JP5128930B2 - Perpendicular magnetic recording medium and manufacturing method thereof - Google Patents

Perpendicular magnetic recording medium and manufacturing method thereof Download PDF

Info

Publication number
JP5128930B2
JP5128930B2 JP2007338122A JP2007338122A JP5128930B2 JP 5128930 B2 JP5128930 B2 JP 5128930B2 JP 2007338122 A JP2007338122 A JP 2007338122A JP 2007338122 A JP2007338122 A JP 2007338122A JP 5128930 B2 JP5128930 B2 JP 5128930B2
Authority
JP
Japan
Prior art keywords
layer
alloy
recording medium
soft magnetic
crystal grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007338122A
Other languages
Japanese (ja)
Other versions
JP2009158054A (en
Inventor
博之 鈴木
井手  浩
敦 中村
Original Assignee
エイチジーエスティーネザーランドビーブイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エイチジーエスティーネザーランドビーブイ filed Critical エイチジーエスティーネザーランドビーブイ
Priority to JP2007338122A priority Critical patent/JP5128930B2/en
Publication of JP2009158054A publication Critical patent/JP2009158054A/en
Application granted granted Critical
Publication of JP5128930B2 publication Critical patent/JP5128930B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高密度磁気記録を実現する垂直磁気記録媒体及びその製造方法に関する。   The present invention relates to a perpendicular magnetic recording medium that realizes high-density magnetic recording and a manufacturing method thereof.

特許文献1には、基体への熱の影響を最小限に抑えながら磁気記録層を加熱することを目的とし、断熱層を基体と磁気記録層との間に形成する磁気記録媒体が提案されている。特許文献3には、熱伝導率の低い材料で形成されたディスクの表面に、磁性膜を形成した磁気ディスクが提案されている。特許文献4には、非磁性基体上に非磁性下地層及び強磁性層を積層し、非磁性下地層は熱伝導率が、20℃〜300℃の温度範囲で30W/(m・k)以下を示す材料により構成し、強磁性層はCrを含有する強磁性金属からなる磁気記録媒体が提案されている。これらの磁気記録媒体は、いずれも記録層に熱を閉じ込めるために、記録層の下部に記録層よりも熱伝導率の低い層を設けている。   Patent Document 1 proposes a magnetic recording medium in which a heat insulating layer is formed between a base and a magnetic recording layer for the purpose of heating the magnetic recording layer while minimizing the influence of heat on the base. Yes. Patent Document 3 proposes a magnetic disk in which a magnetic film is formed on the surface of a disk formed of a material having low thermal conductivity. In Patent Document 4, a nonmagnetic underlayer and a ferromagnetic layer are laminated on a nonmagnetic substrate, and the nonmagnetic underlayer has a thermal conductivity of 30 W / (m · k) or less in a temperature range of 20 ° C. to 300 ° C. There has been proposed a magnetic recording medium which is made of a material having the above structure and the ferromagnetic layer is made of a ferromagnetic metal containing Cr. In any of these magnetic recording media, in order to confine heat in the recording layer, a layer having a lower thermal conductivity than the recording layer is provided below the recording layer.

一方、特許文献2には、少なくとも部分的に薄膜の膜厚を貫通して延在する低熱伝導率材料の領域と、低熱伝導率材料の領域を分離する高熱伝導率材料の領域とを備え、これらの領域が、低熱伝導率の領域よりも高熱伝導率の領域で、薄膜の膜厚を貫通する熱伝導がより大きくなるように構成及び配置された薄膜が提案されている。また、特許文献5には、L10構造の規則化を高めるためにCu,Au,Zn,Sn及びPdを添加したFePt合金利用の垂直磁気記録媒体が提案されている。或いはFePt合金に替わりCoPt,FePd合金の規則度を向上させた垂直磁気記録媒体が提案されている。特許文献6には、基板上に第一の下地層、第二の下地層及び第三の下地層と、第三の下地層の上に磁性層を有し、第一の下地層が非晶質構造の合金を有し、第二の下地層がW単体もしくはWを含む合金を有し、第三の下地層がCrを主成分としTi又はBを含む体心立方構造の合金を有し、磁性層が1層以上のCoを主成分とした六方稠密充填構造の合金層である磁気記録媒体が提案されている。 On the other hand, Patent Document 2 includes a region of low thermal conductivity material that extends at least partially through the thickness of the thin film, and a region of high thermal conductivity material that separates the region of low thermal conductivity material, There has been proposed a thin film constructed and arranged such that these regions are regions of higher thermal conductivity than regions of low thermal conductivity and thermal conduction through the film thickness is greater. Further, Patent Document 5, Cu in order to increase the ordering of the L1 0 structure, Au, Zn, perpendicular magnetic recording medium of the FePt alloy utilized with the addition of Sn and Pd have been proposed. Alternatively, a perpendicular magnetic recording medium in which the degree of ordering of the CoPt and FePd alloys is improved instead of the FePt alloy has been proposed. In Patent Document 6, a first underlayer, a second underlayer, and a third underlayer on a substrate, and a magnetic layer on the third underlayer, the first underlayer is amorphous. The second underlayer has a single element of W or an alloy containing W, and the third underlayer has an alloy of a body-centered cubic structure containing Cr as a main component and Ti or B. A magnetic recording medium has been proposed in which the magnetic layer is an alloy layer having a hexagonal close-packed structure mainly composed of one or more Co layers.

特許文献7には、熱支援記録の方式例が示されている。特許文献8には、ニア−フィールドのヒーター(Near Field Heater)利用等、局所的に加熱する方法が例示されている。また、特許文献9に記載のように、必要に応じて通電して発熱させることにより磁極先端部を熱膨張させて突出させるようにした薄膜抵抗体を形成した薄膜磁気ヘッド素子を有する磁気ヘッドや、磁気ヘッドが磁気ディスクに対してリード・ライトを行うときに、通電して発熱させることにより、磁極先端部を熱膨張させて突出させるようにした薄膜抵抗体を薄膜磁気ヘッド素子の絶縁体層の内部に形成し、磁極先端部の突出によりこれと磁気ディスク面との間隙を小さくするように構成することが提案されている。特許文献10には、スライダの底部に近接場光を発生させるための散乱体の上部に磁極が配置されている熱アシスト記録装置用ヘッドも提案されている。   Patent Document 7 shows an example of a heat-assisted recording method. Patent Document 8 exemplifies a method of locally heating, such as using a near-field heater. Further, as described in Patent Document 9, a magnetic head having a thin film magnetic head element formed with a thin film resistor in which a magnetic pole tip is protruded by thermal expansion by energizing and generating heat as necessary, When a magnetic head reads / writes from / to a magnetic disk, a thin film resistor is formed by causing the tip of the magnetic pole to thermally expand by being energized to generate heat. It has been proposed that the gap between the magnetic disk surface and the magnetic disk surface be reduced by the protrusion of the magnetic pole tip. Patent Document 10 also proposes a head for a heat-assisted recording apparatus in which a magnetic pole is arranged on the upper part of a scatterer for generating near-field light at the bottom of a slider.

特開平7−65357号公報Japanese Unexamined Patent Publication No. 7-65357 特開2006−196151号公報JP 2006-196151 A 特開昭59−165243号公報JP 59-165243 特開昭63−249925号公報JP-A-63-249925 特許第3730518号Japanese Patent No. 3730518 特開2005−190512号公報JP 2005-190512 A US2006/0154110A1US2006 / 0154110A1 US2002/0101673A1US2002 / 0101673A1 特開平5−20635号公報JP-A-5-20635 特開2007−128573号公報JP 2007-128573 A

面記録密度の増加に対応し、記録層に用いる結晶粒径を微細化する必要がある。しかしながら、記録層の結晶粒径を微細化すると、熱的な揺らぎによる記録磁化の不安定性が顕著になる。この対策として、(1)記録層の結晶性の向上、(2)結晶粒径分散の低減、(3)磁気異方性の大きな記録材料の利用、(4)書き込み性能の異なる磁性層の積層化等が提案されている。特に、磁気異方性の大きな記録材料を利用する際には、記録層を加熱し、保磁力を低減して書き込み性能を向上することが提案されている。   Corresponding to the increase in surface recording density, it is necessary to refine the crystal grain size used for the recording layer. However, when the crystal grain size of the recording layer is reduced, the instability of the recording magnetization due to thermal fluctuation becomes remarkable. As countermeasures, (1) improvement in crystallinity of the recording layer, (2) reduction in crystal grain size dispersion, (3) use of a recording material having a large magnetic anisotropy, and (4) lamination of magnetic layers having different writing performances Proposal has been proposed. In particular, when using a recording material having a large magnetic anisotropy, it has been proposed to improve the writing performance by heating the recording layer to reduce the coercive force.

しかしながら、金属間化合物の強磁性体を利用した磁気記録媒体では、加熱による書き込みを繰り返していくことにより、規則化が進んだ段階でL10構造をとることが期待される組成で構成される金属間化合物の規則度が向上し、結果として磁気異方性が増加するため書き込み性能が劣化する可能性があることについて十分な対策がなされていなかった。また、軟磁性下地層を用いた垂直磁気記録媒体で熱伝導率を考慮し、同時に書き込み性能を向上させた磁気記録媒体は提案されていなかった。磁気記録を行なう上での軟磁性下地層の役割を考慮し、軟磁性下地層と記録層の間隔を詰められる結晶性が高くかつ薄い低熱伝導率層を設けた磁気記録媒体も提案されていなかった。 However, in a magnetic recording medium using a ferromagnetic material of an intermetallic compound, a metal having a composition that is expected to have an L1 0 structure at a stage where ordering has progressed by repeating writing by heating. A sufficient measure has not been taken about the possibility that the writing performance may be deteriorated due to an increase in the degree of order of the intermetallic compound and consequently an increase in magnetic anisotropy. In addition, no magnetic recording medium has been proposed in which a perpendicular magnetic recording medium using a soft magnetic underlayer considers thermal conductivity and simultaneously improves writing performance. In consideration of the role of the soft magnetic underlayer in magnetic recording, a magnetic recording medium with a high crystallinity and thin low thermal conductivity layer that can close the gap between the soft magnetic underlayer and the recording layer has not been proposed. It was.

このような背景から、本発明が解決しようとする課題は、磁気記録媒体に磁気的な書き込みをする際に熱伝導率を考慮して、少ないエネルギ消費で効率良く磁気記録媒体を加熱し、同時に記録層に用いる規則合金の規則度が変化しても長期間にわたり書き込み性能を向上することを実現することにある。   From such a background, the problem to be solved by the present invention is to efficiently heat a magnetic recording medium with a small amount of energy consumption in consideration of thermal conductivity when magnetically writing to the magnetic recording medium. An object of the present invention is to improve the writing performance over a long period of time even if the degree of order of the ordered alloy used in the recording layer changes.

本発明の垂直磁気記録媒体は、剛体基板上に直接或いは接着層を介して軟磁性下地層を形成し、その軟磁性下地層上に非磁性中間層を介して軟磁性下地層、酸化物からなる低熱伝導中間層を形成後、直接或いは結晶配向性制御層を介して結晶粒径制御層を形成し、直接或いは結晶配向性制御兼低熱伝導中間層を介して、規則化が進んだ段階でL10構造をとることが期待される組成で構成されるFe−Pt合金或いはCo−Pt合金を主成分とするグラニュラ記録層、Fe−Pt合金或いはCo−Pt合金からなるキャップ層、保護層及び潤滑層をこの順に形成した構造を有する。接着層としてAl−Ti合金だけでなくCr−Ti合金等を用いることもできる。結晶粒径制御層としては、Ti,Mo,Wからなる群Mから選ばれる少なくとも1元素を添加したCr−M−B合金層を用いることができる。また、結晶粒径制御層としてCr−M−B合金層を形成後、結晶配向性制御兼低熱伝導中間層としてMgO層を設けることもできる。 In the perpendicular magnetic recording medium of the present invention, a soft magnetic underlayer is formed on a rigid substrate directly or via an adhesive layer, and the soft magnetic underlayer and oxide are formed on the soft magnetic underlayer via a nonmagnetic intermediate layer. After the formation of the low thermal conductivity intermediate layer, the crystal grain size control layer is formed directly or via the crystal orientation control layer, and at the stage where ordering progresses directly or via the crystal orientation control and low thermal conductivity intermediate layer. A granular recording layer mainly composed of an Fe—Pt alloy or a Co—Pt alloy having a composition expected to have an L1 0 structure, a cap layer made of an Fe—Pt alloy or a Co—Pt alloy, a protective layer, and The lubricating layer is formed in this order. As the adhesive layer, not only an Al—Ti alloy but also a Cr—Ti alloy can be used. As the crystal grain size control layer, a Cr-MB alloy layer to which at least one element selected from the group M consisting of Ti, Mo, and W is added can be used. Moreover, after forming a Cr-MB alloy layer as a crystal grain size control layer, an MgO layer can also be provided as a crystal orientation control and low thermal conduction intermediate layer.

規則化が進んだ段階でL10構造をとることが期待される組成で構成されるFe−Pt合金を主成分とするグラニュラ記録層は、Cuを含有してもよい。これらのFe−Pt合金或いはFe−Cu−Pt合金は規則化が進んだ段階でL10構造をとることが期待される組成で構成され、これらの金属間化合物を構成する組成に対しさらに、SiO2或いはTiO2やTaの酸化物から選ばれる少なくとも1種の酸化物を添加してグラニュラ記録層を構成する。 Granular recording layer mainly composed of composed Fe-Pt alloy composition is expected to take an L1 0 structure at the stage of progress in ordering may contain Cu. These Fe—Pt alloys or Fe—Cu—Pt alloys are composed of a composition that is expected to have an L1 0 structure at the stage of regularization, and in addition to the composition constituting these intermetallic compounds, SiO 2 2 or at least one oxide selected from TiO 2 and Ta oxides is added to form a granular recording layer.

或いは規則化が進んだ段階でL10構造をとることが期待される組成で構成されるCo−Pt合金を主成分とするグラニュラ記録層は、Coに対してNiを置換するように添加したものであってもよい。これらのCo−Pt合金或いはCo−Ni−Pt合金は、規則化が進んだ段階でL10構造をとることが期待される組成で構成され、これらの金属間化合物を構成する組成に対しさらにSiO2或いはTiO2やTaの酸化物から選ばれる少なくとも1種の酸化物を添加してグラニュラ記録層を構成する。 Or granular recording layer may take the L1 0 structure ordered has advanced stage as a main component composed of Co-Pt alloy composition to be expected, which was added to replace the Ni against Co It may be. These Co—Pt alloys or Co—Ni—Pt alloys are composed of a composition that is expected to have an L1 0 structure at a stage where ordering has progressed, and SiO 2 is further added to the composition constituting these intermetallic compounds. 2 or at least one oxide selected from TiO 2 and Ta oxides is added to form a granular recording layer.

結晶配向性制御層は、W−Co合金とすることができる。W−Co合金の組成としては、特開2005−190512号公報に記載のように、例えばW単体もしくはWを含む合金としてW−30at.%CoやW−40at.%Co合金が挙げられる。   The crystal orientation control layer can be a W-Co alloy. As a composition of W-Co alloy, as described in JP-A-2005-190512, for example, W-30 at.% Co and W-40 at.

剛体基板上に接着層を介して或いは直接基板上に軟磁性下地層を形成し、軟磁性下地層上に非磁性中間層を介して軟磁性下地層を形成した基板を大気中に取り出し、別の真空プロセスで基板を加熱後、酸化物からなる低熱伝導中間層、結晶配向性制御層、結晶粒径制御層をこの順に形成し、結晶配向性制御兼低熱伝導中間層を介して或いは直接結晶粒径制御層上に、規則化が進んだ段階でL10構造をとることが期待される組成で構成されるFe−Pt合金或いはCo−Pt合金を主成分とするグラニュラ記録層、Fe−Pt合金或いはCo−Pt合金からなるキャップ層、保護層を形成後、熱処理を行ない、その後潤滑層を形成することにより、本発明の垂直磁気記録媒体を作製することができる。キャップ層に用いるFe−Pt合金、或いはCo−Pt合金のPt組成は40at.%から60at.%であれば良い。Ptの添加濃度を減らしすぎると結晶性が変化するため、fcc構造或いはfct構造をとる組成であれば良い。 A soft magnetic underlayer is formed on a rigid substrate via an adhesive layer or directly on the substrate, and a soft magnetic underlayer is formed on the soft magnetic underlayer via a nonmagnetic intermediate layer. After heating the substrate in the vacuum process, a low thermal conductivity intermediate layer made of oxide, a crystal orientation control layer, and a crystal grain size control layer are formed in this order, and the crystal is controlled through the crystal orientation control and low thermal conductivity intermediate layer or directly. A granular recording layer mainly composed of an Fe—Pt alloy or a Co—Pt alloy having a composition that is expected to have an L1 0 structure at the stage of progress of ordering on the grain size control layer, Fe—Pt The perpendicular magnetic recording medium of the present invention can be manufactured by forming a cap layer and a protective layer made of an alloy or a Co—Pt alloy, followed by heat treatment, and then forming a lubricating layer. The Pt composition of the Fe—Pt alloy or Co—Pt alloy used for the cap layer may be 40 at.% To 60 at.%. Since the crystallinity changes when the Pt addition concentration is reduced too much, any composition having an fcc structure or an fct structure may be used.

本発明によれば、消費電力を低減して磁気記録媒体を加熱でき、同時に書き込み性能が常に優れた垂直磁気記録媒体を提供できる。   According to the present invention, it is possible to provide a perpendicular magnetic recording medium that can reduce power consumption and heat the magnetic recording medium, and at the same time has excellent writing performance.

本発明では、軟磁性下地層を用いた垂直磁気記録媒体において、軟磁性下地層と記録層の距離を低減するために、結晶配向性制御層上に記録層をヘテロエピタキシャル成長させ軟磁性下地層と記録層間の距離を最適化した。同時に結晶低熱伝導中間層を用いて熱伝導率を低下することにより、軟磁性下地層まで加熱しなくても記録層の保磁力を低下でき、低消費電力で磁化反転が可能となる。   In the present invention, in a perpendicular magnetic recording medium using a soft magnetic underlayer, a recording layer is heteroepitaxially grown on the crystal orientation control layer in order to reduce the distance between the soft magnetic underlayer and the recording layer. The distance between the recording layers was optimized. At the same time, by reducing the thermal conductivity using the crystalline low thermal conductivity intermediate layer, the coercive force of the recording layer can be reduced without heating to the soft magnetic underlayer, and the magnetization can be reversed with low power consumption.

剛体基板上に接着層を介して軟磁性下地層を形成すると機械的な信頼性が向上するため好ましい。軟磁性下地層の膜厚が30nm程度以下の場合には、膜応力が小さいため接着層は必ずしも設ける必要はない。軟磁性下地層上に酸化被膜を形成すると、酸化被膜の熱伝導率が1W/(m・K)程度と金属膜に比べ小さいため、記録時に軟磁性下地層を加熱せずに記録層を加熱しやすくなる。さらにこの酸化物からなる低熱伝導中間層上に結晶配向性制御層を介して、あるいは直接Ti,Mo,Wからなる群Mから選ばれる少なくとも1元素を添加したCr−M−B合金層からなる結晶粒径制御層を形成すると、図1に示すように体心立方構造をとる合金中間層の(100)面が基板面に平行に成長する。図1の矢印が体心立方構造のa軸に相当する。結果として、この結晶粒径制御層上に形成するグラニュラ記録層中のfcc或いはfct構造をとる部分の(001)面が、図2に示すように基板面と平行にヘテロエピタキシャル成長する。図2の矢印がfcc或いはfct構造のa軸に相当する。   Forming a soft magnetic underlayer on a rigid substrate via an adhesive layer is preferable because mechanical reliability is improved. When the thickness of the soft magnetic underlayer is about 30 nm or less, the adhesive stress is not necessarily provided because the film stress is small. When an oxide film is formed on a soft magnetic underlayer, the thermal conductivity of the oxide film is about 1 W / (m · K), which is smaller than that of a metal film. Therefore, the recording layer is heated without heating the soft magnetic underlayer during recording. It becomes easy to do. Furthermore, it consists of a Cr-MB alloy layer to which at least one element selected from the group M consisting of Ti, Mo, and W is directly added on the low thermal conductivity intermediate layer made of oxide via a crystal orientation control layer. When the crystal grain size control layer is formed, as shown in FIG. 1, the (100) plane of the alloy intermediate layer having a body-centered cubic structure grows parallel to the substrate surface. The arrow in FIG. 1 corresponds to the a-axis of the body-centered cubic structure. As a result, the (001) plane of the portion having the fcc or fct structure in the granular recording layer formed on the crystal grain size control layer is heteroepitaxially grown parallel to the substrate surface as shown in FIG. The arrow in FIG. 2 corresponds to the a-axis of the fcc or fct structure.

体心立方構造をとる結晶粒径制御層のCr−M−B合金膜に含まれるM濃度を調整し、体心立方構造のa軸長の√2倍の長さが、グラニュラ記録層のL10規則合金構造のa軸長より長くなるよう図3に示すように格子定数を制御すれば、グラニュラ記録層中のfct構造の(100)面は基板面と平行にヘテロエピタキシャル成長しにくくなり、グラニュラ記録層を形成後の熱処理により、歪解消を駆動力として合金の規則度の向上と粒界偏析の促進が期待される。 By adjusting the M concentration contained in the Cr-MB alloy film of the grain size control layer having a body-centered cubic structure, the length of √2 times the a-axis length of the body-centered cubic structure is L1 of the granular recording layer. If the lattice constant is controlled as shown in FIG. 3 so as to be longer than the a-axis length of the 0-order alloy structure, the (100) plane of the fct structure in the granular recording layer is less likely to be heteroepitaxially grown parallel to the substrate surface. The heat treatment after forming the recording layer is expected to improve the degree of ordering of the alloy and promote grain boundary segregation by using the strain relief as a driving force.

規則合金のCoPtはa軸の格子定数が0.38nm、c軸の格子定数が0.368nmであるのに対して、FePtは、a=0.385nm、c=0.371nmである。よって、それぞれの記録層の合金に対して0.272,0.269nm以上のbcc構造をとる結晶粒径制御層を形成すれば、グラニュラ記録層中のfcc或いはfct構造をとる部分の(001)面が図3のように配向させやすくなる。   The ordered alloy CoPt has an a-axis lattice constant of 0.38 nm and a c-axis lattice constant of 0.368 nm, whereas FePt has a = 0.385 nm and c = 0.371 nm. Therefore, if a crystal grain size control layer having a bcc structure of 0.272, 0.269 nm or more is formed for each recording layer alloy, (001) of the portion having the fcc or fct structure in the granular recording layer. It becomes easy to orient the surface as shown in FIG.

Cr−M合金に含まれるM濃度を増加していくと結晶粒径が増加する。Cr−M合金にBを添加すると、結晶粒を微細化できる。Bの添加濃度を10at.%以上とした場合、結晶粒の微細化の効果が大きくなりすぎるため、効果的なBの添加濃度範囲は2at.%から8at.%、より好ましくは4at.%以上8at.%以下のBを添加することが好ましい。このCr−M−B合金からなる結晶粒径制御層上にさらにMgOからなる結晶配向性制御兼低熱伝導中間層を設けることにより、結晶配向を向上させ、同時に記録層から基板側への断熱性を高めることもできる。   As the M concentration contained in the Cr-M alloy increases, the crystal grain size increases. When B is added to the Cr-M alloy, the crystal grains can be refined. When the additive concentration of B is 10 at.% Or more, the effect of refining crystal grains becomes too large. Therefore, the effective concentration range of B is 2 at.% To 8 at.%, More preferably 4 at.% Or more. It is preferable to add 8 at.% Or less of B. By providing a crystal orientation control and low thermal conductivity intermediate layer made of MgO on the crystal grain size control layer made of this Cr-MB alloy, the crystal orientation is improved, and at the same time, heat insulation from the recording layer to the substrate side. Can also be increased.

Fe−Pt合金を主成分とするグラニュラ記録層を形成する際に、FeをCuで置換するように添加すると、L10規則構造を形成しやすくなるので好ましい。Co−Pt合金を主成分とするグラニュラ記録層を形成する際に、CoをNiで置換するように添加しても、L10規則構造を形成しやすくなるので好ましい。記録層をグラニュラ化するのにSiO2やTiO2の他、Ta酸化物あるいはこれらの混合物を添加することもできる。 The Fe-Pt alloy in forming the granular recording layer mainly, the addition of Fe to replace with Cu, since easily forming an L1 0 ordered structure preferred. The Co-Pt alloy in forming the granular recording layer mainly composed, even if Co is added to replace at Ni, since easily forming an L1 0 ordered structure preferred. To granulate the recording layer, Ta oxide or a mixture thereof can be added in addition to SiO 2 and TiO 2 .

磁気記録媒体を形成した直後にはL10規則合金の規則度は必ずしも高くない。しかしながら、加熱記録を繰り返すうちに徐々に規則度が向上し、保磁力が増加する。グラニュラ記録層の保磁力が増加しても、磁化反転のきっかけを与えるキャップ層をグラニュラ記録層の上に形成することにより、書き込み性能に問題が生じない。 Rules of the L1 0 ordered alloy immediately after the formation of the magnetic recording medium is not necessarily high. However, as heating recording is repeated, the regularity gradually improves and the coercive force increases. Even if the coercive force of the granular recording layer is increased, no problem occurs in writing performance by forming a cap layer on the granular recording layer that triggers magnetization reversal.

キャップ層として用いることができる材料はグラニュラ記録層よりも異方性磁界が小さな材料であれば良い。例えば規則度が低いfcc構造或いはfct構造をとるFeをCuで置換していないFe−Pt合金や、CoをNiで置換していないCo−Pt合金などからなるキャップ層を用いることができる。キャップ層を形成した後に設ける保護層としては、窒素あるいは水素を含んだ炭素を主成分とする保護層のほか、窒化珪素を主成分とする保護層を形成することも加熱のしやすさの観点からから好ましい。保護層を形成後、熱処理を行ない、その後潤滑層を形成することにより、グラニュラ記録層のL10構造が期待される合金部分の規則度を向上させることができる。 The material that can be used as the cap layer may be any material that has a smaller anisotropic magnetic field than the granular recording layer. For example, a cap layer made of an Fe-Pt alloy in which Fe having a low degree of order or an fct structure in which Fe is not substituted with Cu or a Co-Pt alloy in which Co is not substituted with Ni can be used. As a protective layer to be provided after the cap layer is formed, in addition to a protective layer mainly composed of carbon containing nitrogen or hydrogen, it is also possible to form a protective layer mainly composed of silicon nitride from the viewpoint of ease of heating. To preferred. After forming the protective layer, and was heat-treated, by subsequently forming a lubricant layer, it is possible to L1 0 structure of the granular recording layer improves the degree of order of the alloy portion expected.

以下、図面を参照して、実施例について説明する。   Hereinafter, embodiments will be described with reference to the drawings.

図4は、実施例による磁気記録媒体の構成を示す断面図である。この磁気記録媒体は、基板10上に接着層12、軟磁性下地層141、非磁性層142、軟磁性下地層143、酸化物からなる低熱伝導中間層144、結晶粒径制御層18、グラニュラ記録層20、キャップ層22、保護層24及び潤滑層26を有する。   FIG. 4 is a cross-sectional view showing the configuration of the magnetic recording medium according to the embodiment. This magnetic recording medium includes an adhesive layer 12, a soft magnetic underlayer 141, a nonmagnetic layer 142, a soft magnetic underlayer 143, a low thermal conductive intermediate layer 144 made of an oxide, a crystal grain size control layer 18, a granular recording on a substrate 10. It has a layer 20, a cap layer 22, a protective layer 24 and a lubricating layer 26.

次に磁気記録媒体の製造方法について説明する。基板10として厚さ0.508mm、外径48mmの化学強化したガラス基板を用いた。インライン式の枚葉式DC/RFマグネトロンスパッタリング装置を用い、全てのチャンバを2×10-5Pa以下の真空まで排気した。その後、基板10を載せたキャリアを各プロセスチャンバに移動させて、グラニュラ記録層20を除き、放電用Arガス圧を0.7PaとしてDCマグネトロンスパッタリング法で以下の薄膜形成を行なった。薄膜の形成方法はDCマグネトロンスパッタに限定されない。特にグラニュラ記録層20の形成には、期待される規則合金の結晶性を高めるため、高周波マグネトロンスパッタ法を用いた。また、酸化物を含有した薄膜形成時にDCパルススパッタ法やバイアス電圧を引加することも可能である。 Next, a method for manufacturing a magnetic recording medium will be described. A chemically strengthened glass substrate having a thickness of 0.508 mm and an outer diameter of 48 mm was used as the substrate 10. All chambers were evacuated to a vacuum of 2 × 10 −5 Pa or less using an in-line single-wafer DC / RF magnetron sputtering apparatus. Thereafter, the carrier on which the substrate 10 was placed was moved to each process chamber, the granular recording layer 20 was removed, the discharge Ar gas pressure was 0.7 Pa, and the following thin film was formed by DC magnetron sputtering. The method for forming the thin film is not limited to DC magnetron sputtering. In particular, the granular recording layer 20 was formed using a high-frequency magnetron sputtering method in order to increase the expected crystallinity of the ordered alloy. It is also possible to apply a DC pulse sputtering method or a bias voltage when forming a thin film containing an oxide.

本実施例では、ガラス基板10として、硼珪酸ガラス、或いはアルミノシリケートガラスからなる基板表面を化学強化した基板を洗浄後、乾燥して用いた。化学強化したガラス基板に替え、アルミニウム合金基板上にNi−Pめっき後表面研磨した基板や、SiやTi合金からなる剛体基板を用いることもできる。基板の外径は48mmに限定されることなく、65mmや84mm等から選択できる。基板の厚みも剛性が保たれる範囲で選択でき、0.635mmや0.8mm等から選択できる。接着層12として厚さ5nmの50at.%Al−50at.%Ti合金膜を形成した。   In this example, a substrate obtained by chemically strengthening the substrate surface made of borosilicate glass or aluminosilicate glass was used as the glass substrate 10 after being washed and dried. Instead of a chemically strengthened glass substrate, a substrate whose surface is polished after Ni-P plating on an aluminum alloy substrate, or a rigid substrate made of Si or Ti alloy can also be used. The outer diameter of the substrate is not limited to 48 mm, and can be selected from 65 mm, 84 mm, and the like. The thickness of the substrate can also be selected as long as the rigidity is maintained, and can be selected from 0.635 mm, 0.8 mm, or the like. A 50 at.% Al-50 at.% Ti alloy film having a thickness of 5 nm was formed as the adhesive layer 12.

軟磁性下地層141として厚さ20nmの51at.%Fe−34at.%Co−10at.%Ta−5at.%Zr合金膜を形成し、非磁性層142として厚さ0.7nmのRu膜を形成後、軟磁性下地層143として厚さ20nmの51at.%Fe−34at.%Co−10at.%Ta−5at.%Zr合金膜を形成した。軟磁性下地層141,143の組成は前記組成に限定されないが、TaとZrの添加元素の濃度は合計で5at.%添加されている場合、基板を300℃に加熱すると5秒以内の酸化プロセスで酸化物からなる低熱伝導中間層144を形成することができる。TaとZrの添加元素の濃度は、合計で20at.%添加されている場合に軟磁性下地層141と143をそれぞれ20nmより厚くすれば書き込み特性が向上した。TaとZrの添加元素の濃度を15at.%に固定したまま、51at.%Fe−34at.%Co−10at.%Ta−5at.%Zr合金の替わりに例えば48at.%Fe−37at.%Co−10at.%Ta−5at.%Zr合金に変更することも可能である。X線回折による反射曲線の測定結果から、これらのFe−Co−Ta−Zr合金膜はいずれも微結晶あるいは非晶質であると考えられる。   A 51 at.% Fe-34 at.% Co-10 at.% Ta-5 at.% Zr alloy film with a thickness of 20 nm is formed as the soft magnetic underlayer 141, and a Ru film with a thickness of 0.7 nm is formed as the nonmagnetic layer 142. Thereafter, a 51 at.% Fe-34 at.% Co-10 at.% Ta-5 at.% Zr alloy film having a thickness of 20 nm was formed as the soft magnetic underlayer 143. The composition of the soft magnetic underlayers 141 and 143 is not limited to the above composition, but when the total concentration of added elements of Ta and Zr is 5 at.%, An oxidation process within 5 seconds when the substrate is heated to 300 ° C. Thus, the low thermal conductive intermediate layer 144 made of an oxide can be formed. When the total concentration of the added elements of Ta and Zr was 20 at.%, The write characteristics were improved by making the soft magnetic underlayers 141 and 143 thicker than 20 nm, respectively. For example, 48 at.% Fe-37 at.% Co is used instead of the 51 at.% Fe-34 at.% Co-10 at.% Ta-5 at.% Zr alloy while the concentration of the additive element of Ta and Zr is fixed at 15 at. It is also possible to change to a -10 at.% Ta-5 at.% Zr alloy. From the measurement result of the reflection curve by X-ray diffraction, it is considered that all of these Fe—Co—Ta—Zr alloy films are microcrystalline or amorphous.

非磁性層142はRu或いはRuを主成分とする合金として、Ru−50at.%Fe合金、Ru−40at.%Cr合金、Ru−30at.%Co合金などを用いることができる。その膜厚は、軟磁性下地層141と143が反強磁性結合できる範囲で変えることもできる。さらに、この反強磁性結合を用いて軟磁性下地層141と143の残留磁化を等しく反平行にすれば、再生ノイズを低減することができる。軟磁性下地層143を形成後、基板を300℃に加熱し、1vol.%酸素を含有したArガスを5秒暴露することにより、酸化物からなる低熱伝導中間層144を形成した。   As the non-magnetic layer 142, Ru-50at.% Fe alloy, Ru-40at.% Cr alloy, Ru-30at.% Co alloy or the like can be used as an alloy containing Ru or Ru as a main component. The film thickness can be changed within a range in which the soft magnetic underlayers 141 and 143 can be antiferromagnetically coupled. Furthermore, reproduction noise can be reduced if the residual magnetizations of the soft magnetic underlayers 141 and 143 are equally antiparallel using this antiferromagnetic coupling. After forming the soft magnetic underlayer 143, the substrate was heated to 300 ° C., and Ar gas containing 1 vol.% Oxygen was exposed for 5 seconds to form a low thermal conductive intermediate layer 144 made of oxide.

酸化物からなる低熱伝導中間層144を形成後、結晶粒径制御層18としてCr−18at.%Ti−4at.%B合金膜を3nmから10nm形成した。さらにグラニュラ記録層20として92 mol%(50at.%Fe−50at.%Pt)−8mol%SiO2膜を12nm形成した。グラニュラ記録層20を形成する際の放電用Arガス圧を2Paとした。 After forming the low thermal conductivity intermediate layer 144 made of an oxide, a Cr-18 at.% Ti-4 at.% B alloy film was formed as a crystal grain size control layer 18 from 3 nm to 10 nm. Further, a 92 mol% (50 at.% Fe-50 at.% Pt) -8 mol% SiO 2 film having a thickness of 12 nm was formed as the granular recording layer 20. The Ar gas pressure for discharge when forming the granular recording layer 20 was 2 Pa.

これらの試料について銅の特性X線を用いた反射回折曲線を測定した。結果、Cr−Ti−B合金膜の膜が厚くなるに従い、bcc構造に由来する200回折強度が増加することが確認された。この回折強度の増加に伴い、グラニュラ記録層に起因すると考えられるfcc構造或いはfct構造に由来する002回折強度とfct構造に由来する001回折強度の増加が観測された。このことから、この媒体は記録層の磁化容易軸が膜面垂直方向に向いた垂直磁気記録媒体であることが確認された。   Reflection diffraction curves using copper characteristic X-rays were measured for these samples. As a result, it was confirmed that the 200 diffraction intensity derived from the bcc structure increases as the thickness of the Cr—Ti—B alloy film increases. Along with this increase in the diffraction intensity, an increase in the 002 diffraction intensity derived from the fcc structure or the fct structure considered to be caused by the granular recording layer and an increase in the 001 diffraction intensity derived from the fct structure were observed. From this, it was confirmed that this medium was a perpendicular magnetic recording medium in which the easy axis of magnetization of the recording layer was oriented in the direction perpendicular to the film surface.

グラニュラ記録層20を形成後、60at.%Fe−40at.%Pt合金からなるキャップ層22を3nmから12nm形成し、窒素あるいは水素を含有し炭素を主成分とする保護層24を3nm形成した。さらに窒素置換した不活性雰囲気中で300℃に1時間保持後、大気圧に戻し、フッ素を主成分とする潤滑層26を形成した。   After forming the granular recording layer 20, a cap layer 22 made of a 60 at.% Fe-40 at.% Pt alloy was formed to 3 to 12 nm, and a protective layer 24 containing nitrogen or hydrogen and containing carbon as a main component was formed to 3 nm. Furthermore, after maintaining at 300 ° C. for 1 hour in an inert atmosphere substituted with nitrogen, the pressure was returned to atmospheric pressure to form a lubricating layer 26 containing fluorine as a main component.

機械的な浮上特性を確認後、幾何学トラック幅PW 105nmの書き込み極で記録しシールドギャップ長35nmを有するTMRヘッドを用いて磁気記録媒体の電磁変換特性を測定した。図5に、単磁極ヘッドと近接場光を発生させるための散乱体を組み合わせた記録ヘッドを中心とした断面図を示す。スライダ32の表面に近接場光を発生させるための散乱体34を形成し、その上に磁極36を形成した。波長785nmの半導体レーザ38を用いて光を発生させ、半導体レーザ38から発生する光をコア部40とクラッド部42から構成される導波路を用いて散乱体34まで導いた。導波路のコア部40はクラッド部42で囲まれている。薄膜コイル44を用いて発生させた磁界を、主磁極46によって散乱体34の近くに導いた。主磁極46及び薄膜コイル44は、導波路に対して流出端48側に配置した。散乱体34の上部にある磁極36と主磁極46は、磁極50を用いて結合した。薄膜コイル44の反対側には、磁極51を介して閉磁路を形成するための補助磁極52を形成した。散乱体34上の磁極36と磁極50、主磁極46、磁極51、補助磁極52によって形成される磁気回路に、コイル44が鎖交している。導波路の横には、記録信号を再生するための、磁気再生素子54を形成した。磁気再生素子54の周辺には、周りからの磁界を遮蔽するためのシールド56を形成した。この再生素子は、補助磁極52の横(流出端48側)に置いても良いが、本実施例では図5に示す再生素子の配置とし、磁気再生素子54としてTMR素子を用いた。必要に応じて通電して発熱させることにより再生素子54を熱膨張させ突出させるようにした薄膜抵抗体58を形成した。   After confirming the mechanical flying characteristics, the electromagnetic conversion characteristics of the magnetic recording medium were measured using a TMR head having a shield gap length of 35 nm recorded with a writing pole having a geometric track width PW of 105 nm. FIG. 5 is a cross-sectional view centered on a recording head in which a single magnetic pole head and a scatterer for generating near-field light are combined. A scatterer 34 for generating near-field light was formed on the surface of the slider 32, and a magnetic pole 36 was formed thereon. Light was generated using a semiconductor laser 38 having a wavelength of 785 nm, and the light generated from the semiconductor laser 38 was guided to the scatterer 34 using a waveguide composed of a core portion 40 and a cladding portion 42. The core portion 40 of the waveguide is surrounded by a clad portion 42. A magnetic field generated using the thin film coil 44 was guided near the scatterer 34 by the main magnetic pole 46. The main magnetic pole 46 and the thin film coil 44 are arranged on the outflow end 48 side with respect to the waveguide. The magnetic pole 36 and the main magnetic pole 46 on the upper part of the scatterer 34 are coupled using the magnetic pole 50. An auxiliary magnetic pole 52 for forming a closed magnetic circuit is formed on the opposite side of the thin film coil 44 via the magnetic pole 51. A coil 44 is linked to a magnetic circuit formed by the magnetic pole 36, the magnetic pole 50, the main magnetic pole 46, the magnetic pole 51, and the auxiliary magnetic pole 52 on the scatterer 34. A magnetic reproducing element 54 for reproducing a recording signal is formed beside the waveguide. A shield 56 for shielding a magnetic field from the surroundings is formed around the magnetic reproducing element 54. This reproducing element may be placed beside the auxiliary magnetic pole 52 (on the outflow end 48 side), but in this embodiment, the reproducing element is arranged as shown in FIG. 5 and a TMR element is used as the magnetic reproducing element 54. A thin film resistor 58 was formed in which the reproducing element 54 was thermally expanded and protruded by energizing and generating heat as necessary.

記録時には120mWの波長785nmの半導体レーザ38を用いて光を発生させ、加熱した。再生時には半導体レーザ38を用いず、薄膜抵抗体58に60mW通電する条件で電磁変換特性を評価した。   During recording, light was generated and heated using a semiconductor laser 38 having a wavelength of 785 nm with 120 mW. The electromagnetic conversion characteristics were evaluated under the condition that the thin film resistor 58 was energized with 60 mW without using the semiconductor laser 38 during reproduction.

磁気記録媒体を90/s(=5400pm)で回転させ、半径21mmでヘッドのskew角度を0度とした。オーバーライト特性(O/W)は、47.2kFC/mm(=1200kFCI)で消磁後、35.4kFC/mm(=900kFCI)の信号を書き、7.01kFC/mm(=178kFCI)の信号を重ね書きし、35.4kFC/mmの信号の消し残りを評価した。磁気記録媒体に対してリード・ライトを行うときに、60mW通電して薄膜抵抗体58を発熱させ電磁変換特性を測定した。並行して同時に加熱して書き込み回数に対する経時変化を同一トラック上で測定した。   The magnetic recording medium was rotated at 90 / s (= 5400 pm), and the skew angle of the head was 0 degree with a radius of 21 mm. Overwrite characteristic (O / W) is demagnetized at 47.2 kFC / mm (= 1200 kFCI), then a 35.4 kFC / mm (= 900 kFCI) signal is written, and a 7.01 kFC / mm (= 178 kFCI) signal is superimposed. Writing was performed and the unerased remainder of the 35.4 kFC / mm signal was evaluated. When performing read / write on the magnetic recording medium, the thin film resistor 58 was heated by energizing 60 mW, and the electromagnetic conversion characteristics were measured. The time-dependent change with respect to the number of writings was measured on the same track by heating in parallel.

その結果、加熱初期のオーバーライト特性に対して1万回の重ね書きを実施後でもオーバーライト特性は±0.2dBの誤差範囲に入っており、規則合金の規則度が仮に変化したとしても長期間にわたり書き込み性能に問題ないことが明らかになった。また、キャップ層22として4nm以上の厚さとなるように形成すると、図6に示すようにオーバーライト特性が改善された。   As a result, even after overwriting 10,000 times with respect to the overwrite characteristic in the initial stage of heating, the overwrite characteristic is within an error range of ± 0.2 dB, and even if the degree of ordering of the ordered alloy changes temporarily, it is long. It became clear that there was no problem in writing performance over the period. When the cap layer 22 was formed to have a thickness of 4 nm or more, the overwrite characteristics were improved as shown in FIG.

幾何学トラック幅(Pw)で規格化した書き込みトラック幅(Tw)とキャップ層22の厚さの関係を図7に示す。キャップ層の膜厚を増加すると(Tw/Pw)値が増加する傾向は、キャップ層の材料によらなかった。これらの結果から、キャップ層の厚さは少なくとも4nm程度必要であるが、トラック幅の広がりを考慮すると5nmから8nm程度形成すれば良いと考えられる。   FIG. 7 shows the relationship between the write track width (Tw) normalized by the geometric track width (Pw) and the thickness of the cap layer 22. The tendency of increasing the (Tw / Pw) value when the thickness of the cap layer was increased was not dependent on the material of the cap layer. From these results, the thickness of the cap layer is required to be at least about 4 nm, but it is considered that the thickness should be about 5 to 8 nm in consideration of the increase in the track width.

〔比較例1〕
結晶粒径制御層18としてCr−18at.%Ti−4at.%B合金膜を形成せずに、酸化物からなる低熱伝導中間層144を形成後、直接グラニュラ記録層20として92mol%(50at.%Fe−50at.%Pt)−8mol%SiO2膜を12nm形成したことを除き、他のプロセス条件はすべて実施例1に記載の条件で形成した。この磁気記録媒体について90/s(=5400pm)で回転させ、半径21mmでヘッドのskew角度を0度でオーバーライト特性(O/W)を測定した。その結果、120mWの波長785nmの半導体レーザ38を用いて光を発生させ記録時に加熱した場合に、O/Wは、−11dB程度であった。半導体レーザの投入電力を140mWに増加しても、O/Wは、−15.4dBであった。
[Comparative Example 1]
After forming the low thermal conductive intermediate layer 144 made of oxide without forming the Cr-18 at.% Ti-4 at.% B alloy film as the crystal grain size control layer 18, 92 mol% (50 at. % Fe-50at.% Pt) -8 mol% The SiO 2 film was formed to a thickness of 12 nm. All other process conditions were the same as those described in Example 1. The magnetic recording medium was rotated at 90 / s (= 5400 pm), and the overwrite characteristic (O / W) was measured with a radius of 21 mm and a head skew angle of 0 degree. As a result, when light was generated using the semiconductor laser 38 with a wavelength of 785 nm of 120 mW and heated during recording, the O / W was about −11 dB. Even when the input power of the semiconductor laser was increased to 140 mW, the O / W was -15.4 dB.

また、軟磁性下地層143を形成後、基板を300℃に加熱し、1vol.%酸素を含有したArガスに暴露することなく、結晶粒径制御層18としてCr−18at.%Ti−4at.%B合金膜を5nm形成した。その後、直接グラニュラ記録層20として92 mol%(50at.%Fe−50at.%Pt)−8mol%SiO2膜を12nm形成したことを除き、他のプロセス条件はすべて実施例1に記載の条件で形成した。この磁気記録媒体についてオーバーライト特性(O/W)を測定した結果、120mWの波長785nmの半導体レーザ38を用いて光を発生させ記録時に加熱した場合に、O/Wは、−12.3dB程度であった。半導体レーザの投入電力を140mWに増加しても、O/Wは、−16.5dBであった。 Further, after forming the soft magnetic underlayer 143, the substrate is heated to 300 ° C., and exposed to Ar gas containing 1 vol.% Oxygen, without being exposed to Cr-18 at.% Ti-4at. A 5% B alloy film was formed. Thereafter, all the other process conditions were the same as those described in Example 1 except that a 92 mol% (50 at.% Fe-50 at.% Pt) -8 mol% SiO 2 film was directly formed as the granular recording layer 20 to 12 nm. Formed. As a result of measuring the overwrite characteristics (O / W) of this magnetic recording medium, when light was generated using a semiconductor laser 38 having a wavelength of 785 nm of 120 mW and heated during recording, the O / W was about −12.3 dB. Met. Even when the input power of the semiconductor laser was increased to 140 mW, the O / W was -16.5 dB.

これらの結果から、実施例1に記載したように、120mWの加熱で−23dB以下のオーバーライト特性を得るには、軟磁性下地層143、酸化物からなる低熱伝導中間層144、結晶粒径制御層18、グラニュラ記録層20、キャップ層22、保護層24を順に形成し、不活性雰囲気中で熱処理した磁気記録媒体が有効であることが明らかとなった。   From these results, as described in Example 1, in order to obtain an overwrite characteristic of −23 dB or less by heating at 120 mW, the soft magnetic underlayer 143, the low thermal conductive intermediate layer 144 made of oxide, the crystal grain size control It was found that a magnetic recording medium in which the layer 18, the granular recording layer 20, the cap layer 22, and the protective layer 24 are formed in this order and heat-treated in an inert atmosphere is effective.

実施例1で軟磁性下地層143を形成後、一旦大気中に取り出し、別の製膜装置で以下のような後工程を設定した。2×10-5Pa以下まで真空排気後、300℃に加熱し、軟磁性下地層143の表面に酸化層からなる低熱伝導中間層144を形成後、W−30at.%Co合金からなる結晶配向性制御層16を3nm形成し、その表面をArで希釈した酸素雰囲気中に暴露して制御して酸化した。 After forming the soft magnetic underlayer 143 in Example 1, it was once taken out into the atmosphere, and the following post-process was set with another film forming apparatus. After evacuating to 2 × 10 −5 Pa or less, heating to 300 ° C., forming a low thermal conductive intermediate layer 144 made of an oxide layer on the surface of the soft magnetic underlayer 143, and then crystal orientation made of a W-30 at.% Co alloy The property control layer 16 was formed to 3 nm, and its surface was exposed to an oxygen atmosphere diluted with Ar to be controlled and oxidized.

さらに、結晶粒径制御層18としてCr−18at.%Ti−4at.%B合金膜を3nmから10nm形成した。さらにグラニュラ記録層20として(50at.%Fe−50at.%Pt)−8mol%SiO2膜を12nm形成した。グラニュラ記録層20を形成する際の放電用Arガス圧を2Paとした。 Further, a Cr-18 at.% Ti-4 at.% B alloy film was formed from 3 nm to 10 nm as the crystal grain size control layer 18. Further, as the granular recording layer 20, a (50 at.% Fe-50 at.% Pt) -8 mol% SiO 2 film was formed to 12 nm. The Ar gas pressure for discharge when forming the granular recording layer 20 was 2 Pa.

図8に示す断面構成を有するこれらの試料について、グラニュラ磁性層の平均結晶粒径を測定した。平均結晶粒径<D>は、透過電子顕微鏡(TEM)像から算出した。まず、基板面に平行な方向の記録層の結晶粒像を透過電子顕微鏡により撮影した。次に、得られた写真をスキャナで取り込み、画像のコントラストが観察されるコア部分を結晶粒と定義し、各結晶粒に存在するピクセル数を計算した。ピクセル数とスケールとの換算から、各結晶の面積を求め、得られた各結晶粒の面積と同じ面積の真円の直径として結晶粒径を定義し、個々の結晶粒の粒径Diを求めた。この計算を300個程度の結晶粒について行ない、得られた粒子径の算術平均値を平均結晶粒径<D>とした。   For these samples having the cross-sectional structure shown in FIG. 8, the average crystal grain size of the granular magnetic layer was measured. The average crystal grain size <D> was calculated from a transmission electron microscope (TEM) image. First, a crystal grain image of the recording layer in a direction parallel to the substrate surface was taken with a transmission electron microscope. Next, the obtained photograph was captured by a scanner, the core portion where the contrast of the image was observed was defined as a crystal grain, and the number of pixels present in each crystal grain was calculated. From the conversion of the number of pixels and the scale, the area of each crystal is obtained, the crystal grain size is defined as the diameter of a perfect circle having the same area as the obtained crystal grain area, and the grain diameter Di of each crystal grain is obtained. It was. This calculation was performed for about 300 crystal grains, and the arithmetic average value of the obtained particle diameters was defined as the average crystal grain diameter <D>.

8mol%SiO2を添加したFe−Pt−SiO2膜では、平均結晶粒径<D>が約8nmであった。10mol%SiO2を添加したFe−Pt−SiO2膜では、<D>が6.2nmあった。さらに12mol%SiO2を添加したFe−Pt−SiO2膜では、<D>が5nmまで減少した。 In the Fe—Pt—SiO 2 film added with 8 mol% SiO 2 , the average crystal grain size <D> was about 8 nm. In the Fe—Pt—SiO 2 film added with 10 mol% SiO 2 , <D> was 6.2 nm. Further, in the Fe—Pt—SiO 2 film added with 12 mol% SiO 2 , <D> decreased to 5 nm.

結晶粒径制御層として形成したbcc構造を有するCr−Ti−B合金層が厚くなると、bcc構造に由来する200回折強度が増加した。この結晶粒径制御層によるX線回折強度の増加に伴い、記録層のfcc構造或いはfct構造に由来する002回折強度とfct構造に由来する001回折強度の増加も観測された。これらのX線回折強度の挙動から、bcc構造をとる結晶粒径制御層とこの上に形成するfcc構造或いはfct構造を有する記録層はヘテロエピタキシャル成長の関係にあると考えられる。   When the Cr—Ti—B alloy layer having the bcc structure formed as the crystal grain size control layer was thickened, the 200 diffraction intensity derived from the bcc structure increased. Along with the increase in X-ray diffraction intensity by the crystal grain size control layer, an increase in 002 diffraction intensity derived from the fcc structure or fct structure of the recording layer and an increase in 001 diffraction intensity derived from the fct structure were also observed. From the behavior of these X-ray diffraction intensities, it is considered that the crystal grain size control layer having a bcc structure and the recording layer having an fcc structure or fct structure formed thereon have a heteroepitaxial growth relationship.

グラニュラ記録層20を形成後、図9に示すように60at.%Fe−40at.%Pt合金、或いはCo−40at.%Pt合金からなるキャップ層22を3nmから10nm形成し、窒素あるいは水素を含有し炭素を主成分とする保護層24を2.5nm形成した。さらに窒素置換した不活性雰囲気中で300℃に1時間保持後、大気圧に戻し、フッ素を主成分とする潤滑層26を形成した。   After forming the granular recording layer 20, as shown in FIG. 9, a cap layer 22 made of 60 at.% Fe-40 at.% Pt alloy or Co-40 at.% Pt alloy is formed from 3 nm to 10 nm, and contains nitrogen or hydrogen. Then, the protective layer 24 mainly composed of carbon was formed to 2.5 nm. Furthermore, after maintaining at 300 ° C. for 1 hour in an inert atmosphere substituted with nitrogen, the pressure was returned to atmospheric pressure to form a lubricating layer 26 containing fluorine as a main component.

機械的な浮上特性を確認後、実施例1と同じヘッドを用い、記録時には120mWの波長785nmの半導体レーザ38を用いて加熱した。再生時には半導体レーザ38を用いず、薄膜抵抗体58に60mW通電する条件で電磁変換特性を測定した。その結果、前記キャップ層22として4nm以上の厚さとなるように形成するとオーバーライト特性が実施例1に比べ1dBから4dB改善された。一方、書き込みトラック幅はキャップ層22が厚くなると広くなった。この傾向、すなわちキャップ層が厚くなるとトラック幅が広くなるという傾向は、キャップ層の材料を変えても同様であった。これらの結果から、キャップ層の厚さは少なくとも4nm程度必要であるが、トラック幅の広がりを考慮すると6〜8nm程度形成すれば良いと考えられる。   After confirming the mechanical flying characteristics, the same head as in Example 1 was used, and heating was performed using a semiconductor laser 38 having a wavelength of 785 nm of 120 mW during recording. During reproduction, the semiconductor laser 38 was not used, and the electromagnetic conversion characteristics were measured under the condition that the thin film resistor 58 was energized with 60 mW. As a result, when the cap layer 22 was formed to have a thickness of 4 nm or more, the overwrite characteristic was improved from 1 dB to 4 dB as compared with Example 1. On the other hand, the write track width became wider as the cap layer 22 became thicker. This tendency, that is, the tendency that the track width becomes wider as the cap layer becomes thicker was the same even when the material of the cap layer was changed. From these results, the thickness of the cap layer needs to be at least about 4 nm, but it is considered that the thickness should be about 6 to 8 nm in consideration of the increase in the track width.

並行して同時に加熱書き込み回数に対する経時変化を同一トラック上で測定した。結果、加熱初期のオーバーライト特性に対して1万回の重ね書きを実施後でもオーバーライト特性は±0.2dBの誤差範囲に入っており、規則合金の規則度に変化があったとしても長期間にわたり書き込み性能に問題ないことを確認した。   In parallel, the time-dependent change with respect to the number of heating writings was measured on the same track. As a result, even after overwriting 10,000 times with respect to the overwrite characteristics in the initial stage of heating, the overwrite characteristics are within an error range of ± 0.2 dB, and even if there is a change in the degree of order of the ordered alloy It was confirmed that there was no problem in writing performance over a period.

実施例1では軟磁性下地層143を形成後、基板を300℃に加熱し、1vol.%酸素を含有したArガスを5秒暴露することにより酸化物からなる低熱伝導中間層144を形成し、直接結晶粒径制御層18としてCr−18at.%Ti−4at.%B合金膜を形成した。   In Example 1, after the soft magnetic underlayer 143 is formed, the substrate is heated to 300 ° C., and Ar gas containing 1 vol.% Oxygen is exposed for 5 seconds to form a low thermal conductive intermediate layer 144 made of oxide. A Cr-18 at.% Ti-4 at.% B alloy film was directly formed as the crystal grain size control layer 18.

一方、本実施例2では、軟磁性下地層143を形成後、一旦大気中に取り出し、別の製膜装置で2×10-5Pa以下まで真空排気後、300℃に加熱し、軟磁性下地層143の表面に酸化層からなる低熱伝導中間層144を形成後、W−30at.%Co合金からなる結晶配向性制御層16を3nm形成し、その表面をArで希釈した酸素雰囲気中に暴露して制御して酸化後に、結晶粒径制御層18としてCr−18at.%Ti−4at.%B合金膜を形成することにより、結晶粒径制御層18の結晶性を高めることが可能となった。結晶粒径制御層として8nmの厚さとなるように形成したbcc構造を有するCr−Ti−B合金層に起因すると考えられる200回折強度の半値幅は、実施例1の場合に5.4度であったのに対し、実施例2では同じ厚さのCr−Ti−B合金層起因の200回折強度の半値幅は3.8度であった。実施例1に比べて実施例2のオーバーライト特性が改善したのは、この200回折強度の半値幅の減少に対応していると考えられる。 On the other hand, in Example 2, after the soft magnetic underlayer 143 was formed, it was once taken out into the atmosphere, evacuated to 2 × 10 −5 Pa or less with another film forming apparatus, heated to 300 ° C. After forming the low thermal conductivity intermediate layer 144 made of an oxide layer on the surface of the base layer 143, the crystal orientation control layer 16 made of a W-30 at.% Co alloy is formed to 3 nm, and the surface is exposed to an oxygen atmosphere diluted with Ar. Then, after control and oxidation, by forming a Cr-18 at.% Ti-4 at.% B alloy film as the crystal grain size control layer 18, it becomes possible to increase the crystallinity of the crystal grain size control layer 18. It was. In the case of Example 1, the half-value width of 200 diffraction intensity considered to be caused by the Cr—Ti—B alloy layer having a bcc structure formed so as to have a thickness of 8 nm as the crystal grain size control layer is 5.4 degrees. In contrast, in Example 2, the half width of the 200 diffraction intensity caused by the Cr—Ti—B alloy layer having the same thickness was 3.8 degrees. The improvement in the overwrite characteristics of Example 2 compared to Example 1 is considered to correspond to the decrease in the half-value width of 200 diffraction intensity.

図10に断面模式図を示す垂直磁気記録媒体を作製した。実施例1で軟磁性下地層143を形成後、300℃に加熱し、軟磁性下地層143の表面に酸化物層からなる低熱伝導中間層144を形成した。その後、結晶配向性制御層16としてW−40at.%Co合金膜を4nm形成し、Arガスで100倍に希釈した酸素ガス雰囲気中に4秒間暴露した。さらに結晶粒径制御層18としてCr−20at.%Ti−5at.%B合金層を5nm形成後、RFマグネトロンスパッタ法で結晶配向性制御兼低熱伝導中間層19としてMgO層を4nm形成した。さらに90mol%(50at.%Fe−50at.%Pt)−(10mol%SiO2)膜を11nm形成後、Co−45at.%Pt合金からなるキャップ層22を厚さで3nmから10nm形成し、窒素あるいは水素を含有し炭素を主成分とする保護層24を3nm形成した。さらに窒素置換した不活性雰囲気中で300℃に1時間保持後、大気圧に戻し、パーフルオロポリエーテルを主成分とする潤滑層26を形成した。 A perpendicular magnetic recording medium whose cross-sectional schematic diagram is shown in FIG. 10 was produced. After forming the soft magnetic underlayer 143 in Example 1, it was heated to 300 ° C. to form a low thermal conductive intermediate layer 144 made of an oxide layer on the surface of the soft magnetic underlayer 143. Thereafter, a W-40 at.% Co alloy film of 4 nm was formed as the crystal orientation control layer 16 and exposed for 4 seconds in an oxygen gas atmosphere diluted 100 times with Ar gas. Further, a Cr-20 at.% Ti-5 at.% B alloy layer was formed with a thickness of 5 nm as the crystal grain size control layer 18, and then an MgO layer was formed with a thickness of 4 nm as the crystal orientation control and low thermal conduction intermediate layer 19 by RF magnetron sputtering. Further, after forming a 90 mol% (50 at.% Fe-50 at.% Pt)-(10 mol% SiO 2 ) film with a thickness of 11 nm, a cap layer 22 made of a Co-45 at.% Pt alloy is formed with a thickness of 3 nm to 10 nm. Alternatively, the protective layer 24 containing hydrogen and containing carbon as a main component was formed to 3 nm. Furthermore, after maintaining at 300 ° C. for 1 hour in an inert atmosphere purged with nitrogen, the pressure was returned to atmospheric pressure to form a lubricating layer 26 composed mainly of perfluoropolyether.

機械的な浮上特性を確認後、実施例1と同じヘッドを用い、記録時には100mWの波長785nmの半導体レーザ38を用いて加熱した。再生時には半導体レーザ38を用いず、薄膜抵抗体58に60mW通電する条件でヘッドの保護膜と媒体の保護層24の間隔を2nmに保持して電磁変換特性を測定した。その結果、キャップ層22として4nm以上の厚さとなるように形成するとキャップ層22を形成しない場合に比べオーバーライト特性が4dB以上改善された。一方、キャップ層22が厚くなると書き込みトラック幅は広くなっていた。   After confirming the mechanical flying characteristics, the same head as in Example 1 was used, and during recording, heating was performed using a semiconductor laser 38 with a wavelength of 785 nm of 100 mW. At the time of reproduction, the semiconductor laser 38 was not used, and the electromagnetic conversion characteristics were measured by maintaining the distance between the head protective film and the medium protective layer 24 at 2 nm under the condition that 60 mW was applied to the thin film resistor 58. As a result, when the cap layer 22 was formed to have a thickness of 4 nm or more, the overwrite characteristic was improved by 4 dB or more compared to the case where the cap layer 22 was not formed. On the other hand, when the cap layer 22 is thick, the write track width is widened.

120mW(実施例1)から100mW(実施例3)まで投入電力を低減しても−25dB以下のO/W特性が得られたのは、結晶配向性制御兼低熱伝導中間層19としてMgO層を4nm形成し、実効的に記録層の温度上昇しやすくなったことによると考えられる。   Even when the input power was reduced from 120 mW (Example 1) to 100 mW (Example 3), an O / W characteristic of −25 dB or less was obtained because the MgO layer was used as the crystal orientation control / low thermal conductivity intermediate layer 19. This is considered to be due to the fact that the temperature of the recording layer is effectively increased easily by forming 4 nm.

実施例3に記載のグラニュラ記録層形成時に90mol%(50at.%Fe−50at.%Pt)−10mol%SiO2膜を11nm形成する代わりに、以下の合金からなるグラニュラ記録層を形成したことを除き、実施例3と同様にして磁気記録媒体を形成した。
88mol%[(45at.%Fe−5at.%Cu−50at.%Pt)]−12mol%SiO2
88mol%[(45at.%Fe−5at.%Cu−50at.%Pt)]−10mol%SiO2−2mol%TiO2
88mol%[(45at.%Fe−5at.%Cu−50at.%Pt)]−8mol%SiO2−4mol%TiO2
88mol%[(45at.%Fe−5at.%Cu−50at.%Pt)]−6mol%SiO2−6mol%TiO2
88mol%[(45at.%Fe−5at.%Cu−50at.%Pt)]−4mol%SiO2−8mol%TiO2
88mol%[(45at.%Fe−5at.%Cu−50at.%Pt)]−12mol%TiO2
88mol%[(45at.%Fe−5at.%Cu−50at.%Pt)]−12mol%Ta25
88mol%[(45at.%Fe−5at.%Cu−50at.%Pt)]−6mol%SiO2−6mol%Ta25
92mol%[(45at.%Fe−5at.%Cu−50at.%Pt)]−8mol%TiO2
92mol%[(50at.%Fe−5at.%Cu−45at.%Pt)]−8mol%TiO2
92mol%[(50at.%Fe−0at.%Cu−50at.%Pt)]−8mol%TiO2
The formation of a granular recording layer made of the following alloy instead of forming a 90 mol% (50 at.% Fe-50 at.% Pt) -10 mol% SiO 2 film at the time of forming the granular recording layer described in Example 3 A magnetic recording medium was formed in the same manner as in Example 3 except for the above.
88 mol% [(45 at.% Fe-5 at.% Cu-50 at.% Pt)]-12 mol% SiO 2
88 mol% [(45 at.% Fe-5 at.% Cu-50 at.% Pt)]-10 mol% SiO 2 -2 mol% TiO 2
88 mol% [(45 at.% Fe-5 at.% Cu-50 at.% Pt)]-8 mol% SiO 2 -4 mol% TiO 2
88 mol% [(45 at.% Fe-5 at.% Cu-50 at.% Pt)]-6 mol% SiO 2 -6 mol% TiO 2
88 mol% [(45 at.% Fe-5 at.% Cu-50 at.% Pt)]-4 mol% SiO 2 -8 mol% TiO 2
88 mol% [(45 at.% Fe-5 at.% Cu-50 at.% Pt)]-12 mol% TiO 2
88 mol% [(45 at.% Fe-5 at.% Cu-50 at.% Pt)]-12 mol% Ta 2 O 5
88 mol% [(45 at.% Fe-5 at.% Cu-50 at.% Pt)]-6 mol% SiO 2 -6 mol% Ta 2 O 5
92 mol% [(45 at.% Fe-5 at.% Cu-50 at.% Pt)]-8 mol% TiO 2
92 mol% [(50 at.% Fe-5 at.% Cu-45 at.% Pt)]-8 mol% TiO 2
92 mol% [(50 at.% Fe-0 at.% Cu-50 at.% Pt)]-8 mol% TiO 2

上記グラニュラ記録層20を形成後、Fe−40at.%Pt合金からなるキャップ層22を厚さで3nmから10nm形成した。さらに窒素あるいは水素を含有し炭素を主成分とする保護層24を3.3nm形成した。さらに窒素置換した不活性雰囲気中で300℃に1時間保持後、大気圧に戻し、フッ素を主成分とする潤滑層26を形成した。 After the granular recording layer 20 was formed, a cap layer 22 made of an Fe-40 at.% Pt alloy was formed to a thickness of 3 to 10 nm. Further, a protective layer 24 containing nitrogen or hydrogen and containing carbon as a main component was formed to 3.3 nm. Furthermore, after maintaining at 300 ° C. for 1 hour in an inert atmosphere substituted with nitrogen, the pressure was returned to atmospheric pressure to form a lubricating layer 26 containing fluorine as a main component.

機械的な浮上特性を確認後、実施例1と同じヘッドを用い、記録時には100mWの波長785nmの半導体レーザ38を用いて加熱した。再生時には半導体レーザ38を用いず、薄膜抵抗体58に60mW通電する条件で電磁変換特性を測定した。   After confirming the mechanical flying characteristics, the same head as in Example 1 was used, and during recording, heating was performed using a semiconductor laser 38 with a wavelength of 785 nm of 100 mW. During reproduction, the semiconductor laser 38 was not used, and the electromagnetic conversion characteristics were measured under the condition that the thin film resistor 58 was energized with 60 mW.

その結果、キャップ層22として4nm以上の厚さとなるように形成すると、キャップ層22を形成しない場合に比べオーバーライト特性が4dB以上改善され、キャップ層22が厚くなると書き込みトラック幅は広くなった。4nm厚のキャップ層を形成した場合のグラニュラ記録層88mol%[(45at.%Fe−5at.%Cu−50at.%Pt)]−xmol%SiO2−(12−x)mol%TiO2の組成とオーバーライト特性の関係を図11に示す。TiO2の添加濃度を増加するとオーバーライト特性は3dB程度劣化した。 As a result, when the cap layer 22 was formed to have a thickness of 4 nm or more, the overwrite characteristic was improved by 4 dB or more as compared with the case where the cap layer 22 was not formed. When the cap layer 22 was thicker, the write track width was widened. Composition of 88 mol% [(45 at.% Fe-5 at.% Cu-50 at.% Pt)]-xmol% SiO 2- (12-x) mol% TiO 2 when a 4 nm thick cap layer is formed FIG. 11 shows the relationship between and the overwrite characteristics. When the added concentration of TiO 2 was increased, the overwrite characteristics deteriorated by about 3 dB.

4nm厚のキャップ層を形成した場合について、グラニュラ記録層88mol%[(45at.%Fe−5at.%Cu−50at.%Pt)]−xmol%SiO2−(12−x)mol%TiO2の組成と媒体ノイズNdと再生信号出力Soの割合を対数表示したSo/Ndの関係を図12に示す。88mol%[(45at.%Fe−5at.%Cu−50at.%Pt)]−6mol%SiO2−6mol%TiO2では、オーバーライト特性の劣化が少ない割に良好なSo/Ndが得られた。 In the case where a cap layer having a thickness of 4 nm was formed, the granular recording layer was 88 mol% [(45 at.% Fe-5 at.% Cu-50 at.% Pt)]-x mol% SiO 2- (12-x) mol% TiO 2 . FIG. 12 shows the relationship of So / Nd logarithmically expressing the ratio of composition, medium noise Nd, and reproduction signal output So. With 88 mol% [(45 at.% Fe-5 at.% Cu-50 at.% Pt)]-6 mol% SiO 2 -6 mol% TiO 2 , good So / Nd was obtained although the deterioration of the overwrite characteristics was small. .

透過電子顕微鏡で88mol%[(45at.%Fe−5at.%Cu−50at.%Pt)]−12mol%SiO2グラニュラ記録層と88mol%[(45at.%Fe−5at.%Cu−50at.%Pt)]−12mol%TiO2グラニュラ記録層を比べた結果、TiO2を添加したグラニュラ記録層でTiO2を主成分とする粒界が明瞭になり、SiO2を添加したグラニュラ記録層に比べ相対的に粒界幅が広くなっていた。この結果から、TiO2の濃度が高い媒体では磁性粒子が磁気的に孤立し易くなり、媒体ノイズNdが低下し、SiO2の濃度の高い媒体に比べSo/Ndが改善し、TiO2とSiO2を同時に含んだ組成域でオーバーライト特性とSo/Ndを両立できる組成があることが明らかになった。 88 mol% [(45 at.% Fe-5 at.% Cu-50 at.% Pt)]-12 mol% SiO 2 granular recording layer and 88 mol% [(45 at.% Fe-5 at.% Cu-50 at.%) Pt)] - 12mol% TiO 2 results comparing the granular recording layer, a TiO 2 becomes clear grain boundary mainly in granular recording layer with the addition of TiO 2, compared with the granular recording layer with the addition of SiO 2 relative In particular, the grain boundary width was wide. From this result, in the medium having a high concentration of TiO 2 , the magnetic particles are easily magnetically isolated, the medium noise Nd is reduced, the So / Nd is improved as compared with the medium having a high concentration of SiO 2 , and TiO 2 and SiO 2 are reduced. It has been clarified that there is a composition that can achieve both overwrite characteristics and So / Nd in a composition range containing 2 at the same time.

〔比較例2〕
実施例3に記載のグラニュラ記録層形成時に90mol%(50at.%Fe−50at.%Pt)−10mol%SiO2膜を11nm形成する代わりに92mol%[(45at.%Fe−5at.%Zn−50at.%Pt)]−8mol%SiO2膜を形成した。初期に形成したグラニュラ膜と翌日試作したグラニュラ膜について蛍光X線分析した結果、グラニュラ記録層に含有されるZnの組成が低下していた。この結果から、量産時の組成変動と磁気特性の安定性を考慮すると、グラニュラ膜形成用の合金ターゲットを真空中に保持する場合、Zn濃度の変化を管理する必要があることが明らかとなった。
[Comparative Example 2]
Instead of forming a 90 mol% (50 at.% Fe-50 at.% Pt) -10 mol% SiO 2 film of 11 nm during the formation of the granular recording layer described in Example 3, 92 mol% [(45 at.% Fe-5 at.% Zn— 50 at.% Pt)]-8 mol% SiO 2 film was formed. As a result of X-ray fluorescence analysis of the granular film formed in the initial stage and the granular film manufactured the next day, the composition of Zn contained in the granular recording layer was lowered. From this result, it was clarified that when the alloy target for forming the granular film is held in a vacuum, it is necessary to manage the change in the Zn concentration in consideration of the composition variation at the time of mass production and the stability of the magnetic characteristics. .

実施例1でグラニュラ記録層20として、(50at.%Fe−50at.%Pt)−8mol%SiO2膜に代わり(50at.%Co−50at.%Pt)−10mol%SiO2膜或いは(40at.%Co−10at.%Ni−50at.%Pt)−10mol%SiO2膜を12nm形成した。グラニュラ記録層20を形成する際の放電用Arガス圧を2.5Paとした。グラニュラ記録層20を形成後、50at.%Co−50at.%Pt合金、又は50at.%Ni−50at.%Fe合金からなるキャップ層22を3nmから12nm形成、窒化珪素を主成分とする保護層24を2nm形成した。さらに窒素置換した不活性雰囲気中で300℃に1時間保持後、大気圧に戻し、フッ素を主成分とする潤滑層26を形成した。 As granular recording layer 20 in Example 1, (50at.% Fe- 50at.% Pt) instead -8 mol% SiO 2 film (50at.% Co-50at. % Pt) -10mol% SiO 2 film or (40 at. % Co-10 at.% Ni-50 at.% Pt) -10 mol% SiO 2 film was formed to a thickness of 12 nm. The Ar gas pressure for discharge when forming the granular recording layer 20 was 2.5 Pa. After the granular recording layer 20 is formed, a cap layer 22 made of 50 at.% Co-50 at.% Pt alloy or 50 at.% Ni-50 at.% Fe alloy is formed from 3 nm to 12 nm, and a protective layer mainly composed of silicon nitride. 24 was formed to 2 nm. Furthermore, after maintaining at 300 ° C. for 1 hour in an inert atmosphere substituted with nitrogen, the pressure was returned to atmospheric pressure to form a lubricating layer 26 containing fluorine as a main component.

機械的な浮上特性を確認後、実施例1と同じヘッドを用い、記録時には100mWの波長785nmの半導体レーザ38を用いて加熱した。再生時には半導体レーザ38を用いず、薄膜抵抗体58に60mW通電する条件で電磁変換特性を測定した。その結果、前記キャップ層22として4nm以上の厚さとなるように形成するとオーバーライト特性が、−25dB以下まで改善された。特に、50at.%Ni−50at.%Fe合金を用いた場合、キャップ層22の厚さが4nmから6nm程度の場合にオーバーライト特性が−30dB以下であり、かつ幾何学トラック幅で規格化した書き込みトラック幅の割合も1.2から1.3の範囲に入り改善が顕著であった。   After confirming the mechanical flying characteristics, the same head as in Example 1 was used, and during recording, heating was performed using a semiconductor laser 38 with a wavelength of 785 nm of 100 mW. During reproduction, the semiconductor laser 38 was not used, and the electromagnetic conversion characteristics were measured under the condition that the thin film resistor 58 was energized with 60 mW. As a result, when the cap layer 22 was formed to have a thickness of 4 nm or more, the overwrite characteristics were improved to −25 dB or less. In particular, when a 50 at.% Ni-50 at.% Fe alloy is used, when the thickness of the cap layer 22 is about 4 nm to 6 nm, the overwrite characteristic is −30 dB or less and is normalized by the geometric track width. The ratio of the write track width was also in the range of 1.2 to 1.3, and the improvement was remarkable.

一方、書き込みトラック幅は、キャップ層22が4nmから12nmへ厚くなると広くなった。この傾向はキャップ層の材料によらなかった。これらの結果から、キャップ層の厚さは少なくとも4nm程度必要であるが、トラック幅の広がりを考慮すると、厚い場合でも8nm程度形成すれば良いことが明らかとなった。   On the other hand, the write track width increased as the cap layer 22 increased from 4 nm to 12 nm. This tendency did not depend on the material of the cap layer. From these results, it is clear that the thickness of the cap layer needs to be at least about 4 nm, but considering the widening of the track width, it is sufficient to form the cap layer about 8 nm even if it is thick.

実施例3で結晶粒径制御層18としてCr−20at.%Ti−5at.%B合金層を5nm形成する代わりに、Cr−16at.%Mo−4at.%B合金層、Cr−30at.%Mo−4at.%B合金層、Cr−30at.%Mo−8at.%B合金層、Cr−30at.%Mo−10at.%B合金層、Cr−15at.%W−4at.%B合金層、Cr−25at.%W−4at.%B合金層、Cr−25at.%W−8at.%B合金層、Cr−25at.%W−10at.%B合金層をそれぞれ4nm形成して垂直磁気記録媒体を作製した。垂直方向に室温で測定した保磁力の結晶粒径制御層の濃度依存性を図13に示す。Cr−30at.%Mo−B合金とCr−25at.%W−B合金を用いた結晶粒径制御層に含まれるB添加濃度を8at.%から10at.%に増加した場合に、急激に保磁力が低下した。この結果から、B添加濃度の上限は8at.%程度とすることが好ましい。   Instead of forming a Cr-20 at.% Ti-5 at.% B alloy layer of 5 nm as the grain size control layer 18 in Example 3, a Cr-16 at.% Mo-4 at.% B alloy layer, Cr-30 at.% Mo-4at.% B alloy layer, Cr-30at.% Mo-8at.% B alloy layer, Cr-30at.% Mo-10at.% B alloy layer, Cr-15at.% W-4at.% B alloy layer , Cr-25 at.% W-4 at.% B alloy layer, Cr-25 at.% W-8 at.% B alloy layer, Cr-25 at.% W-10 at. A recording medium was produced. FIG. 13 shows the concentration dependency of the coercive force measured at room temperature in the vertical direction in the crystal grain size control layer. When the B addition concentration contained in the grain size control layer using Cr-30 at.% Mo-B alloy and Cr-25 at.% WB alloy is increased from 8 at.% To 10 at. Magnetic force decreased. From this result, the upper limit of the B addition concentration is preferably about 8 at.

本発明の磁気記録媒体は、熱支援磁気記録媒体として使用することができる。   The magnetic recording medium of the present invention can be used as a heat-assisted magnetic recording medium.

体心立方構造をとる結晶粒径制御層の(100)面の原子配列の概念図。The conceptual diagram of the atomic arrangement | sequence of the (100) plane of the crystal grain diameter control layer which takes a body centered cubic structure. 面心立方構造或いはL10構造をとるグラニュラ記録層のうち粒界部を除く(100)面の原子配列の概念図。Conceptual diagram except among grain boundaries of the granular recording layer takes a face-centered cubic structure or L1 0 structure (100) plane of the atomic arrangement. 結晶粒径制御層とグラニュラ記録層の原子配列の概念図。The conceptual diagram of the atomic arrangement of a crystal grain diameter control layer and a granular recording layer. 本発明による磁気記録媒体の断面構成図。1 is a cross-sectional configuration diagram of a magnetic recording medium according to the present invention. 熱支援記録の概念図。The conceptual diagram of a heat assistance record. オーバーライト特性とキャップ層の厚さの関係を示す図。The figure which shows the relationship between an overwrite characteristic and the thickness of a cap layer. 幾何学トラック幅で規格化した書き込みトラック幅とキャップ層の厚さの関係を示す図。The figure which shows the relationship between the write track width normalized by the geometric track width, and the thickness of the cap layer. 平均結晶粒径を測定するための試料の断面構成図。The cross-sectional block diagram of the sample for measuring an average crystal grain diameter. 本発明による磁気記録媒体の断面構成図。1 is a cross-sectional configuration diagram of a magnetic recording medium according to the present invention. 本発明による磁気記録媒体の断面構成図。1 is a cross-sectional configuration diagram of a magnetic recording medium according to the present invention. グラニュラ記録層の組成とオーバーライト特性の関係を示す図。The figure which shows the relationship between the composition of a granular recording layer, and an overwrite characteristic. グラニュラ記録層の組成とSo/Ndの関係を示す図。The figure which shows the composition of a granular recording layer, and the relationship of So / Nd. 結晶粒径制御層に含有されるB添加濃度と室温で測定した磁気記録媒体の垂直保磁力の関係を示す図。The figure which shows the relationship between the B addition density | concentration contained in a crystal grain diameter control layer, and the perpendicular coercive force of the magnetic-recording medium measured at room temperature.

符号の説明Explanation of symbols

10…基板
12…接着層
14…軟磁性下地層
141…軟磁性下地層
142…非磁性層
143…軟磁性下地層
144…低熱伝導中間層
16…結晶配向性制御層
18…結晶粒径制御層
19…結晶配向性制御兼低熱伝導中間層
20…グラニュラ記録層
22…キャップ層
24…保護層
26…潤滑層
30…磁気記録媒体
32…スライダ
34…近接場光を発生させるための散乱体
36…磁極
38…半導体レーザ
40…導波路コア部
42…導波路クラッド部
44…磁界発生用薄膜コイル
46…主磁極
48…流出端
50,51…磁極
52…補助磁極
54…磁気再生素子
56…シールド
58…薄膜抵抗体
DESCRIPTION OF SYMBOLS 10 ... Substrate 12 ... Adhesion layer 14 ... Soft magnetic underlayer 141 ... Soft magnetic underlayer 142 ... Nonmagnetic layer 143 ... Soft magnetic underlayer 144 ... Low thermal conduction intermediate layer 16 ... Crystal orientation control layer 18 ... Crystal grain size control layer DESCRIPTION OF SYMBOLS 19 ... Crystal orientation control and low thermal conductive intermediate layer 20 ... Granular recording layer 22 ... Cap layer 24 ... Protective layer 26 ... Lubricating layer 30 ... Magnetic recording medium 32 ... Slider 34 ... Scattering body 36 for generating near-field light ... Magnetic pole 38 ... Semiconductor laser 40 ... Waveguide core part 42 ... Waveguide clad part 44 ... Thin film coil 46 for magnetic field generation ... Main magnetic pole 48 ... Outflow end 50, 51 ... Magnetic pole 52 ... Auxiliary magnetic pole 54 ... Magnetic reproducing element 56 ... Shield 58 ... Thin film resistors

Claims (5)

剛体基板上に直接あるいは接着層を介して形成した第1の軟磁性下地層と、
前記第1の軟磁性下地層上に非磁性中間層を介して形成した第2の軟磁性下地層と、
前記第2の軟磁性下地層上に形成した酸化物からなる低熱伝導中間層と、
前記低熱伝導中間層上に直接或いは結晶配向性制御層を介して形成した結晶粒径制御層と、
前記結晶粒径制御層上にMgO層を介して形成した、規則化が進んだ段階でL10構造をとることが期待される組成で構成されるFe−Pt合金或いはCo−Pt合金を主成分とするグラニュラ記録層と、
前記グラニュラ記録層上に形成したFe−Pt合金或いはCo−Pt合金からなるキャップ層と、
前記キャップ層上に形成した保護層と
を有することを特徴とする垂直磁気記録媒体。
A first soft magnetic underlayer formed directly or via an adhesive layer on a rigid substrate;
A second soft magnetic underlayer formed on the first soft magnetic underlayer via a nonmagnetic intermediate layer;
A low thermal conductivity intermediate layer made of an oxide formed on the second soft magnetic underlayer;
A crystal grain size control layer formed on the low thermal conductivity intermediate layer directly or via a crystal orientation control layer;
Mainly composed of crystal grain size was formed through the MgO layer to control layer, Fe-Pt alloy or Co-Pt alloy consisting of a composition which is expected to take an L1 0 structure at the stage of progress in ordering A granular recording layer, and
A cap layer made of Fe-Pt alloy or Co-Pt alloy formed on the granular recording layer;
A perpendicular magnetic recording medium comprising: a protective layer formed on the cap layer.
請求項1に記載の垂直磁気記録媒体において、前記結晶粒径制御層としてTi,Mo,Wからなる群Mから選ばれる少なくとも1元素を添加したCr−M−B合金層を設けたことを特徴とする垂直磁気記録媒体。   2. The perpendicular magnetic recording medium according to claim 1, wherein a Cr-MB alloy layer to which at least one element selected from the group M consisting of Ti, Mo, and W is added is provided as the crystal grain size control layer. A perpendicular magnetic recording medium. 請求項1に記載の垂直磁気記録媒体において、前記Fe−Pt合金を主成分とするグラニュラ記録層がCuを含有していることを特徴とする垂直磁気記録媒体。   2. The perpendicular magnetic recording medium according to claim 1, wherein the granular recording layer containing the Fe-Pt alloy as a main component contains Cu. 請求項1に記載の垂直磁気記録媒体において、前記結晶配向性制御層がW−Co合金からなることを特徴とする垂直磁気記録媒体。   2. The perpendicular magnetic recording medium according to claim 1, wherein the crystal orientation control layer is made of a W-Co alloy. 剛体基板上に接着層を介して或いは直接基板上に軟磁性下地層を形成し、前記軟磁性下地層上に非磁性中間層を介して軟磁性下地層を形成した基板を大気中に取り出し、別の真空プロセスで基板を加熱後、酸化物からなる低熱伝導中間層、結晶配向性制層、結晶粒径制御層をこの順に形成し、MgO層を介して前記結晶粒径制御層上に、規則化が進んだ段階でL10構造をとることが期待される組成で構成されるFe−Pt合金或いはCo−Pt合金を主成分とするグラニュラ記録層、Fe−Pt合金或いはCo−Pt合金からなるキャップ層、保護層を形成後、熱処理を行ない、その後潤滑層を形成したことを特徴とする垂直磁気記録媒体の製造方法。 A soft magnetic underlayer is formed on a rigid substrate via an adhesive layer or directly on the substrate, and the substrate on which the soft magnetic underlayer is formed on the soft magnetic underlayer via a nonmagnetic intermediate layer is taken out into the atmosphere, after heating the substrate in a separate vacuum process, the low thermal conductive intermediate layer made of oxide, the crystal orientation system layer, the crystal grain diameter control layer are formed in this order, the crystal grain diameter control layer through the MgO layer, granular recording layer mainly composed of composed Fe-Pt alloy or Co-Pt alloy composition is expected to take an L1 0 structure at the stage of progress in ordering from Fe-Pt alloy or Co-Pt alloy A method of manufacturing a perpendicular magnetic recording medium, comprising: forming a cap layer and a protective layer, followed by heat treatment, and then forming a lubricating layer.
JP2007338122A 2007-12-27 2007-12-27 Perpendicular magnetic recording medium and manufacturing method thereof Expired - Fee Related JP5128930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007338122A JP5128930B2 (en) 2007-12-27 2007-12-27 Perpendicular magnetic recording medium and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007338122A JP5128930B2 (en) 2007-12-27 2007-12-27 Perpendicular magnetic recording medium and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009158054A JP2009158054A (en) 2009-07-16
JP5128930B2 true JP5128930B2 (en) 2013-01-23

Family

ID=40961893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007338122A Expired - Fee Related JP5128930B2 (en) 2007-12-27 2007-12-27 Perpendicular magnetic recording medium and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5128930B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8279739B2 (en) 2009-08-20 2012-10-02 Showa Denko K.K. Heat-assisted magnetic recording medium and magnetic storage device
JP5412216B2 (en) * 2009-09-07 2014-02-12 昭和電工株式会社 Thermally assisted magnetic recording medium and magnetic storage device
JP5561766B2 (en) 2010-02-04 2014-07-30 昭和電工株式会社 Thermally assisted magnetic recording medium and magnetic storage device
CN102163433B (en) * 2010-02-23 2013-12-25 昭和电工株式会社 Thermally assisted magnetic recording medium and magnetic recording storage
JP5570270B2 (en) * 2010-03-29 2014-08-13 昭和電工株式会社 Thermally assisted magnetic recording medium and magnetic storage device
JP5787344B2 (en) * 2011-02-15 2015-09-30 昭和電工株式会社 Thermally assisted magnetic recording medium and magnetic storage device
JP5145437B2 (en) 2011-03-02 2013-02-20 株式会社日立製作所 Magnetic recording medium
JP5858634B2 (en) * 2011-04-12 2016-02-10 昭和電工株式会社 Thermally assisted magnetic recording medium and magnetic storage device
JP5923324B2 (en) * 2012-01-31 2016-05-24 昭和電工株式会社 Thermally assisted magnetic recording medium and magnetic recording / reproducing apparatus
JP5961439B2 (en) 2012-05-01 2016-08-02 昭和電工株式会社 Thermally assisted magnetic recording medium and magnetic recording / reproducing apparatus
JP5961490B2 (en) * 2012-08-29 2016-08-02 昭和電工株式会社 Magnetic recording medium and magnetic recording / reproducing apparatus
JP6000869B2 (en) * 2013-02-05 2016-10-05 富士フイルム株式会社 Coating type magnetic recording medium, magnetic recording apparatus, and magnetic recording method
JP6199618B2 (en) 2013-04-12 2017-09-20 昭和電工株式会社 Magnetic recording medium, magnetic storage device
US10276192B2 (en) * 2013-07-11 2019-04-30 Western Digital Technologies, Inc. Perpendicular magnetic recording medium
JP6317896B2 (en) 2013-07-26 2018-04-25 昭和電工株式会社 Magnetic recording medium and magnetic storage device
JP2015088197A (en) 2013-10-28 2015-05-07 昭和電工株式会社 Magnetic recording medium and magnetic storage device
JP5923152B2 (en) * 2014-10-06 2016-05-24 昭和電工株式会社 Thermally assisted magnetic recording medium and magnetic recording / reproducing apparatus
JP6009055B2 (en) * 2015-11-10 2016-10-19 昭和電工株式会社 Thermally assisted magnetic recording medium and magnetic storage device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3294231B2 (en) * 1999-03-15 2002-06-24 株式会社東芝 Magnetic recording device and magnetic recording method
JP4223240B2 (en) * 2002-07-16 2009-02-12 昭和電工株式会社 Magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
JP2007299492A (en) * 2006-05-02 2007-11-15 Canon Inc Manufacturing method of structure
JP2006294106A (en) * 2005-04-08 2006-10-26 Hitachi Global Storage Technologies Netherlands Bv Magnetic recording medium
JP2007310986A (en) * 2006-05-19 2007-11-29 Hitachi Global Storage Technologies Netherlands Bv Perpendicular magnetic recording medium and manufacturing method

Also Published As

Publication number Publication date
JP2009158054A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
JP5128930B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
CN102725793B (en) Heat-assisted magnetic recording medium and magnetic recording and reproducing device
JP5145437B2 (en) Magnetic recording medium
JP5617112B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
CN102646421B (en) Heat-assisted magnetic recording medium and magnetic storage device
US9245567B2 (en) Magnetic recording medium and magnetic storage apparatus
JP2009158053A (en) Magnetic recording medium for tilt recording, and method for manufacturing the same
JP2003162806A (en) Perpendicular magnetic recording medium and magnetic storage device
JP5938224B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
WO2013172260A1 (en) Magnetic recording medium and magnetic recording/reproducing device
JP4746778B2 (en) Magnetic recording medium and magnetic storage device using the same
JPWO2009014205A1 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
JP5786347B2 (en) Magnetic recording medium for thermally assisted recording apparatus and method for manufacturing the same
CN108573715A (en) Assisted magnetic recording medium and magnetic memory apparatus
JP2001344740A (en) Magnetic recording medium and magnetic storage device
JP4211436B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
CN113053422B (en) Magnetic recording medium and magnetic storage device
JP5923152B2 (en) Thermally assisted magnetic recording medium and magnetic recording / reproducing apparatus
JP2008276859A (en) Magnetic recording medium, method of manufacturing the same, and magnetic recording and reproducing device
JP2006179133A (en) Magnetic recording medium and magnetic storage device using the same
JP3588039B2 (en) Magnetic recording medium and magnetic recording / reproducing device
JP3663289B2 (en) Magnetic recording medium and magnetic storage device
JP5685983B2 (en) Magnetic recording medium
JPH09265619A (en) Magnetic recording medium, its production and magnetic storage device
JP4072324B2 (en) Magnetic recording medium and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5128930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350