JP2004227740A - Perpendicular magnetic recording medium and its manufacturing method - Google Patents

Perpendicular magnetic recording medium and its manufacturing method Download PDF

Info

Publication number
JP2004227740A
JP2004227740A JP2003017995A JP2003017995A JP2004227740A JP 2004227740 A JP2004227740 A JP 2004227740A JP 2003017995 A JP2003017995 A JP 2003017995A JP 2003017995 A JP2003017995 A JP 2003017995A JP 2004227740 A JP2004227740 A JP 2004227740A
Authority
JP
Japan
Prior art keywords
layer
magnetic recording
recording medium
soft magnetic
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003017995A
Other languages
Japanese (ja)
Other versions
JP4348952B2 (en
Inventor
Yasushi Sakai
泰志 酒井
Sadayuki Watanabe
貞幸 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2003017995A priority Critical patent/JP4348952B2/en
Publication of JP2004227740A publication Critical patent/JP2004227740A/en
Application granted granted Critical
Publication of JP4348952B2 publication Critical patent/JP4348952B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a perpendicular magnetic recording medium which sufficiently functions as the medium even when the conventional film deposition system is used, and whose productivity is high, and its manufacturing method. <P>SOLUTION: A structure is adopted in which at least a soft magnetic lining layer 2, an intermediate layer 5, a magnetic recording layer 6, and a first protective layer 7 are sequentially deposited on a nonmagnetic substrate 1, and a liquid lubricant layer 8 is deposited on the first protective layer 7. The nonmagnetic substrate is once taken out from the film deposition system after the formation up to the soft magnetic backing layer, and the nonmagnetic substrate is washed, and then introduced again into the film deposition system to deposit films from the intermediate layer. Thus, by using the current film deposition system, the perpendicular magnetic recording medium having high reliability and good electromagnetic conversion characteristics is manufactured. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、垂直磁気記録媒体及びその製造方法に関し、より詳細には、コンピュータの外部記憶装置を初めとする各種磁気記録装置に搭載される垂直磁気記録媒体及びその製造方法に関する。
【0002】
【従来の技術】
近年、磁気記録の高密度化を実現する技術として、従来の長手磁気記録方式に代えて、垂直磁気記録方式が注目されつつある。
【0003】
垂直磁気記録媒体は、硬質磁性材料の磁気記録層と、この磁気記録層への記録に用いられる、磁気ヘッドが発生する磁束を集中させる役割を担う軟磁性材料で形成される裏打ち層を構成要素に含んでいる。このような構造の垂直磁気記録媒体において問題となるノイズのひとつであるスパイクノイズは、裏打ち層である軟磁性膜に形成された磁壁によるものであることが知られている。そのため垂直磁気記録方式を実現化させるためには、軟磁性裏打ち層の磁壁形成を阻止する必要がある。
【0004】
この軟磁性裏打ち層の磁壁の制御については、軟磁性裏打ち層の上層や下層に、Co合金等の強磁性層を形成してこれを所望の方向に磁化させるように着磁する方法や、反強磁性薄膜を形成し、交換結合を利用して磁化をピン止めする方法が提案されている(例えば、特許文献1,2参照)。さらに、軟磁性裏打ち層と非磁性層を多数回積層することにより磁壁の形成を抑制する方法等も提案されている(例えば、非特許文献1参照)。これらの方法を用いることにより、軟磁性裏打ち層に起因のスパイクノイズを抑制することができる。
【0005】
【特許文献1】
特開平6−180834号公報
【0006】
【特許文献2】
特開平10−214719号公報
【0007】
【非特許文献1】
IEEE Trams.Magn.,37,1586(2001)
【0008】
【発明が解決しようとする課題】
上述したような方法を用いることにより、軟磁性裏打ち層に起因のスパイクノイズを抑制することはできるが、その層構成はかなり複雑なものとなる。例えば、反強磁性層を用いて磁壁形成の阻止を行なう場合、反強磁性層を所望の結晶配向ならびに粒径に形成するために反強磁性層の下層に下地層を数層形成し、反強磁性層を成膜後に、さらに反強磁性結合磁界Hexを強めるためのエンハンス層等を用いる必要がある。
【0009】
更に、高いHexの導出を望む場合は、同一装置内にて基板加熱を行なう必要がある。このように形成した層構成の上に、さらに軟磁性裏打ち層と中間層と磁気記録層と保護層とを連続で形成しようとした場合、従来の量産用に用いられてきた成膜装置では層数が多すぎて、全てを連続成膜することは非常に困難である。
【0010】
軟磁性裏打ち層の上層や下層にCo合金等の強磁性層を形成し、これを所望の方向に磁化させるように着磁することにより磁壁の形成を抑制する方法や、軟磁性裏打ち層と非磁性層を多数回積層することにより磁壁の形成を抑制する方法等においても、反強磁性層を用いる場合と同様に層構成が複雑となり、従来の量産装置を用いて連続成膜を行なうことは非常に難しい。
【0011】
これに対し、従来の成膜装置2台を用いて成膜する方法や1台の成膜装置で、垂直磁気記録媒体を途中まで成膜後、一旦装置から取り出し、ターゲットを全部交換後、続きの成膜を行なう方法も考えられる。しかしながら、いずれの方法においても、連続成膜の途中で成膜装置から取り出すことにより、パーティクルが付着したり、また、全てを連続成膜できないことにより、所望の特性が得られないという問題が発生する。
【0012】
本発明は、このような問題に鑑みてなされたもので、その目的とするところは、従来の成膜装置を用いても、垂直磁気記録媒体として十分に機能し、なおかつ生産性を有する垂直磁気記録媒体及びその製造方法を提供することにある。
【0013】
【課題を解決するための手段】
本発明は、このような目的を達成するために、請求項1に記載の発明は、非磁性基体上に、少なくとも軟磁性裏打ち層と中間層と磁気記録層と第一保護層及び液体潤滑剤層とが順次積層されてなる垂直磁気記録媒体において、前記軟磁性裏打ち層までを成膜後に一旦成膜装置から前記非磁性基板を取り出し、該非磁性基板の洗浄を行なった後に再び前記成膜装置内に導入して前記中間層からの成膜を行なうことを特徴とする。
【0014】
また、請求項2に記載の発明は、請求項1に記載の発明において、前記軟磁性裏打ち層を成膜後、前記成膜装置から取り出す前に、前記軟磁性裏打ち層の劣化を防ぐために連続して第二保護層を成膜することを特徴とする。
【0015】
また、請求項3に記載の発明は、請求項1又は2に記載の発明において、前記洗浄後に成膜装置に導入後、前記中間層を成膜する前にシード層を成膜することを特徴とする。
【0016】
また、請求項4に記載の発明は、請求項1,2又は3に記載の製造方法により作製したことを特徴とする垂直磁気記録媒体である。
【0017】
【発明の実施の形態】
以下、図面を参照して本発明の実施の態様について説明する。
図1は、本発明に係る垂直磁気記録媒体の一実施形態を説明するための断面模式図で、図中符号1は非磁性基体、2は軟磁性裏打ち層、5は中間層、6は磁気記録層、7は第一保護層、8は液体潤滑剤層を示している。この垂直磁気記録媒体は、非磁性基体1上に少なくとも、軟磁性裏打ち層2と中間層5と磁気記録層6と第一保護層7とが順に形成された構造を有しており、さらに第一保護層7の上に液体潤滑剤層8が形成されている。
【0018】
図2は、本発明に係る垂直磁気記録媒体の他の実施形態を説明するための断面模式図で、図中符号3は第二保護層を示している。なお、図1と同じ機能を有する構成要素には同一の符号を付してある。この垂直磁気記録媒体は、非磁性基体1上に少なくとも、軟磁性裏打ち層2と第二保護層3と中間層5と磁気記録層6と第一保護層7とが順に形成された構造を有しており、さらに第一保護層7の上に液体潤滑剤層8が形成されている。
【0019】
図3は、本発明に係る垂直磁気記録媒体のさらに他の実施形態を説明するための断面模式図で、図中符号4はシード層を示している。なお、図1と同じ機能を有する構成要素には同一の符号を付してある。この垂直磁気記録媒体は、非磁性基体1上に少なくとも、軟磁性裏打ち層2とシード層4と中間層5と磁気記録層6と第一保護層7とが順に形成された構造を有しており、さらに第一保護層7の上に液体潤滑剤層8が形成されている。
【0020】
図4は、本発明に係る垂直磁気記録媒体のさらに他の実施形態を説明するための断面模式図である。なお、図1〜図3と同じ機能を有する構成要素には同一の符号を付してある。この垂直磁気記録媒体は、非磁性基体1上に少なくとも、軟磁性裏打ち層2と第二保護層3とシード層4と中間層5と磁気記録層6と第一保護層7とが順に形成された構造を有しており、さらに第一保護層7の上に液体潤滑剤層8が形成されている。
【0021】
本発明において、非磁性基体1としては、通常の磁気記録媒体用に用いられる、NiPメッキを施したAl合金や強化ガラス、結晶化ガラス等を用いることができる。
【0022】
また、軟磁性裏打ち層2としては、NiFe系合金、センダスト(FeSiAl)合金、飽和磁束密度の大きなFeCo合金等を用いることができるが、非晶質のCo合金、例えば、CoNbZr,CoTaZrなどを用いることにより良好な電磁変換特性を得ることができる。軟磁性裏打ち層2の膜厚は、記録に使用する磁気ヘッドの構造や特性によって最適値が変化するが、10nm以上300nm以下であることが、生産性との兼ね合いから望ましい。
【0023】
軟磁性裏打ち層2の磁壁の形成を抑制するためには、軟磁性裏打ち層2の下層にCo合金等の強磁性層を形成し、これを所望の方向に磁化させるように着磁する方法や、反強磁性薄膜を形成し、交換結合を利用して磁化をピン止めする方法、軟磁性裏打ち層と非磁性層を多数回積層することにより磁壁の形成を抑制する方法等が挙げられる。
【0024】
磁壁制御層として、非磁性基体1の半径方向に磁化を配向させたCo合金等の硬質磁性膜を用いる場合には、その下地層としてCr合金等を用いることが望ましい。さらにその下地層の微細構造を制御するために複数層の下地層を設けてもよい。
【0025】
磁壁制御層として、Mnを含む合金系からなる反強磁性膜を用いることもできる。下地層としては、面心立方構造を有する単金属あるいは合金等を用いることが望ましい。さらにその下地層の微細構造を制御するためにさらに複数の下地層を設けることも大きなHexを導出するために有効である。磁壁制御の目的で軟磁性裏打ち層と非磁性層を多数回積層する場合には、例えば、非磁性層としてC,Siなどを用いることができる。
【0026】
また、第二保護層3は、軟磁性裏打ち層2の成膜後、成膜装置から非磁性基体1を取り出す際、軟磁性裏打ち層2の表面が酸化してしまうことを防ぐために用いられる。第二保護層3として用いることができる材料としては、Ta,Ti,Zr,W等の単金属や、TiCr,TaW等の合金が挙げられるが、これに限定されない。第二保護層3の膜厚としては、軟磁性裏打ち層2の酸化を防ぐのに必要最小限の膜厚とすることが望ましい。厚すぎる場合には、信号の書込み能力を低下させてしまう原因となる。
【0027】
また、シード層4は、中間層5の配向ならびに結晶性を制御するために用いられる。全層を連続成膜する場合には、特に必要とされないが、軟磁性裏打ち層2あるいは第二保護層3を成膜後に、一旦非磁性基体1を成膜装置から出してしまうと最表面に酸素等が付着するため、中間層5の結晶成長性が悪くなることがある。そのためシード層4を用いることにより、この中間層5の劣化を防ぐことができる。シード層4として用いることができる材料としては、第二保護層3として用いることができる材料と同じ種類のものである。第二保護層3とシード層4を同時に用いる場合には、同じ材料を用いることが望ましい。シード層4の膜厚は、中間層5の結晶成長を制御するのに必要最小限の膜厚とすることが望ましい。厚すぎる場合には、第二保護層3の場合と同様に、信号の書込み能力を低下させてしまう原因となる。
【0028】
また、中間層5は、磁気記録層6の結晶配向性、結晶粒径及び粒界偏析を好適に制御するために用いられる。材料としては、面心立方(fcc)構造あるいは六方最密充填(hcp)構造を有する単金属膜あるいは合金膜が好ましく、Ti,Ru,Pd,Ptやそれらを含む合金膜が挙げられるが、それらに限定されない。中間層5の膜厚としては、磁気記録層6の構造制御を行なうのに必要最小限の膜厚とすることが、記録の面からは必要である。
【0029】
また、磁気記録層6としては、CoCrPt系合金膜、結晶粒界にSiO等の非磁性酸化物や窒化物を有するグラニュラー膜、さらにはCo/Pd等の積層膜、希土類−遷移金属合金非晶質膜、FePt規則合金膜等を用いることができる。
【0030】
また、第一保護層7は、従来から使用されている保護膜を用いることができる。例えば、カーボンを主体とする保護膜を用いることができる。第一保護層7の膜厚等の条件は、通常の磁気記録媒体で用いられる諸条件をそのまま用いることができる。
【0031】
また、液体潤滑剤層8も従来から使用されている材料を用いることができる。例えば、パーフルオロポリエーテル系の潤滑剤を用いることができる。液体潤滑剤層8の膜厚等の条件は、通常の磁気記録媒体で用いられる諸条件をそのまま用いることができる。
【0032】
本発明では、軟磁性裏打ち層2を成膜後あるいは第二保護層3を成膜後、非磁性基体1は一旦成膜装置から取り出される。この時、装置から取り出すことにより、軟磁性裏打ち層2あるいは第二保護層3の表面にパーティクル等が付着することがある。このパーティクルが付着したままその後の成膜を行なった場合、完成した垂直磁気記録媒体の信頼性に大きな影響を及ぼす可能性がある。そこで、表面に付着したパーティクル等を除去するために、非磁性基体の洗浄を行なうことが非常に重要な工程となる。
【0033】
この洗浄方法は、通常、磁気記録媒体の成膜前に行われているものをそのまま用いることができる。ただし、通常の成膜前の洗浄工程では、酸やアルカリ等の洗剤や溶剤が使われる場合があるが、本工程では既に一部薄膜の成膜が行なわれているため、これらの洗剤や溶剤を使うことは好ましくない。本工程では、純水や有機溶剤等を用いることが好ましい。更に、ウレタン等のパットを用いて表面を物理的に擦り洗いすることは表面付着物を除去するためには有効である。ただし、この場合にも、洗剤等は用いずに純水のみとする必要がある。
【0034】
以下に本発明の実施例について説明するが、以下の実施例は、本発明の好適に説明する代表例に過ぎず、本発明をなんら限定するものではない。
【0035】
[実施例1]
非磁性基体1として表面にテクスチャー加工を施したNiP付Al合金基板を用い、これを洗浄後スパッタ装置内に導入し、Taターゲットを用いて下地Ta層を5nm、NiFeCrターゲットを用いて下地NiFeCr層を5nm、IrMnターゲットを用いて磁壁制御層としてIrMn反強磁性層を5nm成膜後、連続してCoZrNbターゲットを用いてCoZrNb軟磁性裏打ち層を200nm成膜し、一旦成膜装置から取り出した。取り出した非磁性基体を、成膜前の洗浄と同様にして中間洗浄を行なった。
【0036】
ただし、この洗浄で用いたのは純水と有機溶剤のみである。その後、所望のターゲットに全て交換を済ませた成膜装置に、中間洗浄済み非磁性基体を導入し、Ruターゲットを用いてRu中間層を20nm成膜、CoCrPt−SiOターゲットを用いてCoCrPt−SiO磁気記録層を、20nm成膜を行なった。最後にカーボンからなる第一保護層7を5nm成膜後、真空装置から取り出した。その後、パーフルオロポリエーテルからなる液体潤滑剤層2nmをディップ法により形成し、垂直磁気記録媒体とした。
【0037】
[実施例2]
実施例1において、軟磁性裏打ち層を成膜後、装置から取り出す前に、連続してTi第二保護層3を5nm成膜した以外は、実施例1に示した方法と同様にして垂直磁気記録媒体を作製した。
【0038】
[実施例3]
実施例1において、中間洗浄済み非磁性基体を成膜装置内に導入し、まず、Tiターゲットを用いてTiシード層を成膜した以外は、実施例1に示した方法と同様にして垂直磁気記録媒体を作製した。
【0039】
[実施例4]
実施例1において、軟磁性裏打ち層を成膜後、装置から取り出す前に、連続してTi第二保護層3を5nm成膜し、中間洗浄後を行ない、再び成膜装置内に導入し、まずTiターゲットを用いてTiシード層を成膜した以外は、実施例1に示した方法と同様にして垂直磁気記録媒体を作製した。
【0040】
[比較例1]
非磁性基体1として表面にテクスチャー加工を施したNiP付Al合金基板を用い、これを洗浄後スパッタ装置内に導入し、磁壁制御層を成膜すること無く、非磁性基体1上に直接、CoZrNbターゲットを用いてCoZrNb軟磁性裏打ち層を200nm成膜後、成膜装置から取り出すことなく連続して、Ruターゲットを用いてRu中間層を20nm成膜、CoCrPt−SiOターゲットを用いてCoCrPt−SiO磁気記録層を、20nm成膜を行なった。最後にカーボンからなる第一保護層7を5nm成膜後、真空装置から取り出した。その後、パーフルオロポリエーテルからなる液体潤滑剤層2nmをディップ法により形成し、垂直磁気記録媒体とした。
【0041】
[比較例2]
実施例1において、軟磁性裏打ち層を200nm成膜後に成膜装置から取り出した後、洗浄をせずに成膜装置に導入した以外は、実施例1に示した方法と同様にして垂直磁気記録媒体を作製した。
【0042】
[比較例3]
実施例1において、軟磁性裏打ち層を100nm成膜、一旦成膜装置から取り出した後に中間洗浄を行ない再び成膜装置内に導入し、まず初めに、軟磁性裏打ち層を100nm成膜し、連続してRu中間層を成膜した以外は、実施例1に示した方法と同様にして垂直磁気記録媒体を作製した。
【0043】
[比較例4]
実施例1において、反強磁性膜を成膜後、一旦成膜装置から取り出した後に中間洗浄を行ない再び成膜装置内に導入し、まず初めに、軟磁性裏打ち層を200nm成膜し、連続してRu中間層を成膜した以外は、実施例1に示した方法と同様にして垂直磁気記録媒体を作製した。
【0044】
[比較例5]
実施例1において、軟磁性裏打ち層を200nm成膜し、連続してRu中間層を成膜し、一旦成膜装置から取り出した後に中間洗浄を行ない再び成膜装置内に導入し、まず初めに、磁気記録層を成膜した以外は、実施例1に示した方法と同様にして垂直磁気記録媒体を作製した。
【0045】
磁気特性は、Kerr効果測定装置を用いて測定した。完成した垂直磁気記録媒体の表面に付着しているパーティクルは、光学式の表面観察装置にてパーティクルの個数を測定した。垂直磁気記録媒体の電磁変換特性は、スピンスタンドテスターを用いSPT/GMRヘッドにより測定を行なった。スパイクノイズの測定は、イレイズ状態での1周分の出力の平均値に対して、150%を超える出力を有するものの個数にて判断した。
【0046】
本発明の実施例を説明するために、実施例ならびに比較例において作製した垂直磁気記録媒体の保磁力Hc、パーティクル数、線記録密度4000kFCIでのSNR(電磁変換特性の信号とノイズの強度比)、ならびにスパイクノイズの個数を以下の表1にまとめた。
【0047】
【表1】

Figure 2004227740
【0048】
Hcは、比較例5以外は何れも5200Oe前後の良好な値が得られている。しかしながら、比較例5に示すように、中間層と磁気記録層を分けて成膜を行なった場合、磁気記録層の結晶成長が悪くなるために特性が悪化してしまう。したがって、中間層と磁気記録層は連続して成膜を行なう必要があることがわかる。
【0049】
パーティクル数は、実施例に示した何れの方法を用いた場合にも、3個以内の、非常に少ない結果となった。しかしながら、比較例2に示したように中間洗浄を行なわない場合、パーティクル数は53個となり実用上問題となるレベルである。実施例3〜5の方法に示したように、成膜を一旦中断する場所を変更した場合においても、中間洗浄を導入することによりパーティクル数を低減できることがわかる。このように、成膜の途中で一旦装置から取り出した場合、パーティクルを低減するためには中間洗浄を行なうことが非常に有用であることがわかる。
【0050】
実施例1に示す方法においても、SNRは比較例1に示した連続成膜品と同等の値が得られている。実施例2に示すように、軟磁性裏打ち層を成膜後に第二保護層3を成膜することにより、SNRはわずかながら向上する。実施例3に示すように、中間層成膜前にシード層を成膜することもSNRを増加させる効果がある。さらに、実施例4に示したように、第二保護層3とシード層を両方用いることにより、SNRは実施例1の場合に比較して0.5dB向上する。しかしながら、比較例5に示したように、成膜を一旦中断する場所を中間層と磁気記録層の間とした場合、SNRは極端に劣化する。これは上述した通り、磁気特性が劣化したためである。
【0051】
最後にスパイクノイズに関してみてみる。磁壁制御層が無い比較例1では、スパイクノイズが多発している。これに対し、実施例1〜4においてはスパイクノイズは完全に抑制されていることがわかる。実施例3では、軟磁性裏打ち層の成膜途中で成膜装置から取り出しているが、その場合、下層と上層の軟磁性裏打ち層が磁気的に結合しなくなってしまうため、完全にはスパイクノイズを抑制することができない。更に、実施例4では、反強磁性膜と軟磁性裏打ち層が反強磁性結合しないため、スパイクノイズの抑制効果がなくなってしまう。
【0052】
以上のことより、成膜を一旦中断して成膜装置から非磁性基体を取り出す場合、軟磁性裏打ち層と中間層の間で取り出すことが重要であり、再び装置内に導入する前には途中洗浄を行なうことが必要である。更に、装置から取り出す前に第二保護層3、再び装置内に導入した場合にはまずシード層を成膜することが、より良好な特性を得るためには有効であることがわかる。
【0053】
【発明の効果】
以上説明したように本発明によれば、非磁性基体上に、少なくとも軟磁性裏打ち層と中間層と磁気記録層と第一保護層及び液体潤滑剤層とが順次積層されてなる垂直磁気記録媒体において、軟磁性裏打ち層までを成膜後に一旦成膜装置から非磁性基板を取り出し、この非磁性基板の洗浄を行なった後に再び成膜装置内に導入して中間層からの成膜を行なうようにしたので、現状の成膜装置を用いて、高信頼を有し、かつ電磁変換特性に優れた垂直磁気記録媒体を作製することができる。
【0054】
また、軟磁性裏打ち層を成膜後、成膜装置から取り出す前に、軟磁性裏打ち層の劣化を防ぐために連続して第二保護層を成膜する、あるいは中間洗浄後に成膜装置に導入後、中間層を成膜する前にシード層を成膜するようにし、さらにはその両方を組み合わせることにより、さらに優れた電磁変換特性を実現することができる。上述した何れの方法を用いて垂直磁気記録媒体を作製する場合においても、既存の成膜装置をそのまま使用することができるため、新たな設備投資を行なう必要がなく、さらに今後の垂直磁気記録媒体の大量生産に非常に適している。
【図面の簡単な説明】
【図1】本発明に係る垂直磁気記録媒体の一実施形態を説明するための断面模式図である。
【図2】本発明に係る垂直磁気記録媒体の他の実施形態を説明するための断面模式図である。
【図3】本発明に係る垂直磁気記録媒体のさらに他の実施形態を説明するための断面模式図である。
【図4】本発明に係る垂直磁気記録媒体のさらに他の実施形態を説明するための断面模式図である。
【符号の説明】
1 非磁性基体
2 軟磁性裏打ち層
3 第二保護層
4 シード層
5 中間層
6 磁気記録層
7 第一保護層
8 液体潤滑剤層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a perpendicular magnetic recording medium and a method of manufacturing the same, and more particularly, to a perpendicular magnetic recording medium mounted on various magnetic recording devices such as an external storage device of a computer, and a method of manufacturing the same.
[0002]
[Prior art]
2. Description of the Related Art In recent years, a perpendicular magnetic recording method has been attracting attention as a technique for realizing high density magnetic recording, in place of the conventional longitudinal magnetic recording method.
[0003]
A perpendicular magnetic recording medium comprises a magnetic recording layer of a hard magnetic material and a backing layer formed of a soft magnetic material used for recording on the magnetic recording layer and concentrating a magnetic flux generated by a magnetic head. Included in It is known that spike noise, which is one of the problematic noises in a perpendicular magnetic recording medium having such a structure, is caused by a domain wall formed in a soft magnetic film serving as a backing layer. Therefore, in order to realize the perpendicular magnetic recording method, it is necessary to prevent the formation of the domain wall of the soft magnetic underlayer.
[0004]
Regarding the control of the domain wall of the soft magnetic backing layer, a method of forming a ferromagnetic layer such as a Co alloy on the upper and lower layers of the soft magnetic backing layer and magnetizing the ferromagnetic layer so as to magnetize the same in a desired direction, and a method of controlling the reverse direction. There has been proposed a method of forming a ferromagnetic thin film and pinning magnetization by using exchange coupling (for example, see Patent Documents 1 and 2). Further, a method of laminating a soft magnetic backing layer and a nonmagnetic layer many times to suppress the formation of domain walls has been proposed (for example, see Non-Patent Document 1). By using these methods, spike noise caused by the soft magnetic underlayer can be suppressed.
[0005]
[Patent Document 1]
JP-A-6-180834
[Patent Document 2]
JP 10-214719 A
[Non-patent document 1]
IEEE Trams. Magn. , 37, 1586 (2001).
[0008]
[Problems to be solved by the invention]
By using the above-described method, spike noise due to the soft magnetic backing layer can be suppressed, but the layer structure becomes considerably complicated. For example, when using an antiferromagnetic layer to prevent domain wall formation, several underlayers are formed below the antiferromagnetic layer in order to form the antiferromagnetic layer to have a desired crystal orientation and grain size. After forming the ferromagnetic layer, it is necessary to use an enhancement layer or the like for further increasing the antiferromagnetic coupling magnetic field Hex.
[0009]
Furthermore, when it is desired to derive a high Hex, it is necessary to heat the substrate in the same apparatus. In the case where a soft magnetic underlayer, an intermediate layer, a magnetic recording layer, and a protective layer are to be successively formed on the layer structure formed in this manner, a conventional film forming apparatus used for mass production uses a layer. Since the number is too large, it is very difficult to continuously form all of them.
[0010]
A method of forming a ferromagnetic layer such as a Co alloy above or below the soft magnetic backing layer and magnetizing it to a desired direction to suppress the formation of domain walls, Even in the method of suppressing the formation of the domain wall by laminating the magnetic layer many times, the layer configuration becomes complicated similarly to the case of using the antiferromagnetic layer, and it is not possible to perform the continuous film formation using the conventional mass production apparatus. extremely difficult.
[0011]
On the other hand, with a conventional method of forming a film using two film forming apparatuses or a single film forming apparatus, a perpendicular magnetic recording medium is formed halfway, then taken out of the apparatus, and all targets are replaced. A method of forming a film is also conceivable. However, in any of the methods, there is a problem that particles are adhered by taking out of the film forming apparatus during the continuous film formation, or that desired characteristics cannot be obtained because all the films cannot be continuously formed. I do.
[0012]
The present invention has been made in view of such a problem, and an object of the present invention is to provide a perpendicular magnetic recording medium that functions sufficiently as a perpendicular magnetic recording medium even with the use of a conventional film forming apparatus and has high productivity. It is to provide a recording medium and a manufacturing method thereof.
[0013]
[Means for Solving the Problems]
In order to achieve such an object, the present invention is directed to a method for producing a magnetic recording medium, comprising: a non-magnetic substrate having at least a soft magnetic underlayer, an intermediate layer, a magnetic recording layer, a first protective layer, and a liquid lubricant; Layers are sequentially laminated, and after forming up to the soft magnetic underlayer, the non-magnetic substrate is once taken out of the film forming apparatus, the non-magnetic substrate is washed, and then the film forming apparatus is again formed. And forming a film from the intermediate layer.
[0014]
According to a second aspect of the present invention, in the first aspect of the present invention, after forming the soft magnetic underlayer, before removing the soft magnetic underlayer from the film forming apparatus, the soft magnetic underlayer is continuously formed to prevent deterioration of the soft magnetic underlayer. Then, the second protective layer is formed.
[0015]
According to a third aspect of the present invention, in the first or second aspect of the present invention, a seed layer is formed after introducing the film into the film forming apparatus after the cleaning and before forming the intermediate layer. And
[0016]
According to a fourth aspect of the present invention, there is provided a perpendicular magnetic recording medium manufactured by the manufacturing method according to the first, second, or third aspect.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic cross-sectional view for explaining an embodiment of a perpendicular magnetic recording medium according to the present invention. In the figure, reference numeral 1 denotes a nonmagnetic substrate, 2 denotes a soft magnetic underlayer, 5 denotes an intermediate layer, and 6 denotes a magnetic layer. The recording layer, 7 is a first protective layer, and 8 is a liquid lubricant layer. This perpendicular magnetic recording medium has a structure in which at least a soft magnetic backing layer 2, an intermediate layer 5, a magnetic recording layer 6, and a first protective layer 7 are sequentially formed on a nonmagnetic substrate 1. A liquid lubricant layer 8 is formed on one protective layer 7.
[0018]
FIG. 2 is a schematic cross-sectional view for explaining another embodiment of the perpendicular magnetic recording medium according to the present invention, in which reference numeral 3 indicates a second protective layer. Note that components having the same functions as those in FIG. 1 are denoted by the same reference numerals. This perpendicular magnetic recording medium has a structure in which at least a soft magnetic backing layer 2, a second protective layer 3, an intermediate layer 5, a magnetic recording layer 6, and a first protective layer 7 are sequentially formed on a nonmagnetic substrate 1. Further, a liquid lubricant layer 8 is formed on the first protective layer 7.
[0019]
FIG. 3 is a schematic cross-sectional view for explaining still another embodiment of the perpendicular magnetic recording medium according to the present invention. In the figure, reference numeral 4 denotes a seed layer. Note that components having the same functions as those in FIG. 1 are denoted by the same reference numerals. This perpendicular magnetic recording medium has a structure in which at least a soft magnetic backing layer 2, a seed layer 4, an intermediate layer 5, a magnetic recording layer 6, and a first protective layer 7 are sequentially formed on a nonmagnetic substrate 1. In addition, a liquid lubricant layer 8 is formed on the first protective layer 7.
[0020]
FIG. 4 is a schematic sectional view for explaining still another embodiment of the perpendicular magnetic recording medium according to the present invention. Note that components having the same functions as those in FIGS. 1 to 3 are denoted by the same reference numerals. In this perpendicular magnetic recording medium, at least a soft magnetic backing layer 2, a second protective layer 3, a seed layer 4, an intermediate layer 5, a magnetic recording layer 6, and a first protective layer 7 are sequentially formed on a non-magnetic substrate 1. In addition, a liquid lubricant layer 8 is formed on the first protective layer 7.
[0021]
In the present invention, as the non-magnetic substrate 1, a NiP-plated Al alloy, tempered glass, crystallized glass, or the like, which is used for a normal magnetic recording medium, can be used.
[0022]
As the soft magnetic underlayer 2, a NiFe-based alloy, a sendust (FeSiAl) alloy, an FeCo alloy having a large saturation magnetic flux density, or the like can be used. An amorphous Co alloy, for example, CoNbZr, CoTaZr, or the like is used. Thereby, good electromagnetic conversion characteristics can be obtained. The optimum thickness of the soft magnetic underlayer 2 varies depending on the structure and characteristics of the magnetic head used for recording, but is preferably 10 nm or more and 300 nm or less from the viewpoint of productivity.
[0023]
In order to suppress the formation of the magnetic domain wall of the soft magnetic backing layer 2, a method of forming a ferromagnetic layer such as a Co alloy under the soft magnetic backing layer 2 and magnetizing the ferromagnetic layer to magnetize it in a desired direction, A method of forming an antiferromagnetic thin film and pinning the magnetization using exchange coupling, and a method of laminating a soft magnetic underlayer and a nonmagnetic layer many times to suppress the formation of domain walls.
[0024]
When a hard magnetic film such as a Co alloy whose magnetization is oriented in the radial direction of the non-magnetic substrate 1 is used as the domain wall control layer, it is preferable to use a Cr alloy or the like as the underlayer. Further, a plurality of underlayers may be provided in order to control the fine structure of the underlayer.
[0025]
An antiferromagnetic film made of an alloy containing Mn can be used as the domain wall control layer. It is desirable to use a single metal or an alloy having a face-centered cubic structure as the underlayer. Further, providing a plurality of underlayers for controlling the microstructure of the underlayer is also effective for deriving a large Hex. When the soft magnetic underlayer and the nonmagnetic layer are laminated many times for the purpose of domain wall control, for example, C, Si, or the like can be used as the nonmagnetic layer.
[0026]
The second protective layer 3 is used to prevent the surface of the soft magnetic backing layer 2 from being oxidized when the nonmagnetic substrate 1 is taken out of the film forming apparatus after the soft magnetic backing layer 2 is formed. Examples of a material that can be used as the second protective layer 3 include a single metal such as Ta, Ti, Zr, and W, and an alloy such as TiCr and TaW, but are not limited thereto. It is desirable that the film thickness of the second protective layer 3 be the minimum necessary for preventing the soft magnetic underlayer 2 from being oxidized. If it is too thick, it may cause a decrease in the signal writing ability.
[0027]
The seed layer 4 is used for controlling the orientation and crystallinity of the intermediate layer 5. When all the layers are continuously formed, it is not particularly necessary. However, once the nonmagnetic substrate 1 is removed from the film forming apparatus after forming the soft magnetic backing layer 2 or the second protective layer 3, the outermost surface is formed. Since oxygen or the like adheres, the crystal growth of the intermediate layer 5 may be deteriorated. Therefore, by using the seed layer 4, the deterioration of the intermediate layer 5 can be prevented. The material that can be used for the seed layer 4 is the same as the material that can be used for the second protective layer 3. When the second protective layer 3 and the seed layer 4 are used simultaneously, it is desirable to use the same material. It is desirable that the thickness of the seed layer 4 be the minimum necessary for controlling the crystal growth of the intermediate layer 5. If it is too thick, it may cause a decrease in signal writing capability, as in the case of the second protective layer 3.
[0028]
The intermediate layer 5 is used for suitably controlling the crystal orientation, crystal grain size, and grain boundary segregation of the magnetic recording layer 6. As the material, a single metal film or an alloy film having a face-centered cubic (fcc) structure or a hexagonal close-packed (hcp) structure is preferable, and examples thereof include Ti, Ru, Pd, Pt and alloy films containing them. It is not limited to. From the viewpoint of recording, it is necessary to set the thickness of the intermediate layer 5 to the minimum necessary for controlling the structure of the magnetic recording layer 6.
[0029]
As the magnetic recording layer 6, a CoCrPt-based alloy film, a granular film having a nonmagnetic oxide or nitride such as SiO 2 at the crystal grain boundary, a laminated film of Co / Pd or the like, a rare earth-transition metal alloy A crystalline film, a FePt ordered alloy film, or the like can be used.
[0030]
Further, as the first protective layer 7, a conventional protective film can be used. For example, a protective film mainly composed of carbon can be used. The conditions such as the film thickness of the first protective layer 7 can be the same as those used for ordinary magnetic recording media.
[0031]
Also, the liquid lubricant layer 8 can be made of a conventionally used material. For example, a perfluoropolyether-based lubricant can be used. The conditions such as the film thickness of the liquid lubricant layer 8 can be the same as those used for a normal magnetic recording medium.
[0032]
In the present invention, after the soft magnetic underlayer 2 is formed or the second protective layer 3 is formed, the non-magnetic substrate 1 is once taken out of the film forming apparatus. At this time, particles may be attached to the surface of the soft magnetic underlayer 2 or the second protective layer 3 by removing the particles from the apparatus. If subsequent film formation is performed with the particles attached, there is a possibility that the reliability of the completed perpendicular magnetic recording medium will be greatly affected. Therefore, cleaning the non-magnetic substrate is a very important step to remove particles and the like attached to the surface.
[0033]
As this cleaning method, the method which is usually performed before the film formation of the magnetic recording medium can be used as it is. However, in the usual cleaning process before film formation, a detergent or solvent such as an acid or an alkali may be used. However, in this process, since a thin film has already been partially formed, these detergents and solvent are used. Is not preferred. In this step, it is preferable to use pure water, an organic solvent, or the like. Furthermore, physically scrubbing the surface with a pad such as urethane is effective for removing surface deposits. However, also in this case, it is necessary to use only pure water without using a detergent or the like.
[0034]
Hereinafter, examples of the present invention will be described. However, the following examples are merely representative examples for suitably describing the present invention, and do not limit the present invention.
[0035]
[Example 1]
An Al alloy substrate with NiP having a textured surface is used as the nonmagnetic substrate 1. After washing, the substrate is introduced into a sputtering apparatus, and a base Ta layer is formed to a thickness of 5 nm using a Ta target, and a base NiFeCr layer is formed using a NiFeCr target. After forming a 5 nm thick IrMn antiferromagnetic layer as a domain wall control layer using an IrMn target, a 200 nm thick CoZrNb soft magnetic backing layer was continuously formed using a CoZrNb target, and once taken out of the film forming apparatus. The non-magnetic substrate taken out was subjected to intermediate cleaning in the same manner as cleaning before film formation.
[0036]
However, only pure water and an organic solvent were used in this cleaning. Thereafter, the intermediate-cleaned non-magnetic substrate is introduced into a film forming apparatus in which all the targets have been exchanged, a Ru intermediate layer is formed to a thickness of 20 nm using a Ru target, and CoCrPt-SiO 2 is formed using a CoCrPt—SiO 2 target. Two magnetic recording layers were formed to a thickness of 20 nm. Finally, after forming a first protective layer 7 made of carbon to a thickness of 5 nm, it was taken out of the vacuum apparatus. Thereafter, a liquid lubricant layer of 2 nm made of perfluoropolyether was formed by dipping to obtain a perpendicular magnetic recording medium.
[0037]
[Example 2]
In Example 1, a perpendicular magnetic layer was formed in the same manner as in Example 1 except that a Ti second protective layer 3 was continuously formed to a thickness of 5 nm after forming a soft magnetic underlayer and before taking out from the apparatus. A recording medium was manufactured.
[0038]
[Example 3]
In Example 1, the intermediate magnetically cleaned non-magnetic substrate was introduced into the film forming apparatus, and first, a Ti seed layer was formed using a Ti target. A recording medium was manufactured.
[0039]
[Example 4]
In Example 1, after forming the soft magnetic backing layer, before taking out from the apparatus, a Ti second protective layer 3 was continuously formed to a thickness of 5 nm, and after intermediate cleaning, the Ti second protective layer 3 was again introduced into the film forming apparatus. A perpendicular magnetic recording medium was manufactured in the same manner as in Example 1, except that a Ti seed layer was formed using a Ti target.
[0040]
[Comparative Example 1]
An Al alloy substrate with NiP having a textured surface is used as the non-magnetic substrate 1. After washing, the substrate is introduced into a sputtering apparatus, and CoZrNb is directly formed on the non-magnetic substrate 1 without forming a domain wall control layer. After forming a CoZrNb soft magnetic underlayer with a thickness of 200 nm using a target, continuously forming a Ru intermediate layer with a thickness of 20 nm using a Ru target without removing it from the film forming apparatus, and forming a CoCrPt-SiO using a CoCrPt—SiO 2 target. Two magnetic recording layers were formed to a thickness of 20 nm. Finally, after forming a first protective layer 7 made of carbon to a thickness of 5 nm, it was taken out of the vacuum apparatus. Thereafter, a liquid lubricant layer of 2 nm made of perfluoropolyether was formed by dipping to obtain a perpendicular magnetic recording medium.
[0041]
[Comparative Example 2]
In Example 1, perpendicular magnetic recording was performed in the same manner as in Example 1 except that the soft magnetic underlayer was removed from the film forming apparatus after being formed to a thickness of 200 nm, and then introduced into the film forming apparatus without cleaning. A medium was prepared.
[0042]
[Comparative Example 3]
In Example 1, a soft magnetic backing layer was formed to a thickness of 100 nm, once taken out of the film forming apparatus, subjected to intermediate cleaning, and introduced again into the film forming apparatus. First, a soft magnetic backing layer was formed to a thickness of 100 nm. A perpendicular magnetic recording medium was manufactured in the same manner as in Example 1 except that the Ru intermediate layer was formed.
[0043]
[Comparative Example 4]
In Example 1, after the antiferromagnetic film was formed, it was once taken out of the film forming apparatus, subjected to intermediate cleaning, and introduced again into the film forming apparatus. A perpendicular magnetic recording medium was manufactured in the same manner as in Example 1 except that the Ru intermediate layer was formed.
[0044]
[Comparative Example 5]
In Example 1, a soft magnetic backing layer was formed to a thickness of 200 nm, a Ru intermediate layer was formed continuously, and once removed from the film forming apparatus, intermediate cleaning was performed and the film was again introduced into the film forming apparatus. A perpendicular magnetic recording medium was manufactured in the same manner as in Example 1 except that the magnetic recording layer was formed.
[0045]
The magnetic properties were measured using a Kerr effect measuring device. The number of particles attached to the surface of the completed perpendicular magnetic recording medium was measured by an optical surface observation device. The electromagnetic conversion characteristics of the perpendicular magnetic recording medium were measured with a SPT / GMR head using a spin stand tester. The spike noise was measured based on the number of outputs having an output exceeding 150% with respect to the average value of outputs for one round in the erased state.
[0046]
In order to explain an embodiment of the present invention, the coercive force Hc, the number of particles, and the SNR at a linear recording density of 4000 kFCI (intensity ratio between electromagnetic conversion signal and noise) of the perpendicular magnetic recording media manufactured in the example and the comparative example. , And the number of spike noises are summarized in Table 1 below.
[0047]
[Table 1]
Figure 2004227740
[0048]
As for Hc, good values of around 5200 Oe were obtained in all cases except Comparative Example 5. However, when the intermediate layer and the magnetic recording layer are formed separately as shown in Comparative Example 5, the characteristics deteriorate because crystal growth of the magnetic recording layer deteriorates. Therefore, it is understood that the intermediate layer and the magnetic recording layer need to be continuously formed.
[0049]
When using any of the methods described in the examples, the number of particles was very small, less than three. However, when the intermediate cleaning is not performed as shown in Comparative Example 2, the number of particles is 53, which is a level that poses a practical problem. As shown in the methods of Examples 3 to 5, it can be seen that the number of particles can be reduced by introducing the intermediate cleaning even when the place where the film formation is temporarily interrupted is changed. As described above, when the film is once taken out of the apparatus during the film formation, it is understood that the intermediate cleaning is very useful for reducing particles.
[0050]
Also in the method shown in Example 1, the SNR was equivalent to that of the continuous film-formed product shown in Comparative Example 1. As shown in Example 2, the SNR is slightly improved by forming the second protective layer 3 after forming the soft magnetic backing layer. As shown in Embodiment 3, forming the seed layer before forming the intermediate layer also has the effect of increasing the SNR. Further, as shown in the fourth embodiment, by using both the second protective layer 3 and the seed layer, the SNR is improved by 0.5 dB as compared with the first embodiment. However, as shown in Comparative Example 5, when the place where the film formation is temporarily stopped is between the intermediate layer and the magnetic recording layer, the SNR is extremely deteriorated. This is because the magnetic characteristics have deteriorated as described above.
[0051]
Finally, let's look at spike noise. In Comparative Example 1 having no domain wall control layer, spike noise occurs frequently. On the other hand, in Examples 1 to 4, the spike noise is completely suppressed. In the third embodiment, the soft magnetic underlayer is taken out of the film forming apparatus during the film formation. In this case, the lower and upper soft magnetic underlayers are not magnetically coupled to each other. Cannot be suppressed. Further, in the fourth embodiment, since the antiferromagnetic film and the soft magnetic underlayer do not have antiferromagnetic coupling, the effect of suppressing spike noise is lost.
[0052]
From the above, when the non-magnetic substrate is taken out of the film forming apparatus after the film formation is temporarily stopped, it is important to take out the non-magnetic substrate between the soft magnetic underlayer and the intermediate layer. It is necessary to perform washing. Further, it can be understood that it is effective to form a seed layer first when the second protective layer 3 is introduced into the apparatus again before taking it out of the apparatus in order to obtain better characteristics.
[0053]
【The invention's effect】
As described above, according to the present invention, a perpendicular magnetic recording medium in which at least a soft magnetic backing layer, an intermediate layer, a magnetic recording layer, a first protective layer, and a liquid lubricant layer are sequentially laminated on a nonmagnetic substrate In the above, the non-magnetic substrate is once taken out of the film forming apparatus after forming the soft magnetic backing layer, the non-magnetic substrate is washed, and then introduced again into the film forming apparatus to form the film from the intermediate layer. Therefore, a perpendicular magnetic recording medium having high reliability and excellent electromagnetic conversion characteristics can be manufactured using the current film forming apparatus.
[0054]
Also, after forming the soft magnetic backing layer, before removing the soft magnetic backing layer from the film forming apparatus, the second protective layer is continuously formed to prevent the deterioration of the soft magnetic backing layer, or after being introduced into the film forming apparatus after intermediate cleaning. By forming the seed layer before forming the intermediate layer, and further combining them, it is possible to realize more excellent electromagnetic conversion characteristics. In the case where the perpendicular magnetic recording medium is manufactured using any of the above-described methods, the existing film forming apparatus can be used as it is, so that it is not necessary to make a new capital investment, and furthermore, the perpendicular magnetic recording medium Very suitable for mass production of.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view illustrating an embodiment of a perpendicular magnetic recording medium according to the present invention.
FIG. 2 is a schematic sectional view for explaining another embodiment of the perpendicular magnetic recording medium according to the present invention.
FIG. 3 is a schematic sectional view for explaining still another embodiment of a perpendicular magnetic recording medium according to the present invention.
FIG. 4 is a schematic sectional view for explaining still another embodiment of the perpendicular magnetic recording medium according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Non-magnetic base material 2 Soft magnetic backing layer 3 Second protective layer 4 Seed layer 5 Intermediate layer 6 Magnetic recording layer 7 First protective layer 8 Liquid lubricant layer

Claims (4)

非磁性基体上に、少なくとも軟磁性裏打ち層と中間層と磁気記録層と第一保護層及び液体潤滑剤層とが順次積層されてなる垂直磁気記録媒体において、前記軟磁性裏打ち層までを成膜後に一旦成膜装置から前記非磁性基板を取り出し、該非磁性基板の洗浄を行なった後に再び前記成膜装置内に導入して中間層からの成膜を行なうことを特徴とする垂直磁気記録媒体の製造方法。In a perpendicular magnetic recording medium in which at least a soft magnetic backing layer, an intermediate layer, a magnetic recording layer, a first protective layer, and a liquid lubricant layer are sequentially laminated on a non-magnetic substrate, a film up to the soft magnetic backing layer is formed. The perpendicular magnetic recording medium is characterized in that the non-magnetic substrate is once taken out of the film forming apparatus, the non-magnetic substrate is washed, and then introduced again into the film forming apparatus to form a film from the intermediate layer. Production method. 前記軟磁性裏打ち層を成膜後、前記成膜装置から取り出す前に、前記軟磁性裏打ち層の劣化を防ぐために連続して第二保護層を成膜することを特徴とする請求項1に記載の垂直磁気記録媒体の製造方法。2. The method according to claim 1, wherein after forming the soft magnetic backing layer, before removing the soft magnetic backing layer from the film forming apparatus, a second protective layer is continuously formed to prevent deterioration of the soft magnetic backing layer. 3. Method for manufacturing a perpendicular magnetic recording medium. 前記洗浄後に成膜装置に導入後、前記中間層を成膜する前にシード層を成膜することを特徴とする請求項1又は2に記載の垂直磁気記録媒体の製造方法。3. The method for manufacturing a perpendicular magnetic recording medium according to claim 1, wherein a seed layer is formed after introducing the film into the film forming apparatus after the cleaning and before forming the intermediate layer. 請求項1,2又は3に記載の製造方法により作製したことを特徴とする垂直磁気記録媒体。A perpendicular magnetic recording medium manufactured by the manufacturing method according to claim 1, 2 or 3.
JP2003017995A 2003-01-27 2003-01-27 Perpendicular magnetic recording medium and manufacturing method thereof Expired - Fee Related JP4348952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003017995A JP4348952B2 (en) 2003-01-27 2003-01-27 Perpendicular magnetic recording medium and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003017995A JP4348952B2 (en) 2003-01-27 2003-01-27 Perpendicular magnetic recording medium and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004227740A true JP2004227740A (en) 2004-08-12
JP4348952B2 JP4348952B2 (en) 2009-10-21

Family

ID=32904993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003017995A Expired - Fee Related JP4348952B2 (en) 2003-01-27 2003-01-27 Perpendicular magnetic recording medium and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4348952B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006209943A (en) * 2005-01-26 2006-08-10 Hitachi Global Storage Technologies Netherlands Bv Perpendicular magnetic recording medium with magnetic torque layer coupled to perpendicular recording layer
JP2007299453A (en) * 2006-04-28 2007-11-15 Fujitsu Ltd Magnetic recording medium, its manufacturing method, and magnetic recording device
JP2009158053A (en) * 2007-12-27 2009-07-16 Hitachi Global Storage Technologies Netherlands Bv Magnetic recording medium for tilt recording, and method for manufacturing the same
US7592080B2 (en) 2006-10-12 2009-09-22 Fuji Electric Device Technology Co., Ltd. Perpendicular magnetic recording medium
US9177589B2 (en) 2006-03-15 2015-11-03 Fuji Electric Co., Ltd. Magnetic recording medium and a method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006209943A (en) * 2005-01-26 2006-08-10 Hitachi Global Storage Technologies Netherlands Bv Perpendicular magnetic recording medium with magnetic torque layer coupled to perpendicular recording layer
US9177589B2 (en) 2006-03-15 2015-11-03 Fuji Electric Co., Ltd. Magnetic recording medium and a method of manufacturing the same
JP2007299453A (en) * 2006-04-28 2007-11-15 Fujitsu Ltd Magnetic recording medium, its manufacturing method, and magnetic recording device
US7592080B2 (en) 2006-10-12 2009-09-22 Fuji Electric Device Technology Co., Ltd. Perpendicular magnetic recording medium
JP2009158053A (en) * 2007-12-27 2009-07-16 Hitachi Global Storage Technologies Netherlands Bv Magnetic recording medium for tilt recording, and method for manufacturing the same

Also Published As

Publication number Publication date
JP4348952B2 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
JP4019703B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP4224804B2 (en) Method for manufacturing perpendicular magnetic recording medium
US20100209741A1 (en) Perpendicular magnetic recording medium, process for production thereof, and magnetic recording/reproduction apparatus
JP2009087501A (en) Perpendicular magnetic recording medium and magnetic recording and reproducing device
JP2012053969A (en) Perpendicular magnetic recording medium
JP2005251373A (en) Magnetic recording medium, manufacturing method of the same, and magnetic storage device
JP5105332B2 (en) Magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
JP3900999B2 (en) Perpendicular magnetic recording medium
JP2005190552A (en) Magnetic recording medium
JP2009064520A (en) Magnetic recording medium and magnetic recording/reproducing apparatus
JP2006277950A (en) Vertical magnetic recording medium
JP4348952B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP4214472B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
US8877360B2 (en) Magnetic recording medium with a plurality of pinning portions in the magnetic layer
JP2011192326A (en) Magnetic recording medium and magnetic recording and reproducing device
JP5345543B2 (en) Method for manufacturing perpendicular magnetic recording medium and magnetic recording / reproducing apparatus
JP5213470B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP4591806B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP4534402B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP2009009701A (en) Vertical magnetic recording medium
JP2007095229A (en) Perpendicular magnetic recording medium and manufacturing method of same
JP2004005915A (en) Magnetic recording medium and its manufacturing method
JP4353655B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP3952379B2 (en) Perpendicular magnetic recording medium
JP5073432B2 (en) Perpendicular magnetic recording medium and method for manufacturing perpendicular magnetic recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4348952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees