水と混合してペーストを作製した。このペーストを導電性支持体であるパンチングメタル(穿孔鋼板にニッケルメッキを施したもの)に塗着して活物質層を形成させ、乾燥および圧延を行って厚み0.33mm、幅3.5cm、長さ31cmに切断することによって負極を作製した。
(Ii) Production of Negative Electrode A hydrogen storage alloy having a composition represented by MmNi 3.55 Co 0.75 Mn 0.4 Al 0.3 was pulverized with a ball mill to obtain a powder having an average particle size of 24 μm. 100 parts by weight of this hydrogen storage alloy powder, 0.3 parts by weight of the carbon powder described above, 0.15 parts by weight of CMC as a thickener, and 0.8 parts by weight of SBR as a binder Was mixed with water as a dispersion medium to prepare a paste. This paste is applied to a punching metal (perforated steel plate with nickel plating) as a conductive support to form an active material layer, dried and rolled to have a thickness of 0.33 mm, a width of 3.5 cm, A negative electrode was produced by cutting to a length of 31 cm.

(iii)ニッケル−水素蓄電池の作製
上述した負極を、セパレータ(親水基を付与したポリプロピレン製不織布)を介して公知のペースト式ニッケル正極(幅3.5cm、長さ26cm、厚み0.57mm)と組み合わせて渦巻き状に捲回して電極群を構成し、SCサイズの電池ケースに収納した。比重1.30の水酸化カリウム水溶液に40g/Lの割合で水酸化リチウムを溶解した電解液を注入した後、ケースの上部を封口板で密閉し、公称容量3000mAhのニッケル−水素蓄電池を作製した。これを電池A1とする。
(Iii) Production of Nickel-Hydrogen Storage Battery The above-described negative electrode was replaced with a known paste-type nickel positive electrode (width 3.5 cm, length 26 cm, thickness 0.57 mm) via a separator (nonwoven polypropylene fabric provided with a hydrophilic group). The electrode group was formed by winding in combination and spirally housed in an SC size battery case. After injecting an electrolytic solution in which lithium hydroxide was dissolved at a rate of 40 g / L into a potassium hydroxide aqueous solution with a specific gravity of 1.30, the upper part of the case was sealed with a sealing plate to produce a nickel-hydrogen storage battery with a nominal capacity of 3000 mAh. . This is designated as battery A1.

(電池A2)
電池A1に対して、炭素粉末に含有させたリンをイオウに代えた(炭素粉末の物性値や非金属元素の添加量は全て電池A1と同様)こと以外は、電池A1と同様に構成したニッケル−水素蓄電池を電池A2とする。
(Battery A2)
Nickel having the same structure as that of the battery A1 except that the phosphorus contained in the carbon powder is replaced with sulfur with respect to the battery A1 (the physical properties of the carbon powder and the addition amount of nonmetallic elements are all the same as those of the battery A1). -Let the hydrogen storage battery be battery A2.

(電池A3)
電池A1に対して、炭素粉末に非金属元素を含有させなかった(炭素粉末の物性値は全て電池A1と同様)こと以外は、電池A1と同様に構成したニッケル−水素蓄電池を電池A3とする。
(Battery A3)
The battery A3 is a nickel-hydrogen storage battery configured in the same manner as the battery A1 except that the non-metallic element is not contained in the carbon powder with respect to the battery A1 (all the physical properties of the carbon powder are the same as those of the battery A1). .

上述した電池を25℃環境下で一日放置した後、20℃において300mAで15時間充電し、電池の端子電圧が1.0Vになるまで600mAで放電する充放電サイクルを2サイクル行い、初期活性化を行った。その後、20℃において3000mAの電流で1.2時間充電して、それぞれの電池内圧を測定した。結果を(表1)に示す。また20℃において3000mAで1.2時間充電し、電池の端子電圧が1.0Vになるまで3000mAで放電する充放電サイクルを10サイクル行った後、20℃において3000mAで1.2時間充電し、電池の端子電圧が0.8Vになるまで30Aで放電を行った。この30A放電時の平均放電電圧を(表1)に示す。さらに20℃において3000mAで1.2時間充電し、600mAで電池電圧が1.0Vになるまで放電した。600mA放電時の放電容量を100%とし、これに対する30A放電時の放電容量比率を(表1)に示す
After the above-mentioned battery is left in a 25 ° C. environment for one day, the battery is charged at 300 mA for 15 hours at 20 ° C., and then charged and discharged at 600 mA until the battery terminal voltage reaches 1.0 V. Made. Thereafter, the battery was charged with a current of 3000 mA at 20 ° C. for 1.2 hours, and the internal pressure of each battery was measured. The results are shown in (Table 1). Further, after charging and discharging at 3000 mA for 1.2 hours at 20 ° C. and discharging at 3000 mA until the battery terminal voltage reaches 1.0 V, charging at 3000 mA for 1.2 hours at 20 ° C. The battery was discharged at 30 A until the terminal voltage of the battery reached 0.8V. The average discharge voltage during this 30 A discharge is shown in (Table 1). Further, the battery was charged at 3000 mA for 1.2 hours at 20 ° C., and discharged at 600 mA until the battery voltage reached 1.0V. The discharge capacity at the time of 600 mA discharge is assumed to be 100%, and the discharge capacity ratio at the time of 30 A discharge is shown in (Table 1).

本発明の電池A1およびA2は、比較例である電池A3に比べて大電流放電特性が優れているだけではなく、過充電時における電池の内部圧力の上昇が抑制されていた。この理由は以下のように考えられる。すなわち、非金属元素を含有させた炭素粉末は導電性およびガス吸収性が高いため、電池の過充電時や大電流充電時に電池の内圧が上昇することを抑制できたと考えられる。これに対して電池A3は炭素材料の熱伝導性が十分ではなかったために、上述した効果が得られなかったと考えられる。 The batteries A1 and A2 of the present invention were not only excellent in large current discharge characteristics as compared with the battery A3 as a comparative example, but also suppressed an increase in the internal pressure of the battery during overcharging. The reason is considered as follows. That is, since the carbon powder containing a nonmetallic element has high conductivity and gas absorbability, it is considered that the internal pressure of the battery can be prevented from increasing when the battery is overcharged or charged with a large current. On the other hand, it is considered that the effect described above was not obtained in the battery A3 because the thermal conductivity of the carbon material was not sufficient.

(電池B1〜B8)
電池A1に対し、炭素粉末の作製において芳香族炭化水素油であるプソイドクメンに添加する白リンの量を比例的に変化させ、炭素粉末に対するリンの量を0.0005重量%(電池B1)、0.001重量%(電池B2)、0.005重量%(電池B3)、0.10重量%(電池B4)、0.50重量%(電池B5)、1.0重量%(電池B6)、1.5重量%(電池B7)、1.65重量%(電池B8)としたこと以外は、電池A1と同様に構成したニッケル−水素蓄電池を電池B1〜B8とする。
(Batteries B1 to B8)
In comparison with the battery A1, the amount of white phosphorus added to pseudocumene, which is an aromatic hydrocarbon oil in the production of carbon powder, is changed proportionally, and the amount of phosphorus with respect to the carbon powder is 0.0005% by weight (battery B1), 0 0.001 wt% (Battery B2), 0.005 wt% (Battery B3), 0.10 wt% (Battery B4), 0.50 wt% (Battery B5), 1.0 wt% (Battery B6), 1 Batteries B1 to B8 are nickel-hydrogen storage batteries configured in the same manner as the battery A1, except that the content is 0.5 wt% (battery B7) and 1.65 wt% (battery B8).

上述した電池を実施例1と同様の方法で初期活性化を行い、電池内圧測定および大電流放電特性の評価を行った。結果を電池A1とともに(表2)に示す。   The battery described above was initially activated in the same manner as in Example 1, and the battery internal pressure was measured and the large current discharge characteristics were evaluated. The results are shown in Table 2 together with the battery A1.

(表2)に示されるように、非金属元素の含有量が増加するに従って、負極のガス親和性が高くなり、電池内部圧力が低減する。しかしながら非金属元素の含有量が0.001重量%未満の電池B1は本発明の効果が十分に発揮できないため、内圧抑制効果の向上が不充分となる。一方で非金属元素の含有量が1.5重量%を超える電池B8は良好な電池内圧特性を示すが、非金属元素を炭素粉末中に添加しづらくなるため、生産歩留が低下するという課題が生じた。この傾向は非金属元素をリンからイオウに変えた場合も同等であった。よって炭素粉末における非金属元素の含有量は、0.001〜1.50重量%が望ましい。 As shown in (Table 2), as the content of the nonmetallic element increases, the gas affinity of the negative electrode increases and the internal pressure of the battery decreases. However, since the battery B1 having a nonmetallic element content of less than 0.001% by weight cannot sufficiently exhibit the effects of the present invention, the effect of suppressing the internal pressure is insufficient. On the other hand, the battery B8 in which the content of the nonmetallic element exceeds 1.5% by weight shows a good battery internal pressure characteristic, but it is difficult to add the nonmetallic element to the carbon powder, so that the production yield decreases. Occurred. This tendency was the same when the nonmetallic element was changed from phosphorus to sulfur. Therefore, the content of the nonmetallic element in the carbon powder is preferably 0.001 to 1.50% by weight.

(電池C1〜C5)
電池A1に対し、炭素粉末の作製において炉内温度および粉砕条件を変化させることにより炭素粉末のDBP吸油量を377ml/100g(電池C1)、389ml/100g(電池C2)、400ml/100g(電池C3)、420ml/100g(電池C4)、433ml/100g(電池C5)としたこと以外は、電池A1と同様に構成したニッケル−水素蓄電池を電池C1〜C5とする。
(Batteries C1 to C5)
For the battery A1, the DBP oil absorption of the carbon powder was changed to 377 ml / 100 g (battery C1), 389 ml / 100 g (battery C2), 400 ml / 100 g (battery C3) by changing the furnace temperature and pulverization conditions in the production of the carbon powder. ), 420 ml / 100 g (battery C4), except that it is 433 ml / 100 g (battery C5), nickel-hydrogen storage batteries configured similarly to battery A1 are designated as batteries C1 to C5.

上述した電池を実施例1と同様の方法で初期活性化を行い、電池内圧測定および大電流放電特性の評価を行った。結果を電池A1とともに(表3)に示す。   The battery described above was initially activated in the same manner as in Example 1, and the battery internal pressure was measured and the large current discharge characteristics were evaluated. The results are shown in Table 3 together with the battery A1.

(表3)に示されるように、DBP吸油量が増加するに従って、負極の導電性が高くなり、大電流放電特性向上および電池内部圧力の低減に対して効果が大きくなる。この理由として、水素吸蔵合金粉末間の接触抵抗が低減することによって電極反応が活性化し、充電時に水素が負極表面近傍の水素吸蔵合金にも容易に吸蔵されるため、電池の大電流充放電特性が向上するとともに水素ガスの漏出による電池内圧の上昇が防止できた結果と考えられる。しかしながらDBP吸油量が400ml/100gより小さい電池C1およびC2は上述した効果が十分ではない。この結果からDBP吸油量は400ml/100g以上が好適範囲であることがわかる。 As shown in (Table 3), as the DBP oil absorption increases, the conductivity of the negative electrode increases, and the effect increases for improving the large current discharge characteristics and reducing the battery internal pressure. The reason for this is that the electrode reaction is activated by reducing the contact resistance between the hydrogen storage alloy powders, and hydrogen is easily stored in the hydrogen storage alloy near the negative electrode surface during charging. This is thought to be a result of the improvement in battery internal pressure due to hydrogen gas leakage. However, the effects described above are not sufficient for the batteries C1 and C2 whose DBP oil absorption is smaller than 400 ml / 100 g. From this result, it can be seen that the DBP oil absorption is in a preferable range of 400 ml / 100 g or more.

(電池D1〜D8)
電池A1に対して、炭素粉末にさらに炭素粉末に対して0.03重量%のNi(電池D1)、Co(電池D2)、Ca(電池D3)、Fe(電池D4)、Mg(電池D5)、Mn(電池D6)、Ti(電池D7)、V(電池D8)を加えたこと以外は、電池A1と同様に構成したニッケル−水素蓄電池を電池D1〜D8とする。
(Batteries D1 to D8)
With respect to the battery A1, 0.03 wt% of Ni (battery D1), Co (battery D2), Ca (battery D3), Fe (battery D4), Mg (battery D5) in addition to the carbon powder. , Mn (battery D6), Ti (battery D7), and V (battery D8) are added, and nickel-hydrogen storage batteries configured similarly to battery A1 are designated as batteries D1 to D8.

上述した電池を実施例1と同様の方法で初期活性化を行い、電池内圧測定および大電流放電特性の評価を行った。結果を電池A1とともに(表4)に示す。   The battery described above was initially activated in the same manner as in Example 1, and the battery internal pressure was measured and the large current discharge characteristics were evaluated. The results are shown in Table 4 together with the battery A1.

(表4)に示されるように、非金属元素に加え金属を含有する炭素粉末を用いることにより導電性がより高くなるため、水素吸蔵合金粉末間の接触抵抗が低減することによって電極反応が活性化し、充電時に水素が負極表面近傍の水素吸蔵合金にも容易に吸蔵されるため、電池の大電流充放電特性が向上するとともに水素ガスの漏出による電池内圧の上昇が防止できた結果と考えられる。 As shown in Table 4, the use of carbon powder containing metal in addition to non-metallic elements increases the conductivity, so that the electrode reaction is activated by reducing the contact resistance between the hydrogen storage alloy powders. This is thought to be due to the fact that, during charging, hydrogen is easily stored in the hydrogen storage alloy near the negative electrode surface, so that the large current charge / discharge characteristics of the battery are improved and the increase in the internal pressure of the battery due to leakage of hydrogen gas is prevented. .

本発明の効果は全てのニッケル−水素蓄電池に対して利用が可能であるが、特に容量が大きい場合に顕著な効果を発揮できる。従って電動工具や電気自動車の電源として本発明の技術を展開したときに大きな効果が見込める。   The effect of the present invention can be used for all nickel-hydrogen storage batteries, but can exhibit a remarkable effect particularly when the capacity is large. Therefore, a great effect can be expected when the technology of the present invention is developed as a power source for electric tools and electric vehicles.

Claims (6)

導電性支持体上に水素吸蔵合金粉末と炭素粉末とを含む活物質層を設けたニッケル−水素蓄電池用負極であって、
前記炭素粉末の少なくとも一部に、イオウおよびリンから選ばれる少なくとも1つの非金属元素を含有させたことを特徴とするニッケル−水素蓄電池用負極。
A negative electrode for a nickel-hydrogen storage battery in which an active material layer containing a hydrogen storage alloy powder and a carbon powder is provided on a conductive support,
A negative electrode for a nickel-hydrogen storage battery, wherein at least a part of the carbon powder contains at least one nonmetallic element selected from sulfur and phosphorus.
前記炭素粉末における前記非金属元素の含有量を0.001〜1.50重量%としたことを特徴とする、請求項1記載のニッケル−水素蓄電池用負極。 2. The negative electrode for a nickel-hydrogen storage battery according to claim 1, wherein a content of the nonmetallic element in the carbon powder is 0.001 to 1.50 wt%. 前記炭素粉末の少なくとも一部に、さらにNi、Co、Ca、Fe、Mg、Mn、TiおよびVからなる群より選ばれる少なくとも1つの金属元素を含有させたことを特徴とする、請求項1記載のニッケル−水素蓄電池用負極。 2. The carbon powder further contains at least one metal element selected from the group consisting of Ni, Co, Ca, Fe, Mg, Mn, Ti and V in at least a part of the carbon powder. Negative electrode for nickel-hydrogen storage battery. 前記炭素粉末のジブチルフタレート吸収量を400ml/100g以上としたことを特徴とする、請求項1記載のニッケル−水素蓄電池用負極。 The negative electrode for a nickel-hydrogen storage battery according to claim 1, wherein the carbon powder has a dibutyl phthalate absorption of 400 ml / 100 g or more. 前記炭素粉末を一次粒子が凝集した二次凝集粒としたことを特徴とする、請求項1記載のニッケル−水素蓄電池用負極。 The negative electrode for a nickel-hydrogen storage battery according to claim 1, wherein the carbon powder is a secondary agglomerate in which primary particles are agglomerated. 請求項1〜5のいずれかに記載のニッケル−水素蓄電池用負極を用いたことを特徴とするニッケル−水素蓄電池。 A nickel-hydrogen storage battery using the nickel-hydrogen storage battery negative electrode according to claim 1.
JP2007004168A 2006-03-08 2007-01-12 Negative electrode for nickel-hydrogen storage battery and nickel-hydrogen storage battery Expired - Fee Related JP5130718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007004168A JP5130718B2 (en) 2006-03-08 2007-01-12 Negative electrode for nickel-hydrogen storage battery and nickel-hydrogen storage battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006062322 2006-03-08
JP2006062322 2006-03-08
JP2007004168A JP5130718B2 (en) 2006-03-08 2007-01-12 Negative electrode for nickel-hydrogen storage battery and nickel-hydrogen storage battery

Publications (2)

Publication Number Publication Date
JP2007273453A JP2007273453A (en) 2007-10-18
JP5130718B2 true JP5130718B2 (en) 2013-01-30

Family

ID=38676015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007004168A Expired - Fee Related JP5130718B2 (en) 2006-03-08 2007-01-12 Negative electrode for nickel-hydrogen storage battery and nickel-hydrogen storage battery

Country Status (1)

Country Link
JP (1) JP5130718B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878015A (en) * 1994-09-06 1996-03-22 Furukawa Electric Co Ltd:The Nickel hydrogen battery and hydrogen storage alloy electrode
JPH08167411A (en) * 1994-12-12 1996-06-25 Furukawa Electric Co Ltd:The Nickel electrode and its manufacture
JPH08180861A (en) * 1994-12-26 1996-07-12 Toshiba Corp Hydrogen storage alloy for battery, its manufacture and nickel-hydrogen secondary battery
AU6878100A (en) * 1999-09-09 2001-04-10 Sony Corporation Carbonaceous material for hydrogen storage and method for preparing the same, and cell and fuel cell
JP4196005B2 (en) * 2004-07-30 2008-12-17 パナソニック株式会社 Hydrogen storage alloy negative electrode and nickel-hydrogen storage battery

Also Published As

Publication number Publication date
JP2007273453A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
US9608260B2 (en) Anode active material having high density and preparation method thereof
WO2010150513A1 (en) Electrode structure and electricity storage device
JP3191752B2 (en) Nickel-hydrogen secondary battery and method for manufacturing electrode thereof
JP5412298B2 (en) Positive electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
KR101439422B1 (en) Using a plasma method for producing a silicon-nano-particles colloid and cathode active material, lithium secondary cell using thereof
KR20160065877A (en) A high efficiency nickel-iron battery
US7534529B2 (en) Negative electrode and nickel-metal hydride storage battery using the same
JP3373751B2 (en) Secondary battery and manufacturing method thereof
JPWO2012147647A1 (en) Lithium ion secondary battery
JP5469979B2 (en) Lithium ion secondary battery
JP2007311207A (en) Negative electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using it and manufacturing method of negative electrode material for nonaqueous electrolyte secondary battery
JP3729815B2 (en) Negative electrode plate for nickel-hydrogen storage battery, method for producing the same, and nickel-hydrogen storage battery using the same
KR102473745B1 (en) Manufacturing method of Silicon/Carbon nanotube/Graphene Composite film as Anode Materials for Lithiumion Batteries and Manufacturing method for Lithiumion Batteries using it
JP5130718B2 (en) Negative electrode for nickel-hydrogen storage battery and nickel-hydrogen storage battery
CN117981105A (en) Lithium ion secondary battery
CN113964318A (en) Multilayer electrode for secondary battery
JP7223999B2 (en) Positive electrode composition for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20150118876A (en) Using a plasma method for producing a silicon-nano-particles colloid and cathode active material, lithium secondary cell using thereof
WO2023145701A1 (en) Method for producing nickel metal hydride battery, positive electrode for nickel metal hydride batteries, and nickel metal hydride battery
JP3761763B2 (en) Hydrogen storage alloy electrode, battery using the same, and manufacturing method thereof
US12021223B2 (en) Positive electrode for alkali secondary battery and alkali secondary battery including said positive electrode
JPH11135112A (en) Positive electrode for alkaline storage battery
WO2024070220A1 (en) Non-aqueous electrolyte secondary battery
JP3863689B2 (en) Hydrogen storage alloy electrode for alkaline storage battery and alkaline storage battery
JP2013211122A (en) Alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091224

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5130718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees