JP2009158053A - Magnetic recording medium for tilt recording, and method for manufacturing the same - Google Patents

Magnetic recording medium for tilt recording, and method for manufacturing the same Download PDF

Info

Publication number
JP2009158053A
JP2009158053A JP2007338105A JP2007338105A JP2009158053A JP 2009158053 A JP2009158053 A JP 2009158053A JP 2007338105 A JP2007338105 A JP 2007338105A JP 2007338105 A JP2007338105 A JP 2007338105A JP 2009158053 A JP2009158053 A JP 2009158053A
Authority
JP
Japan
Prior art keywords
layer
alloy
recording
intermediate layer
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007338105A
Other languages
Japanese (ja)
Inventor
Hiroyuki Suzuki
博之 鈴木
Hiroshi Ide
井手  浩
Atsushi Nakamura
敦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HGST Netherlands BV
Original Assignee
Hitachi Global Storage Technologies Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Storage Technologies Netherlands BV filed Critical Hitachi Global Storage Technologies Netherlands BV
Priority to JP2007338105A priority Critical patent/JP2009158053A/en
Publication of JP2009158053A publication Critical patent/JP2009158053A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic recording medium capable of enhancing writing performance for a long time even when regularity of a regular alloy used for a recording layer is changed while the magnetic recording medium is efficiently heated with a small amount of energy consumption. <P>SOLUTION: The magnetic recording medium has such a structure that a soft magnetic layer 141 is formed on a rigid substrate 10, a soft magnetic layer 143 is formed thereon via a non-magnetic intermediate layer 142 and then an intermediate layer 16 composed of an oxide, a crystal orientation controlling and low thermal conduction intermediate layer 18, a granular recording layer 20 including essentially an Fe-Pt alloy composed of a composition expected to take an L1<SB>0</SB>structure at a stage where regulation is advanced, a cap layer 22 composed of an Fe-Pt alloy or a Co-Cr-Pt-B alloy, a protective layer 24 and a lubricant layer 26 are formed thereon. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高密度磁気記録を実現する傾斜記録に適した磁気記録媒体及びその製造方法関する。   The present invention relates to a magnetic recording medium suitable for inclined recording that realizes high-density magnetic recording, and a method for manufacturing the same.

特許文献1には、基体への熱の影響を最小限に抑えながら磁気記録層を加熱することを目的とし、断熱層を基体と磁気記録層との間に形成する磁気記録媒体が提案されている。特許文献3には、熱伝導率の低い材料で形成されたディスクの表面に、磁性膜を形成した磁気ディスクが提案されている。特許文献4には、非磁性基体上に非磁性下地層及び強磁性層を積層し、非磁性下地層は熱伝導率が、20℃〜300℃の温度範囲で30W/(m・K)以下を示す材料により構成し、強磁性層はCrを含有する強磁性金属からなる磁気記録媒体が提案されている。これらの磁気記録媒体は、いずれも記録層に熱を閉じ込めるために、記録層の下部に記録層よりも熱伝導率の低い層を設けている。   Patent Document 1 proposes a magnetic recording medium in which a heat insulating layer is formed between a base and a magnetic recording layer for the purpose of heating the magnetic recording layer while minimizing the influence of heat on the base. Yes. Patent Document 3 proposes a magnetic disk in which a magnetic film is formed on the surface of a disk formed of a material having low thermal conductivity. In Patent Document 4, a nonmagnetic underlayer and a ferromagnetic layer are laminated on a nonmagnetic substrate, and the nonmagnetic underlayer has a thermal conductivity of 30 W / (m · K) or less in a temperature range of 20 ° C. to 300 ° C. There has been proposed a magnetic recording medium which is made of a material having the above structure and the ferromagnetic layer is made of a ferromagnetic metal containing Cr. In any of these magnetic recording media, in order to confine heat in the recording layer, a layer having a lower thermal conductivity than the recording layer is provided below the recording layer.

一方、特許文献2には、少なくとも部分的に薄膜の膜厚を貫通して延在する低熱伝導率材料の領域と、低熱伝導率材料の領域を分離する高熱伝導率材料の領域とを備え、これらの領域が、低熱伝導率の領域よりも高熱伝導率の領域で、薄膜の膜厚を貫通する熱伝導がより大きくなるように構成及び配置された薄膜が提案されている。   On the other hand, Patent Document 2 includes a region of low thermal conductivity material that extends at least partially through the thickness of the thin film, and a region of high thermal conductivity material that separates the region of low thermal conductivity material, There has been proposed a thin film constructed and arranged such that these regions are regions of higher thermal conductivity than regions of low thermal conductivity and thermal conduction through the film thickness is greater.

さらに、ハードディスクドライブの高密度磁気記録を実現するため、金属間化合物を用いた磁気記録媒体が提案されている。例えば、特許文献5に記載のように軟磁性下地層と、軟磁性下地層の上部に(111)配向を持つL10磁性材料とを有する傾斜記録用磁気記録媒体が提案されている。また、特許文献6には、L10構造の規則化を高めるためにCu,Au,Zn,Sn及びPdを添加したFePt合金利用の垂直磁気記録媒体が提案されている。或いはFePt合金に替わり、CoPt,FePd合金の規則度を向上させた垂直磁気記録媒体が提案されている。 Furthermore, magnetic recording media using intermetallic compounds have been proposed in order to realize high-density magnetic recording for hard disk drives. For example, a soft magnetic underlayer, the inclined recording magnetic recording medium having a L1 0 magnetic material with a top in (111) orientation of the soft magnetic underlayer has been proposed as described in Patent Document 5. In Patent Document 6, Cu to increase the ordering of the L1 0 structure, Au, Zn, perpendicular magnetic recording medium of the FePt alloy utilized with the addition of Sn and Pd have been proposed. Alternatively, a perpendicular magnetic recording medium in which the order of the CoPt and FePd alloys is improved instead of the FePt alloy has been proposed.

特許文献7には、熱支援記録の方式例が示されている。特許文献8にも、ニア−フィールドのヒーター(Near Field Heater)利用等、局所的に加熱する方法が例示されている。また、特許文献9に記載のように、必要に応じて通電して発熱させることにより磁極先端部を熱膨張させて突出させるようにした薄膜抵抗体を形成した薄膜磁気ヘッド素子を有する磁気ヘッドや、磁気ヘッドが磁気ディスクに対してリード・ライトを行うときに、通電して発熱させることにより、磁極先端部を熱膨張させて突出させるようにした薄膜抵抗体を薄膜磁気ヘッド素子の絶縁体層の内部に形成し、磁極先端部の突出によりこれと磁気ディスク面との間隙を小さくするように構成することが提案されている。特許文献10には、スライダの底部に近接場光を発生させるための散乱体の上部に磁極が配置されている熱アシスト記録装置用ヘッドも提案されている。   Patent Document 7 shows an example of a heat-assisted recording method. Patent Document 8 also exemplifies a method of locally heating, such as using a near-field heater. Further, as described in Patent Document 9, a magnetic head having a thin film magnetic head element formed with a thin film resistor in which a magnetic pole tip is protruded by thermal expansion by energizing and generating heat as necessary, When a magnetic head reads / writes from / to a magnetic disk, a thin film resistor is formed by causing the tip of the magnetic pole to thermally expand by being energized to generate heat. It has been proposed that the gap between the magnetic disk surface and the magnetic disk surface be reduced by the protrusion of the magnetic pole tip. Patent Document 10 also proposes a head for a heat-assisted recording apparatus in which a magnetic pole is arranged on the upper part of a scatterer for generating near-field light at the bottom of a slider.

特開平7−65357号公報Japanese Unexamined Patent Publication No. 7-65357 特開2006−196151号公報JP 2006-196151 A 特開昭59−165243号公報JP 59-165243 特開昭63−249925号公報JP-A-63-249925 特開2006−19000号公報JP 2006-19000 A 特許第3730518号Japanese Patent No. 3730518 US2006/0154110A1US2006 / 0154110A1 US2002/0101673A1US2002 / 0101673A1 特開平5−20635号公報JP-A-5-20635 特開2007−128573号公報JP 2007-128573 A

面記録密度の増加に対応し、記録層に用いる結晶粒径を微細化する必要がある。しかしながら、記録層の結晶粒径を微細化すると、熱的な揺らぎによる記録磁化の不安定性が顕著になる。この対策として、(1)記録層の結晶性の向上、(2)結晶粒径分散の低減、(3)磁気異方性の大きな記録材料の利用、(4)書き込み性能の異なる磁性層の積層化等が提案されている。特に、磁気異方性の大きな記録材料を利用する際には、記録層を加熱し、保磁力を低減して書き込み性能を向上することが提案されている。   Corresponding to the increase in surface recording density, it is necessary to refine the crystal grain size used for the recording layer. However, when the crystal grain size of the recording layer is reduced, the instability of the recording magnetization due to thermal fluctuation becomes remarkable. As countermeasures, (1) improvement in crystallinity of the recording layer, (2) reduction in crystal grain size dispersion, (3) use of a recording material having a large magnetic anisotropy, and (4) lamination of magnetic layers having different writing performances Proposal has been proposed. In particular, when using a recording material having a large magnetic anisotropy, it has been proposed to improve the writing performance by heating the recording layer to reduce the coercive force.

しかしながら、金属間化合物の強磁性体を利用した磁気記録媒体では、加熱による書き込みを繰り返していくことにより、規則化が進んだ段階でL10構造をとることが期待される組成で構成される金属間化合物の規則度が向上し、結果として磁気異方性が増加するため書き込み性能が劣化する可能性があることについて十分な対策がなされていなかった。また、軟磁性下地層を用いた傾斜記録用磁気記録媒体で熱伝導率を考慮し、同時に書き込み性能を向上させた磁気記録媒体は提案されていなかった。磁気記録を行なう上での軟磁性下地層の役割を考慮し、軟磁性下地層と記録層の間隔を詰められる結晶性が高くかつ薄い低熱伝導率層を設けた磁気記録媒体も提案されていなかった。 However, in a magnetic recording medium using a ferromagnetic material of an intermetallic compound, a metal having a composition that is expected to have an L1 0 structure at a stage where ordering has progressed by repeating writing by heating. A sufficient measure has not been taken about the possibility that the writing performance may be deteriorated due to an increase in the degree of order of the intermetallic compound and, as a result, an increase in magnetic anisotropy. In addition, no magnetic recording medium has been proposed in which the thermal conductivity is considered in the magnetic recording medium for tilt recording using the soft magnetic underlayer and the writing performance is improved at the same time. In consideration of the role of the soft magnetic underlayer in magnetic recording, a magnetic recording medium with a high crystallinity and thin low thermal conductivity layer that can close the gap between the soft magnetic underlayer and the recording layer has not been proposed. It was.

このような背景から、本発明が解決しようとする課題は、磁気記録媒体に磁気的な書き込みをする際に熱伝導率を考慮して、少ないエネルギ消費で効率良く磁気記録媒体を加熱し、同時に記録層に用いる規則合金の規則度が変化しても長期間にわたり書き込み性能を向上することができる磁気記録媒体を提供することにある。   From such a background, the problem to be solved by the present invention is to efficiently heat a magnetic recording medium with a small amount of energy consumption in consideration of thermal conductivity when magnetically writing to the magnetic recording medium. An object of the present invention is to provide a magnetic recording medium capable of improving the writing performance over a long period of time even if the degree of order of the ordered alloy used for the recording layer changes.

本発明の傾斜記録用磁気記録媒体は、剛体基板上に接着層を介して或いは直接基板上に軟磁性層を形成し、軟磁性層上に非磁性中間層を介して軟磁性層を形成後、酸化物からなる中間層、結晶配向性制御兼低熱伝導中間層、規則化が進んだ段階でL10構造をとることが期待される組成で構成されるFe−Pt合金を主成分とするグラニュラ記録層、Fe−Pt合金或いはCo−Cr−Pt−B合金からなるキャップ層、保護層及び潤滑層をこの順に形成した構造を有する。 The magnetic recording medium for tilt recording according to the present invention is formed by forming a soft magnetic layer on a rigid substrate via an adhesive layer or directly on the substrate, and forming a soft magnetic layer on the soft magnetic layer via a nonmagnetic intermediate layer. , granular mainly containing constituted Fe-Pt alloy composition intermediate layer of oxide, the crystal orientation-control and low thermal conducting intermediate layer, take the L1 0 structure at the stage of progress in ordering is expected The recording layer, a cap layer made of an Fe—Pt alloy or a Co—Cr—Pt—B alloy, a protective layer, and a lubricating layer are formed in this order.

接着層としてAl−Ti合金だけでなくCr−Ti合金等を用いることもできる。酸化物からなる中間層に替わり、非磁性Ni基合金からなる中間層を設けてもよい。また、規則化が進んだ段階でL10構造をとることが期待される組成で構成されるFe−Pt合金を主成分とするグラニュラ記録層がさらにCuを含有していてもよい。これらのFe−Pt合金或いはFe−Cu−Pt合金は、規則化が進んだ段階でL10構造をとることが期待される組成で構成され、これらの金属間化合物を構成する組成に対しさらにSiO2或いはTiO2やTaの酸化物から選ばれる少なくとも1種の酸化物を添加してグラニュラ記録層を構成する。 As the adhesive layer, not only an Al—Ti alloy but also a Cr—Ti alloy can be used. Instead of the intermediate layer made of an oxide, an intermediate layer made of a nonmagnetic Ni-based alloy may be provided. It may also contain a granular recording layer further Cu as a main component a consists Fe-Pt alloy composition take the L1 0 structure at the stage of progress in ordering is expected. These Fe—Pt alloys or Fe—Cu—Pt alloys are composed of a composition that is expected to have an L1 0 structure at the stage of regularization. 2 or by addition of at least one oxide selected from oxides of TiO 2 and Ta constituting the granular recording layer.

結晶配向性制御兼低熱伝導中間層は、Ti−Al−V合金或いはハステロイC合金とすることができる。Ti−Al−V合金の組成としては、工業的に代表される組成としてTi−6wt.%Al−4wt.%V合金が挙げられる。この他、一般的に流通されている組成範囲として、各添加元素について概ね±0.5wt.%の組成揺らぎがある材料を用いてもよい。あるいは、結晶配向性制御兼低熱伝導中間層と規則化が進んだ段階でL10構造をとることが期待される組成で構成されるFe−Pt合金を主成分とするグラニュラ記録層の間に、Ruからなる結晶配向性制御層を形成してもよい。 The crystal orientation control and low thermal conductivity intermediate layer may be a Ti—Al—V alloy or a Hastelloy C alloy. As a composition of Ti-Al-V alloy, Ti-6wt.% Al-4wt.% V alloy is mentioned as an industrially representative composition. In addition, as a generally distributed composition range, a material having a composition fluctuation of approximately ± 0.5 wt.% For each additive element may be used. Alternatively, between the granular recording layer mainly composed of composed Fe-Pt alloy composition taking L1 0 structure advanced crystal orientation-control and low thermal conductivity intermediate layer and regularization is stage is expected, A crystal orientation control layer made of Ru may be formed.

規則化が進んだ段階でL10構造をとることが期待される組成で構成されるFe−Pt合金に替わり、規則化が進んだ段階でL10構造をとることが期待される組成で構成されるCo−Pt合金を用いてもよい。グラニュラ記録層に規則化が進んだ段階でL10構造をとることが期待される組成で構成されるCo−Pt合金を用いる場合、Coに対してNiを置換するように添加しても良い。これらのCo−Pt合金或いはCo−Ni−Pt合金は、規則化が進んだ段階でL10構造をとることが期待される組成で構成され、これらの金属間化合物を構成する組成に対しさらに酸化物を添加してグラニュラ記録層を構成する。 Instead of an Fe-Pt alloy composed of a composition that is expected to have an L1 0 structure at the stage of progress in ordering, it is composed of a composition that is expected to have an L1 0 structure at the stage of progress in ordering. Co-Pt alloy may be used. When using a Co-Pt alloy consisting of a composition which is expected to ordering the granular recording layer is in an advanced stage taking an L1 0 structure, it may be added to replace the Ni relative to Co. These Co-Pt alloy or Co-Ni-Pt alloy is formed of a composition is expected to take an L1 0 structure at the stage of progress in ordered, further oxidized to compositions which comprise these intermetallic compounds A granular recording layer is formed by adding a material.

剛体基板上に接着層を介して或いは直接基板上に軟磁性層を形成し、軟磁性層上に非磁性中間層を介して軟磁性層を形成した基板を大気中に取り出し、別の真空プロセスで酸化物からなる中間層、結晶配向性制御兼低熱伝導中間層、規則化が進んだ段階でL10構造をとることが期待される組成で構成されるFe−Pt合金あるいはCo−Pt合金を主成分とするグラニュラ記録層、Fe−Pt合金、Co−Pt合金或いはCo−Cr−Pt−B合金からなるキャップ層、保護層を形成後、熱処理を行ない、その後潤滑層を形成することにより、グラニュラ記録層のL10構造が期待される合金部分の規則度を向上させて、本発明の傾斜記録用磁気記録媒体を作製することができる。キャップ層に用いるFe−Pt合金、或いはCo−Pt合金のPt組成は40at.%未満であれば良い。Ptの添加濃度を減らしすぎると耐食性が劣化するため、20at.%以上Ptを含有していれば良い。 A soft magnetic layer is formed on a rigid substrate via an adhesive layer or directly on the substrate, and the soft magnetic layer is formed on the soft magnetic layer via a nonmagnetic intermediate layer. in an intermediate layer made of oxide, the crystal orientation-control and low thermal conducting intermediate layer, the Fe-Pt alloy or Co-Pt alloy consisting of a composition which is expected to take an L1 0 structure at the stage of progress in ordering By forming a granular recording layer as a main component, a cap layer made of an Fe—Pt alloy, a Co—Pt alloy or a Co—Cr—Pt—B alloy, a protective layer, and then performing a heat treatment, and then forming a lubricating layer, L1 0 structure of the granular recording layer to improve the degree of order of the alloy portion that is expected, it is possible to manufacture a gradient recording magnetic recording medium of the present invention. The Pt composition of the Fe—Pt alloy or Co—Pt alloy used for the cap layer may be less than 40 at.%. If the concentration of Pt added is excessively reduced, the corrosion resistance deteriorates, so it is sufficient that the Pt content is 20 at.% Or more.

本発明によれば、消費電力を低減して磁気記録媒体を加熱でき、同時に書き込み性能が常に優れた傾斜記録用磁気記録媒体を提供できる。   According to the present invention, it is possible to provide a magnetic recording medium for tilt recording that can reduce power consumption and heat the magnetic recording medium, and at the same time has excellent writing performance.

本発明では、軟磁性下地層を用いた傾斜記録用磁気記録媒体において、軟磁性下地層と記録層の距離を低減するために、記録層を結晶配向性制御兼低熱伝導中間層上にヘテロエピタキシャル成長させ軟磁性下地層と記録層間の距離を最適化した。同時に結晶配向性制御兼低熱伝導中間層の熱伝導率を低下することにより、軟磁性下地層まで加熱しなくても記録層の保磁力を低下でき、低消費電力で磁化反転が可能となる。   In the present invention, in a magnetic recording medium for tilt recording using a soft magnetic underlayer, in order to reduce the distance between the soft magnetic underlayer and the recording layer, the recording layer is heteroepitaxially grown on the crystal orientation control and low thermal conductivity intermediate layer. The distance between the soft magnetic underlayer and the recording layer was optimized. At the same time, by reducing the thermal conductivity of the crystal orientation control and low thermal conductivity intermediate layer, the coercivity of the recording layer can be reduced without heating to the soft magnetic underlayer, and magnetization reversal is possible with low power consumption.

剛体基板上に接着層を介して軟磁性下地層を形成すると機械的な信頼性が向上するため好ましい。軟磁性下地層の膜厚が30nm程度以下の場合には、膜応力が小さいため接着層は必ずしも設ける必要はない。軟磁性下地層上に酸化被膜を形成すると、酸化被膜の熱伝導率が1W/(m・K)程度と金属膜に比べ小さいため、記録時に軟磁性下地層を加熱せずに記録層を加熱しやすくなる。さらにこの酸化物からなる中間層上に結晶配向性制御兼低熱伝導中間層を形成すると、この合金中間層の稠密面が基板面に平行に成長する。結果として、この結晶配向性制御兼低熱伝導中間層上に形成するグラニュラ記録層は(111)面が基板面と平行にヘテロエピタキシャル成長する。結晶配向性制御兼低熱伝導中間層として稠密六方充填構造をとり、バルクの熱伝導率が7.5W/(m・K)であるTi−Al−V合金を用いた場合は、稠密六方充填構造の(001)面が基板面と平行に成長する。或いは結晶配向性制御兼低熱伝導中間層としてバルクの熱伝導率が12W/(m・K)であるハステロイC合金を用いた場合は、面心立方構造の(111)面が基板面と平行に成長する。Tiがおよそ17W/(m・K)の低熱伝導率材料であるのに対し、前記結晶配向性制御兼低熱伝導中間層用合金は更に熱伝導率が小さく、かつ結晶配向を制御しやすい合金である。これらの結晶配向性制御兼低熱伝導中間層は、薄いと結晶配向性と粒径が同時に制御でき、その上に形成する記録層の粒径と結晶成長方位も制御できる。記録層と結晶配向性制御兼低熱伝導中間層の間に、熱伝導率は105〜117W/(m・K)と高いものの、真空プロセスの雰囲気に影響されにくい表面を形成するため稠密六方充填構造の(001)面が基板面と平行に成長するRu層を形成することも有効である。   Forming a soft magnetic underlayer on a rigid substrate via an adhesive layer is preferable because mechanical reliability is improved. When the thickness of the soft magnetic underlayer is about 30 nm or less, the adhesive stress is not necessarily provided because the film stress is small. When an oxide film is formed on a soft magnetic underlayer, the thermal conductivity of the oxide film is about 1 W / (m · K), which is smaller than that of a metal film. Therefore, the recording layer is heated without heating the soft magnetic underlayer during recording. It becomes easy to do. Further, when a crystal orientation control and low thermal conductivity intermediate layer is formed on the intermediate layer made of oxide, the dense surface of the alloy intermediate layer grows parallel to the substrate surface. As a result, the granular recording layer formed on the crystal orientation control and low thermal conduction intermediate layer is heteroepitaxially grown with the (111) plane parallel to the substrate surface. When a Ti-Al-V alloy having a bulk thermal conductivity of 7.5 W / (m · K) is used as a crystal orientation control and low thermal conduction intermediate layer and a bulk thermal conductivity is 7.5 W / (m · K), a dense hexagonal filling structure is used. The (001) plane grows in parallel with the substrate surface. Alternatively, when a Hastelloy C alloy having a bulk thermal conductivity of 12 W / (m · K) is used as the crystal orientation control and low thermal conductivity intermediate layer, the (111) plane of the face-centered cubic structure is parallel to the substrate surface. grow up. Whereas Ti is a low thermal conductivity material of about 17 W / (m · K), the alloy for controlling crystal orientation and the low thermal conductivity intermediate layer is an alloy having a smaller thermal conductivity and easy to control the crystal orientation. is there. If these crystal orientation control and low thermal conductivity intermediate layers are thin, the crystal orientation and grain size can be controlled simultaneously, and the grain size and crystal growth orientation of the recording layer formed thereon can also be controlled. A dense hexagonal packing structure is formed between the recording layer and the crystal orientation control / low thermal conductivity intermediate layer to form a surface that is high in the range of 105 to 117 W / (m · K) but hardly affected by the atmosphere of the vacuum process. It is also effective to form a Ru layer whose (001) plane grows parallel to the substrate surface.

Fe−Pt合金を主成分とするグラニュラ記録層を形成する際に、FeをCuで置換するように添加すると、L10規則構造を形成しやすくなるので好ましい。Co−Pt合金を主成分とするグラニュラ記録層を形成する際に、CoをNiで置換するように添加しても、L10規則構造を形成しやすくなるので好ましい。記録層をグラニュラ化するのにSiO2やTiO2の他、Ta酸化物あるいはこれらの混合物を添加することもできる。 The Fe-Pt alloy in forming the granular recording layer mainly, the addition of Fe to replace with Cu, since easily forming an L1 0 ordered structure preferred. The Co-Pt alloy in forming the granular recording layer mainly composed, even if Co is added to replace at Ni, since easily forming an L1 0 ordered structure preferred. To granulate the recording layer, Ta oxide or a mixture thereof can be added in addition to SiO 2 and TiO 2 .

磁気記録媒体を形成した直後にはL10規則合金の規則度は必ずしも高くない。しかしながら、加熱記録を繰り返すうちに徐々に規則度が向上し、保磁力が増加する。グラニュラ記録層の保磁力が増加しても、磁化反転のきっかけを与えるキャップ層をグラニュラ記録層の上に形成することにより、書き込み性能に問題が生じない。キャップ層として用いることができる材料はグラニュラ記録層よりも異方性磁界が小さな材料であれば良い。例えばPtに比べCo或いはFe濃度が高いFe−Pt合金、Co−Pt合金や、Co−Cr−Pt−B合金などからなるキャップ層を用いることができる。 Rules of the L1 0 ordered alloy immediately after the formation of the magnetic recording medium is not necessarily high. However, as heating recording is repeated, the regularity gradually improves and the coercive force increases. Even if the coercive force of the granular recording layer is increased, no problem occurs in writing performance by forming a cap layer on the granular recording layer that triggers magnetization reversal. The material that can be used as the cap layer may be any material that has a smaller anisotropic magnetic field than the granular recording layer. For example, a cap layer made of an Fe—Pt alloy, a Co—Pt alloy, a Co—Cr—Pt—B alloy, or the like having a higher Co or Fe concentration than Pt can be used.

Co−Cr−Pt−B合金からなるキャップ層の組成の効果は以下の通りである。PtとBの濃度を固定してCoとCrの割合を変えた場合、Cr濃度を増加することにより書き込み性能が向上したが、書き込みトラック幅が増加した。この観点からCrの添加濃度は、Co−Cr−12at.%Pt−8at.%B合金の場合、添加上限濃度は20at.%程度とすることが好ましい。また、耐食信頼性の観点からCr添加濃度の下限は12at.%である。すなわち、Co−(12〜20)at.%Cr−12at.%Pt−8at.%Bが好ましい。Bの添加濃度はCo−15at.%Cr−12at.%Pt−B合金の場合、添加上限濃度はタ−ゲットの作りやすさから10at.%程度が好ましく、また結晶粒径の粗大化による再生ノイズの観点から、B添加濃度の下限は4at.%である。CrとBの濃度を固定してCoとPtの濃度を変えた場合、Pt濃度を上げてゆくとオーバーライト特性が劣化した。この観点から、Pt濃度の上限は16at.%以下が好ましい。またPtを添加しないと耐食信頼性が低下したため、4at.%以上Ptを添加することが好ましい。これらの結果から、Co−Cr−Pt−B合金の場合には、Co−(12〜20)at.%Cr−(4〜16)at.%Pt−(4〜10)at.%B合金を用いることが好ましい。   The effect of the composition of the cap layer made of the Co—Cr—Pt—B alloy is as follows. When the Pt and B concentrations were fixed and the ratio of Co and Cr was changed, the writing performance was improved by increasing the Cr concentration, but the writing track width was increased. From this viewpoint, the addition concentration of Cr is preferably about 20 at.% In the case of a Co—Cr-12 at.% Pt-8 at.% B alloy. From the viewpoint of corrosion resistance reliability, the lower limit of the Cr addition concentration is 12 at.%. That is, Co- (12-20) at.% Cr-12 at.% Pt-8 at.% B is preferable. In the case of a Co-15at.% Cr-12at.% Pt-B alloy, the upper limit concentration of B is preferably about 10 at.% From the viewpoint of ease of making a target, and regeneration by coarsening of the crystal grain size. From the viewpoint of noise, the lower limit of the B addition concentration is 4 at. When the concentrations of Co and Pt were changed while the concentrations of Cr and B were fixed, the overwrite characteristics deteriorated as the Pt concentration was increased. From this viewpoint, the upper limit of the Pt concentration is preferably 16 at. If Pt is not added, the corrosion resistance reliability is lowered, so it is preferable to add 4 at.% Or more of Pt. From these results, in the case of Co-Cr-Pt-B alloy, Co- (12-20) at.% Cr- (4-16) at.% Pt- (4-10) at.% B alloy Is preferably used.

キャップ層を形成した後に設ける保護層としては、窒素あるいは水素を含んだ炭素を主成分とする保護層のほか、窒化珪素を主成分とする保護層を形成することも加熱のしやすさの観点からから好ましい。   As a protective layer to be provided after the cap layer is formed, in addition to a protective layer mainly composed of carbon containing nitrogen or hydrogen, it is also possible to form a protective layer mainly composed of silicon nitride from the viewpoint of ease of heating. To preferred.

「酸化物からなる中間層」に替わり、非磁性Ni基合金からなる中間層を設けると、軟磁性下地層に起因したイオンの溶出を止めることも可能となり、信頼性を向上する上で好ましい。具体的な合金系としてはNi−Ti,Ni−Ta,Ni−W,Ni−Cr,Ni−Cr−Ti,Ni−W−Cr,Ni−Ta−Cr合金である。Ti,Ta,Wから選択される材料をNiに添加すると結晶粒を微細化させ、同時に面心立方構造の(111)面を基板面に平行に成長させることができ、連続して形成する結晶配向性制御兼低熱伝導中間層の粒径制御と結晶成長も制御できる。結晶配向性制御兼低熱伝導中間層とFe−Pt合金を主成分とするグラニュラ記録層の間にRuからなる結晶配向性制御層を形成することも好ましい。   If an intermediate layer made of a nonmagnetic Ni-based alloy is provided instead of the “interlayer made of oxide”, it is possible to stop elution of ions caused by the soft magnetic underlayer, which is preferable in terms of improving reliability. Specific alloy systems include Ni-Ti, Ni-Ta, Ni-W, Ni-Cr, Ni-Cr-Ti, Ni-W-Cr, and Ni-Ta-Cr alloys. When a material selected from Ti, Ta, and W is added to Ni, the crystal grains can be refined, and the (111) plane having a face-centered cubic structure can be grown in parallel to the substrate surface. It is also possible to control the grain size and crystal growth of the low thermal conductivity intermediate layer with orientation control. It is also preferable to form a crystal orientation control layer made of Ru between the crystal orientation control and low thermal conductivity intermediate layer and the granular recording layer mainly composed of Fe—Pt alloy.

以下、図面を参照して、実施例について説明する。   Hereinafter, embodiments will be described with reference to the drawings.

図1は、実施例1による磁気記録媒体の構成を示す断面図である。この磁気記録媒体は、基板10上に接着層12、軟磁性下地層141、非磁性層142、軟磁性下地層143、酸化物中間層16,結晶配向性制御兼低熱伝導中間層18、グラニュラ記録層20、キャップ層22、保護層24及び潤滑層26を有する。   FIG. 1 is a cross-sectional view showing the configuration of the magnetic recording medium according to the first embodiment. This magnetic recording medium includes an adhesive layer 12, a soft magnetic underlayer 141, a nonmagnetic layer 142, a soft magnetic underlayer 143, an oxide intermediate layer 16, a crystal orientation control / low thermal conductivity intermediate layer 18 on a substrate 10, granular recording. It has a layer 20, a cap layer 22, a protective layer 24 and a lubricating layer 26.

次に磁気記録媒体の製造方法について説明する。基板10として厚さ0.508mm、外径48mmの化学強化したガラス基板を用いた。インライン式の枚葉式DC/RFマグネトロンスパッタリング装置を用い、全てのチャンバを2×10-5Pa以下の真空まで排気した。その後、基板10を載せたキャリアを各プロセスチャンバに移動させて、グラニュラ記録層20を除き、放電用Arガス圧を0.7PaとしてDCマグネトロンスパッタリング法で以下の薄膜形成を行なった。薄膜の形成方法はDCマグネトロンスパッタに限定されない。グラニュラ記録層20の形成には、期待される規則合金の結晶性を高めるため、高周波マグネトロンスパッタ法を用いた。また、酸化物を含有した薄膜形成時にDCパルススパッタ法を併用することも可能である。 Next, a method for manufacturing a magnetic recording medium will be described. A chemically strengthened glass substrate having a thickness of 0.508 mm and an outer diameter of 48 mm was used as the substrate 10. All chambers were evacuated to a vacuum of 2 × 10 −5 Pa or less using an in-line single-wafer DC / RF magnetron sputtering apparatus. Thereafter, the carrier on which the substrate 10 was placed was moved to each process chamber, the granular recording layer 20 was removed, the discharge Ar gas pressure was 0.7 Pa, and the following thin film was formed by DC magnetron sputtering. The method for forming the thin film is not limited to DC magnetron sputtering. For the formation of the granular recording layer 20, a high-frequency magnetron sputtering method was used in order to increase the expected crystallinity of the ordered alloy. Moreover, it is also possible to use DC pulse sputtering together when forming a thin film containing an oxide.

本実施例では、ガラス基板10として、硼珪酸ガラス、或いはアルミノシリケートガラスからなる基板表面を化学強化した基板を洗浄後、乾燥して用いた。化学強化したガラス基板に替え、アルミニウム合金基板上にNi−Pめっき後表面研磨した基板や、SiやTi合金からなる剛体基板を用いることもできる。基板の外径は48mmに限定されることなく、65mmや84mm等から選択できる。基板の厚みも剛性が保たれる範囲で選択でき、0.635mmや0.8mm等から選択できる。接着層12として、厚さ5nmの50at.%Al−50at.%Ti合金膜を形成した。   In this example, a substrate obtained by chemically strengthening the substrate surface made of borosilicate glass or aluminosilicate glass was used as the glass substrate 10 after being washed and dried. Instead of a chemically strengthened glass substrate, a substrate whose surface is polished after Ni-P plating on an aluminum alloy substrate, or a rigid substrate made of Si or Ti alloy can also be used. The outer diameter of the substrate is not limited to 48 mm, and can be selected from 65 mm, 84 mm, and the like. The thickness of the substrate can also be selected as long as the rigidity is maintained, and can be selected from 0.635 mm, 0.8 mm, or the like. As the adhesive layer 12, a 50 at.% Al-50 at.% Ti alloy film having a thickness of 5 nm was formed.

軟磁性層141として厚さ20nmの51at.%Fe−34at.%Co−10at.%Ta−5at.%Zr合金膜を形成し、非磁性層142として厚さ0.7nmのRu膜を形成後、再び軟磁性下地層143として厚さ20nmの51at.%Fe−34at.%Co−10at.%Ta−5at.%Zr合金膜を形成した。軟磁性層141,143の組成は前記組成に限定されないが、TaとZrの添加元素の濃度は合計で5at.%添加されている場合、5秒以内の酸化プロセスで安定した酸化物中間層16を形成することができた。TaとZrの添加元素の濃度は、合計で20at.%添加されている場合に、軟磁性下地層141と143をそれぞれ20nmより厚くすれば書き込み特性が向上した。TaとZrの添加元素の濃度を15at.%に固定したまま、51at.%Fe−34at.%Co−10at.%Ta−5at.%Zr合金の替わりに、例えば48at.%Fe−37at.%Co−10at.%Ta−5at.%Zr合金に変更することも可能である。X線回折による反射曲線の測定結果から、これらのFe−Co−Ta−Zr合金膜はいずれも微結晶あるいは非晶質であると考えられる。   After forming a 51 at.% Fe-34 at.% Co-10 at.% Ta-5 at.% Zr alloy film as the soft magnetic layer 141 and forming a 0.7 nm thick Ru film as the nonmagnetic layer 142 A 51 at.% Fe-34 at.% Co-10 at.% Ta-5 at.% Zr alloy film having a thickness of 20 nm was again formed as the soft magnetic underlayer 143. The composition of the soft magnetic layers 141 and 143 is not limited to the above composition. However, when the concentration of the added elements of Ta and Zr is 5 at.% In total, the oxide intermediate layer 16 stabilized in an oxidation process within 5 seconds. Could be formed. When the total concentration of the added elements of Ta and Zr was 20 at.%, The write characteristics were improved by making the soft magnetic underlayers 141 and 143 thicker than 20 nm, respectively. Instead of the 51at.% Fe-34at.% Co-10at.% Ta-5at.% Zr alloy, the concentration of the added elements of Ta and Zr is fixed at 15at.%, For example, 48at.% Fe-37at.%. It is also possible to change to a Co-10 at.% Ta-5 at.% Zr alloy. From the measurement result of the reflection curve by X-ray diffraction, it is considered that all of these Fe—Co—Ta—Zr alloy films are microcrystalline or amorphous.

非磁性層142はRu或いはRuを主成分とする合金として、Ru−50at.%Fe合金、Ru−40at.%Cr合金、Ru−30at.%Co合金などを用いることができる。その膜厚は、軟磁性層141と143が反強磁性結合できる範囲で変えることもできる。さらに、この反強磁性結合を用いて軟磁性層141と143の残留磁化を等しく反平行にすれば、再生ノイズを低減することができる。軟磁性下地層143を形成後、1vol.%酸素を含有したArガスを5秒暴露することにより、酸化物中間層16を形成した。   As the non-magnetic layer 142, Ru-50at.% Fe alloy, Ru-40at.% Cr alloy, Ru-30at.% Co alloy or the like can be used as an alloy containing Ru or Ru as a main component. The film thickness can be changed within a range where the soft magnetic layers 141 and 143 can be antiferromagnetically coupled. Furthermore, if the residual magnetizations of the soft magnetic layers 141 and 143 are made antiparallel to each other by using this antiferromagnetic coupling, reproduction noise can be reduced. After forming the soft magnetic underlayer 143, the oxide intermediate layer 16 was formed by exposing Ar gas containing 1 vol.% Oxygen for 5 seconds.

酸化物中間層16を形成後、基板温度を280℃に加熱して、結晶配向性制御兼低熱伝導中間層18としてTi−6wt.%Al−4wt.%V合金膜を2nmから20nm形成した。バルクのTiの熱伝導率が17W/(m・K)であるのに対し、Ti−Al−V合金の熱伝導率は7.5W/(m・K)とTiの半分未満である。   After forming the oxide intermediate layer 16, the substrate temperature was heated to 280 ° C., and a Ti-6 wt.% Al-4 wt.% V alloy film was formed to 2 nm to 20 nm as the crystal orientation control and low thermal conduction intermediate layer 18. The thermal conductivity of bulk Ti is 17 W / (m · K), whereas the thermal conductivity of Ti—Al—V alloy is 7.5 W / (m · K), which is less than half of Ti.

さらにグラニュラ記録層20として92mol%(50at.%Fe−50at.%Pt)−8mol%SiO2膜を12nm形成した。グラニュラ記録層20を形成する際の放電用Arガス圧を2Paとした。 Further, a 92 mol% (50 at.% Fe-50 at.% Pt) -8 mol% SiO 2 film having a thickness of 12 nm was formed as the granular recording layer 20. The Ar gas pressure for discharge when forming the granular recording layer 20 was 2 Pa.

これらの試料について、銅の特性X線を用いた反射回折曲線を測定した。結果、Ti−6wt.%Al−4wt.%V合金膜の膜が厚くなるに従い、hcp構造に由来する002回折強度が増加することが確認された。この回折強度の増加に伴い、グラニュラ記録層に起因すると思われるfcc構造或いはfct構造に由来する111回折強度の増加が観測された。このことから、この媒体は記録層の磁化容易軸が膜面垂直方向から傾斜した傾斜記録媒体であることが確認された。   About these samples, the reflection diffraction curve using the characteristic X-ray of copper was measured. As a result, it was confirmed that the 002 diffraction intensity derived from the hcp structure increases as the thickness of the Ti-6 wt.% Al-4 wt.% V alloy film increases. Along with this increase in diffraction intensity, an increase in 111 diffraction intensity derived from the fcc structure or the fct structure, which is considered to be caused by the granular recording layer, was observed. From this, it was confirmed that this medium is an inclined recording medium in which the easy axis of magnetization of the recording layer is inclined from the direction perpendicular to the film surface.

グラニュラ記録層20を形成後、65at.%Fe−35at.%Pt合金、或いはCo−15at.%Cr−12at.%Pt−8at.%B合金からなるキャップ層22を3nmから10nm形成し、窒素あるいは水素を含有し炭素を主成分とする保護層24を3nm形成した。さらに窒素置換した不活性雰囲気中で300℃に1時間保持後、大気圧に戻し、フッ素を主成分とする潤滑層26を形成した。   After the granular recording layer 20 is formed, a cap layer 22 made of 65 at.% Fe-35 at.% Pt alloy or Co-15 at.% Cr-12 at.% Pt-8 at. Alternatively, the protective layer 24 containing hydrogen and containing carbon as a main component was formed to 3 nm. Furthermore, after maintaining at 300 ° C. for 1 hour in an inert atmosphere substituted with nitrogen, the pressure was returned to atmospheric pressure to form a lubricating layer 26 containing fluorine as a main component.

機械的な浮上特性を確認後、幾何学トラック幅PW 105nmの書き込み極で記録し、シールドギャップ長35nmを有するTMRヘッドを用いて磁気記録媒体の電磁変換特性を測定した。図2に、単磁極ヘッドと近接場光を発生させるための散乱体を組み合わせた記録ヘッドを中心とした断面図を示す。スライダ32の表面に近接場光を発生させるための散乱体34を形成し、その上に磁極36を形成した。波長785nmの半導体レーザ38を用いて光を発生させ、半導体レーザ38から発生する光をコア部40とクラッド部42から構成される導波路を用いて散乱体34まで導いた。導波路のコア部40はクラッド部42で囲まれている。薄膜コイル44を用いて発生させた磁界を主磁極46によって散乱体34の近くに導いた。主磁極46及び薄膜コイル44は、導波路に対して流出端48側に配置した。散乱体34の上部にある磁極36と主磁極46は、磁極50を用いて結合した。薄膜コイル44の反対側には、磁極51を介して閉磁路を形成するための補助磁極52を形成した。散乱体34上の磁極36と磁極50、主磁極46、磁極51、補助磁極52によって形成される磁気回路に、コイル44が鎖交している。導波路の横には、記録信号を再生するための、磁気再生素子54を形成した。磁気再生素子54の周辺には、周りからの磁界を遮蔽するためのシールド56を形成した。この再生素子は、補助磁極52の横(流出端48側)に置いても良いが、本実施例では図2に示す再生素子の配置とし、磁気再生素子54としてTMR素子を用いた。必要に応じて通電して発熱させることにより再生素子54を熱膨張させ突出させるようにした薄膜抵抗体58を形成した。   After confirming the mechanical flying characteristics, recording was performed with a writing pole having a geometric track width PW of 105 nm, and the electromagnetic conversion characteristics of the magnetic recording medium were measured using a TMR head having a shield gap length of 35 nm. FIG. 2 is a cross-sectional view centered on a recording head in which a single magnetic pole head and a scatterer for generating near-field light are combined. A scatterer 34 for generating near-field light was formed on the surface of the slider 32, and a magnetic pole 36 was formed thereon. Light was generated using a semiconductor laser 38 having a wavelength of 785 nm, and the light generated from the semiconductor laser 38 was guided to the scatterer 34 using a waveguide composed of a core portion 40 and a cladding portion 42. The core portion 40 of the waveguide is surrounded by a clad portion 42. A magnetic field generated using the thin film coil 44 was guided near the scatterer 34 by the main magnetic pole 46. The main magnetic pole 46 and the thin film coil 44 are arranged on the outflow end 48 side with respect to the waveguide. The magnetic pole 36 and the main magnetic pole 46 on the upper part of the scatterer 34 are coupled using the magnetic pole 50. An auxiliary magnetic pole 52 for forming a closed magnetic circuit is formed on the opposite side of the thin film coil 44 via the magnetic pole 51. A coil 44 is linked to a magnetic circuit formed by the magnetic pole 36, the magnetic pole 50, the main magnetic pole 46, the magnetic pole 51, and the auxiliary magnetic pole 52 on the scatterer 34. A magnetic reproducing element 54 for reproducing a recording signal is formed beside the waveguide. A shield 56 for shielding a magnetic field from the surroundings is formed around the magnetic reproducing element 54. This reproducing element may be placed beside the auxiliary magnetic pole 52 (on the outflow end 48 side), but in this embodiment, the reproducing element is arranged as shown in FIG. 2 and a TMR element is used as the magnetic reproducing element 54. A thin film resistor 58 was formed in which the reproducing element 54 was thermally expanded and protruded by energizing and generating heat as necessary.

記録時には、100mWの波長785nmの半導体レーザ38を用いて加熱した。再生時には半導体レーザ38を用いず、薄膜抵抗体58に60mW通電する条件で電磁変換特性を評価した。   During recording, heating was performed using a 100 mW semiconductor laser 38 having a wavelength of 785 nm. The electromagnetic conversion characteristics were evaluated under the condition that the thin film resistor 58 was energized with 60 mW without using the semiconductor laser 38 during reproduction.

磁気記録媒体を90/s(=5400pm)で回転させ、半径21mmでヘッドのskew角度を0度とした。オーバーライト特性(O/W)は、47.2kFC/mm(=1200kFCI)で消磁後、35.4kFC/mm(=900kFCI)の信号を書き、7.01kFC/mm(=178kFCI)の信号を重ね書きし35.4kFC/mmの信号の消し残りを評価した。再生時には、薄膜抵抗体58に60mW通電して発熱させ、電磁変換特性を測定した。並行して同時に加熱して書き込み回数に対する経時変化を同一トラック上で測定した。   The magnetic recording medium was rotated at 90 / s (= 5400 pm), and the skew angle of the head was 0 degree with a radius of 21 mm. Overwrite characteristic (O / W) is demagnetized at 47.2 kFC / mm (= 1200 kFCI), then a 35.4 kFC / mm (= 900 kFCI) signal is written, and a 7.01 kFC / mm (= 178 kFCI) signal is superimposed. The unerased remainder of the written 35.4 kFC / mm signal was evaluated. During reproduction, 60 mW was passed through the thin film resistor 58 to generate heat, and the electromagnetic conversion characteristics were measured. The time-dependent change with respect to the number of writings was measured on the same track by heating in parallel.

その結果、加熱初期のオーバーライト特性に対して、1万回の重ね書きを実施後でもオーバーライト特性は±0.2dBの誤差範囲に入っており、規則合金の規則度が仮に変化したとしても長期間にわたり書き込み性能に問題ないことが明らかになった。また、キャップ層22として4nm以上の厚さとなるように形成すると、図3に示すようにオーバーライト特性が改善された。   As a result, even after overwriting 10,000 times with respect to the overwrite characteristic in the initial stage of heating, the overwrite characteristic is within an error range of ± 0.2 dB, and even if the degree of ordering of the ordered alloy changes. It became clear that there was no problem in writing performance for a long time. When the cap layer 22 was formed to have a thickness of 4 nm or more, the overwrite characteristics were improved as shown in FIG.

一方、書き込みトラック幅はキャップ層22が厚くなると広くなった。幾何学トラック幅(Pw)で規格化した書き込みトラック幅(Tw)とキャップ層22の厚さの関係を図4に示す。キャップ層の膜厚を増加すると(Tw/Pw)値が増加する傾向は、キャップ層の材料によらなかった。これらの結果から、キャップ層の厚さは少なくとも4nm程度必要であるが、トラック幅の広がりを考慮すると7nm程度形成すれば良いと考えられる。   On the other hand, the write track width became wider as the cap layer 22 became thicker. FIG. 4 shows the relationship between the write track width (Tw) normalized by the geometric track width (Pw) and the thickness of the cap layer 22. The tendency of increasing the (Tw / Pw) value when the thickness of the cap layer was increased was not dependent on the material of the cap layer. From these results, the thickness of the cap layer needs to be at least about 4 nm, but it is considered that the thickness should be about 7 nm in consideration of the increase in the track width.

〔比較例1〕
上記実施例1で軟磁性下地層143を形成後、1vol.%酸素を含有したArガスを5秒暴露せずに、軟磁性下地層143上に、基板温度を280℃に加熱して、結晶配向性制御兼低熱伝導中間層18としてTi−6wt.%Al−4wt.%V合金膜を形成する代わりに、結晶配向性制御中間層としてTi膜を10nm形成した。その他のプロセスは実施例1と同様の条件でグラニュラ記録層20を形成後、Co−15at.%Cr−12at.%Pt−8at.%B合金からなるキャップ層22を3nmから10nm形成し、窒素あるいは水素を含有し炭素を主成分とする保護層24を3nm形成した。さらに窒素置換した不活性雰囲気中で300℃に1時間保持後、大気圧に戻し、フッ素を主成分とする潤滑層26を形成した。これらの磁気記録媒体について実施例1に記載の評価条件、すなわち、記録時には100mWの波長785nmの半導体レーザ38を用いて加熱し、再生時には半導体レーザ38を用いず、薄膜抵抗体58に60mW通電する条件で電磁変換特性を評価した。その結果、いずれのキャップ層の厚さの試料でも実施例1に比べてO/Wは3dBから5dB劣化していた。
[Comparative Example 1]
After forming the soft magnetic underlayer 143 in Example 1, the substrate temperature was heated to 280 ° C. on the soft magnetic underlayer 143 without exposing Ar gas containing 1 vol.% Oxygen for 5 seconds. Instead of forming a Ti-6 wt.% Al-4 wt.% V alloy film as the orientation control and low thermal conduction intermediate layer 18, a 10 nm Ti film was formed as the crystal orientation control intermediate layer. In other processes, after forming the granular recording layer 20 under the same conditions as in Example 1, a cap layer 22 made of a Co-15 at.% Cr-12 at.% Pt-8 at.% B alloy is formed from 3 nm to 10 nm, and nitrogen is added. Alternatively, the protective layer 24 containing hydrogen and containing carbon as a main component was formed to 3 nm. Furthermore, after maintaining at 300 ° C. for 1 hour in an inert atmosphere substituted with nitrogen, the pressure was returned to atmospheric pressure to form a lubricating layer 26 containing fluorine as a main component. These magnetic recording media are evaluated using the evaluation conditions described in Example 1, that is, 100 mW of semiconductor laser 38 having a wavelength of 785 nm is heated during recording, and 60 mW is applied to thin film resistor 58 without using semiconductor laser 38 during reproduction. The electromagnetic conversion characteristics were evaluated under the conditions. As a result, the O / W deteriorated from 3 dB to 5 dB as compared with Example 1 in any cap layer thickness sample.

一方、記録時に110mWまで消費電力を増加させ、波長785nmの半導体レーザ38を用いて加熱し、再生時には半導体レーザ38を用いず薄膜抵抗体58に60mW通電する条件で、電磁変換特性を評価した結果、実施例1と同程度のO/W特性が得られた。   On the other hand, as a result of increasing the power consumption to 110 mW during recording, heating using the semiconductor laser 38 having a wavelength of 785 nm, and evaluating the electromagnetic conversion characteristics under the condition that the thin film resistor 58 is energized by 60 mW without using the semiconductor laser 38 during reproduction. O / W characteristics comparable to those of Example 1 were obtained.

バルクのTiの熱伝導率が17W/(m・K)であるのに対し、Ti−Al−V合金の熱伝導率は7.5W/(m・K)であり、これらの結果から、結晶配向性制御兼低熱伝導中間層の熱伝導率をTiの半分未満にすれば、同程度のO/W特性を得るための記録時の消費電力を低減できることが明らかとなった。   The thermal conductivity of bulk Ti is 17 W / (m · K), whereas the thermal conductivity of Ti-Al-V alloy is 7.5 W / (m · K). It was found that if the thermal conductivity of the orientation control and low thermal conductivity intermediate layer is less than half that of Ti, the power consumption during recording for obtaining the same O / W characteristics can be reduced.

実施例1で軟磁性下地層143を形成後、一旦大気中に取り出し、別の製膜装置で以下のような後工程を設定した。2×10-5Pa以下まで真空排気後、300℃に加熱し、酸化物中間層161として酸化マグネシウムやTiの酸化物から選ばれる被膜を2nmから5nm形成した。酸化物中間層161を形成後、結晶配向性制御兼低熱伝導中間層18としてTi−5.8wt.%Al−4.3wt.%V合金膜を5nm形成した。さらにグラニュラ記録層20として(50at.%Fe−50at.%Pt)−(8、10、12mol%SiO2膜を12nm形成した。グラニュラ記録層20を形成する際に放電用のArガス圧を2Paとした。 After forming the soft magnetic underlayer 143 in Example 1, it was once taken out into the atmosphere, and the following post-process was set with another film forming apparatus. After evacuated to 2 × 10 -5 Pa or less, and heated to 300 ° C., and the coating selected from oxides of magnesium oxide or Ti to 5nm formed from 2nm as the intermediate oxide layer 161. After forming the oxide intermediate layer 161, a Ti-5.8 wt.% Al-4.3 wt.% V alloy film was formed to 5 nm as the crystal orientation control and low thermal conductive intermediate layer 18. Furthermore, 12 nm of (50 at.% Fe-50 at.% Pt)-(8, 10, 12 mol% SiO 2 film was formed as the granular recording layer 20. When forming the granular recording layer 20, the Ar gas pressure for discharge was set to 2 Pa. It was.

図5に示す断面構成を有するこれらの試料について、グラニュラ磁性層の平均結晶粒径を測定した。平均結晶粒径<D>は、透過電子顕微鏡(TEM)像から算出した。まず、基板面に平行な方向の記録層の結晶粒像を透過電子顕微鏡により撮影した。次に、得られた写真をスキャナで取り込み、画像のコントラストが観察されるコア部分を結晶粒と定義し、各結晶粒に存在するピクセル数を計算した。ピクセル数とスケールとの換算から、各結晶の面積を求め、得られた各結晶粒の面積と同じ面積の真円の直径として結晶粒径を定義し、個々の結晶粒の粒径Diを求めた。この計算を300個程度の結晶粒について行ない、得られた粒子径の算術平均値を平均結晶粒径<D>とした。   For these samples having the cross-sectional configuration shown in FIG. 5, the average crystal grain size of the granular magnetic layer was measured. The average crystal grain size <D> was calculated from a transmission electron microscope (TEM) image. First, a crystal grain image of the recording layer in a direction parallel to the substrate surface was taken with a transmission electron microscope. Next, the obtained photograph was captured by a scanner, the core portion where the contrast of the image was observed was defined as a crystal grain, and the number of pixels present in each crystal grain was calculated. From the conversion of the number of pixels and the scale, the area of each crystal is obtained, the crystal grain size is defined as the diameter of a perfect circle having the same area as the obtained crystal grain area, and the grain diameter Di of each crystal grain is obtained. It was. This calculation was performed for about 300 crystal grains, and the arithmetic average value of the obtained particle diameters was defined as the average crystal grain diameter <D>.

8mol%SiO2を添加したFe−Pt−SiO2膜では、平均結晶粒径<D>が約8nmであった。10mol%SiO2を添加したFe−Pt−SiO2膜では、<D>が6.4nmあった。さらに12mol%SiO2を添加したFe−Pt−SiO2膜では、<D>が5.3nmまで減少した。 In the Fe—Pt—SiO 2 film added with 8 mol% SiO 2 , the average crystal grain size <D> was about 8 nm. In the Fe—Pt—SiO 2 film added with 10 mol% SiO 2 , <D> was 6.4 nm. Furthermore, in the Fe—Pt—SiO 2 film to which 12 mol% SiO 2 was added, <D> decreased to 5.3 nm.

Ti−Al−V合金膜が厚くなるに従い、hcp構造に由来する002回折強度が増加することが確認された。この中間層からのX線回折強度の増加に伴い、記録層のfcc構造或いはfct構造に由来する111回折強度の増加も観測された。これらのX線回折強度の挙動から、hcp構造をとる中間層とこの上に形成する記録層はヘテロエピタキシャル成長していると考えられる。   It was confirmed that the 002 diffraction intensity derived from the hcp structure increases as the Ti—Al—V alloy film becomes thicker. As the X-ray diffraction intensity from the intermediate layer increased, an increase in 111 diffraction intensity derived from the fcc structure or fct structure of the recording layer was also observed. From the behavior of these X-ray diffraction intensities, it is considered that the intermediate layer having the hcp structure and the recording layer formed thereon are heteroepitaxially grown.

グラニュラ記録層20を形成後、図6に示すように65at.%Fe−35at.%Pt合金、或いはCo−16at.%Cr−10at.%Pt−6at.%B合金からなるキャップ層22を3nmから10nm形成し、窒素あるいは水素を含有し炭素を主成分とする保護層24を2.5nm形成した。さらに窒素置換した不活性雰囲気中で300℃に1時間保持後、大気圧に戻し、フッ素を主成分とする潤滑層26を形成した。   After forming the granular recording layer 20, as shown in FIG. 6, a cap layer 22 made of a 65 at.% Fe-35 at.% Pt alloy or a Co-16 at.% Cr-10 at.% Pt-6 at. The protective layer 24 containing nitrogen or hydrogen and containing carbon as a main component was formed to 2.5 nm. Furthermore, after maintaining at 300 ° C. for 1 hour in an inert atmosphere substituted with nitrogen, the pressure was returned to atmospheric pressure to form a lubricating layer 26 containing fluorine as a main component.

機械的な浮上特性を確認後、実施例1と同じヘッドを用い、記録時には80mWの波長785nmの半導体レーザ38を用いて加熱し、再生時には半導体レーザ38を用いず、薄膜抵抗体58に60mW通電加熱する条件で電磁変換特性を測定した。その結果、前記キャップ層22として4nm以上の厚さとなるように形成するとオーバーライト特性が改善された。一方、書き込みトラック幅はキャップ層22が厚くなると広くなった。この傾向、すなわちキャップ層が厚くなるとトラック幅が広くなるという傾向は、キャップ層の材料を変えても同様であった。これらの結果から、キャップ層の厚さは少なくとも4nm程度必要であるが、トラック幅の広がりを考慮すると6〜7nm程度形成すれば良いと考えられる。   After confirming the mechanical levitation characteristics, the same head as in Example 1 was used, and heating was performed using a semiconductor laser 38 having a wavelength of 785 nm of 80 mW during recording, and 60 mW was applied to the thin film resistor 58 without using the semiconductor laser 38 during reproduction. The electromagnetic conversion characteristics were measured under heating conditions. As a result, when the cap layer 22 was formed to have a thickness of 4 nm or more, the overwrite characteristics were improved. On the other hand, the write track width became wider as the cap layer 22 became thicker. This tendency, that is, the tendency that the track width becomes wider as the cap layer becomes thicker was the same even when the material of the cap layer was changed. From these results, the thickness of the cap layer is required to be at least about 4 nm, but it is considered that the thickness should be about 6 to 7 nm in consideration of the increase in the track width.

実施例1と同じヘッドを用いて記録時には80mWの波長785nmの半導体レーザ38を用いて光を発生させ記録時に加熱し、再生時には波長785nmの半導体レーザ38を用いず、薄膜抵抗体58に60mW通電加熱する条件で電磁変換特性を測定しても、実施例1と同程度のO/W特性が得られた。この結果は、300℃に加熱し、酸化物中間層161として酸化マグネシウムやTiの酸化物から選ばれる被膜を2nmから5nm形成することにより、結晶配向性を制御でき、かつ低熱伝導中間層を厚く形成することにより熱流が妨げられ、記録層が実効的に暖まり易くすることができたことによると考えられる。   When recording using the same head as in the first embodiment, light is generated using a semiconductor laser 38 with a wavelength of 785 nm of 80 mW and heated during recording, and when reproducing, the semiconductor laser 38 with a wavelength of 785 nm is not used and the thin film resistor 58 is energized with 60 mW. Even when the electromagnetic conversion characteristics were measured under heating conditions, O / W characteristics comparable to those of Example 1 were obtained. As a result, by heating to 300 ° C. and forming a film selected from oxides of magnesium oxide and Ti as the oxide intermediate layer 161 from 2 nm to 5 nm, the crystal orientation can be controlled, and the low thermal conductivity intermediate layer is thickened. This is considered to be because heat flow was hindered by the formation, and the recording layer could be effectively warmed easily.

上述したように、酸化物中間層161として酸化マグネシウムやTiの酸化物から選ばれる被膜を2nmから5nm形成後、結晶配向性制御兼低熱伝導中間層18としてTi−5.8wt.%Al−4.3wt.%V合金膜を5nm形成した場合(実施例2)には、書き込み時に80mW程度の加熱でも十分なO/W特性が得られた。一方、実施例1に記載した酸化物層の厚さが薄い媒体の場合、実施例2と同程度のO/W特性を得るために書き込み時に80mWの加熱では不足しており、100mWの加熱が必要であった。これらの消費電力の比較から、酸化物中間層161を形成することも消費電力を低減する上で効果があることが明らかとなった。   As described above, after forming a film selected from magnesium oxide or Ti oxide as the oxide intermediate layer 161 from 2 nm to 5 nm, Ti-5.8 wt.% Al-4 as the crystal orientation control and low thermal conductive intermediate layer 18 is formed. When a 5 wt.% V alloy film was formed to a thickness of 5 nm (Example 2), sufficient O / W characteristics were obtained even with heating of about 80 mW during writing. On the other hand, in the case of a medium having a thin oxide layer described in Example 1, 80 mW heating is insufficient at the time of writing in order to obtain the same O / W characteristics as in Example 2, and heating of 100 mW is insufficient. It was necessary. From the comparison of these power consumptions, it has become clear that the formation of the oxide intermediate layer 161 is also effective in reducing the power consumption.

図7に断面模式図を示す傾斜記録用磁気記録媒体を作製した。実施例1で軟磁性下地層143を形成後、酸化物中間層16を形成せずに、Ni−Cr−W合金からなる非磁性中間層17を厚さ5nm形成後、結晶配向性制御兼低熱伝導中間層18として厚さ3nmから10nmとなるようにTi−5.5wt.%Al−3.7wt.%V合金膜を形成した。さらに90mol%(50at.%Fe−50at.%Pt)−(10mol%SiO2)膜を11nm形成後、Co−18at.%Cr−10at.%Pt−8at.%B合金からなるキャップ層22を厚さで3nmから10nm形成した。さらに窒素あるいは水素を含有し炭素を主成分とする保護層24を3.3nm形成した。さらに窒素置換した不活性雰囲気中で300℃に1時間保持後、大気圧に戻し、パーフルオロポリエーテルを主成分とする潤滑層26を形成した。 A magnetic recording medium for tilt recording whose cross-sectional schematic diagram is shown in FIG. 7 was produced. After forming the soft magnetic underlayer 143 in Example 1, the oxide intermediate layer 16 is not formed, and the nonmagnetic intermediate layer 17 made of a Ni—Cr—W alloy is formed to a thickness of 5 nm. A Ti-5.5 wt.% Al-3.7 wt.% V alloy film was formed as the conductive intermediate layer 18 so as to have a thickness of 3 nm to 10 nm. Further, after forming a 90 mol% (50 at.% Fe-50 at.% Pt)-(10 mol% SiO 2 ) film with a thickness of 11 nm, a cap layer 22 made of a Co-18 at.% Cr-10 at.% Pt-8 at.% B alloy is formed. The thickness was 3 nm to 10 nm. Further, a protective layer 24 containing nitrogen or hydrogen and containing carbon as a main component was formed to 3.3 nm. Furthermore, after maintaining at 300 ° C. for 1 hour in an inert atmosphere purged with nitrogen, the pressure was returned to atmospheric pressure to form a lubricating layer 26 composed mainly of perfluoropolyether.

機械的な浮上特性を確認後、実施例1に記載のヘッドを用い、記録時には100mWの波長785nmの半導体レーザ38を用いて加熱し、再生時には半導体レーザ38を用いず、薄膜抵抗体58に60mW通電加熱する条件で電磁変換特性を測定した。その結果、キャップ層22を4nm以上の厚さとなるように形成すると、キャップ層22を形成しない場合に比べ、オーバーライト特性が4dB以上改善された。一方、キャップ層22が厚くなると書き込みトラック幅は広くなっていた。キャップ層22として5nm形成した媒体に対して、85mWの半導体レーザ(波長785nm)38を用いて光を発生させ記録時に加熱し、再生時には半導体レーザ38を用いず、薄膜抵抗体58に60mW通電加熱する条件で電磁変換特性を測定した。その結果、記録時の半導体レーザ(波長785nm)パワーを100mWから85mWに低下すると、O/W特性は劣化したものの−31dB得られ、半導体レーザ(波長785nm)の消費電力を低減できる場合があることが明らかとなった。   After confirming mechanical levitation characteristics, the head described in Example 1 was used, and heating was performed using a semiconductor laser 38 having a wavelength of 785 nm of 100 mW during recording, and 60 mW was applied to the thin film resistor 58 without using the semiconductor laser 38 during reproduction. The electromagnetic conversion characteristics were measured under the condition of current heating. As a result, when the cap layer 22 was formed to have a thickness of 4 nm or more, the overwrite characteristics were improved by 4 dB or more compared to the case where the cap layer 22 was not formed. On the other hand, when the cap layer 22 is thick, the write track width is widened. With respect to the medium having a thickness of 5 nm as the cap layer 22, 85 mW semiconductor laser (wavelength 785 nm) 38 is used to generate light and heated during recording, and during reproduction, the semiconductor laser 38 is not used, and the thin film resistor 58 is heated by 60 mW energization. The electromagnetic conversion characteristics were measured under the following conditions. As a result, when the power of the semiconductor laser (wavelength 785 nm) during recording is reduced from 100 mW to 85 mW, −31 dB is obtained although the O / W characteristics are deteriorated, and the power consumption of the semiconductor laser (wavelength 785 nm) may be reduced. Became clear.

実施例3に記載のグラニュラ記録層形成時に、90mol%(50at.%Fe−50at.%Pt)−10mol%SiO2を11nm形成する代わりに、以下の合金からなるグラニュラ記録層を形成したことを除き、実施例3と同様にして磁気記録媒体を形成した。
92mol%[(45at.%Fe−5at.%Cu−50at.%Pt)]−8mol%SiO2
90mol%[(45at.%Fe−5at.%Cu−50at.%Pt)]−10mol%SiO2
88mol%[(45at.%Fe−5at.%Cu−50at.%Pt)]−12mol%SiO2
86mol%[(45at.%Fe−5at.%Cu−50at.%Pt)]−14mol%SiO2
84mol%[(45at.%Fe−5at.%Cu−50at.%Pt)]−16mol%SiO2
80mol%[(45at.%Fe−5at.%Cu−50at.%Pt)]−20mol%SiO2
72mol%[(45at.%Fe−5at.%Cu−50at.%Pt)]−28mol%SiO2
60mol%[(45at.%Fe−5at.%Cu−50at.%Pt)]−40mol%SiO2
50mol%[(45at.%Fe−5at.%Cu−50at.%Pt)]−50mol%SiO2
90mol%[(47at.%Fe−3at.%Cu−50at.%Pt)]−10mol%SiO2
90mol%[(40at.%Fe−10at.%Cu−50at.%Pt)]−10mol%SiO2
In forming the granular recording layer described in Example 3, instead of forming 11 mol of 90 mol% (50 at.% Fe-50 at.% Pt) -10 mol% SiO 2 , a granular recording layer made of the following alloy was formed. A magnetic recording medium was formed in the same manner as in Example 3 except for the above.
92 mol% [(45 at.% Fe-5 at.% Cu-50 at.% Pt)]-8 mol% SiO 2
90 mol% [(45 at.% Fe-5 at.% Cu-50 at.% Pt)]-10 mol% SiO 2
88 mol% [(45 at.% Fe-5 at.% Cu-50 at.% Pt)]-12 mol% SiO 2
86 mol% [(45 at.% Fe-5 at.% Cu-50 at.% Pt)]-14 mol% SiO 2
84 mol% [(45 at.% Fe-5 at.% Cu-50 at.% Pt)]-16 mol% SiO 2
80 mol% [(45 at.% Fe-5 at.% Cu-50 at.% Pt)]-20 mol% SiO 2
72 mol% [(45 at.% Fe-5 at.% Cu-50 at.% Pt)]-28 mol% SiO 2
60 mol% [(45 at.% Fe-5 at.% Cu-50 at.% Pt)]-40 mol% SiO 2
50mol% [(45at% Fe- 5at% Cu-50at% Pt...)] - 50mol% SiO 2
90 mol% [(47 at.% Fe-3 at.% Cu-50 at.% Pt)]-10 mol% SiO 2
90 mol% [(40 at.% Fe-10 at.% Cu-50 at.% Pt)]-10 mol% SiO 2

上記グラニュラ記録層20を形成後、Co−18at.%Cr−10at.%Pt−8at.%B合金からなるキャップ層22を厚さで3nmから10nm形成した。さらに窒素あるいは水素を含有し炭素を主成分とする保護層24を3.3nm形成した。さらに窒素置換した不活性雰囲気中で300℃に1時間保持後、大気圧に戻し、フッ素を主成分とする潤滑層26を形成した。   After the granular recording layer 20 was formed, a cap layer 22 made of a Co-18 at.% Cr-10 at.% Pt-8 at.% B alloy was formed to a thickness of 3 to 10 nm. Further, a protective layer 24 containing nitrogen or hydrogen and containing carbon as a main component was formed to 3.3 nm. Furthermore, after maintaining at 300 ° C. for 1 hour in an inert atmosphere substituted with nitrogen, the pressure was returned to atmospheric pressure to form a lubricating layer 26 containing fluorine as a main component.

機械的な浮上特性を確認後、実施例1と同じヘッドを用い、記録時に、100mWの波長785nmの半導体レーザ38を用いて加熱した。再生時には半導体レーザ38を用いず、薄膜抵抗体58に60mW通電する条件で電磁変換特性を測定した。その結果、キャップ層22を4nm以上の厚さとなるように形成すると、キャップ層22を形成しない場合に比べオーバーライト特性が4dB以上改善された。4nm厚のキャップ層を形成した場合のオーバーライト特性について、グラニュラ記録層(100−x)mol%[(45at.%Fe−5at.%Cu−50at.%Pt)]−xmol%SiO2の組成依存性を図8に示す。SiO2の添加濃度を8mol%から50mol%まで増加するとオーバーライト特性は劣化し、SiO2の組成が30mol%を超えるとオーバーライト特性は−20dB以上と(絶対値が小さく)なった。一方、キャップ層22が厚くなると書き込みトラック幅は広くなった。 After confirming the mechanical flying characteristics, the same head as in Example 1 was used, and heating was performed using a semiconductor laser 38 having a wavelength of 785 nm of 100 mW during recording. During reproduction, the semiconductor laser 38 was not used, and the electromagnetic conversion characteristics were measured under the condition that the thin film resistor 58 was energized with 60 mW. As a result, when the cap layer 22 was formed to have a thickness of 4 nm or more, the overwrite characteristic was improved by 4 dB or more compared to the case where the cap layer 22 was not formed. The composition of the granular recording layer (100-x) mol% [(45 at.% Fe-5 at.% Cu-50 at.% Pt)]-x mol% SiO 2 with respect to the overwrite characteristics when a cap layer having a thickness of 4 nm is formed. The dependency is shown in FIG. When the addition concentration of SiO 2 was increased from 8 mol% to 50 mol%, the overwrite characteristics deteriorated, and when the composition of SiO 2 exceeded 30 mol%, the overwrite characteristics became −20 dB or more (the absolute value was small). On the other hand, as the cap layer 22 becomes thicker, the write track width becomes wider.

媒体ノイズNdと再生信号出力Soの割合を対数表示したSo/Ndとグラニュラ記録層(100−x)mol%[(45at.%Fe−5at.%Cu−50at.%Pt)]−xmol%SiO2の組成の関係を図9に示す。この図から、28mol%SiO2を添加したグラニュラ記録層では概ね8mol%SiO2を添加したグラニュラ記録層とした場合と同等のSo/Ndが得られていた。しかしながら、SiO2の添加濃度を28mol%SiO2よりも高くしていくと、オーバーライト特性と共にSo/Ndは劣化した。これらの結果から、(45at.%Fe−5at.%Cu−50at.%Pt)に添加するSiO2の濃度の上限は28mol%とすることが好ましいことが明らかとなった。 So / Nd logarithmically expressing the ratio of medium noise Nd and reproduction signal output So and granular recording layer (100-x) mol% [(45 at.% Fe-5 at.% Cu-50 at.% Pt)]-x mol% SiO The relationship between the two compositions is shown in FIG. From this figure, the So / Nd of the granular recording layer to which 28 mol% SiO 2 was added was almost equal to that of the granular recording layer to which 8 mol% SiO 2 was added. However, if will be higher than 28 mol% SiO 2 the concentration of added SiO 2, So / Nd with overwrite characteristic is deteriorated. From these results, it became clear that the upper limit of the concentration of SiO 2 added to (45 at.% Fe-5 at.% Cu-50 at.% Pt) is preferably 28 mol%.

〔比較例2〕
実施例3に記載のグラニュラ記録層形成時に、90mol%(50at.%Fe−50at.%Pt)−10mol%SiO2膜を11nm形成する代わりに92mol%[(45at.%Fe−5at.%Zn−50at.%Pt)]−8mol%SiO2膜を形成した。初期に形成したグラニュラ膜と翌日試作したグラニュラ膜について蛍光X線分析した結果、グラニュラ記録層に含有されるZnの組成が低下していた。この結果から量産時の組成変動と磁気特性の安定性を考慮するとグラニュラ膜形成用の合金ターゲットを真空中に保持する場合、Zn濃度の変化を管理する必要があることが明らかとなった。
[Comparative Example 2]
When forming the granular recording layer described in Example 3, instead of forming a 90 mol% (50 at.% Fe-50 at.% Pt) -10 mol% SiO 2 film to 11 nm, 92 mol% [(45 at.% Fe-5 at.% Zn −50 at.% Pt)]-8 mol% SiO 2 film was formed. As a result of X-ray fluorescence analysis of the granular film formed in the initial stage and the granular film manufactured the next day, the composition of Zn contained in the granular recording layer was lowered. From this result, it became clear that when the alloy target for forming the granular film is held in a vacuum, it is necessary to manage the change in the Zn concentration in consideration of the composition variation during mass production and the stability of the magnetic characteristics.

実施例1で軟磁性下地層143を形成後、酸化物中間層16を形成せずに、Ni−Cr−W合金からなる非磁性中間層17を厚さ5nm形成後、厚さ3nmから10nmとなるようにハステロイC合金からなる結晶配向性制御兼低熱伝導中間層18を形成した(図7)。この後は、実施例3と同様にして磁気記録媒体を形成した。本実施例で用いたハステロイC合金の熱伝導率はバルクで12W/(m・K)程度であり、Tiの熱伝導率約70%程度である。   After forming the soft magnetic underlayer 143 in Example 1, the oxide intermediate layer 16 was not formed, and the nonmagnetic intermediate layer 17 made of Ni—Cr—W alloy was formed to a thickness of 5 nm, and then the thickness was changed from 3 nm to 10 nm. Thus, a crystal orientation control / low thermal conductivity intermediate layer 18 made of Hastelloy C alloy was formed (FIG. 7). Thereafter, a magnetic recording medium was formed in the same manner as in Example 3. The thermal conductivity of the Hastelloy C alloy used in this example is about 12 W / (m · K) in bulk, and the thermal conductivity of Ti is about 70%.

機械的な浮上特性を確認後、実施例1と同じヘッドを用い、記録時には100mWの波長785nmの半導体レーザ38を用いて光を発生させ加熱した。再生時には半導体レーザ38を用いず、薄膜抵抗体58に60mW通電する条件で電磁変換特性を測定した。その結果、ハステロイC合金からなる結晶配向性制御兼低熱伝導中間層18の厚さを3nmから10nmと増加するに従い、オーバーライト特性が向上した。この傾向は、熱伝導の低い中間層を厚くしていくに従い、膜厚方向に熱伝導しにくく、結果的にグラニュラ層の温度が上昇しやすくなったため書き込み性能が向上したと考えられる。   After confirming the mechanical flying characteristics, the same head as in Example 1 was used, and light was generated and heated using a semiconductor laser 38 having a wavelength of 785 nm of 100 mW during recording. During reproduction, the semiconductor laser 38 was not used, and the electromagnetic conversion characteristics were measured under the condition that the thin film resistor 58 was energized with 60 mW. As a result, the overwrite characteristics were improved as the thickness of the crystal orientation control / low thermal conductivity intermediate layer 18 made of Hastelloy C alloy was increased from 3 nm to 10 nm. This tendency is considered to be due to the fact that as the thickness of the intermediate layer having low heat conduction is increased, the heat conduction is less likely in the film thickness direction, and as a result, the temperature of the granular layer is likely to rise, thereby improving the writing performance.

図10に断面模式図を示す傾斜記録用磁気記録媒体を作製した。実施例4で92mol%[(45at.%Fe−5at.%Cu−50at.%Pt)]−8mol%SiO2グラニュラ記録層を形成する前に0.4nmから6nmまで膜厚を変えてRuからなる結晶配向性制御層19を形成した。この他は、実施例4と同様にして磁気記録媒体を形成した。 A magnetic recording medium for tilt recording whose cross-sectional schematic diagram is shown in FIG. 10 was produced. In Example 4, 92 mol% [(45 at.% Fe-5 at.% Cu-50 at.% Pt)]-8 mol% Before forming the SiO 2 granular recording layer, the film thickness was changed from 0.4 nm to 6 nm and from Ru. The resulting crystal orientation control layer 19 was formed. Other than this, a magnetic recording medium was formed in the same manner as in Example 4.

最大1.6MA/mの磁界を印加してKerr効果を用いて磁気記録媒体の磁気特性を測定した結果、Ruからなる結晶配向性制御層19を設けることにより、保磁力の垂直成分が45kA/m増加した。   As a result of measuring the magnetic characteristics of the magnetic recording medium using the Kerr effect by applying a magnetic field of up to 1.6 MA / m, by providing the crystal orientation control layer 19 made of Ru, the vertical component of the coercive force is 45 kA / m increased.

更に、銅の回転対陰極を用いたX線回折装置を用いて、加速電圧40kV、電流160mAとして、Ruの004回折曲線の半値幅Δθ50を測定した。Ti−5.5wt.%Al−3.7wt.%V合金からなる結晶配向性制御兼低熱伝導中間層18上に結晶配向性制御層19としてRuを介してグラニュラ記録層20を形成した結果、グラニュラ記録層20が化学的に安定して結晶配向性制御層19上に成長し、<D>は8.1nmから8.5nmまで増加し、結晶性の指標であるΔθ50も3.5°から3.1°までの向上が同時に実現できた。結晶配向性制御層19としてRuを厚くしていくと、軟磁性層143とグラニュラ記録層20の間隔が大きくなりすぎる。結晶配向性制御層19のRu厚は2nmから4nmあれば十分な書き込み性能が得られた。 Further, using an X-ray diffractometer using a copper rotating counter cathode, the half-value width Δθ 50 of the Ru 004 diffraction curve was measured at an acceleration voltage of 40 kV and a current of 160 mA. As a result of forming the granular recording layer 20 via Ru as the crystal orientation control layer 19 on the crystal orientation control / low thermal conduction intermediate layer 18 made of Ti-5.5 wt.% Al-3.7 wt.% V alloy, The granular recording layer 20 chemically grows on the crystal orientation control layer 19 in a stable manner, <D> increases from 8.1 nm to 8.5 nm, and Δθ 50 that is an index of crystallinity is also 3.5 °. The improvement from 3.1 to 3.1 ° was achieved at the same time. When Ru is made thicker as the crystal orientation control layer 19, the distance between the soft magnetic layer 143 and the granular recording layer 20 becomes too large. If the Ru thickness of the crystal orientation control layer 19 is 2 nm to 4 nm, sufficient writing performance can be obtained.

実施例1で用いたキャップ層22についてCo−Cr−Pt−B合金の組成を変えた他は、実施例1と同様にして磁気記録媒体を作製した。機械的な浮上特性を確認後、実施例1と同じヘッドを用い、記録時には100mWの波長785nmの半導体レーザ38を用いて加熱した。再生時には半導体レーザ38を用いず、薄膜抵抗体58に60mW通電する条件で電磁変換特性を測定した。   A magnetic recording medium was manufactured in the same manner as in Example 1 except that the composition of the Co—Cr—Pt—B alloy was changed for the cap layer 22 used in Example 1. After confirming the mechanical flying characteristics, the same head as in Example 1 was used, and during recording, heating was performed using a semiconductor laser 38 with a wavelength of 785 nm of 100 mW. During reproduction, the semiconductor laser 38 was not used, and the electromagnetic conversion characteristics were measured under the condition that the thin film resistor 58 was energized with 60 mW.

その結果、PtとBの濃度を固定して、CoとCrの割合を変えたCo−Cr−12at.%Pt−8at.%B合金の場合、Cr濃度を増加することにより書き込み性能が低下し、書き込みトラック幅が減少した。   As a result, in the case of a Co—Cr-12 at.% Pt-8 at.% B alloy in which the concentration of Pt and B is fixed and the ratio of Co and Cr is changed, the writing performance is lowered by increasing the Cr concentration. , Writing track width decreased.

キャップ層22の厚さを6nmに固定した場合、58at.%Co−22at.%Cr−12at.%Pt−8at.%B合金キャップ層利用の場合にO/Wは、−24.3dBまで低下した。Coに対するCrの濃度を低下した60at.%Co−20at.%Cr−12at.%Pt−8at.%B合金キャップ層利用の場合に、O/Wは、−27.1dBまで向上した。これらの結果から、Cr濃度を20at.%以下に設定することによりO/W指標の目安である−25dB以下が達成できる。この観点からキャップ層22の厚さを6nmに固定した場合、Co−Cr−12at.%Pt−8at.%B合金のCrの添加濃度の上限は20at.%程度が好ましい。また耐食信頼性の観点からCr添加濃度の下限は12at.%であることが好ましかった。すなわち、Co−(12〜20)at.%Cr−12at.%Pt−8at.%Bが好ましい。   When the thickness of the cap layer 22 is fixed to 6 nm, O / W decreases to −24.3 dB when using a 58 at.% Co-22 at.% Cr-12 at.% Pt-8 at.% B alloy cap layer. did. In the case of using a 60 at.% Co-20 at.% Cr-12 at.% Pt-8 at.% B alloy cap layer having a reduced Cr concentration relative to Co, the O / W was improved to -27.1 dB. From these results, by setting the Cr concentration to 20 at.% Or less, it is possible to achieve −25 dB or less, which is a standard for the O / W index. From this viewpoint, when the thickness of the cap layer 22 is fixed to 6 nm, the upper limit of the Cr addition concentration of the Co—Cr-12 at.% Pt-8 at.% B alloy is preferably about 20 at.%. From the viewpoint of corrosion resistance reliability, the lower limit of the Cr addition concentration was preferably 12 at.%. That is, Co- (12-20) at.% Cr-12 at.% Pt-8 at.% B is preferable.

CrとBの濃度を固定してCoとPtの濃度を変えたCo−16at.%Cr−Pt−8at.%B合金の場合、Pt濃度を増加するとオーバーライト特性が劣化した。   In the case of a Co-16 at.% Cr-Pt-8 at.% B alloy in which the concentrations of Co and Pt were changed while the concentrations of Cr and B were fixed, the overwrite characteristics deteriorated when the Pt concentration was increased.

キャップ層22の厚さを6nmに固定した場合、58at.%Co−16at.%Cr−18at.%Pt−8at.%B合金キャップ層利用の場合にO/Wは、−23.8dBまで低下した。一方、60at.%Co−16at.%Cr−16at.%Pt−8at.%B合金キャップ層利用の場合にO/Wは、−26.1dBまで向上した。これらの結果から、Co−16at.%Cr−Pt−8at.%B合金の場合、Pt濃度を16at.%以下に設定することによりO/W指標の目安である−25dB以下が達成できる。この観点からPt濃度の上限は16at.%以下が好ましい。またPtを添加しないと耐食信頼性が低下したため、4at.%以上Ptを添加することが好ましかった。すなわち、Co−16at.%Cr−(4〜16)at.%Pt−8at.%Bが好ましい。   When the thickness of the cap layer 22 is fixed to 6 nm, the O / W decreases to −23.8 dB when using a 58 at.% Co-16 at.% Cr-18 at.% Pt-8 at.% B alloy cap layer. did. On the other hand, in the case of using 60 at.% Co-16 at.% Cr-16 at.% Pt-8 at.% B alloy cap layer, the O / W was improved to -26.1 dB. From these results, in the case of a Co-16 at.% Cr-Pt-8 at.% B alloy, it is possible to achieve -25 dB or less, which is a measure of the O / W index, by setting the Pt concentration to 16 at.% Or less. From this viewpoint, the upper limit of the Pt concentration is preferably 16 at. Moreover, if Pt was not added, the corrosion resistance reliability decreased, so it was preferable to add Pt at 4 at.% Or more. That is, Co-16 at.% Cr- (4 to 16) at.% Pt-8 at.% B is preferable.

CrとPtの濃度を固定してCoとBの割合を変えたCo−15at.%Cr−12at.%Pt−B合金の場合、Bの添加濃度の上限は、ターゲットの作りやすさから10at.%程度が好ましい。   In the case of a Co-15 at.% Cr-12 at.% Pt-B alloy in which the Cr and Pt concentrations are fixed and the ratio of Co and B is changed, the upper limit of the B addition concentration is 10 at. About% is preferable.

キャップ層22の厚さを6nmに固定した場合、(63−X)at.%Co−15at.%Cr−12at.%Pt−Xat.%B合金のSo/Ndを、実施例1に記載のヘッドで評価した。Xを2,4,8,10とした媒体を試作し評価した結果、X=2ではSo/Ndが22.7dBであったのに対し、X=4から10の場合にはSo/Ndは23dB以上得られた。これらの結果から、再生ノイズ増加の観点からB添加濃度は少なくとも4at.%以上必要である。よって、Co−15at.%Cr−12at.%Pt−(4〜10)at.%Bが好ましい。   When the thickness of the cap layer 22 is fixed to 6 nm, the So / Nd of the (63-X) at.% Co-15 at.% Cr-12 at.% Pt-Xat.% B alloy is as described in Example 1. The head was evaluated. As a result of trial manufacture and evaluation of media having X of 2, 4, 8, and 10, So / Nd was 22.7 dB at X = 2, whereas So / Nd was from 2 to 10 when X = 4 to 10. 23 dB or more was obtained. From these results, the concentration of B addition is required to be at least 4 at.% Or more from the viewpoint of increasing reproduction noise. Therefore, Co-15 at.% Cr-12 at.% Pt- (4 to 10) at.% B is preferable.

以上、最もマージンが大きいと考えられるキャップ層22の厚さを6nmに固定した場合について述べたが、キャップ層の厚さは6nmに限定されず、組成に応じた最適化も可能である。   The case where the thickness of the cap layer 22 considered to have the largest margin is fixed to 6 nm has been described above, but the thickness of the cap layer is not limited to 6 nm, and optimization according to the composition is possible.

これらの結果から、Co−Cr−Pt−B合金をキャップ層として用いた場合、Co−(12〜20)at.%Cr−(4〜16)at.%Pt−(4〜10)at.%B合金を用いれば、ターゲットの加工に問題なく、耐食信頼性に優れ、書き込みトラック幅の増加が小さく、オーバーライト性能の劣化が認められない媒体特性が得られた。   From these results, when a Co—Cr—Pt—B alloy is used as the cap layer, Co— (12 to 20) at.% Cr— (4 to 16) at.% Pt— (4 to 10) at. When% B alloy was used, there was no problem in the processing of the target, excellent corrosion resistance reliability, small increase in the write track width, and media characteristics in which deterioration of the overwrite performance was not recognized.

実施例1で、グラニュラ記録層20として92mol%(50at.%Fe−50at.%Pt)−8mol%SiO2膜に代わり90mol%(50at.%Co−50at.%Pt)−10mol%SiO2膜或いは90mol%(40at.%Co−10at.%Ni−50at.%Pt)−10mol%SiO2膜を12nm形成した。グラニュラ記録層20を形成する際の放電用Arガス圧を2Paとした。グラニュラ記録層20を形成後、66at.%Co−34at.%Pt合金、或いはCo−15at.%Cr−12at.%Pt−8at.%B合金からなるキャップ層22を3nmから10nm形成し、窒化珪素を主成分とする保護層24を3nm形成した。さらに窒素置換した不活性雰囲気中で300℃に1時間保持後、大気圧に戻し、フッ素を主成分とする潤滑層26を形成した。 In Example 1, instead of 92 mol% (50 at.% Fe-50 at.% Pt) -8 mol% SiO 2 film as the granular recording layer 20, 90 mol% (50 at.% Co-50 at.% Pt) -10 mol% SiO 2 film was used. Alternatively, a 90 mol% (40 at.% Co-10 at.% Ni-50 at.% Pt) -10 mol% SiO 2 film was formed to a thickness of 12 nm. The Ar gas pressure for discharge when forming the granular recording layer 20 was 2 Pa. After forming the granular recording layer 20, a cap layer 22 made of 66 at.% Co-34 at.% Pt alloy or Co-15 at.% Cr-12 at.% Pt-8 at. A protective layer 24 containing silicon as a main component was formed to 3 nm. Furthermore, after maintaining at 300 ° C. for 1 hour in an inert atmosphere substituted with nitrogen, the pressure was returned to atmospheric pressure to form a lubricating layer 26 containing fluorine as a main component.

機械的な浮上特性を確認後、実施例1と同じヘッドを用い、記録時に100mWの波長785nmの半導体レーザ38を用いて加熱した。再生時には半導体レーザ38を用いず、薄膜抵抗体58に60mW通電する条件で電磁変換特性を測定した。その結果、キャップ層22を4nm以上の厚さとなるように形成するとオーバーライト特性が改善され、図11に示すように、−25dB以下の値が得られた。一方、書き込みトラック幅は、キャップ層22が4nmから10nmへ厚くなると広くなった。キャップ層22としてCo−15at.%Cr−12at.%Pt−8at.%B合金を用いた場合について、幾何学トラック幅で規格化した書き込みトラック幅とキャップ層厚の関係を、図12に示す。この傾向はキャップ層の材料によらなかった。これらの結果から、キャップ層の厚さは少なくとも4nm程度必要であるが、トラック幅の広がりを考慮すると6nmから8nm程度形成すれば良いことが明らかとなった。   After confirming the mechanical flying characteristics, the same head as in Example 1 was used, and heating was performed using a semiconductor laser 38 with a wavelength of 785 nm of 100 mW during recording. During reproduction, the semiconductor laser 38 was not used, and the electromagnetic conversion characteristics were measured under the condition that the thin film resistor 58 was energized with 60 mW. As a result, when the cap layer 22 was formed to have a thickness of 4 nm or more, the overwrite characteristics were improved, and a value of −25 dB or less was obtained as shown in FIG. On the other hand, the write track width increased as the cap layer 22 increased from 4 nm to 10 nm. FIG. 12 shows the relationship between the write track width normalized by the geometric track width and the cap layer thickness when a Co-15 at.% Cr-12 at.% Pt-8 at.% B alloy is used as the cap layer 22. . This tendency did not depend on the material of the cap layer. From these results, it is clear that the thickness of the cap layer needs to be at least about 4 nm, but considering the widening of the track width, it should be formed to about 6 nm to 8 nm.

〔比較例3〕
上記実施例8で軟磁性下地層143を形成後、1vol.%酸素を含有したArガスを5秒暴露せずに、軟磁性下地層143上に、基板温度を280℃に加熱して、結晶配向性制御兼低熱伝導中間層18としてTi−6wt.%Al−4wt.%V合金膜を形成する代わりに、結晶配向性制御中間層としてTi膜を10nm形成した。この他のプロセスは実施例8と同様の条件でグラニュラ記録層20を形成後、Co−15at.%Cr−12at.%Pt−8at.%B合金からなるキャップ層22を3nmから10nm形成し、窒素あるいは水素を含有し炭素を主成分とする保護層24を3nm形成した。さらに窒素置換した不活性雰囲気中で300℃に1時間保持後、大気圧に戻し、フッ素を主成分とする潤滑層26を形成した。
[Comparative Example 3]
After forming the soft magnetic underlayer 143 in Example 8 above, the substrate temperature was heated to 280 ° C. on the soft magnetic underlayer 143 without exposing Ar gas containing 1 vol.% Oxygen for 5 seconds. Instead of forming a Ti-6 wt.% Al-4 wt.% V alloy film as the orientation control and low thermal conduction intermediate layer 18, a 10 nm Ti film was formed as the crystal orientation control intermediate layer. In this other process, after forming the granular recording layer 20 under the same conditions as in Example 8, a cap layer 22 made of a Co-15 at.% Cr-12 at.% Pt-8 at.% B alloy is formed from 3 nm to 10 nm. A protective layer 24 containing nitrogen or hydrogen and containing carbon as a main component was formed to a thickness of 3 nm. Furthermore, after maintaining at 300 ° C. for 1 hour in an inert atmosphere substituted with nitrogen, the pressure was returned to atmospheric pressure to form a lubricating layer 26 containing fluorine as a main component.

これらの磁気記録媒体について実施例1に記載の評価条件、すなわち、記録時には100mWの波長785nmの半導体レーザ38を用いて加熱し、再生時には半導体レーザ38を用いず、薄膜抵抗体58に60mW通電する条件で電磁変換特性を評価した。その結果、図13に示すように、いずれのキャップ層の厚さの試料でも実施例8に比べてO/Wは4dBから5dB劣化していた。   These magnetic recording media are evaluated using the evaluation conditions described in Example 1, that is, 100 mW of semiconductor laser 38 having a wavelength of 785 nm is heated during recording, and 60 mW is applied to thin film resistor 58 without using semiconductor laser 38 during reproduction. The electromagnetic conversion characteristics were evaluated under the conditions. As a result, as shown in FIG. 13, the O / W deteriorated from 4 dB to 5 dB compared to Example 8 in any cap layer thickness sample.

一方、記録時に110mWまで波長785nmの半導体レーザ38の消費電力を増加させ、再生時には半導体レーザ38を用いず、薄膜抵抗体58に60mW通電する条件で電磁変換特性を評価した結果、図13に示すように実施例8と同程度のO/W特性が得られた。これらの結果から、バルクのTiの熱伝導率が17W/(m・K)であるのに対し、Ti−Al−V合金の熱伝導率は7.5W/(m・K)であり、結晶配向性制御兼低熱伝導中間層の熱伝導率をTiの半分未満にすれば、同程度のO/W特性を得るための記録時の消費電力を低減でき、かつグラニュラ層に用いる合金種が(50at.%Fe−50at.%Pt)−8mol%SiO2だけでなく、(50at.%Co−50at.%Pt)−10mol%SiO2や(40at.%Co−10at.%Ni−50at.%Pt)−10mol%SiO2でも実現できることが明らかとなった。 On the other hand, the power consumption of the semiconductor laser 38 having a wavelength of 785 nm was increased to 110 mW during recording, and the electromagnetic conversion characteristics were evaluated under the condition that 60 mW was passed through the thin film resistor 58 without using the semiconductor laser 38 during reproduction. Thus, an O / W characteristic comparable to that of Example 8 was obtained. From these results, the thermal conductivity of bulk Ti is 17 W / (m · K), whereas the thermal conductivity of Ti—Al—V alloy is 7.5 W / (m · K), If the thermal conductivity of the orientation control and low thermal conductivity intermediate layer is less than half of Ti, the power consumption during recording for obtaining the same O / W characteristics can be reduced, and the alloy type used for the granular layer is ( 50 at.% Fe-50 at.% Pt) -8 mol% SiO 2 as well as (50 at.% Co-50 at.% Pt) -10 mol% SiO 2 and (40 at.% Co-10 at.% Ni-50 at.% It has been clarified that even Pt) -10 mol% SiO 2 can be realized.

本発明の傾斜磁気記録媒体は、熱支援磁気記録媒体として使用することができる。   The tilted magnetic recording medium of the present invention can be used as a heat-assisted magnetic recording medium.

本発明による磁気記録媒体の断面構成図。1 is a cross-sectional configuration diagram of a magnetic recording medium according to the present invention. 熱支援記録の概念図。The conceptual diagram of a heat assistance record. オーバーライト特性とキャップ層の厚さの関係を示す図。The figure which shows the relationship between an overwrite characteristic and the thickness of a cap layer. 幾何学トラック幅で規格化した書き込みトラック幅とキャップ層の厚さの関係を示す図。The figure which shows the relationship between the write track width normalized by the geometric track width, and the thickness of the cap layer. 平均結晶粒径を測定するための試料の断面構成図。The cross-sectional block diagram of the sample for measuring an average crystal grain diameter. 本発明による磁気記録媒体の断面構成図。1 is a cross-sectional configuration diagram of a magnetic recording medium according to the present invention. 本発明による磁気記録媒体の断面構成図。1 is a cross-sectional configuration diagram of a magnetic recording medium according to the present invention. オーバーライト特性のグラニュラ記録層組成依存性を示す図。The figure which shows the granular recording layer composition dependence of an overwrite characteristic. So/Ndのグラニュラ記録層の組成依存性を示す図。The figure which shows the composition dependence of the granular recording layer of So / Nd. 本発明による磁気記録媒体の断面構成図。1 is a cross-sectional configuration diagram of a magnetic recording medium according to the present invention. オーバーライト特性とキャップ層の厚さの関係を示す図。The figure which shows the relationship between an overwrite characteristic and the thickness of a cap layer. 幾何学トラック幅で規格化した書き込みトラック幅とキャップ層の厚さの関係を示す図。The figure which shows the relationship between the write track width normalized by the geometric track width, and the thickness of the cap layer. 半導体レーザの消費電力を変えた場合のオーバーライト特性とキャップ層の厚さの関係を示す図。The figure which shows the relationship between the overwrite characteristic at the time of changing the power consumption of a semiconductor laser, and the thickness of a cap layer.

符号の説明Explanation of symbols

10…基板
12…接着層
14…軟磁性下地層
141…軟磁性下地層
142…非磁性層
143…軟磁性下地層
16…酸化物中間層
161…酸化物中間層
17…非磁性中間層
18…結晶配向性制御兼低熱伝導中間層
19…結晶配向性制層
20…グラニュラ記録層
22…キャップ層
24…保護層
26…潤滑層
30…磁気記録媒体
32…スライダ
34…近接場光を発生させるための散乱体
36…磁極
38…半導体レーザ
40…導波路コア部
42…導波路クラッド部
44…磁界発生用薄膜コイル
46…主磁極
48…流出端
50,51…磁極
52…補助磁極
54…磁気再生素子
56…シールド
58…薄膜抵抗体
DESCRIPTION OF SYMBOLS 10 ... Substrate 12 ... Adhesive layer 14 ... Soft magnetic underlayer 141 ... Soft magnetic underlayer 142 ... Nonmagnetic layer 143 ... Soft magnetic underlayer 16 ... Oxide intermediate layer 161 ... Oxide intermediate layer 17 ... Nonmagnetic intermediate layer 18 ... Crystal orientation control and low thermal conductivity intermediate layer 19 ... crystal orientation control layer 20 ... granular recording layer 22 ... cap layer 24 ... protective layer 26 ... lubricating layer 30 ... magnetic recording medium 32 ... slider 34 ... for generating near-field light Scatterer 36 ... magnetic pole 38 ... semiconductor laser 40 ... waveguide core 42 ... waveguide cladding 44 ... magnetic field generating thin film coil 46 ... main magnetic pole 48 ... outflow end 50, 51 ... magnetic pole 52 ... auxiliary magnetic pole 54 ... magnetic reproduction Element 56 ... Shield 58 ... Thin film resistor

Claims (8)

剛体基板上に直接或いは接着層を介して形成された第1の軟磁性層と、
前記第1の軟磁性層上に非磁性中間層を介して形成された第2の軟磁性層と、
前記第2の軟磁性層上に形成された酸化物からなる中間層と、
前記中間層上に形成された結晶配向性制御兼低熱伝導中間層と、
前記結晶配向性制御兼低熱伝導中間層上に形成された、規則化が進んだ段階でL10構造をとることが期待される組成で構成されるFe−Pt合金を主成分とするグラニュラ記録層と、
前記グラニュラ記録層上に形成されたFe−Pt合金或いはCo−Cr−Pt−B合金からなるキャップ層と、
前記キャップ層上に形成された保護層と
を有することを特徴とする傾斜記録用磁気記録媒体。
A first soft magnetic layer formed directly or via an adhesive layer on a rigid substrate;
A second soft magnetic layer formed on the first soft magnetic layer via a nonmagnetic intermediate layer;
An intermediate layer made of an oxide formed on the second soft magnetic layer;
Crystal orientation control and low thermal conductivity intermediate layer formed on the intermediate layer,
Granular recording layer mainly composed of composed Fe-Pt alloy composition formed in said crystal orientation-control and low thermal conducting intermediate layer, take the L1 0 structure at the stage of progress in ordering is expected When,
A cap layer made of an Fe-Pt alloy or a Co-Cr-Pt-B alloy formed on the granular recording layer;
A magnetic recording medium for tilt recording, comprising a protective layer formed on the cap layer.
請求項1に記載の傾斜記録用磁気記録媒体において、前記酸化物からなる中間層に替わり、非磁性Ni基合金からなる中間層を設けたことを特徴とする傾斜記録用磁気記録媒体。   2. The magnetic recording medium for inclined recording according to claim 1, wherein an intermediate layer made of a nonmagnetic Ni-based alloy is provided in place of the intermediate layer made of oxide. 請求項1に記載の傾斜記録用磁気記録媒体において、前記Fe−Pt合金を主成分とするグラニュラ記録層がCuを含有していることを特徴とする傾斜記録用磁気記録媒体。   2. The magnetic recording medium for tilt recording according to claim 1, wherein the granular recording layer mainly composed of the Fe-Pt alloy contains Cu. 請求項1に記載の傾斜記録用磁気記録媒体において、前記結晶配向性制御兼低熱伝導中間層がTi−Al−V合金からなることを特徴とする傾斜記録用磁気記録媒体。   2. The magnetic recording medium for tilt recording according to claim 1, wherein the crystal orientation control and low thermal conductive intermediate layer is made of a Ti-Al-V alloy. 請求項1に記載の傾斜記録用磁気記録媒体において、前記結晶配向性制御兼低熱伝導中間層がハステロイC合金からなることを特徴とする傾斜記録用磁気記録媒体。   2. The magnetic recording medium for tilt recording according to claim 1, wherein the crystal orientation control and low thermal conductivity intermediate layer is made of Hastelloy C alloy. 請求項1に記載の傾斜記録用磁気記録媒体において、前記結晶配向性制御兼低熱伝導中間層と前記Fe−Pt合金を主成分とするグラニュラ記録層の間にRuからなる結晶配向性制御層を形成したことを特徴とする傾斜記録用磁気記録媒体。   2. The magnetic recording medium for tilt recording according to claim 1, wherein a crystal orientation control layer made of Ru is provided between the crystal orientation control and low thermal conduction intermediate layer and the granular recording layer mainly composed of the Fe-Pt alloy. A magnetic recording medium for inclined recording, characterized in that it is formed. 剛体基板上に接着層を介して或いは直接基板上に軟磁性層を形成し、前記軟磁性層上に非磁性中間層を介して軟磁性層を形成後、酸化物からなる中間層、結晶配向性制御兼低熱伝導中間層、規則化が進んだ段階でL10構造をとることが期待される組成で構成されるCo−Pt合金を主成分とするグラニュラ記録層、Co−Pt合金或いはCo−Cr−Pt−B合金からなるキャップ層、保護層及び潤滑層をこの順に形成したことを特徴とする傾斜記録用磁気記録媒体。 After forming a soft magnetic layer on a rigid substrate via an adhesive layer or directly on the substrate, and forming a soft magnetic layer on the soft magnetic layer via a nonmagnetic intermediate layer, an intermediate layer made of oxide, crystal orientation sex control and low thermal conducting intermediate layer, the granular recording layer mainly composed of composed Co-Pt alloy composition is expected to take an L1 0 structure at the stage of progress in ordering, Co-Pt alloy or Co- A magnetic recording medium for tilt recording, wherein a cap layer made of a Cr-Pt-B alloy, a protective layer, and a lubricating layer are formed in this order. 剛体基板上に直接あるいは接着層を介して第1の軟磁性層を形成し、前記第1の軟磁性層上に非磁性中間層を介して第2の軟磁性層を形成した基板を大気中に取り出し、別の真空プロセスで真空排気後基板を加熱してから酸化物からなる中間層、結晶配向性制御兼低熱伝導中間層、規則化が進んだ段階でL10構造をとることが期待される組成で構成されるFe−Pt合金或いはCo−Pt合金を主成分とするグラニュラ記録層、Fe−Pt合金、Co−Pt合金或いはCo−Cr−Pt−B合金からなるキャップ層、保護層を形成後、熱処理を行ない、その後潤滑層を形成することを特徴とする傾斜記録用磁気記録媒体の製造方法。 A substrate in which a first soft magnetic layer is formed directly or via an adhesive layer on a rigid substrate, and a second soft magnetic layer is formed on the first soft magnetic layer via a nonmagnetic intermediate layer is placed in the atmosphere. It is expected to have an L1 0 structure when the substrate is heated after the substrate is evacuated by another vacuum process, and then the intermediate layer made of oxide, the crystal orientation control and low thermal conductive intermediate layer, and the ordering progresses. A granular recording layer mainly composed of Fe—Pt alloy or Co—Pt alloy composed of a composition, a cap layer made of Fe—Pt alloy, Co—Pt alloy or Co—Cr—Pt—B alloy, and a protective layer. A method of manufacturing a magnetic recording medium for tilt recording, wherein after the formation, heat treatment is performed, and then a lubricating layer is formed.
JP2007338105A 2007-12-27 2007-12-27 Magnetic recording medium for tilt recording, and method for manufacturing the same Pending JP2009158053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007338105A JP2009158053A (en) 2007-12-27 2007-12-27 Magnetic recording medium for tilt recording, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007338105A JP2009158053A (en) 2007-12-27 2007-12-27 Magnetic recording medium for tilt recording, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2009158053A true JP2009158053A (en) 2009-07-16

Family

ID=40961892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007338105A Pending JP2009158053A (en) 2007-12-27 2007-12-27 Magnetic recording medium for tilt recording, and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2009158053A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093233A1 (en) * 2010-01-26 2011-08-04 昭和電工株式会社 Heat-assisted magnetic recording medium and magnetic recording and reproducing device
JP2012003805A (en) * 2010-06-16 2012-01-05 Wd Media (Singapore) Pte. Ltd Perpendicular magnetic recording medium and magnetic disk unit
US20120225325A1 (en) * 2011-03-02 2012-09-06 Hitachi, Ltd. Magnetic recording medium
US8599652B2 (en) 2011-07-14 2013-12-03 Tdk Corporation Thermally-assisted magnetic recording medium and magnetic recording/reproducing device using the same
JP2015005326A (en) * 2014-10-06 2015-01-08 昭和電工株式会社 Heat-assisted magnetic recording medium and magnetic recording and reproducing device
US8988828B2 (en) 2013-07-03 2015-03-24 Showa Denko K.K. Magnetic recording medium and magnetic storage apparatus
WO2015111384A1 (en) * 2014-01-23 2015-07-30 富士電機株式会社 Perpendicular magnetic recording medium
WO2018163658A1 (en) * 2017-03-10 2018-09-13 富士電機株式会社 Magnetic recording medium
JP2020004464A (en) * 2018-06-25 2020-01-09 昭和電工株式会社 Assist magnetic recording medium and magnetic storage device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0855322A (en) * 1994-08-11 1996-02-27 Kao Corp Magnetic recording medium
JP2000076647A (en) * 1999-09-24 2000-03-14 Hitachi Ltd Magnetic recording medium and magnetic storage device
JP2002358618A (en) * 2000-12-28 2002-12-13 Showa Denko Kk Magnetic recording medium, manufacturing method therefor, and magnetic recording and reproducing device
JP2004227740A (en) * 2003-01-27 2004-08-12 Fuji Electric Device Technology Co Ltd Perpendicular magnetic recording medium and its manufacturing method
WO2005083696A1 (en) * 2004-02-27 2005-09-09 Matsushita Electric Industrial Co., Ltd. Magnetic recording medium, manufacturing method and manufacturing equipment therefor, method for reproducing record of magnetic recording medium and record reproducing equipment
JP2006019000A (en) * 2004-06-30 2006-01-19 Hitachi Global Storage Technologies Netherlands Bv Magnetic recording medium for tilt recording
JP2006209943A (en) * 2005-01-26 2006-08-10 Hitachi Global Storage Technologies Netherlands Bv Perpendicular magnetic recording medium with magnetic torque layer coupled to perpendicular recording layer
JP2007164845A (en) * 2005-12-09 2007-06-28 Hitachi Maxell Ltd Magnetic recording medium and manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0855322A (en) * 1994-08-11 1996-02-27 Kao Corp Magnetic recording medium
JP2000076647A (en) * 1999-09-24 2000-03-14 Hitachi Ltd Magnetic recording medium and magnetic storage device
JP2002358618A (en) * 2000-12-28 2002-12-13 Showa Denko Kk Magnetic recording medium, manufacturing method therefor, and magnetic recording and reproducing device
JP2004227740A (en) * 2003-01-27 2004-08-12 Fuji Electric Device Technology Co Ltd Perpendicular magnetic recording medium and its manufacturing method
WO2005083696A1 (en) * 2004-02-27 2005-09-09 Matsushita Electric Industrial Co., Ltd. Magnetic recording medium, manufacturing method and manufacturing equipment therefor, method for reproducing record of magnetic recording medium and record reproducing equipment
JP2006019000A (en) * 2004-06-30 2006-01-19 Hitachi Global Storage Technologies Netherlands Bv Magnetic recording medium for tilt recording
JP2006209943A (en) * 2005-01-26 2006-08-10 Hitachi Global Storage Technologies Netherlands Bv Perpendicular magnetic recording medium with magnetic torque layer coupled to perpendicular recording layer
JP2007164845A (en) * 2005-12-09 2007-06-28 Hitachi Maxell Ltd Magnetic recording medium and manufacturing method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093233A1 (en) * 2010-01-26 2011-08-04 昭和電工株式会社 Heat-assisted magnetic recording medium and magnetic recording and reproducing device
JP2011154746A (en) * 2010-01-26 2011-08-11 Showa Denko Kk Heat-assisted magnetic recording medium and magnetic recording and reproducing device
CN102725793A (en) * 2010-01-26 2012-10-10 昭和电工株式会社 Heat-assisted magnetic recording medium and magnetic recording and reproducing device
JP2012003805A (en) * 2010-06-16 2012-01-05 Wd Media (Singapore) Pte. Ltd Perpendicular magnetic recording medium and magnetic disk unit
US20120225325A1 (en) * 2011-03-02 2012-09-06 Hitachi, Ltd. Magnetic recording medium
US8679654B2 (en) * 2011-03-02 2014-03-25 Hitachi, Ltd. Magnetic recording medium including plural FePt alloy layers including carbon, oxides or nitrides
US8599652B2 (en) 2011-07-14 2013-12-03 Tdk Corporation Thermally-assisted magnetic recording medium and magnetic recording/reproducing device using the same
US8988828B2 (en) 2013-07-03 2015-03-24 Showa Denko K.K. Magnetic recording medium and magnetic storage apparatus
WO2015111384A1 (en) * 2014-01-23 2015-07-30 富士電機株式会社 Perpendicular magnetic recording medium
JPWO2015111384A1 (en) * 2014-01-23 2017-03-23 富士電機株式会社 Perpendicular magnetic recording medium
US10504547B2 (en) 2014-01-23 2019-12-10 Fuji Electric Co., Ltd. Perpendicular magnetic recording medium
JP2015005326A (en) * 2014-10-06 2015-01-08 昭和電工株式会社 Heat-assisted magnetic recording medium and magnetic recording and reproducing device
WO2018163658A1 (en) * 2017-03-10 2018-09-13 富士電機株式会社 Magnetic recording medium
JPWO2018163658A1 (en) * 2017-03-10 2019-06-27 富士電機株式会社 Magnetic recording medium
JP2020030880A (en) * 2017-03-10 2020-02-27 富士電機株式会社 Magnetic recording medium
US11120829B2 (en) 2017-03-10 2021-09-14 Fuji Electric Co., Ltd. Magnetic recording medium having tin containing seed layer
JP2020004464A (en) * 2018-06-25 2020-01-09 昭和電工株式会社 Assist magnetic recording medium and magnetic storage device
JP7107765B2 (en) 2018-06-25 2022-07-27 昭和電工株式会社 Assisted magnetic recording medium and magnetic storage device

Similar Documents

Publication Publication Date Title
JP5128930B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP5617112B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
CN102646421B (en) Heat-assisted magnetic recording medium and magnetic storage device
JP5015901B2 (en) Thermally assisted magnetic recording medium and magnetic recording / reproducing apparatus
CN102725793B (en) Heat-assisted magnetic recording medium and magnetic recording and reproducing device
JP2009158053A (en) Magnetic recording medium for tilt recording, and method for manufacturing the same
US8771849B2 (en) Perpendicular magnetic recording medium and magnetic recording/reproducing apparatus using the same
JP2003162806A (en) Perpendicular magnetic recording medium and magnetic storage device
JP5575172B2 (en) Magnetic recording medium, magnetic recording / reproducing apparatus, and method of manufacturing magnetic recording medium
JP5938224B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
WO2013172260A1 (en) Magnetic recording medium and magnetic recording/reproducing device
JP4746778B2 (en) Magnetic recording medium and magnetic storage device using the same
JPWO2009014205A1 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
US9542968B1 (en) Single layer small grain size FePT:C film for heat assisted magnetic recording media
CN108573715A (en) Assisted magnetic recording medium and magnetic memory apparatus
CN104303232B (en) HAMR medium and magnetic recorder/reproducer
JP2003178423A (en) Longitudinal recording magnetic recording medium and its manufacturing method
JP2001344740A (en) Magnetic recording medium and magnetic storage device
JP5923152B2 (en) Thermally assisted magnetic recording medium and magnetic recording / reproducing apparatus
JPH11328647A (en) Magnetic recording medium and manufacture of magnetic recording medium
CN113053422A (en) Magnetic recording medium and magnetic storage device
JP5535293B2 (en) Method for manufacturing magnetic recording medium
JP2006179133A (en) Magnetic recording medium and magnetic storage device using the same
JP5730047B2 (en) Thermally assisted magnetic recording medium and magnetic storage device
JP3588039B2 (en) Magnetic recording medium and magnetic recording / reproducing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20101102

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20111109

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20111122

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120217

A02 Decision of refusal

Effective date: 20121106

Free format text: JAPANESE INTERMEDIATE CODE: A02