JP2007311207A - Negative electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using it and manufacturing method of negative electrode material for nonaqueous electrolyte secondary battery - Google Patents

Negative electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using it and manufacturing method of negative electrode material for nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2007311207A
JP2007311207A JP2006139472A JP2006139472A JP2007311207A JP 2007311207 A JP2007311207 A JP 2007311207A JP 2006139472 A JP2006139472 A JP 2006139472A JP 2006139472 A JP2006139472 A JP 2006139472A JP 2007311207 A JP2007311207 A JP 2007311207A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
secondary battery
electrode material
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006139472A
Other languages
Japanese (ja)
Inventor
Hiroaki Matsuda
博明 松田
Sumuto Ishida
澄人 石田
Takashi Otsuka
隆 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006139472A priority Critical patent/JP2007311207A/en
Publication of JP2007311207A publication Critical patent/JP2007311207A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery having high capacity and an excellent charge-discharge cycle characteristic. <P>SOLUTION: This negative electrode material for a nonaqueous electrolyte secondary battery comprises composite particles containing active material particles containing an element capable of being alloyed with lithium, and carbon nano-fibers supported to the surfaces of the active material particles. The carbon nano-fibers are burnt down only in a temperature range exceeding 550°C in temperature rise of 20°C/min in the air. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、非水電解液二次電池用負極材料およびそれを用いた非水電解液二次電池、ならびに非水電解液二次電池用負極材料の製造方法に関する。   The present invention relates to a negative electrode material for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery using the same, and a method for producing a negative electrode material for a non-aqueous electrolyte secondary battery.

近年、電池の高エネルギー密度化のために、理論容量密度の高い負極活物質として、リチウムと合金化可能なSi、Sn、またはPbやこれらの酸化物および合金などを用いることが検討されている。しかし、これらの材料は、リチウムの吸蔵・放出にともなう体積変化が非常に大きく、充放電サイクル時に膨張と収縮を繰り返すため、活物質粒子の微紛化や活物質粒子間の導電性の低下により、サイクル特性が大幅に劣化するという欠点がある。   In recent years, in order to increase the energy density of batteries, it has been studied to use Si, Sn, or Pb that can be alloyed with lithium, their oxides and alloys as a negative electrode active material having a high theoretical capacity density. . However, these materials have a very large volume change due to insertion and extraction of lithium, and repeat expansion and contraction during the charge / discharge cycle, so that the active material particles are pulverized and the conductivity between the active material particles is reduced. , There is a drawback that the cycle characteristics are greatly deteriorated.

これに対しては、例えば、特許文献1では、リチウムと合金化可能な元素を含む活物質粒子と、前記活物質粒子の表面に担持されたカーボンナノファイバとを含む複合粒子を負極材料に用いて、リチウムイオン二次電池の高容量化およびサイクル特性の向上を実現することが提案されている。   On the other hand, for example, in Patent Document 1, composite particles including active material particles containing an element that can be alloyed with lithium and carbon nanofibers supported on the surface of the active material particles are used as the negative electrode material. Thus, it has been proposed to increase the capacity and improve the cycle characteristics of a lithium ion secondary battery.

上記複合粒子は、活物質粒子の表面に触媒を担持し、これを高温の不活性雰囲気にて炭素含有ガスと反応させることにより、触媒を基点としてカーボンナノファイバが成長し、これが活物質粒子の表面に担持することにより得られる。活物質粒子の表面に担持された粒子状の触媒は、その担持量の調整などにより粒子径を小さくすることができる。しかし、単位面積当たりの数密度を減らすことは困難であるため、成長したカーボンナノファイバで形成される部分の嵩密度は高いものになりやすい。また、上記で得られるカーボンナノファイバは均一ではなく、非常に細かいカーボンナノファイバや、煤のような非晶質の炭素が活物質粒子表面に付着する場合がある。   The composite particles carry a catalyst on the surface of the active material particles and react with the carbon-containing gas in a high-temperature inert atmosphere, so that carbon nanofibers grow from the catalyst as a starting point. It is obtained by carrying on the surface. The particle size of the particulate catalyst supported on the surface of the active material particles can be reduced by adjusting the amount of the catalyst supported. However, since it is difficult to reduce the number density per unit area, the bulk density of the portion formed by the grown carbon nanofiber tends to be high. The carbon nanofibers obtained above are not uniform, and very fine carbon nanofibers or amorphous carbon such as soot may adhere to the surface of the active material particles.

従って上記の複合粒子では、活物質粒子表面に存在するカーボンナノファイバを含む炭素成分は、非常に緻密であり、比表面積が非常に大きい。カーボンナノファイバを含む炭素成分が緻密であると、応力に対する柔軟性が低下するため、充放電時の活物質粒子の体積変化にともない活物質粒子間の電子伝導性が低下しやすい。また、カーボンナノファイバを含む炭素成分の比表面積が大きいと、電解液との接触により初期において生じる副反応の量が大きくなり、負極における不可逆容量やガス発生量などが増大する場合がある。
特開2004−349056号公報
Therefore, in the above composite particles, the carbon component including the carbon nanofibers existing on the surface of the active material particles is very dense and has a very large specific surface area. When the carbon component including the carbon nanofiber is dense, the flexibility with respect to stress is reduced, so that the electron conductivity between the active material particles is likely to be reduced with the volume change of the active material particles during charge and discharge. In addition, when the specific surface area of the carbon component including the carbon nanofiber is large, the amount of side reactions occurring at the initial stage due to contact with the electrolytic solution increases, and the irreversible capacity and gas generation amount in the negative electrode may increase.
JP 2004-349056 A

上記より、複合粒子の形態としては、活物質粒子表面に均一に成長したカーボンナノファイバがあまり緻密にならずに存在しているのが好ましい。しかし、特許文献1の製造方法では、活物質表面を覆うカーボンナノファイバを含む炭素成分が高嵩密度で高比表面積となりやすい。   From the above, as the form of the composite particles, it is preferable that the carbon nanofibers uniformly grown on the surface of the active material particles exist without being so dense. However, in the manufacturing method of Patent Document 1, the carbon component including the carbon nanofiber covering the active material surface tends to have a high bulk density and a high specific surface area.

活物質粒子に対するカーボンナノファイバの重量比率が非常に低ければ上記のような問題は起こりにくいと考えられる。しかし、良好な電池特性、特に優れたサイクル特性を得るためには、活物質粒子に対するカーボンナノファイバの重量比率は、好ましくは10%〜50%であり、より好ましくは15%〜40%である必要がある。また、特許文献1などの製造方法では、上記の重量比率の範囲において、上記の好ましい形態の複合粒子を作製することは困難であった。   If the weight ratio of the carbon nanofibers to the active material particles is very low, the above problem is unlikely to occur. However, in order to obtain good battery characteristics, particularly excellent cycle characteristics, the weight ratio of the carbon nanofibers to the active material particles is preferably 10% to 50%, more preferably 15% to 40%. There is a need. In addition, in the production method such as Patent Document 1, it is difficult to produce the composite particles having the above preferable form within the range of the above weight ratio.

そこで、本発明は、上記従来の問題を解決するため、活物質粒子表面に炭素成分が担持された複合粒子において、活物質粒子表面における炭素成分の被覆形態を容易に適正化することが可能な負極材料の製造方法を提供することを目的とする。また、上記の製造方法により得られた負極材料を用いて、高容量および優れた充放電サイクル特性を有する非水電解液二次電池を提供することを目的とする。   Therefore, in order to solve the above-described conventional problems, the present invention can easily optimize the coating form of the carbon component on the surface of the active material particle in the composite particle in which the carbon component is supported on the surface of the active material particle. It aims at providing the manufacturing method of negative electrode material. It is another object of the present invention to provide a non-aqueous electrolyte secondary battery having a high capacity and excellent charge / discharge cycle characteristics using the negative electrode material obtained by the above production method.

本発明は、リチウムと合金化可能な元素を含む活物質粒子と、前記活物質粒子の表面に担持されたカーボンナノファイバとを含む複合粒子からなる非水電解液二次電池用負極材料であって、前記カーボンナノファイバは、空気中での20℃/minの昇温において550℃を超える温度域のみにおいて焼失することを特徴とする。   The present invention is a negative electrode material for a non-aqueous electrolyte secondary battery comprising composite particles including active material particles containing an element that can be alloyed with lithium and carbon nanofibers supported on the surfaces of the active material particles. The carbon nanofibers are burned down only in a temperature range exceeding 550 ° C. at a temperature increase of 20 ° C./min in air.

また、本発明の複合粒子の製造方法は、(1)リチウムと合金可能な元素を含む活物質粒子の表面に触媒を担持させる工程、(2)触媒を担持させた前記活物質粒子を高温の不活性雰囲気にて炭素含有ガスと反応させ、触媒を基点として活物質粒子上でカーボンナノファイバを成長・担持させて、複合粒子を得る工程、および(3)前記複合粒子を酸化雰囲気にて550℃以下の温度域で熱処理して、活物質粒子上のカーボンナノファイバを疎化させる工程を含む。   The composite particle manufacturing method of the present invention includes (1) a step of supporting a catalyst on the surface of an active material particle containing an element that can be alloyed with lithium, and (2) the active material particle supporting the catalyst at a high temperature. Reacting with a carbon-containing gas in an inert atmosphere, and growing and supporting carbon nanofibers on the active material particles with a catalyst as a starting point, to obtain composite particles; and (3) 550 the composite particles in an oxidizing atmosphere. It includes a step of heat-treating the carbon nanofibers on the active material particles in a temperature range of less than or equal to ° C.

上記の製造方法の工程(2)により得られた複合粒子を熱分析すると、空気中のTG/DTA測定において、20℃/minの昇温速度では550℃付近と600℃付近以上との2つ以上の発熱ピークが存在することが分かった。リチウムと合金化可能な活物質粒子はμmオーダーの大きさを持つため、短時間であれば空気中のような酸化雰囲気でも熱的に安定であり、この発熱ピークはカーボンナノファイバを含む炭素成分の燃焼によるものと考えられる。2つ以上の発熱ピークが存在することから、複合粒子には熱的な安定性の異なる2種類以上の炭素成分が含まれていることがわかる。   When the composite particles obtained by the step (2) of the above production method are subjected to thermal analysis, in the TG / DTA measurement in the air, two temperatures of about 550 ° C. and about 600 ° C. or higher are observed at a temperature rising rate of 20 ° C./min. It was found that the above exothermic peak exists. Since the active material particles that can be alloyed with lithium have a size on the order of μm, they are thermally stable even in an oxidizing atmosphere such as in the air for a short time, and this exothermic peak is a carbon component including carbon nanofibers. This is thought to be due to the combustion of Since there are two or more exothermic peaks, it can be seen that the composite particles contain two or more types of carbon components having different thermal stability.

熱的な安定性の低い炭素成分は、上述した非晶質な炭素や非常に細かいカーボンナノファイバなどであると考えられ、複合粒子を酸化雰囲気で短時間の熱処理を行うことにより、これら熱安定性の低い炭素成分だけを選択的に燃焼させ除去することが可能である。このようにして作製した複合粒子は、熱的な安定性の高い均一なカーボンナノファイバのみが残っていると考えられ、上記の酸化雰囲気での熱処理を行わない複合粒子に比べてカーボンナノファイバを含む炭素成分の嵩密度および比表面積が小さい。   Carbon components with low thermal stability are considered to be amorphous carbon and very fine carbon nanofibers as described above. These thermal stability can be achieved by heat treating the composite particles in an oxidizing atmosphere for a short time. Only low carbon components can be selectively burned and removed. The composite particles produced in this way are considered to remain only uniform carbon nanofibers with high thermal stability. Compared to the composite particles not subjected to the heat treatment in the above oxidizing atmosphere, the carbon nanofibers are more The bulk density and specific surface area of the carbon component contained are small.

本発明によれば、活物質粒子表面に炭素成分が担持された複合粒子において、活物質粒子表面における炭素成分の被覆形態を適正化して、応力に対する柔軟性が改善されるとともに、初期における電解液との副反応を抑制することができる。このため、この複合粒子を負極材料に用いた非水電解液二次電池では、不可逆容量の低減により高容量化することができるとともに、優れた充放電サイクル特性が得られる。   According to the present invention, in the composite particles in which the carbon component is supported on the surface of the active material particle, the coating form of the carbon component on the surface of the active material particle is optimized, the flexibility with respect to stress is improved, and the initial electrolyte solution Side reactions can be suppressed. For this reason, in the nonaqueous electrolyte secondary battery using the composite particles as the negative electrode material, the capacity can be increased by reducing the irreversible capacity, and excellent charge / discharge cycle characteristics can be obtained.

本発明は、(1)リチウムと合金可能な元素を含む活物質粒子の表面に触媒を担持させる工程、(2)触媒を担持させた前記活物質粒子を高温の不活性雰囲気にて炭素含有ガスと反応させ、触媒を基点として活物質粒子上でカーボンナノファイバを成長・担持させて、複合粒子を得る工程、および(3)前記複合粒子を酸化雰囲気にて550℃以下の温度域で熱処理して、活物質粒子上のカーボンナノファイバを疎化させる工程を含むことを特徴とする非水電解液二次電池用負極材料の製造方法に関する。
これにより、活物質粒子表面における炭素成分の被覆形態を、容易にかつ確実に、非水電解液二次電池用負極材料に適した形態に改善することができる。
The present invention includes (1) a step of supporting a catalyst on the surface of an active material particle containing an element that can be alloyed with lithium, and (2) a carbon-containing gas in the active material particle supporting the catalyst in a high-temperature inert atmosphere. And a step of growing and supporting carbon nanofibers on the active material particles using the catalyst as a starting point to obtain composite particles, and (3) heat-treating the composite particles in an oxidizing atmosphere at a temperature range of 550 ° C. or lower. In addition, the present invention relates to a method for producing a negative electrode material for a non-aqueous electrolyte secondary battery, comprising a step of sparse carbon nanofibers on active material particles.
Thereby, the coating form of the carbon component on the surface of the active material particles can be easily and reliably improved to a form suitable for the negative electrode material for a non-aqueous electrolyte secondary battery.

上記の作製方法についてより詳細に述べると、まず、不活性雰囲気にて複合粒子を500℃付近まで昇温した後、空気などの酸化性ガスを系内に流入してカーボンナノファイバを含む炭素成分のうち熱的に不安定なものを選択的に燃焼させ、再び不活性ガスを系内に流入しながら系を冷却する。熱処理の温度や時間などは、カーボンナノファイバを含む炭素成分の状態、目的とする担持量、または活物質粒子の種類や粒径などに応じて調整すればよい。   The above-described production method will be described in more detail. First, the composite particles are heated to about 500 ° C. in an inert atmosphere, and then an oxidizing gas such as air is flown into the system to contain carbon components including carbon nanofibers. Among them, the thermally unstable one is selectively burned, and the system is cooled while flowing an inert gas into the system again. What is necessary is just to adjust the temperature, time, etc. of heat processing according to the state of the carbon component containing a carbon nanofiber, the target carrying amount, or the kind and particle size of active material particle.

工程(1)では、例えば、活物質粒子と触媒粒子とを水等の分散媒で混合させて、その後乾燥等により分散媒を除去することにより、活物質粒子の表面に触媒粒子を担持させることができる。また、例えば、無電解めっき法などにより活物質粒子上に触媒層を形成することにより、活物質粒子上に触媒を担持させることができる。なお、層状の触媒は、工程(2)(カーボンナノファイバの成長・担持工程)における昇温時の熱により粒子状に凝集する。   In the step (1), for example, the active material particles and the catalyst particles are mixed with a dispersion medium such as water, and then the dispersion medium is removed by drying or the like, thereby supporting the catalyst particles on the surface of the active material particles. Can do. Further, for example, a catalyst can be supported on the active material particles by forming a catalyst layer on the active material particles by an electroless plating method or the like. The layered catalyst agglomerates in the form of particles due to heat at the time of temperature rise in step (2) (carbon nanofiber growth and support step).

活物質粒子の材料としては、種々の公知の化合物が用いられるが、リチウムと合金化可能な元素は、Al、Si、Zn、Ge、In、Sn、Sb、およびPbからなる群より選ばれる少なくとも1つであることが好ましく、その中でも、SiおよびSnの少なくとも1つの元素であることが、電池特性の面から特に好ましい。また、空気中で熱安定性の高い酸化物であることが好ましい。また、活物質粒子としては、例えば、粒径0.1〜100μmのものが用いられる。   Various known compounds are used as the material of the active material particles, and the element that can be alloyed with lithium is at least selected from the group consisting of Al, Si, Zn, Ge, In, Sn, Sb, and Pb. One is preferable, and among these, at least one element of Si and Sn is particularly preferable from the viewpoint of battery characteristics. Moreover, it is preferable that it is an oxide with high thermal stability in the air. As the active material particles, for example, particles having a particle size of 0.1 to 100 μm are used.

触媒は、特に限定されないが、例えば、Mn、Fe、Co、Ni、Cu、もしくはMoなどの元素、またはこれらの元素を含む化合物が用いられる。これらは単独で用いてもよく、2種以上を混合して用いてもよい。
触媒が粒子状の場合、例えば、粒径は1〜1000nmである。また、触媒が層状の場合、例えば、層の厚みは1〜500nm程度である。
Although a catalyst is not specifically limited, For example, elements, such as Mn, Fe, Co, Ni, Cu, or Mo, or the compound containing these elements is used. These may be used alone or in combination of two or more.
When the catalyst is particulate, for example, the particle size is 1-1000 nm. Moreover, when the catalyst is layered, for example, the thickness of the layer is about 1 to 500 nm.

工程(2)では、工程(1)で得られた触媒を担持した活物質粒子を、例えば、500℃付近の高温の不活性雰囲気にて炭素含有ガスと反応させ、触媒を基点として活物質粒子上でカーボンナノファイバを成長・担持させて、複合粒子を得る。
炭素含有ガスは、特に限定されないが、メタン、エタン、ブタン、エチレン、アセチレン、一酸化炭素、ベンゼン、またはトルエンなどが挙げられる。触媒、炭素含有ガス、および反応温度によって、成長するカーボンナノファイバの形態が異なるが、後述する工程(3)により、カーボンナノファイバを含む炭素成分を選択的に燃焼させることにより嵩密度と比表面積が低減されるという効果は種々の組み合わせにおいてみられる。不活性ガスには、ヘリウムガスやアルゴンガス等が用いられる。
In the step (2), the active material particles carrying the catalyst obtained in the step (1) are reacted with a carbon-containing gas in a high-temperature inert atmosphere around 500 ° C., for example, and the active material particles are based on the catalyst. Carbon nanofibers are grown and supported on the above to obtain composite particles.
The carbon-containing gas is not particularly limited, and examples thereof include methane, ethane, butane, ethylene, acetylene, carbon monoxide, benzene, and toluene. Depending on the catalyst, the carbon-containing gas, and the reaction temperature, the shape of the growing carbon nanofibers differs, but the bulk density and specific surface area can be obtained by selectively burning the carbon component containing the carbon nanofibers in the step (3) described later. The effect of reducing is seen in various combinations. As the inert gas, helium gas, argon gas, or the like is used.

ここで、工程(2)で得られた複合粒子の一例を図2に示す。
複合粒子は、活物質粒子1、および活物質粒子1の表面に担持されたカーボンナノファイバ3および非晶質炭素4などの炭素成分からなる。そして、カーボンナノファイバ3は、十分に成長したカーボンナノファイバ3b(繊維径30〜200nm、繊維長1〜500μm)および成長が不十分な細かいカーボンナノファイバ3a(繊維径1〜30nm、繊維長0.5〜100μm)の両方からなる。
粒子状の触媒2ははじめ活物質粒子1の表面上に担持されているが、触媒2の一部はカーボンナノファイバの成長にともない、カーボンナノファイバとともに移動する。なお、図2中では、便宜上、カーボンナノファイバの先端に位置する触媒2のみを示すが、これ以外に、触媒2は、例えばカーボンナノファイバの中腹や基点にも存在する。
Here, an example of the composite particles obtained in the step (2) is shown in FIG.
The composite particles are composed of active material particles 1 and carbon components such as carbon nanofibers 3 and amorphous carbon 4 supported on the surface of the active material particles 1. The carbon nanofiber 3 includes a sufficiently grown carbon nanofiber 3b (fiber diameter 30 to 200 nm, fiber length 1 to 500 μm) and a fine carbon nanofiber 3a (fiber diameter 1 to 30 nm, fiber length 0) that is insufficiently grown. 0.5 to 100 μm).
The particulate catalyst 2 is initially supported on the surface of the active material particle 1, but a part of the catalyst 2 moves together with the carbon nanofiber as the carbon nanofiber grows. In FIG. 2, only the catalyst 2 located at the tip of the carbon nanofiber is shown for convenience, but the catalyst 2 is also present at, for example, the middle or base point of the carbon nanofiber.

工程(3)では、工程(2)で得られた複合粒子を酸化雰囲気にて550℃以下の温度域で熱処理して、活物質粒子上のカーボンナノファイバを疎化させる。
工程(3)に示す複合粒子の酸化雰囲気での熱処理により、活物質粒子上に存在する炭素成分のうち、図2に示す複合粒子における、活物質粒子1表面に付着する非晶質の炭素4や、非常に細かいカーボンナノファイバ3aなどの熱安定性の低い成分を選択的に燃焼することができる。その結果、図1に示すように、活物質粒子1表面に熱安定性の高い比較的均一なカーボンナノファイバ3bのみが担持された複合粒子が得られる。
In the step (3), the composite particles obtained in the step (2) are heat-treated in an oxidizing atmosphere at a temperature range of 550 ° C. or lower to denature the carbon nanofibers on the active material particles.
Of the carbon components present on the active material particles by the heat treatment in the oxidizing atmosphere of the composite particles shown in the step (3), amorphous carbon 4 adhering to the surface of the active material particles 1 in the composite particles shown in FIG. In addition, it is possible to selectively burn components having low thermal stability such as very fine carbon nanofibers 3a. As a result, as shown in FIG. 1, composite particles in which only the relatively uniform carbon nanofibers 3b having high thermal stability are supported on the surface of the active material particles 1 are obtained.

上記の熱安定性の低い成分の選択的な燃焼は、空気中で20℃/minの昇温速度でのTG/DTA測定(示差熱・熱重量同時測定)においてみられる複数の発熱ピークのうち、550℃以下の温度領域に存在する発熱ピークに対応する。
従って、上記の製造方法により得られる非水電解質二次電池用負極材料である複合粒子におけるカーボンナノファイバは、空気中での20℃/minの昇温において550℃以下の温度域では焼失しない、すなわち、空気中での20℃/minの昇温において550℃を超える温度域のみにおいて焼失する。さらに換言すれば、上記カーボンナノファイバは、空気中で20℃/minの昇温速度でのTG/DTA測定において、550℃以下の温度域では発熱ピークを有しない、すなわち、空気中で20℃/minの昇温速度でのTG/DTA測定において、550℃を超える温度域のみに発熱ピークを有する。
The selective combustion of the above-mentioned components having low thermal stability is caused by a plurality of exothermic peaks observed in TG / DTA measurement (differential heat / thermogravimetric simultaneous measurement) at a temperature rising rate of 20 ° C./min in air. It corresponds to an exothermic peak existing in a temperature region of 550 ° C. or lower.
Therefore, the carbon nanofibers in the composite particles that are the negative electrode material for a nonaqueous electrolyte secondary battery obtained by the above production method are not burned out in a temperature range of 550 ° C. or lower at a temperature increase of 20 ° C./min in air. That is, it burns down only in a temperature range exceeding 550 ° C. at a temperature increase of 20 ° C./min in air. In other words, the carbon nanofiber has no exothermic peak in the temperature range of 550 ° C. or lower in TG / DTA measurement at a temperature rising rate of 20 ° C./min in air, that is, 20 ° C. in air. In the TG / DTA measurement at a temperature rising rate of / min, an exothermic peak is present only in the temperature range exceeding 550 ° C.

上記のように工程(3)により、活物質粒子表面に存在するカーボンナノファイバを容易に電池特性に適した形態にすることができる。すなわち、工程(2)の複合粒子における活物質粒子上の炭素成分の嵩密度および比表面積を電池特性に対して好ましい範囲に低減することができる。また、工程(3)で得られる複合粒子において、活物質粒子に対するカーボンナノファイバの重量比率は、例えば10〜50%である。   As described above, by the step (3), the carbon nanofibers existing on the surface of the active material particles can be easily made into a form suitable for battery characteristics. That is, the bulk density and specific surface area of the carbon component on the active material particles in the composite particles in the step (2) can be reduced to a range preferable for battery characteristics. In the composite particles obtained in the step (3), the weight ratio of the carbon nanofibers to the active material particles is, for example, 10 to 50%.

また、上記複合材料を負極材料に用いた非水電解液二次電池では、初期における電解液との接触により生じる副反応が抑制され、不可逆容量が低減されるため、高容量化が可能となる。また、副反応にともなうガス発生の量が減少する。さらに、充放電の繰り返し時において、活物質粒子間の良好な電子伝導性が維持されるため、優れた充放電サイクル特性が得られる。
本発明の非水電解液二次電池の負極に用いられるバインダー、集電体、または負極作製時に集電体に塗布する負極合剤ペーストなどは特に限定されるものではなく、公知のものを使用すればよい。さらに、本発明の非水電解液二次電池に用いられる正極、セパレータ、および電解液などの構成部材も特に限定されることなく、公知の材料を使用すればよい。
Further, in the non-aqueous electrolyte secondary battery using the composite material as the negative electrode material, side reactions caused by contact with the electrolyte in the initial stage are suppressed, and the irreversible capacity is reduced, so that the capacity can be increased. . In addition, the amount of gas generated due to side reactions is reduced. Furthermore, since excellent electronic conductivity between the active material particles is maintained during repeated charge / discharge, excellent charge / discharge cycle characteristics can be obtained.
The binder used for the negative electrode of the non-aqueous electrolyte secondary battery of the present invention, the current collector, or the negative electrode mixture paste applied to the current collector during the preparation of the negative electrode is not particularly limited, and a known one is used. do it. Furthermore, constituent members such as a positive electrode, a separator, and an electrolytic solution used in the nonaqueous electrolyte secondary battery of the present invention are not particularly limited, and a known material may be used.

以下、本発明の実施例を詳細に説明するが、本発明は以下の実施例に限定されるものではない。
《実施例1》
(1)負極材料の作製
あらかじめ粉砕し、分級して粒径10μm以下とした一酸化ケイ素(SiO)粉末(和光純薬(株)製、試薬)100重量部と、硝酸ニッケル(II)六水和物(関東化学(株)
製、特級試薬)5重量部とを、イオン交換水中で混合した。この混合物を1時間攪拌したのちエバポレーター装置で水分を除去し乾燥させることで、一酸化ケイ素の粒子表面に硝酸ニッケル(II)が担持された粒子を得た。この粒子をSEMで分析した結果、硝酸ニッ
ケル(II)が粒径100nm程度の粒子状であることが確認された。
Examples of the present invention will be described in detail below, but the present invention is not limited to the following examples.
Example 1
(1) Preparation of negative electrode material 100 parts by weight of silicon monoxide (SiO) powder (manufactured by Wako Pure Chemical Industries, Ltd., reagent) pulverized and classified in advance to a particle size of 10 μm or less, nickel nitrate (II) hexahydrate Japanese (Kanto Chemical Co., Ltd.)
(Product made, special grade reagent) 5 parts by weight were mixed in ion-exchanged water. After stirring this mixture for 1 hour, water was removed by an evaporator and dried to obtain particles having nickel (II) nitrate supported on the surface of silicon monoxide particles. As a result of analyzing the particles by SEM, it was confirmed that nickel (II) nitrate was in the form of particles having a particle size of about 100 nm.

得られた活物質粒子をセラミック製反応容器に投入し、ヘリウムガス中で500℃まで昇温させた。ヘリウムガスを水素ガス50%とエチレンガス50%の混合ガスに置換して、500℃で1時間保持し、硝酸ニッケル(II)を還元するとともにカーボンナノファイ
バを成長させた。その後、混合ガスをヘリウムガスに置換して室温まで冷却し、SiO粒子の表面にカーボンナノファイバが担持された複合粒子を得た。
The obtained active material particles were put into a ceramic reaction vessel and heated to 500 ° C. in helium gas. The helium gas was replaced with a mixed gas of 50% hydrogen gas and 50% ethylene gas, and maintained at 500 ° C. for 1 hour to reduce nickel (II) nitrate and grow carbon nanofibers. Thereafter, the mixed gas was replaced with helium gas and cooled to room temperature to obtain composite particles having carbon nanofibers supported on the surface of SiO particles.

得られた複合粒子を再び上記の反応容器に投入し、ヘリウムガス中で500℃まで昇温させた。ヘリウムガスを空気に置換して500℃で5分間保持し、複合粒子の炭素成分のうち熱的安定性が低い成分を選択的に燃焼させた。その後、空気をヘリウムガスに置換して室温まで冷却し、負極材料を得た。   The obtained composite particles were put into the reaction vessel again and heated to 500 ° C. in helium gas. The helium gas was replaced with air and held at 500 ° C. for 5 minutes to selectively burn a component having low thermal stability among the carbon components of the composite particles. Thereafter, the air was replaced with helium gas and cooled to room temperature to obtain a negative electrode material.

この負極材料をSEMで分析した結果、繊維径80nm程度および繊維長100μm程度のカーボンナノファイバがほぼ均一に形成されており、繊維径10nm程度のような非常に細かいカーボンナノファイバは見られなかった。さらに、SiO粒子の表面には煤のような非晶質の炭素も付着していなかった。また、成長したカーボンナノファイバの重量比率は、合成前後での活物質粒子に対する重量増加分から算出したところ、複合粒子全体に対して25%程度であった。
この負極材料を、空気中において20℃/minの昇温速度でTG/DTA測定した結果、550℃以下の温度域で発熱ピークはみられなかった。なお、TG/DTA測定には、Rigaku製のThermoPlus 2を用いた。
As a result of analyzing this negative electrode material by SEM, carbon nanofibers with a fiber diameter of about 80 nm and a fiber length of about 100 μm were formed almost uniformly, and no very fine carbon nanofibers with a fiber diameter of about 10 nm were found. . Further, amorphous carbon such as soot was not attached to the surface of the SiO particles. The weight ratio of the grown carbon nanofibers was calculated from the weight increase with respect to the active material particles before and after the synthesis, and was about 25% with respect to the entire composite particles.
TG / DTA measurement was performed on this negative electrode material in air at a temperature rising rate of 20 ° C./min. As a result, no exothermic peak was observed in a temperature range of 550 ° C. or lower. For the TG / DTA measurement, ThermoPlus 2 manufactured by Rigaku was used.

(2)負極の作製
上記負極材料100重量部と、バインダーとしてスチレンブタジエンゴムのエマルジョンを固形分換算で10重量部と、増粘剤としてカルボキシメチルセルロース(第一工業製薬(株)製、セロゲン、4H)3重量部とを、イオン交換水を適量加えながら十分混合してペーストを得た。このペーストを集電体である厚み15μmのCu箔の両面に塗布した後、乾燥、圧延して負極を得た。
(2) Production of negative electrode 100 parts by weight of the negative electrode material, 10 parts by weight of a styrene butadiene rubber emulsion as a binder in terms of solid content, and carboxymethyl cellulose (Dellogen Kogyo Seiyaku Co., Ltd., Cellogen, 4H as a thickener) 3) parts by weight were mixed well while adding an appropriate amount of ion-exchanged water to obtain a paste. This paste was applied to both sides of a 15 μm thick Cu foil as a current collector, then dried and rolled to obtain a negative electrode.

(3)正極の作製
正極活物質としてLiCoO2粉末100重量部と、導電剤としてアセチレンブラック(電気化学工業(株)製、デンカブラック)10重量部と、バインダーとしてポリフッ化ビニリデンを固形分換算で8重量部とを、N−メチル−2−ピロリドンを適量加えながら十分混合してペーストを得た。このペーストを集電体である厚み20μmのAl箔の両面に塗布した後、乾燥、圧延して正極を得た。
(3) Preparation of positive electrode 100 parts by weight of LiCoO 2 powder as a positive electrode active material, 10 parts by weight of acetylene black (Denka Black, manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive agent, and polyvinylidene fluoride as a binder in terms of solid content 8 parts by weight were mixed well while adding an appropriate amount of N-methyl-2-pyrrolidone to obtain a paste. This paste was applied to both sides of a 20 μm thick Al foil as a current collector, then dried and rolled to obtain a positive electrode.

(4)評価用電池の作製
上記で得られた正極と負極とを、それぞれ必要な大きさに切断したのち、正極集電体の末端にAlリードを、負極集電体の末端にNiリードを溶接した。この正極および負極を、セパレータとして厚み20μmの多孔質ポリエチレンフィルム(旭化成(株)製、ハイポア)を介して重ねた後、この積層物を巻回して、電極群を得た。電極群の上下それぞれにポリプロピレン製の絶縁板を配し、直径18mmおよび高さ65mmの電池外装缶に挿入した後、電池外装缶内に非水電解液を注入した。非水電解液には、1mol/LのLiPF6を含む、エチレンカーボネートとジエチルカーボネートの混合溶媒(体積比1:1)(三菱化学(株)製、ソルライト)を用いた。外装缶を減圧して電極群に電解液を含浸させ、封口板を用いて密閉して円筒型電池を作製した。なお、この電池の設計容量は2400mAhである。
(4) Preparation of battery for evaluation After the positive electrode and the negative electrode obtained above were cut to the required sizes, an Al lead was attached to the end of the positive electrode current collector, and an Ni lead was attached to the end of the negative electrode current collector. Welded. The positive electrode and the negative electrode were stacked as a separator through a porous polyethylene film having a thickness of 20 μm (manufactured by Asahi Kasei Co., Ltd., Hypore), and then the laminate was wound to obtain an electrode group. An insulating plate made of polypropylene was placed on the upper and lower sides of the electrode group, inserted into a battery outer can having a diameter of 18 mm and a height of 65 mm, and then a nonaqueous electrolyte was injected into the battery outer can. As the non-aqueous electrolyte, a mixed solvent of ethylene carbonate and diethyl carbonate (volume ratio of 1: 1) containing 1 mol / L LiPF 6 (manufactured by Mitsubishi Chemical Corporation, Sollite) was used. The outer can was depressurized, the electrode group was impregnated with the electrolytic solution, and sealed with a sealing plate to produce a cylindrical battery. The design capacity of this battery is 2400 mAh.

《実施例2》
一酸化ケイ素の代わりにケイ素粉末(和光純薬(株)製、試薬)を用いたこと以外、実施例1と同様の方法により負極材料を得た。
Si粒子表面に担持された硝酸ニッケル(II)の粒径、ならびに成長したカーボンナノ
ファイバの繊維径、繊維長、および重量比率は、それぞれ実施例1とほぼ同じ値であった。また、負極材料をTG/DTA測定した結果、550℃以下に発熱ピークは見られなかった。
上記の負極材料を用いて、実施例1と同様の方法により円筒型電池を作製した。
Example 2
A negative electrode material was obtained in the same manner as in Example 1 except that silicon powder (manufactured by Wako Pure Chemical Industries, Ltd., reagent) was used instead of silicon monoxide.
The particle diameter of nickel (II) nitrate supported on the surface of the Si particles and the fiber diameter, fiber length, and weight ratio of the grown carbon nanofibers were almost the same as those in Example 1. Further, as a result of TG / DTA measurement of the negative electrode material, no exothermic peak was observed at 550 ° C. or lower.
A cylindrical battery was produced in the same manner as in Example 1 using the above negative electrode material.

《実施例3》
Ti−Si合金を以下の方法で作製した。チタン粉末(高純度化学(株)製、試薬150μm以下)50重量部とケイ素粉末(和光純薬(株)製、試薬)100重量部とを混合し、その混合物3.5kgを振動ミル装置に投入した。直径2cmのステンレスボールを装置内体積の70%となるように投入し、アルゴンガス中で80時間メカニカルアロイング操作を行って、Ti−Si合金を得た。
Example 3
A Ti—Si alloy was produced by the following method. 50 parts by weight of titanium powder (manufactured by High Purity Chemical Co., Ltd., reagent 150 μm or less) and 100 parts by weight of silicon powder (manufactured by Wako Pure Chemical Industries, Ltd., reagent) are mixed, and 3.5 kg of the mixture is placed in a vibration mill device. I put it in. A stainless steel ball having a diameter of 2 cm was introduced so as to be 70% of the volume in the apparatus, and mechanical alloying operation was performed in argon gas for 80 hours to obtain a Ti—Si alloy.

得られたTi−Si合金をXRDやTEMなどで観察した結果、非晶質な相と、10nm〜20nm程度の微結晶なSiの相およびTiSi2の相とが存在していることが確認された。SiとTiSi2のみからなると仮定した場合、重量比でおよそSi:TiSi2=30:70程度であった。
一酸化ケイ素の代わりに、上記で得られたTi−Si合金を用いたこと以外、実施例1と同様の方法により負極材料を得た。
As a result of observing the obtained Ti-Si alloy with XRD, TEM, etc., it was confirmed that an amorphous phase, a microcrystalline Si phase of about 10 nm to 20 nm, and a TiSi 2 phase existed. It was. Assuming that consists of only Si and TiSi 2, approximately Si in a weight ratio: TiSi 2 = 30: was about 70.
A negative electrode material was obtained in the same manner as in Example 1 except that the Ti—Si alloy obtained above was used instead of silicon monoxide.

Ti−Si合金粒子表面に担持された硝酸ニッケル(II)の粒径、ならびに成長したカ
ーボンナノファイバの繊維径、繊維長、および重量比率は、それぞれ実施例1とほぼ同じ値であった。また、負極材料をTG/DTA測定した結果、550℃以下に発熱ピークは見られなかった。
上記で得られた負極材料を用いて、実施例1と同様の方法により円筒型電池を作製した。
The particle diameter of nickel nitrate (II) supported on the surface of the Ti—Si alloy particles, and the fiber diameter, fiber length, and weight ratio of the grown carbon nanofiber were almost the same values as in Example 1. Further, as a result of TG / DTA measurement of the negative electrode material, no exothermic peak was observed at 550 ° C. or lower.
A cylindrical battery was produced in the same manner as in Example 1 using the negative electrode material obtained above.

《実施例4》
一酸化ケイ素の代わりに酸化スズ(IV)粉末(関東化学(株)製、特級試薬)を用いた
こと以外、実施例1と同様の方法により負極材料を得た。
SnO2粒子表面に担持された硝酸ニッケル(II)の粒径、ならびに成長したカーボン
ナノファイバの繊維径、繊維長、および重量比率は、それぞれ実施例1とほぼ同じ値であった。また、負極材料をTG/DTA測定した結果、550℃以下に発熱ピークは見られなかった。
上記で得られた負極材料を用いて、実施例1と同様の方法により円筒型電池を作製した。
Example 4
A negative electrode material was obtained in the same manner as in Example 1 except that tin (IV) powder (manufactured by Kanto Chemical Co., Inc., special grade reagent) was used instead of silicon monoxide.
The particle diameter of nickel nitrate (II) supported on the SnO 2 particle surface, and the fiber diameter, fiber length, and weight ratio of the grown carbon nanofiber were almost the same as those in Example 1. Further, as a result of TG / DTA measurement of the negative electrode material, no exothermic peak was observed at 550 ° C. or lower.
A cylindrical battery was produced in the same manner as in Example 1 using the negative electrode material obtained above.

《実施例5》
硝酸ニッケル(II)六水和物の代わりに硝酸コバルト(II)六水和物(関東化学(株)
製、特級試薬)を用いたこと以外、実施例1と同様の方法により負極材料を得た。
SiO粒子表面に担持された硝酸コバルト(II)の粒径、ならびに成長したカーボンナ
ノファイバの繊維径、繊維長、および重量比率は、それぞれ実施例1とほぼ同じ値であった。また、負極材料をTG/DTA測定した結果、550℃以下に発熱ピークは見られなかった。
上記で得られた負極材料を用いて、実施例1と同様の方法により円筒型電池を作製した。
Example 5
Cobalt nitrate (II) hexahydrate instead of nickel nitrate (II) hexahydrate (Kanto Chemical Co., Ltd.)
A negative electrode material was obtained in the same manner as in Example 1 except that the product made in Japan, special grade reagent) was used.
The particle size of cobalt (II) nitrate supported on the surface of the SiO particles and the fiber diameter, fiber length, and weight ratio of the grown carbon nanofibers were almost the same as those in Example 1. Further, as a result of TG / DTA measurement of the negative electrode material, no exothermic peak was observed at 550 ° C. or lower.
A cylindrical battery was produced in the same manner as in Example 1 using the negative electrode material obtained above.

《実施例6》
カーボンナノファイバの成長工程において、500℃で水素ガス50%とエチレンガス50%の混合ガスを流入させる代わりに、800℃で水素ガス50%とメタンガス50%の混合ガスを流入させたこと以外、実施例1と同様の方法により負極材料を得た。
成長したカーボンナノファイバの繊維径、繊維長、および重量比率は、それぞれ実施例1とほぼ同じ値であった。また、負極材料をTG/DTA測定した結果、550℃以下に発熱ピークは見られなかった。
上記で得られた負極材料を用いて、実施例1と同様の方法により円筒型電池を作製した。
Example 6
In the growth process of carbon nanofiber, instead of flowing a mixed gas of 50% hydrogen gas and 50% ethylene gas at 500 ° C., a mixed gas of 50% hydrogen gas and 50% methane gas was flowed at 800 ° C. A negative electrode material was obtained in the same manner as in Example 1.
The fiber diameter, fiber length, and weight ratio of the grown carbon nanofiber were almost the same as those in Example 1. Further, as a result of TG / DTA measurement of the negative electrode material, no exothermic peak was observed at 550 ° C. or lower.
A cylindrical battery was produced in the same manner as in Example 1 using the negative electrode material obtained above.

《実施例7》
硝酸ニッケル(II)六水和物の代わりに硝酸コバルト(II)六水和物を用いたこと以外
、実施例6と同様の方法により負極材料を得た。
成長したカーボンナノファイバの繊維径、繊維長、および重量比率は、それぞれ実施例1とほぼ同じ値であった。また、負極材料をTG/DTA測定した結果、550℃以下に発熱ピークは見られなかった。
上記で得られた負極材料を用いて、実施例1と同様の方法により円筒型電池を作製した。
Example 7
A negative electrode material was obtained in the same manner as in Example 6 except that cobalt nitrate (II) hexahydrate was used instead of nickel nitrate (II) hexahydrate.
The fiber diameter, fiber length, and weight ratio of the grown carbon nanofiber were almost the same as those in Example 1. Further, as a result of TG / DTA measurement of the negative electrode material, no exothermic peak was observed at 550 ° C. or lower.
A cylindrical battery was produced in the same manner as in Example 1 using the negative electrode material obtained above.

《比較例1》
カーボンナノファイバの成長工程の後、空気中で熱処理しない以外、実施例1と同様の方法により負極材料を得た。
この複合粒子をSEMで分析した結果、成長したカーボンナノファイバは繊維径が80nm程度および繊維長が100μm程度のおよそ均一なものであったが、それ以外に繊維径10nm程度の非常に細かいカーボンナノファイバや、SiO粒子の表面に煤のような非晶質の炭素の付着物などが確認された。また、成長したカーボンナノファイバの重量比率は、合成前後での活物質粒子に対する重量増加分から算出したところ、複合粒子全体に対して35%程度であった。また、負極材料をTG/DTA測定した結果、550℃付近に発熱ピークが認められた。
上記で得られた負極材料を用いて、実施例1と同様の方法により円筒型電池を作製した。
<< Comparative Example 1 >>
After the carbon nanofiber growth step, a negative electrode material was obtained in the same manner as in Example 1 except that it was not heat-treated in air.
As a result of analyzing the composite particles by SEM, the grown carbon nanofibers were approximately uniform with a fiber diameter of about 80 nm and a fiber length of about 100 μm. Fibers and amorphous carbon deposits such as soot were confirmed on the surface of the SiO particles. Further, the weight ratio of the grown carbon nanofibers was calculated from the weight increase with respect to the active material particles before and after the synthesis, and was about 35% with respect to the entire composite particles. Further, as a result of TG / DTA measurement of the negative electrode material, an exothermic peak was observed at around 550 ° C.
A cylindrical battery was produced in the same manner as in Example 1 using the negative electrode material obtained above.

《比較例2》
カーボンナノファイバの成長工程の後、空気中で熱処理しない以外、実施例4と同様の方法により負極材料を得た。
成長したカーボンナノファイバの繊維径、繊維長、および重量比率は、それぞれ比較例1とほぼ同じ値であった。また、負極材料をTG/DTA測定した結果、550℃付近に発熱ピークが認められた。
上記で得られた負極材料を用いて、実施例1と同様の方法により円筒型電池を作製した。
<< Comparative Example 2 >>
After the carbon nanofiber growth step, a negative electrode material was obtained in the same manner as in Example 4 except that the heat treatment was not performed in air.
The fiber diameter, fiber length, and weight ratio of the grown carbon nanofiber were almost the same values as in Comparative Example 1. Further, as a result of TG / DTA measurement of the negative electrode material, an exothermic peak was observed at around 550 ° C.
A cylindrical battery was produced in the same manner as in Example 1 using the negative electrode material obtained above.

《比較例3》
カーボンナノファイバの成長工程の後、空気中で熱処理しない以外、実施例5と同様の方法により負極材料を得た。
成長したカーボンナノファイバの繊維径、繊維長、および重量比率は、それぞれ比較例1とほぼ同じ値であった。また、負極材料をTG/DTA測定した結果、550℃付近に発熱ピークが認められた。
上記で得られた負極材料を用いて、実施例1と同様の方法により円筒型電池を作製した。
<< Comparative Example 3 >>
A negative electrode material was obtained in the same manner as in Example 5 except that after the carbon nanofiber growth step, no heat treatment was performed in air.
The fiber diameter, fiber length, and weight ratio of the grown carbon nanofiber were almost the same values as in Comparative Example 1. Further, as a result of TG / DTA measurement of the negative electrode material, an exothermic peak was observed at around 550 ° C.
A cylindrical battery was produced in the same manner as in Example 1 using the negative electrode material obtained above.

《比較例4》
カーボンナノファイバの成長工程の後、空気中で熱処理しない以外、実施例6と同様の方法により負極材料を得た。
成長したカーボンナノファイバの繊維径、繊維長、および重量比率は、それぞれ比較例1とほぼ同じ値であった。また、負極材料をTG/DTA測定した結果、550℃付近に発熱ピークが認められた。
上記で得られた負極材料を用いて、実施例1と同様の方法により円筒型電池を作製した。
<< Comparative Example 4 >>
After the carbon nanofiber growth step, a negative electrode material was obtained in the same manner as in Example 6 except that the heat treatment was not performed in air.
The fiber diameter, fiber length, and weight ratio of the grown carbon nanofiber were almost the same values as in Comparative Example 1. Further, as a result of TG / DTA measurement of the negative electrode material, an exothermic peak was observed at around 550 ° C.
A cylindrical battery was produced in the same manner as in Example 1 using the negative electrode material obtained above.

[電池特性の評価]
上記で作製した各電池について、20℃環境下において、電流値480mA(0.2C)で4.2V〜2.5Vの範囲で定電流充放電を行い、0.2C放電での放電容量を調べた。
また、20℃環境下において1680mA(0.7C)で4.2Vまで定電流充電した後、2400mA(1C)で2.5Vまで定電流放電する工程を繰り返した。そして、50サイクル後に、480mAで4.2V〜2.5Vの範囲で定電流充放電を行い、0.2C放電での放電容量を調べた。そして、初期の0.2C放電容量に対する50サイクル後の0.2C放電容量の比をサイクル容量維持率として求めた。
[Evaluation of battery characteristics]
About each battery produced above, in a 20 degreeC environment, it carries out constant current charging / discharging in the range of 4.2V-2.5V with the electric current value of 480mA (0.2C), and investigates the discharge capacity in 0.2C discharge. It was.
Further, the process of constant current charging to 4.2 V at 1680 mA (0.7 C) in a 20 ° C. environment was repeated, followed by constant current discharging to 2.5 V at 2400 mA (1 C). Then, after 50 cycles, constant current charge / discharge was performed at 480 mA in the range of 4.2 V to 2.5 V, and the discharge capacity at 0.2 C discharge was examined. The ratio of the 0.2C discharge capacity after 50 cycles to the initial 0.2C discharge capacity was determined as the cycle capacity retention rate.

さらに、電池作製直後の各電池について、初期充放電を行った後、電池内のガスを捕集し、その総量を定量した。
上記評価結果を表1に示す。なお、表1中の熱処理は、複合粒子表面上のカーボンナノファイバを選択的に燃焼させる工程で行われる熱処理を意味する。
Furthermore, about each battery immediately after battery preparation, after performing initial charging / discharging, the gas in a battery was collected and the total amount was quantified.
The evaluation results are shown in Table 1. In addition, the heat processing in Table 1 means the heat processing performed by the process of selectively burning the carbon nanofiber on the composite particle surface.

Figure 2007311207
Figure 2007311207

リチウムと合金化可能な活物質粒子表面上でカーボンナノファイバを成長・担持させ、さらに空気中で熱処理して活物質表面を覆う炭素成分のうち熱的に不安定な成分を選択的に燃焼、除去させた複合粒子からなる負極材料を用いた実施例1〜7の電池では、いずれも良好な放電特性および充放電サイクル特性が得られた。活物質や触媒の種類、またはカーボンナノファイバの成長条件に関係なく、いずれも同様の効果が得られた。特に、本発明の最良の形態である酸化物の活物質を用いた実施例1および4〜7の電池では、活物質が酸化物でない実施例2および3の電池に比べて、優れた充放電サイクル特性が得られた。活物質が熱的に安定な酸化物であることで、空気中での熱処理による活物質の劣化が抑制されたためと考えられる。   The carbon nanofibers are grown and supported on the surface of the active material particles that can be alloyed with lithium, and the thermally unstable components among the carbon components covering the active material surface by heat treatment in air are selectively burned. In the batteries of Examples 1 to 7 using the negative electrode material made of the removed composite particles, good discharge characteristics and charge / discharge cycle characteristics were obtained. Regardless of the type of active material or catalyst, or the growth conditions of the carbon nanofibers, the same effect was obtained. In particular, in the batteries of Examples 1 and 4 to 7 using the oxide active material which is the best mode of the present invention, charge / discharge superior to the batteries of Examples 2 and 3 in which the active material is not an oxide. Cycle characteristics were obtained. It is considered that the deterioration of the active material due to heat treatment in the air was suppressed because the active material was a thermally stable oxide.

カーボンナノファイバを成長させた後、空気中にて熱処理しなかった比較例1〜4の電池では、初期容量が電池設計よりも若干少ないだけでなく、サイクル容量維持率も空気中での熱処理を行った実施例1〜7の電池に比べてやや低い値が得られた。これは、カーボンナノファイバを含む炭素成分の嵩密度や比表面積が実施例1〜7の場合に比べて高いために、初期における電解液との副反応による不可逆容量が大きいこと、およびカーボンナノファイバを含む炭素成分の柔軟性の低下により活物質粒子間の電子伝導性が低下したことによるものと考えられる。   In the batteries of Comparative Examples 1 to 4 that were not heat-treated in air after growing the carbon nanofibers, not only the initial capacity was slightly smaller than the battery design, but also the cycle capacity retention rate was heat-treated in air. A slightly lower value was obtained as compared with the batteries of Examples 1 to 7. This is because the bulk density and specific surface area of carbon components including carbon nanofibers are higher than those in Examples 1 to 7, and the irreversible capacity due to side reactions with the electrolyte in the initial stage is large, and carbon nanofibers. This is considered to be due to a decrease in the electronic conductivity between the active material particles due to a decrease in flexibility of the carbon component containing s.

また、比較例1〜4の電池では実施例1〜7の電池に比べてガス発生量が非常に多いことが分かった。これは、上記で述べたように初期における電解液との副反応が大きくなったことによるものと考えられる。活物質自体の容量が大きいため、不可逆容量の面では大きな差はみられないが、ガス発生量の面から、空気中での熱処理によるカーボンナノファイバの疎化の効果がはっきりとみられた。   Moreover, it turned out that the amount of gas generation is very much in the battery of Comparative Examples 1-4 compared with the battery of Examples 1-7. As described above, this is considered to be due to the fact that the side reaction with the electrolytic solution in the initial stage became large. Since the capacity of the active material itself is large, there is no significant difference in terms of irreversible capacity, but from the aspect of gas generation, the effect of carbon nanofiber desensitization by heat treatment in air was clearly seen.

これらの結果から、リチウムと合金化可能な活物質粒子上でカーボンナノファイバを成長させ、さらに空気中で熱処理を行うことにより、カーボンナノファイバを含む炭素成分の嵩密度と比表面積を低減させることができる。そして、この複合粒子を負極材料に用いることにより、高容量かつ優れたサイクル特性が得られることがわかった。   From these results, the bulk density and specific surface area of carbon components including carbon nanofibers can be reduced by growing carbon nanofibers on active material particles that can be alloyed with lithium and then performing heat treatment in air. Can do. And it turned out that a high capacity | capacitance and the outstanding cycling characteristics are acquired by using this composite particle for negative electrode material.

本発明の非水電解液二次電池は、高容量かつ優れたサイクル特性を有し、携帯電話などのポータブル電子機器の電源等として好適に用いられる。   The non-aqueous electrolyte secondary battery of the present invention has a high capacity and excellent cycle characteristics, and is suitably used as a power source for portable electronic devices such as mobile phones.

本発明の非水電解液二次電池用負極材料の概略断面図である。It is a schematic sectional drawing of the negative electrode material for nonaqueous electrolyte secondary batteries of this invention. 本発明の非水電解液二次電池用負極材料の製造方法における工程(2)で作製された複合材料の概略断面図である。It is a schematic sectional drawing of the composite material produced at the process (2) in the manufacturing method of the negative electrode material for nonaqueous electrolyte secondary batteries of this invention.

符号の説明Explanation of symbols

1 活物質粒子
2 触媒
3、3a、3b カーボンナノファイバ
4 非晶質炭素
DESCRIPTION OF SYMBOLS 1 Active material particle 2 Catalyst 3, 3a, 3b Carbon nanofiber 4 Amorphous carbon

Claims (7)

リチウムと合金化可能な元素を含む活物質粒子と、前記活物質粒子の表面に担持されたカーボンナノファイバとを含む複合粒子からなる非水電解液二次電池用負極材料であって、
前記カーボンナノファイバは、空気中での20℃/minの昇温において550℃を超える温度域のみにおいて焼失することを特徴とする非水電解液二次電池用負極材料。
A negative electrode material for a nonaqueous electrolyte secondary battery comprising active material particles containing an element that can be alloyed with lithium, and composite particles containing carbon nanofibers supported on the surface of the active material particles,
The negative electrode material for a non-aqueous electrolyte secondary battery, wherein the carbon nanofiber is burned out only in a temperature range exceeding 550 ° C. at a temperature increase of 20 ° C./min in air.
リチウムと合金化可能な元素を含む活物質粒子と、前記活物質粒子の表面に担持されたカーボンナノファイバとを含む複合粒子からなる非水電解液二次電池用負極材料であって、
前記カーボンナノファイバは、空気中で20℃/minの昇温速度でのTG/DTA測定において、550℃を超える温度域のみに発熱ピークを有する請求項1記載の非水電解液二次電池用負極材料。
A negative electrode material for a nonaqueous electrolyte secondary battery comprising active material particles containing an element that can be alloyed with lithium, and composite particles containing carbon nanofibers supported on the surface of the active material particles,
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the carbon nanofiber has a heat generation peak only in a temperature range exceeding 550 ° C. in TG / DTA measurement at a temperature rising rate of 20 ° C./min in air. Negative electrode material.
前記リチウムと合金化可能な元素が、SiおよびSnの少なくとも一つである請求項1または2記載の非水電解液二次電池用負極材料。   The negative electrode material for a non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the element that can be alloyed with lithium is at least one of Si and Sn. 前記活物質粒子が、前記リチウムと合金化可能な元素を含む酸化物からなる請求項1〜3のいずれかに記載の非水電解液二次電池用負極材料。   The negative electrode material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the active material particles are made of an oxide containing an element that can be alloyed with lithium. (1)リチウムと合金可能な元素を含む活物質粒子の表面に触媒を担持させる工程、
(2)触媒を担持させた前記活物質粒子を高温の不活性雰囲気にて炭素含有ガスと反応させ、触媒を基点として活物質粒子上でカーボンナノファイバを成長・担持させて、複合粒子を得る工程、および
(3)前記複合粒子を酸化雰囲気にて550℃以下の温度域で熱処理して、活物質粒子上のカーボンナノファイバを疎化させる工程を含むことを特徴とする非水電解液二次電池用負極材料の製造方法。
(1) a step of supporting a catalyst on the surface of active material particles containing an element that can be alloyed with lithium;
(2) The active material particles supporting the catalyst are reacted with a carbon-containing gas in a high-temperature inert atmosphere, and carbon nanofibers are grown and supported on the active material particles using the catalyst as a starting point to obtain composite particles. And (3) heat treating the composite particles in an oxidizing atmosphere in a temperature range of 550 ° C. or less to loosen the carbon nanofibers on the active material particles. A method for producing a negative electrode material for a secondary battery.
請求項5記載の負極材料の製造方法により得られた非水電解液二次電池用負極材料。   A negative electrode material for a non-aqueous electrolyte secondary battery obtained by the method for producing a negative electrode material according to claim 5. 請求項1〜4および6のいずれかに記載の負極材料を負極活物質として用いた非水電解液二次電池。   The nonaqueous electrolyte secondary battery using the negative electrode material in any one of Claims 1-4 and 6 as a negative electrode active material.
JP2006139472A 2006-05-18 2006-05-18 Negative electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using it and manufacturing method of negative electrode material for nonaqueous electrolyte secondary battery Pending JP2007311207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006139472A JP2007311207A (en) 2006-05-18 2006-05-18 Negative electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using it and manufacturing method of negative electrode material for nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006139472A JP2007311207A (en) 2006-05-18 2006-05-18 Negative electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using it and manufacturing method of negative electrode material for nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2007311207A true JP2007311207A (en) 2007-11-29

Family

ID=38843876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006139472A Pending JP2007311207A (en) 2006-05-18 2006-05-18 Negative electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using it and manufacturing method of negative electrode material for nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2007311207A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008117761A (en) * 2006-10-11 2008-05-22 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
JP2009272153A (en) * 2008-05-08 2009-11-19 Hitachi Maxell Ltd Lithium secondary battery
JP2010095797A (en) * 2008-10-14 2010-04-30 Korea Inst Of Science & Technology Carbon nanotube-coated silicon/metal composite particle, preparation method thereof, and anode for secondary battery and secondary battery using the same
JP2012014993A (en) * 2010-07-02 2012-01-19 Hitachi Maxell Energy Ltd Nonaqueous electrolyte secondary battery
JP2014523066A (en) * 2011-06-24 2014-09-08 ネクソン リミテッド Structured particles

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008117761A (en) * 2006-10-11 2008-05-22 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
JP2009272153A (en) * 2008-05-08 2009-11-19 Hitachi Maxell Ltd Lithium secondary battery
JP2010095797A (en) * 2008-10-14 2010-04-30 Korea Inst Of Science & Technology Carbon nanotube-coated silicon/metal composite particle, preparation method thereof, and anode for secondary battery and secondary battery using the same
JP2012014993A (en) * 2010-07-02 2012-01-19 Hitachi Maxell Energy Ltd Nonaqueous electrolyte secondary battery
JP2014523066A (en) * 2011-06-24 2014-09-08 ネクソン リミテッド Structured particles

Similar Documents

Publication Publication Date Title
JP6448057B2 (en) Porous silicon-based negative electrode active material, manufacturing method thereof, and lithium secondary battery including the same
US7892677B2 (en) Negative electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery having the same
JP4208034B2 (en) Method for producing conductive composite particles
KR101573423B1 (en) Porous silicon based negative electrode active material, method for manufacturing the same, and rechargeable lithium battery including the same
JP6177345B2 (en) Negative electrode active material for lithium secondary battery and method for producing the same
JP5984026B2 (en) Bimodal type negative electrode active material composition, and negative electrode active material, negative electrode active material composition, negative electrode, lithium secondary battery, battery module, and battery pack manufacturing method
JPWO2006068066A1 (en) Composite electrode active material for non-aqueous electrolyte secondary battery or non-aqueous electrolyte electrochemical capacitor and its production method
JP2006244984A (en) Composite particle for electrode, its manufacturing method, and nonaqueous electrolyte secondary battery
JP5518317B2 (en) Carbon black composite and its use
KR20200052263A (en) Battery with anode of macroporous silicon coated with carbon
US20090004564A1 (en) Composite Negative Electrode Active Material, Method For Producing The Same And Non-Aqueous Electrolyte Secondary Battery
JP5079951B2 (en) Non-aqueous electrolyte secondary battery positive electrode active material, its manufacturing method, non-aqueous electrolyte secondary battery, and positive electrode manufacturing method
JP2007329001A (en) Negative electrode material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous secondary battery using it
JP2006339093A (en) Wound type nonaqueous electrolyte secondary battery and its negative electrode
JP2006339092A (en) Nonaqueous electrolyte secondary battery and its negative electrode
JP2006019127A (en) Silicon composite and its manufacturing method, and negative electrode material for nonaqueous electrolyte secondary battery
JPWO2013183187A1 (en) Negative electrode active material and method for producing the same
JP2013246936A (en) Positive-electrode active material for nonaqueous secondary batteries
JP2008166013A (en) Composite active material and electrochemical element using same
JP6543255B2 (en) Negative electrode material for lithium ion secondary battery and method of manufacturing the same
JP2006221830A (en) Cathode active material, its manufacturing method, and nonaqueous electrolytic solution secondary battery
JPH08148185A (en) Nonaqueous electrolyte secondary battery and negative electrode therefor
JP2007207465A (en) Nonaqueous electrolyte secondary battery
EP2846383B1 (en) Conductive material for secondary battery and electrode for lithium secondary battery comprising same
JP2007311207A (en) Negative electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using it and manufacturing method of negative electrode material for nonaqueous electrolyte secondary battery