JP3373751B2 - Secondary battery and manufacturing method thereof - Google Patents
Secondary battery and manufacturing method thereofInfo
- Publication number
- JP3373751B2 JP3373751B2 JP05824397A JP5824397A JP3373751B2 JP 3373751 B2 JP3373751 B2 JP 3373751B2 JP 05824397 A JP05824397 A JP 05824397A JP 5824397 A JP5824397 A JP 5824397A JP 3373751 B2 JP3373751 B2 JP 3373751B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon
- secondary battery
- soot
- active material
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は電気容量が大きく、
充放電の繰り返しに伴う電気容量の低下の少ない二次電
池およびその製造法に関するものであり、特にリチウム
イオン二次電池、ニッケル水素二次電池、ニッケルカド
ミウム二次電池、アルカリマンガン電池、鉛蓄電池等の
充放電のサイクル寿命を著しく延長し、且つその容量を
増大することができるものである。TECHNICAL FIELD The present invention has a large electric capacity,
The present invention relates to a secondary battery and its manufacturing method in which the electric capacity is less likely to decrease due to repeated charging / discharging, and particularly to a lithium ion secondary battery, a nickel hydrogen secondary battery, a nickel cadmium secondary battery, an alkaline manganese battery, a lead storage battery, etc. It is possible to remarkably extend the cycle life of charging / discharging and to increase the capacity thereof.
【0002】[0002]
【従来の技術】二次電池は充放電の繰り返しに伴い、正
極および負極の電極活物質が電気化学反応に伴い、体積
変化を繰り返す結果、これらの粒子や導電性物質である
グラファイトの粒子の間に隙間ができ、電気的導通が断
たれ、電池の容量が減少する。従来これらの電極活物質
と集電体との導通を確保する目的で5マイクロメートル
前後の粒子径を持ったグラファイトを30〜40%混合
していたが、充放電に伴う電気的導通の減少を防止する
には不十分であった。また、活物質を充填するスペース
を犠牲にしていた。更に、活物質とグラファイトとの電
気的な接触を助けるために、より細かなカーボンブラッ
クを加えることも行われていた。しかしながら、カーボ
ンブラックは非常に嵩高な粉末であり、これを加えるこ
とにより電極活物質層の密度が小さくなる傾向にあり、
電極活物質層を高い圧力で押さえつける等の対策が採ら
れてきていたが、その圧力をカーボンブラックがつぶれ
る程高くするとグラファイトが変形して電解液の滲込む
隙間が無くなってしまい、所定の特性が得られないとい
う問題が有った。2. Description of the Related Art In a secondary battery, as the charge and discharge are repeated, the electrode active materials of the positive electrode and the negative electrode repeatedly change in volume due to an electrochemical reaction. A gap is created in the battery, electrical connection is cut off, and the battery capacity is reduced. Conventionally, 30 to 40% of graphite having a particle size of about 5 micrometers was mixed for the purpose of ensuring the conduction between these electrode active materials and the current collector, but the reduction of electrical conduction due to charging and discharging was reduced. It was insufficient to prevent. Further, the space for filling the active material is sacrificed. Further, finer carbon black has also been added to help electrical contact between the active material and graphite. However, carbon black is a very bulky powder, and the density of the electrode active material layer tends to decrease by adding this,
Although measures such as pressing the electrode active material layer with a high pressure have been taken, if the pressure is increased to such a degree that the carbon black is crushed, the graphite will be deformed and there will be no gap for the electrolyte to seep out, and the predetermined characteristics There was a problem that I could not get it.
【0003】[0003]
【発明が解決しようとする課題】本発明はこれらの従来
の方法について、そのメカニズムを究明することによっ
て、長寿命で、且つ安価に製造できる電池構造とその製
造法を見いだしたものである。本発明の第一の目的は二
次電池の充放電サイクル寿命を延長させることにある。
本発明の第二の目的は二次電池の容量を増大させること
にある。本発明の第三の目的は二次電池の内部抵抗を減
少させることにある。本発明の第四の目的は二次電池の
急速充電性能を向上させることにある。本発明の第五の
目的は二次電池の材料コストを低減させることにある。DISCLOSURE OF INVENTION Problems to be Solved by the Invention The present invention has found a battery structure that can be manufactured with a long life and at low cost and a manufacturing method thereof by investigating the mechanism of these conventional methods. A first object of the present invention is to extend the charge / discharge cycle life of a secondary battery.
The second object of the present invention is to increase the capacity of the secondary battery. A third object of the present invention is to reduce the internal resistance of the secondary battery. A fourth object of the present invention is to improve the rapid charging performance of the secondary battery. A fifth object of the present invention is to reduce the material cost of the secondary battery.
【0004】[0004]
【課題を解決するための手段】本発明は、メジアン径が
600ナノメートル以下、好ましくは300ナノメート
ル以下の炭素の微粒子好ましくは煤の粉砕物が表面に付
着することにより導電路が形成された電極活物質をもち
いた二次電池、および、煤あるいはメジアン径が600
ナノメートル以下の炭素の微粒子好ましくは煤の粉砕物
を、電極活物質と混合し、該電極活物質の表面に前記炭
素の微粒子である煤の粉砕物を付着せしめることにより
導電路を形成した複合粒子となし、この複合粒子を集電
体上に付着せしめる二次電池の製造法である。本発明で
電極活物質と称するものは、例えばMnO2、NiOO
H、水素吸蔵合金、LiMn2O4、Li含浸グラファイ
ト、PbO2、PbSO4等を言い、二次電池としてはリ
チウムイオン二次電池、ニッケル水素二次電池、ニッケ
ルカドミウム二次電池、アルカリマンガン電池、鉛電池
等が対象となる。According to the present invention, a conductive path is formed by depositing fine carbon particles, preferably soot pulverized, having a median diameter of 600 nm or less, preferably 300 nm or less, on the surface. Secondary battery using electrode active material, and soot or median diameter of 600
Nanometer or less carbon fine particles, preferably soot pulverized product, is mixed with an electrode active material, and a conductive path is formed by adhering the carbon particulate soot pulverized product to the surface of the electrode active material. This is a method for producing a secondary battery in which particles are formed and the composite particles are attached to a current collector. What is referred to as an electrode active material in the present invention is, for example, MnO 2 , NiOO.
H, hydrogen storage alloy, LiMn 2 O 4 , Li-impregnated graphite, PbO 2 , PbSO 4, etc., and as secondary batteries, lithium-ion secondary batteries, nickel-hydrogen secondary batteries, nickel-cadmium secondary batteries, alkaline manganese batteries. , Lead-acid batteries, etc.
【0005】[0005]
【作用】炭素の微粒子である煤の粉砕物が電極活物質表
面に付着して導電路が形成された電極活物質をもちいる
ことによる充放電サイクル寿命の延長および電池容量の
増大のメカニズムは、次の様に考えられる。即ち、リチ
ウムイオン電池を例にとって説明すると、二次電池の正
極活物質であるLiCoO2やLiNiO2、LiMn2
O4は、充放電に伴って必ずその金属原子の原子価が下
記のa〜cに示す様に変化し、原子価の大きい原子のイ
オン半径は原子価の小さい原子のそれに比べて15〜2
5%も小さい。[Function] The mechanism for extending the charge / discharge cycle life and increasing the battery capacity by using the electrode active material in which the conductive paths are formed by the pulverized soot, which is a fine particle of carbon, adhering to the surface of the electrode active material is It can be considered as follows. That is, taking a lithium ion battery as an example, LiCoO 2 , LiNiO 2 , and LiMn 2 which are positive electrode active materials of a secondary battery are described.
O 4 always changes the valence of its metal atom as shown in ac below with charge and discharge, and the ionic radius of an atom with a large valence is 15 to 2 as compared with that of an atom with a small valence.
It is as small as 5%.
【0006】[0006]
【化1】 [Chemical 1]
【0007】従って活物質は放電したときはその体積が
膨張し、充電したときにはその体積が収縮する。充放電
を繰り返すと電池が劣化する原因は、この膨張と収縮を
繰り返しにより、活物質と炭素材料との接触あるいは炭
素材料相互間の接触が不十分となり、内部抵抗が増大す
ることによるところが大きい。Therefore, the active material expands in volume when discharged and contracts in volume when charged. The cause of deterioration of the battery after repeated charging and discharging is largely due to insufficient contact between the active material and the carbon material or between the carbon materials due to repeated expansion and contraction, resulting in increase in internal resistance.
【0008】また、リチウムイオン電池の負極の活物質
として用いられるLiイオンを吸蔵・脱離しるカーボン
系材料についても、従来、Liイオンの吸蔵・脱離を繰
り返すと、膨張収縮が起こり、これに伴い前記カーボン
系材料相互間の導電性の劣化が避けられ無かった。Further, with respect to a carbon-based material which absorbs and desorbs Li ions, which is used as an active material of a negative electrode of a lithium ion battery, conventionally, when Li ions are repeatedly occluded and desorbed, expansion and contraction occur, which causes Along with this, deterioration of conductivity between the carbon-based materials is unavoidable.
【0009】本発明においては図1に示す様に、炭素の
微粒子である煤の粉砕物1は電極活物質の粒子2、ある
いは電極活物質が変化して生成した粒子3の表面に吸着
して導電性の網目4を形成する。この網目4は微粒子に
よって構成されているため、電極活物質の膨張収縮に伴
って電極活物質表面上で相互に接触を保ちつつ自由に変
形することができるので、この網目4を伝って集電体5
から充電電流が流れ、今まで不活性であった粒子3の表
面が電気分解されて活物質が再生するものと推定する。In the present invention, as shown in FIG. 1, the soot pulverized product 1 which is a fine particle of carbon is adsorbed on the surface of the particle 2 of the electrode active material or the particle 3 produced by the change of the electrode active material. A conductive mesh 4 is formed. Since the mesh 4 is composed of fine particles, it can freely deform while keeping contact with each other on the surface of the electrode active material as the electrode active material expands and contracts. Body 5
It is presumed that the charging current flows from the above to electrolyze the surface of the particle 3 which has been inactive until now to regenerate the active material.
【0010】また、MnO2では図4に示す様に20〜
30m2/gの気孔を持つものが電池に使用されてい
る。これは非常にいりくんだ表面と微細な孔を沢山持
ち、その電極反応の95%以上がこの孔の壁面で起こっ
ている。従来の粗粒のグラファイトや未粉砕のカーボン
ブラックではこのいりくんだ表面や孔に付着することは
出来なかったが100ナノメートルオーダー以下になっ
た炭素の微粒子ではこれらの表面に付着して導電路を形
成することができるので、理想的な電池活物質構造を構
成することができる。Further, in MnO 2 , as shown in FIG.
A battery having a porosity of 30 m 2 / g is used for a battery. It has a very rugged surface and many fine pores, with over 95% of the electrode reaction occurring on the wall of this pore. With conventional coarse graphite and uncrushed carbon black, it was not possible to adhere to these dusty surfaces and pores, but with carbon particles of the order of 100 nanometers or less, they adhered to these surfaces and formed conductive paths. Since it can be formed, an ideal battery active material structure can be formed.
【0011】即ち従来のグラファイトの粉砕によって得
られた粒子の場合には図5に示す様に近似した大きさの
活物質粒子12とグラファイト粒子11とが相互に入り
組んだ石垣状の構造であったために、活物質の膨張収縮
に伴いグラファイト粒子間の接触およびグラファイト粒
子と活物質粒子間の接触が分断されていたのに対し、本
発明の構造では導電性の微粒子の大きさが直径100ナ
ノメートルのオーダーであり、活物質の大きさの直径1
0000ナノメートルのオーダーに比べて遥に小さいた
め、導電性の微粒子が比較的自由に配置を変えることが
出来、活物質が膨張収縮しても導電性の網目が切れるこ
とが少ないものと推定する。That is, in the case of particles obtained by crushing conventional graphite, the active material particles 12 and the graphite particles 11 having similar sizes have a stone wall-like structure in which they are intertwined with each other, as shown in FIG. In addition, while the contact between the graphite particles and the contact between the graphite particles and the active material particles were separated due to the expansion and contraction of the active material, in the structure of the present invention, the size of the conductive fine particles was 100 nm in diameter. And the diameter of the size of the active material is 1
Since it is much smaller than the order of 0000 nanometers, it is presumed that the conductive fine particles can change their arrangement relatively freely, and the conductive mesh is less likely to break even when the active material expands and contracts. .
【0012】負極の電極活物質であるLiイオンを吸蔵
・脱離しるカーボン系材料については、その直径500
0ないし30000ナノメートルの活物質粒子の表面に
本発明の100ナノメートルオーダーの導電性の微粒子
を付着させることにより、その活物質粒子の充放電に伴
う膨張収縮による活物質粒子本体の導電性の劣化が起こ
っても、活物質粒子の表面に導電性の微粒子で形成され
た導電路により全体としては良好な導電性が保たれる。The diameter of the carbon-based material that absorbs and desorbs Li ions, which is the electrode active material of the negative electrode, is 500
By adhering the conductive fine particles of the order of 100 nm of the present invention to the surface of the active material particles of 0 to 30,000 nanometers, the conductivity of the active material particle main body due to expansion and contraction accompanying the charging and discharging of the active material particles. Even if deterioration occurs, good conductivity is maintained as a whole by the conductive paths formed of conductive fine particles on the surface of the active material particles.
【0013】このように電極表面に有った不活性の粒子
が活物質に再生されるため、電池の内部抵抗が大幅に低
下し、容量が増加し、急速充電にも耐えるものとなる。Since the inactive particles on the surface of the electrode are regenerated as the active material in this manner, the internal resistance of the battery is greatly reduced, the capacity is increased, and the battery can withstand rapid charging.
【0014】更に、ニッケル水素二次電池では水素吸蔵
合金の粉末を、炭素の微粒子である煤の粉砕物と有機高
分子とを混合した懸濁液中に浸けるだけで水素吸蔵合金
の粉末の表面に炭素微粒子である煤の粉砕物の層が形成
され水素イオンとの電子の授受が容易になり、この様に
炭素の微粒子である煤の粉砕物を被覆した水素吸蔵合金
の粉末を用いたニッケル水素二次電池では電池の内部抵
抗が減少する。Furthermore, in the nickel-hydrogen secondary battery, the surface of the hydrogen-absorbing alloy powder can be obtained simply by immersing the hydrogen-absorbing alloy powder in a suspension obtained by mixing soot pulverized carbon fine particles and an organic polymer. A layer of soot pulverized carbon fine particles is formed on the surface of the carbon to facilitate the transfer of electrons to and from hydrogen ions. Thus, nickel using hydrogen storage alloy powder coated with soot pulverized carbon fine particles is used. In a hydrogen secondary battery, the internal resistance of the battery decreases.
【0015】石油、天然ガス、動植物油等を燃焼して得
られる煤、例えばアセチレンブラック、カーボンブラッ
ク、ケチェンブラック等は数十ナノメートルの微細な粒
子がチエーン状につながって、図3(A)に示すような
直径10000〜50000ナノメートルの比較的大き
な塊となっており、このままでは非常に嵩高であり、電
極活物質の表面に付着して導電路を形成するには嵩密度
が小さくなりすぎて不適当である。ところがこれを粉砕
して図3(B)に示す様に100ナノメートルのオーダ
ーにすると嵩密度を下げずに電極活物質の表面に付着し
て導電路を形成することが可能となり、本発明で用いる
微粒子として好適である。これに、同一分子中に親水基
と疎水基とを持つ高分子、例えば膠、アラビアゴム、ポ
リビニルアルコール、ポリビニルピロリドン、カーボキ
シメチルセルロース、カゼイン等の有機高分子の分散助
剤(保護コロイド)を加えた墨汁は安定なコロイドを形
成し、電極活物質と混合することにより活物質粒子の表
面に容易に付着させることができる。また、炭素微粒子
である煤の粉砕物の水への分散を促進する為に界面活性
剤を加えることもできる。Soot obtained by burning petroleum, natural gas, animal and vegetable oils, such as acetylene black, carbon black, ketjen black, etc., is formed by connecting fine particles of several tens of nanometers in a chain shape, as shown in FIG. ), It is a relatively large lump with a diameter of 10,000 to 50,000 nanometers and is very bulky as it is, and the bulk density becomes small to adhere to the surface of the electrode active material to form a conductive path. Too inappropriate. However, if this is pulverized to have an order of 100 nanometers as shown in FIG. 3B, it becomes possible to adhere to the surface of the electrode active material and form a conductive path without lowering the bulk density. It is suitable as fine particles to be used. To this, a polymer having a hydrophilic group and a hydrophobic group in the same molecule, for example, an organic polymer dispersion aid (protective colloid) such as glue, gum arabic, polyvinyl alcohol, polyvinylpyrrolidone, carboxymethyl cellulose, and casein is added. The India ink forms a stable colloid and can be easily attached to the surface of the active material particles by mixing with the electrode active material. Further, a surfactant may be added in order to promote the dispersion of the pulverized soot, which is carbon fine particles, in water.
【0016】煤を粉砕する方法としては、これに水、有
機液体、あるいは高分子を含んだ溶液との混合物である
高粘性流体あるいは可塑性の塊に強い剪断力をかけてチ
エーン状の構造を短く切断する方法が特に好ましく、例
えば、印刷インキ、墨汁等の製造に用いられているトリ
ロールミル、手練り、アトリッションミル、等が好適に
用いられる。As a method for pulverizing soot, a highly viscous fluid or a plastic mass, which is a mixture of water, an organic liquid, or a solution containing a polymer, is subjected to a strong shearing force to shorten the chain-like structure. A method of cutting is particularly preferable, and for example, a triroll mill, hand kneading, attrition mill, etc. used for producing printing ink, ink, etc. are suitably used.
【0017】添加する導電性の微粒子の量は導電性の微
粒子の粒子径が小さいほど少量で良い。特にチエーン状
の微構造を持った微粒子である煤を使うと、充放電に伴
う活物質の膨張収縮に追随してチエーン状の微粒子で形
成されている網目状の導電路が伸縮し、電極活物質が電
気的に孤立することが無いものと推定する。この様にチ
エーン状の微粒子のゆるやかな結合により、導電性が保
たれるという効果は従来の粗いグラファイトの粒子を電
極活物質と混合したものでは全く期待できなかった効果
であり、本発明の微粒の炭素粒子である煤の粉砕物を使
うことによって始めて達成されたものである。The amount of the conductive fine particles added may be smaller as the particle size of the conductive fine particles is smaller. In particular, if soot, which is fine particles with a chain-like microstructure, is used, the mesh-shaped conductive paths formed by the chain-like fine particles expand and contract as the active material expands and contracts during charging and discharging. It is presumed that the substance is not electrically isolated. Thus, the effect that the electrical conductivity is maintained by the loose bonding of the chain-like fine particles is an effect that could not be expected at all in the case of mixing the conventional coarse graphite particles with the electrode active material. It was achieved for the first time by using a pulverized product of soot, which is a carbon particle of.
【0018】更に、本発明の微粒の炭素粒子である煤の
粉砕物を使う場合、その添加量が従来の粗いグラファイ
トを添加する場合に比べて遥に少量の数%でも十分な導
電性が得られるので、電池の一定の体積当たりのカーボ
ン量を減らし、活物質の量を増やすことができるので、
電池のエネルギー密度を高めることが可能になる。Further, when the pulverized soot which is the fine carbon particles of the present invention is used, even if the addition amount thereof is much smaller than that of the conventional coarse graphite, sufficient conductivity can be obtained. Therefore, it is possible to reduce the amount of carbon per certain volume of the battery and increase the amount of active material,
It is possible to increase the energy density of the battery.
【0019】即ち、リチウムイオン電池を例にその様子
を説明すると、リチウムイオン電池の正極はLiCoO
2の粉にグラファイトの粉末とポリフッ化ビニリデンな
どのバインダーを混合した正極合剤を電極集電体のアル
ミ箔の表面に厚さ200マイクロメートル程度に塗布し
ている。この場合、本発明の炭素微粒子である煤の粉砕
物で覆ったLiCoO2の粉を使用すれば、同じ厚さで
より多くのLiCoO2を塗布できるのみならず、更に
活物質層の電気抵抗が小さいので活物質層を例えば40
0マイクロメートルと厚くしても電池の内部抵抗に悪影
響を及ぼさない。従ってその分だけ短いアルミ箔で済ま
せることができるので、セパレーターや負極の集電体の
銅箔も短くなり、30〜40%もの材料の節減となり、
製造費用を低減できる。That is, the state will be described by taking a lithium ion battery as an example. The positive electrode of the lithium ion battery is LiCoO 2.
A positive electrode mixture prepared by mixing graphite powder and a binder such as polyvinylidene fluoride with the powder of 2 is applied to the surface of the aluminum foil of the electrode current collector to a thickness of about 200 micrometers. In this case, if LiCoO 2 powder covered with a soot pulverized product which is the carbon fine particles of the present invention is used, not only more LiCoO 2 can be applied with the same thickness, but also the electric resistance of the active material layer Since it is small, the active material layer is 40
Even if the thickness is 0 μm, the internal resistance of the battery is not adversely affected. Therefore, the aluminum foil that is shorter by that amount can be used, and the copper foil of the separator and the current collector of the negative electrode also becomes shorter, resulting in a 30-40% material savings.
Manufacturing costs can be reduced.
【0020】本発明の複合粒子の製造方法としては、電
極活物質の粒子と微粒の炭素粒子である煤の粉砕物とを
水あるいは有機溶媒中で粉砕・混合すれば良い。またこ
の際、炭素微粒子である煤の粉砕物の分散と電極活物質
の粒子表面への付着を助け、更に剪断力による粉砕を助
け、炭素微粒子である煤の粉砕物と分散媒との親和性を
高めるために、適当な有機高分子、たとえば、ポリビニ
ルアルコール、膠、アラビアゴム、ポリビニルピロリド
ン、カーボキシメチルセルロース、カゼイン等の分散助
剤を加えるのが望ましい。この他、従来法で電極活物質
の粒子を塗布した正極に微粒の炭素粒子である煤の粉砕
物と水または有機溶媒からなるスラリーを塗布して含浸
させることにより、電極活物質の粒子の表面に微粒の炭
素粒子を付着させても良い。As the method for producing the composite particles of the present invention, the particles of the electrode active material and the pulverized product of soot which is fine carbon particles may be pulverized and mixed in water or an organic solvent. Further, at this time, it helps disperse the soot pulverized carbon fine particles and the adhesion of the electrode active material to the particle surface, and further assists the pulverization by the shearing force to improve the affinity between the pulverized soot carbon fine particles and the dispersion medium. It is desirable to add a suitable organic polymer, for example, a dispersion aid such as polyvinyl alcohol, glue, gum arabic, polyvinylpyrrolidone, carboxymethylcellulose, casein or the like in order to enhance the viscosity. In addition, the surface of the particles of the electrode active material is coated by impregnating the positive electrode coated with the particles of the electrode active material by the conventional method with a slurry of finely divided carbon particles of soot and water or an organic solvent. Fine carbon particles may be attached to.
【0021】更に、本発明の炭素微粒子である煤の粉砕
物で覆った電極活物質を用いる場合、電解液に微量の有
機ゲルマニウムを添加すると電極活物質表面の導電性が
一層改善され、充放電サイクル寿命の延長に有効であ
る。Further, in the case of using the electrode active material covered with the pulverized soot which is the carbon fine particles of the present invention, if a small amount of organic germanium is added to the electrolytic solution, the electroconductivity of the surface of the electrode active material is further improved, and the charge and discharge is improved. It is effective in extending the cycle life.
【0022】[0022]
【参考例1】メジアン径140ナノメートルのカーボン
ブラック1重量%、ポリビニルアルコール0.6重量
%、残部が水よりなる懸濁液5mlと、LiCoO2粉
末5グラムとをボールミル中で混合・粉砕し、乾燥し
た。この乾燥物を解砕して、バインダーとしてポリフッ
化ビニリデン0.3グラム、溶剤として、N−メチルピ
ロリドンを加え、混合してスラリー状とし、アルミ箔上
に塗布乾燥し正極とした。負極用には、銅箔上にコーク
ス層を塗布して乾燥した。これを多孔質ポリプロピレン
のセパレーターを介して巻回し、1MのLiPF6のエ
チルメチルカーボネート−エチレンカーボネート(混合
比3:1)溶液を電解液として加え、電池容器中に密封
した。充電終了電圧4.2V、放電終了電圧3.0V、
充電0.25C、放電0.5Cで充放電サイクル試験を
行った。その結果正極に従来のグラファイト2グラム、
LiCoO2粉末3.3グラムを用いた場合に比べて表
1に示す様に2倍以上の充放電サイクル寿命が得られ、
且つ電気容量も約50%多かった。図3はこの試験に用
いた懸濁液の粒度分布を堀場製作所製レーザ回折/散乱
式粒度分布測定装置LA−910Wで測定した結果であ
り、そのメジアン径は約140ナノメートル(0.14
μm)であり、且つ粒子の分布範囲はほぼ70〜300
ナノメートルの範囲にあり、且つその90%以上が90
〜250ナノメートルの狭い範囲に集中している。[Reference Example 1] 5 ml of a suspension consisting of 1% by weight of carbon black having a median diameter of 140 nm, 0.6% by weight of polyvinyl alcohol and the balance of water, and 5 g of LiCoO 2 powder were mixed and pulverized in a ball mill. Dried. This dried product was crushed, and 0.3 g of polyvinylidene fluoride as a binder and N-methylpyrrolidone as a solvent were added and mixed to form a slurry, which was applied on an aluminum foil and dried to obtain a positive electrode. For the negative electrode, a coke layer was applied on a copper foil and dried. This was wound through a porous polypropylene separator, a 1 M solution of LiPF 6 in ethylmethyl carbonate-ethylene carbonate (mixing ratio 3: 1) was added as an electrolytic solution, and the mixture was sealed in a battery container. Charge end voltage 4.2V, discharge end voltage 3.0V,
A charge / discharge cycle test was performed at a charge of 0.25C and a discharge of 0.5C. As a result, 2 grams of conventional graphite is added to the positive electrode,
As shown in Table 1, as compared with the case of using 3.3 grams of LiCoO 2 powder, the charge / discharge cycle life more than twice as long was obtained,
Moreover, the electric capacity was about 50% higher. FIG. 3 shows the results of measuring the particle size distribution of the suspension used in this test with a laser diffraction / scattering particle size distribution analyzer LA-910W manufactured by Horiba Ltd., and the median diameter thereof is about 140 nanometers (0.14 nm).
μm), and the distribution range of particles is approximately 70 to 300.
It is in the nanometer range, and 90% or more is 90
Concentrated in a narrow range of ~ 250 nanometers.
【0023】[0023]
【表1】 [Table 1]
【0024】[0024]
【参考例2】粒子径20マイクロメートルの電解二酸化
マンガンの粒子と、メジアン径100ナノメートルのカ
ーボンブラック6重量%、膠3重量%、残部が水よりな
る懸濁液とを混合し、二酸化マンガンの粒子の表面に炭
素の微粒子層を形成した。この混合物を濾過・乾燥・解
砕した。この粉末を絶縁体の容器中に詰め両端に電極を
配置して50kg/cm2で加圧し、被覆量と電気抵抗
との関係を求めた。その結果、表2に示す様に、表面に
炭素の微粒子層を形成した試験番号2〜4は良好な電導
性を示した。[Reference Example 2] Particles of electrolytic manganese dioxide having a particle diameter of 20 micrometers were mixed with 6% by weight of carbon black having a median diameter of 100 nanometers, 3% by weight of glue, and the balance consisting of water to obtain manganese dioxide. A fine particle layer of carbon was formed on the surface of the particles. This mixture was filtered, dried and crushed. This powder was packed in an insulating container, electrodes were placed at both ends, and pressure was applied at 50 kg / cm 2 , and the relationship between the coating amount and the electrical resistance was determined. As a result, as shown in Table 2, Test Nos. 2 to 4 in which a carbon fine particle layer was formed on the surface showed good electrical conductivity.
【0025】[0025]
【表2】 [Table 2]
【0026】[0026]
【発明の効果】以上の説明から明らかな通り、本発明の
二次電池では、充放電の繰り返しによる電池容量の低下
が少なく、且つ長寿命であり、微量の添加により二次電
池の寿命を著しく延長することが出来、更にその原料と
して自動車タイヤ用等に大量に生産されているカーボン
ブラック、アセチレンブラック等を使用することができ
るので極めて安価に製造することができ、例えば電気自
動車、無停電電源装置等の電池として好適な電極構造お
よびその製造法を提供できるものである。As is apparent from the above description, in the secondary battery of the present invention, there is little decrease in battery capacity due to repeated charging / discharging, and it has a long life. It can be extended, and as its raw material, it is possible to use carbon black, acetylene black, etc., which are produced in large quantities for automobile tires, etc., so that they can be manufactured at extremely low cost. For example, electric vehicles, uninterruptible power supplies. It is possible to provide an electrode structure suitable for a battery of an apparatus or the like and a method for manufacturing the same.
【図1】本発明の電池の電極表面における反応の模式図
である。FIG. 1 is a schematic diagram of a reaction on an electrode surface of a battery of the present invention.
【図2】本発明に用いられるカーボン添加剤の粒度分布
図である。FIG. 2 is a particle size distribution chart of a carbon additive used in the present invention.
【図3】本発明に用いられる煤の粒子の微構造を示す模
式図であり、Aは粉砕前、Bは粉砕後を示す。FIG. 3 is a schematic diagram showing a microstructure of soot particles used in the present invention, where A is before pulverization and B is after pulverization.
【図4】本発明に用いられる炭素微粒子が表面に吸着し
た二酸化マンガン粒子の微構造を示す模式図である。FIG. 4 is a schematic diagram showing a microstructure of manganese dioxide particles having carbon fine particles adsorbed on the surface used in the present invention.
【図5】従来の電極活物質とグラファイトとの混合状態
を示す模式図である。FIG. 5 is a schematic view showing a mixed state of a conventional electrode active material and graphite.
1、11・・・導電性の微粒子 2、12・・・電極活物質の粒子 3・・・電極活物質が変化した粒子 4・・・導電性の網目 5、13・・・集電体 1, 11 ... Conductive fine particles 2, 12 ... Particles of electrode active material 3 ... Particles with changed electrode active material 4 ... Conductive mesh 5, 13 ... Current collector
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−225761(JP,A) 特開 昭62−188167(JP,A) 特開 平4−345760(JP,A) 特開 平4−162357(JP,A) 特開 平10−228922(JP,A) 特開 平4−12454(JP,A) 特開 平7−130369(JP,A) W.h.smyrl,et.al., KITHIUM ION INSERT ION ELECTRODES:CAT HODE MORPHOLOGY AN D PERFORMANCE,AD R ep,AD−A−281443,252−253 Christine A.Frys z,et.al,Carbon fil aments and carbon black as a conduct ive additive to th e manganese dioxid e cathode of a li t,Journal of Power Sources,米国,ELSEVI ER,58/1,41−54 (58)調査した分野(Int.Cl.7,DB名) H01M 4/62 H01M 10/06 H01M 10/24 H01M 10/40 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-3-225761 (JP, A) JP-A-62-188167 (JP, A) JP-A-4-345760 (JP, A) JP-A-4- 162357 (JP, A) JP 10-228922 (JP, A) JP 4-12454 (JP, A) JP 7-130369 (JP, A) W. h. smyrl, et. al. , KITHIUM ION INSERT ION ELECTRODES: CAT HODE MORPHOLOGY AND D PERFORMANCE, AD R ep, AD-A-281443, 252-253 Christine A. Frys z, et. al, Carbon fillments and carbon black as a conductive live additive to the manganese dioxide ER, 58, 41 of the United States, 58, 41 of the United States. .Cl. 7 , DB name) H01M 4/62 H01M 10/06 H01M 10/24 H01M 10/40
Claims (15)
炭素の微粒子である煤の粉砕物が付着することにより、
表面に導電路が形成された電極活物質粒子を用いたこと
を特徴とする二次電池。1. A pulverized soot median diameter is 600 nm or less fine particles of carbon by adheres,
A secondary battery comprising electrode active material particles having a conductive path formed on the surface thereof.
煤の粉砕物のメジアン径が300ナノメートル以下であ
ることを特徴とする二次電池。2. The method of claim 1, are fine particles of carbon
A secondary battery having a median diameter of crushed soot of 300 nanometers or less.
の微粒子である煤の粉砕物が更に細かい粒子がチエーン
状に繋がった微構造を有するものであることを特徴とす
る二次電池。3. An apparatus according to claim 1 or claim 2, secondary battery, wherein the ground product of soot is fine particles of carbon and has a microstructure finer particles led to chain form.
いて、炭素の微粒子である煤の粉砕物と有機高分子が共
存していることを特徴とする二次電池。4. The method according to any one of claims 1 to 3.
Therefore, the soot crushed as fine particles of carbon and the organic polymer coexist.
Secondary battery which is characterized that you have to exist.
子中に親水基と疎水基とを含むものであることを特徴と
する二次電池。5. The organic polymer according to claim 4, wherein the organic polymer has the same content.
A secondary battery having a hydrophilic group and a hydrophobic group in its child .
ラビアゴム、ポリビニルアルコール、ポリビニルピロリ
ドン、カーボキシメチルセルロース、カゼインの少なく
とも一つを含むことを特徴とする二次電池。6. The organic polymer according to claim 5, wherein the organic polymer is glue or
Labia gum, polyvinyl alcohol, polyvinylpyrroli
Low in Don, Carboxymethylcellulose and Casein
Secondary battery, wherein a call, including one with.
煤の粉砕物と有機高分子が墨汁の成分であることを特徴
とする二次電池。7. The carbon fine particles according to claim 4.
Rechargeable battery pulverized product with an organic polymer of soot, characterized in that it is a component of India ink.
いて、二次電池がリチウムイオン電池、ニッケルカドミ
ウム電池、ニッケル水素電池、アルカリマンガン電池、
鉛電池のいずれかであることを特徴とする二次電池。8. The method according to any one of claims 1 to 7.
The secondary battery is a lithium-ion battery or nickel cadmium.
Um battery, nickel hydrogen battery, alkaline manganese battery,
Secondary battery which is characterized and this is one of the lead-acid battery.
炭素の微粒子が付着することにより、表面に導電路が形
成された電極活物質粒子を用い、さらに電解液中および
/または電極活物質粒子に有機ゲルマニウムを含むこと
を特徴とする二次電池。9. A median diameter of 600 nanometers or less
A conductive path is formed on the surface due to the adhesion of fine particles of carbon.
Using the electrode active material particles formed,
/ Or secondary battery comprising it to contain organic germanium electrode active material particles.
の炭素の微粒子である煤の粉砕物を、電極活物質粒子と
混合し、該電極活物質粒子の表面に前記炭素の微 粒子で
ある煤の粉砕物を付着せしめることにより導電路を形成
した複合粒子となし、この複合粒子を電極集電体上に付
着せしめることを特徴とする二次電池の製造法。 10. The median diameter is 600 nanometers or less.
Crushed soot, which is a fine particle of carbon, as electrode active material particles
Mixing, in the fine particles of the carbon on the surface of the electrode active material particles
Form a conductive path by adhering a crushed soot
Composite particles, and attach the composite particles on the electrode collector.
A method of manufacturing a secondary battery, which is characterized by wearing.
ある煤の粉砕物のメジアン径が300ナノメートル以下
であることを特徴とする二次電池の製造法。11. The carbon fine particles according to claim 10,
The median diameter of crushed soot is less than 300 nanometers
Preparation of a secondary battery, wherein the Dearuko.
て、炭素の微粒子である煤の粉砕物が更に細かい粒子が
チエーン状に繋がった微構造を有するものであることを
特徴とする二次電池の製造法。12. The odor according to claim 10 or claim 11.
The pulverized soot, which is a fine particle of carbon, has finer particles.
Preparation of a secondary battery, wherein the this and has a microstructure that led to chain form.
かにおいて、炭素の微粒子である煤の粉砕物と電極活物
質との混合に際し、有機高分子を加えることを特徴とす
る二次電池の製造法。13. Any of claims 10 to 12.
In this, pulverized soot, which is a fine particle of carbon, and electrode active material
Upon mixing with the quality manufacturing process of the secondary battery characterized that you add an organic polymer.
の炭素の微粒子である煤の粉砕物を含む懸濁液を、集電
体上に塗布された電極活物質粒子層に塗布または接触せ
しめることにより、該電極活物質粒子の表面に前記炭素
の微粒子である煤の粉砕物を付着せしめ導電路を形成す
ることを特徴とする二次電池の製造法。14. The median diameter is 600 nanometers or less.
The suspension containing the pulverized soot, which is a fine particle of carbon, is collected.
Apply or contact with the electrode active material particle layer applied on the body.
By squeezing, the carbon on the surface of the electrode active material particles
To form a conductive path by adhering pulverized soot, which is a fine particle of
Preparation of a secondary battery, wherein the Turkey.
体との混合物に剪断力を作用せしめることにより、メジ
アン径を600ナノメートル以下に粉砕したことを特徴
とする電池用炭素微粒子。 15. A crushed soot carbon black and a liquid.
By applying a shearing force to the mixture with the body,
Characterized by milling the ann diameter to 600 nanometers or less
And carbon fine particles for batteries.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05824397A JP3373751B2 (en) | 1996-12-28 | 1997-02-04 | Secondary battery and manufacturing method thereof |
US08/826,681 US5958623A (en) | 1996-12-13 | 1997-04-07 | Electrochemical cell employing a fine carbon additive |
EP97120470A EP0848441B1 (en) | 1996-12-13 | 1997-11-21 | An electrochemical cell employing a fine carbon material additive |
DE69710434T DE69710434T2 (en) | 1996-12-13 | 1997-11-21 | Electrochemical cell with fine carbon material as additive |
CNB971218978A CN1135643C (en) | 1996-12-13 | 1997-12-12 | Electrochemical cell employing fine carbon material additive |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8-359986 | 1996-12-28 | ||
JP35998696 | 1996-12-28 | ||
JP05824397A JP3373751B2 (en) | 1996-12-28 | 1997-02-04 | Secondary battery and manufacturing method thereof |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002093173A Division JP2002334700A (en) | 1996-12-28 | 2002-03-28 | Secondary battery and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10241677A JPH10241677A (en) | 1998-09-11 |
JP3373751B2 true JP3373751B2 (en) | 2003-02-04 |
Family
ID=26399296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05824397A Expired - Lifetime JP3373751B2 (en) | 1996-12-13 | 1997-02-04 | Secondary battery and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3373751B2 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001216970A (en) * | 2000-02-04 | 2001-08-10 | Sony Corp | Nonaqueous electrolyte battery |
JP4941692B2 (en) * | 2000-05-16 | 2012-05-30 | 株式会社豊田中央研究所 | Lithium manganese composite oxide for positive electrode active material of lithium secondary battery and method for producing the same |
CN1151570C (en) * | 2000-06-06 | 2004-05-26 | 中国科学院物理研究所 | Secondary lithium battery with carbon material with nano alloy deposited on surface as negative electrode |
US6753112B2 (en) * | 2000-12-27 | 2004-06-22 | Kabushiki Kaisha Toshiba | Positive electrode active material and non-aqueous secondary battery using the same |
JP4099637B2 (en) * | 2001-01-17 | 2008-06-11 | 日清紡績株式会社 | Polarized electrode composition and manufacturing method thereof, polarizable electrode, and electric double layer capacitor |
GB0229079D0 (en) * | 2002-12-12 | 2003-01-15 | Univ Southampton | Electrochemical cell for use in portable electronic devices |
JP2005116327A (en) * | 2003-10-07 | 2005-04-28 | Mitsubishi Chemicals Corp | Lithium secondary battery |
KR100826074B1 (en) | 2005-11-17 | 2008-04-29 | 주식회사 엘지화학 | Electrode additives for enhancement of overdischarge performance and method for preparing the same |
JP2008258131A (en) * | 2007-03-14 | 2008-10-23 | Ntt Data Ex Techno Corp | Positive electrode composition for secondary battery and manufacturing method thereof |
JP5439924B2 (en) * | 2009-04-20 | 2014-03-12 | 東ソー株式会社 | Electrolytic manganese dioxide composition having excellent high rate characteristics |
TW201136010A (en) | 2010-01-21 | 2011-10-16 | Gs Yuasa Int Ltd | Negative electrode plate using in lead storage cell, fabricating method thereof, and lead storage cell |
JP5222313B2 (en) * | 2010-02-09 | 2013-06-26 | 三菱重工業株式会社 | Electrode material manufacturing equipment |
KR20160020237A (en) * | 2014-08-13 | 2016-02-23 | 삼성에스디아이 주식회사 | Cathode material, cathode including the same, and lithium battery including the cathode |
JP7401208B2 (en) * | 2019-06-21 | 2023-12-19 | 太陽誘電株式会社 | all solid state battery |
-
1997
- 1997-02-04 JP JP05824397A patent/JP3373751B2/en not_active Expired - Lifetime
Non-Patent Citations (2)
Title |
---|
Christine A.Frysz,et.al,Carbon filaments and carbon black as a conductive additive to the manganese dioxide cathode of a lit,Journal of Power Sources,米国,ELSEVIER,58/1,41−54 |
W.h.smyrl,et.al.,KITHIUM ION INSERTION ELECTRODES:CATHODE MORPHOLOGY AND PERFORMANCE,AD Rep,AD−A−281443,252−253 |
Also Published As
Publication number | Publication date |
---|---|
JPH10241677A (en) | 1998-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5335264B2 (en) | Positive electrode forming material, material and manufacturing method thereof, and lithium ion secondary battery | |
CA2462168C (en) | Electrode material for lithium secondary battery, electrode structure comprising the electrode material and secondary battery comprising the electrode structure | |
JP5462445B2 (en) | Lithium ion secondary battery | |
US20030104280A1 (en) | Active electrode composition with graphite additive | |
JP3373751B2 (en) | Secondary battery and manufacturing method thereof | |
JP2006216277A (en) | Method of manufacturing electrode material for lithium secondary battery, electrode structure, and secondary battery | |
CN105406033A (en) | Cathode Mixture, Cathode, Solid Battery And Method For Producing Cathode Mixture, Cathode And Solid Battery | |
KR20130085043A (en) | Battery electrode and use thereof | |
KR20120109636A (en) | Lithium secondary battery | |
JP4366222B2 (en) | Electrode material for lithium secondary battery, electrode structure having the electrode material, and secondary battery having the electrode structure | |
US7625673B2 (en) | Electrode material for electrochemical element and method for production thereof, and electrochemical element | |
US5958623A (en) | Electrochemical cell employing a fine carbon additive | |
CN101662012B (en) | Negative pole piece, preparation method thereof and battery comprising same | |
JPH10144298A (en) | Lithium secondary battery | |
JP2015130249A (en) | Positive electrode for alkali storage batteries and alkali storage battery using the same | |
JP3139390B2 (en) | Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same | |
JP2002334700A (en) | Secondary battery and its manufacturing method | |
JP5510704B2 (en) | Secondary battery and method of manufacturing the battery | |
JP3729815B2 (en) | Negative electrode plate for nickel-hydrogen storage battery, method for producing the same, and nickel-hydrogen storage battery using the same | |
JP2007018834A (en) | Electrochemical device | |
JP2012235041A (en) | Positive electrode and lithium-ion capacitor | |
JPH0620680A (en) | Nonaqueous electrolytic secondary battery | |
CA1263437A (en) | Cadmium negative electrode | |
CA2610487C (en) | Electrode material for lithium secondary battery, electrode structure comprising the electrode material and secondary battery comprising the electrode structure | |
JP5130718B2 (en) | Negative electrode for nickel-hydrogen storage battery and nickel-hydrogen storage battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S211 | Written request for registration of transfer of exclusive licence |
Free format text: JAPANESE INTERMEDIATE CODE: R314213 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R314531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081122 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081122 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091122 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101122 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101122 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111122 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111122 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121122 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131122 Year of fee payment: 11 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |