JP5126632B2 - Light emitting module - Google Patents

Light emitting module Download PDF

Info

Publication number
JP5126632B2
JP5126632B2 JP2010255672A JP2010255672A JP5126632B2 JP 5126632 B2 JP5126632 B2 JP 5126632B2 JP 2010255672 A JP2010255672 A JP 2010255672A JP 2010255672 A JP2010255672 A JP 2010255672A JP 5126632 B2 JP5126632 B2 JP 5126632B2
Authority
JP
Japan
Prior art keywords
light emitting
light
diffusion layer
heat
heat diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010255672A
Other languages
Japanese (ja)
Other versions
JP2011035431A (en
Inventor
友広 三瓶
清 大谷
昌裕 泉
淳哉 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp filed Critical Toshiba Lighting and Technology Corp
Priority to JP2010255672A priority Critical patent/JP5126632B2/en
Publication of JP2011035431A publication Critical patent/JP2011035431A/en
Application granted granted Critical
Publication of JP5126632B2 publication Critical patent/JP5126632B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate

Description

本発明は、通電により発光するチップ状のLED(発光ダイオード)を複数有して、これらを一斉に発光させて、例えば投光器や照明器具の光源等に使用される発光モジュールに関する。   The present invention relates to a light-emitting module that has a plurality of chip-like LEDs (light-emitting diodes) that emit light when energized and emits them all at once, and is used, for example, as a light source for a projector or a lighting fixture.

表面が樹脂板からなる金属ベース基板製の装置基板の一面に、四角い枠からなるリフレクタを設け、このリフレクタの内側に、直列回路をなすチップ列をこの列が延びる方向と直交する方向に複数並設するとともに、蛍光体が混ぜられたシリコーン樹脂等の透光性封止樹脂をリフレクタの内側に充填して、この封止樹脂で各チップ列を埋設したCOB(chip on board)型の照明装置が、従来技術として知られている(例えば、特許文献1参照。)。   A reflector made of a square frame is provided on one surface of a device substrate made of a metal base substrate whose surface is made of a resin plate, and a plurality of chip rows forming a series circuit are arranged inside the reflector in a direction perpendicular to the extending direction of the row. COB (chip on board) type lighting device in which a translucent sealing resin such as a silicone resin mixed with a phosphor is filled inside the reflector and each chip row is embedded with the sealing resin Is known as a prior art (see, for example, Patent Document 1).

この照明装置でチップ列の夫々は、一対の素子電極を有した複数のLEDチップを、列をなして配設するとともに、列が延びる方向に隣接されたLEDチップの素子電極にボンディングワイヤの両端をワイヤボンディングにより接合して、各LEDチップを直列接続して形成されている。したがって、この照明装置は、チップ列の周りに位置されて所定のパターンで形成される配線導体を装置基板上に設けることが不要であるので、構成が簡単である。又、前記照明装置の各LEDチップは青色の光を発するものであり、この青色の光で励起されて黄色の光を放射する蛍光体が封止樹脂に混ぜられている。このため、照明装置は、黄色の光と青色の光が混じることにより形成される白色の光で照明をすることができる。   In each of the chip rows in this lighting device, a plurality of LED chips each having a pair of element electrodes are arranged in a row, and both ends of bonding wires are connected to the element electrodes of the LED chips adjacent in the direction in which the row extends. Are joined by wire bonding, and each LED chip is connected in series. Therefore, this illuminating device has a simple structure because it is not necessary to provide on the device substrate a wiring conductor that is positioned around the chip row and formed in a predetermined pattern. Each LED chip of the illumination device emits blue light, and a phosphor that is excited by the blue light and emits yellow light is mixed with the sealing resin. For this reason, the illuminating device can illuminate with white light formed by mixing yellow light and blue light.

特開2008−277561号公報JP 2008-277561 A

特許文献1に記載の照明装置の点灯時にチップ列の各LEDチップは発熱する。この発熱の多くは装置基板を通ってこの基板の裏側に放出されるが、装置基板とLEDチップとの間の熱伝導面積は、LEDチップの大きさに限られている。このため、LEDチップから装置基板への熱の伝導性が良くない。更に、封止樹脂は、LEDチップにより加熱される他、励起される蛍光体の発熱によっても加熱されるので、封止樹脂の温度も上昇する。これらの理由により、特許文献1に記載の照明装置では、各LEDチップの温度が上がり易く、その発光効率を維持する上で改善の余地がある。   When the lighting device described in Patent Document 1 is turned on, each LED chip in the chip row generates heat. Most of this heat is released through the device substrate to the back side of the substrate, but the heat conduction area between the device substrate and the LED chip is limited to the size of the LED chip. For this reason, the heat conductivity from the LED chip to the device substrate is not good. Further, since the sealing resin is heated by the LED chip and also by the heat generated by the excited phosphor, the temperature of the sealing resin also rises. For these reasons, in the illumination device described in Patent Document 1, the temperature of each LED chip is likely to rise, and there is room for improvement in maintaining the light emission efficiency.

そこで、本出願人は、各チップ列の実装領域に対応した大きさの熱拡散層を装置基板の表面に設けて、この熱拡散層上に、チップ列を実装する工夫を採用して、このチップ列が有した各LEDチップから装置基板への熱の伝導性を向上した発光モジュールを開発した。   Therefore, the present applicant has provided a heat diffusion layer of a size corresponding to the mounting area of each chip row on the surface of the device substrate, and adopted a device for mounting the chip row on this heat diffusion layer. We have developed a light-emitting module with improved thermal conductivity from each LED chip in the chip array to the device substrate.

この発光モジュールにおいて、熱拡散層は金属製であるので、光の利用方向への取出し効率を向上する上で、熱拡散層の少なくとも表面はこの表面で光を反射できる銀や金若しくはニッケルで形成することが好ましい。しかし、こうした熱拡散層の採用に伴い本発明者は以下の課題があることが見出した。   In this light emitting module, since the heat diffusion layer is made of metal, at least the surface of the heat diffusion layer is made of silver, gold, or nickel that can reflect light on the surface in order to improve the light extraction efficiency in the light utilization direction. It is preferable to do. However, the present inventors have found that there are the following problems with the adoption of such a thermal diffusion layer.

即ち、本発明者が各種の試作をした結果、表面が銀や金若しくはニッケルで形成された熱拡散層と、封止樹脂として用いることが可能な透明シリコーン樹脂又はウレタン樹脂或いはアクリル樹脂との接着性は強くないことが分かった。一方、発光モジュールの発光開始と発光停止に伴い、発光モジュールが伸び縮みするヒートサイクルは知られている。   That is, as a result of various trial manufactures by the present inventor, adhesion between a heat diffusion layer whose surface is formed of silver, gold, or nickel and a transparent silicone resin, urethane resin, or acrylic resin that can be used as a sealing resin It turns out that the sex is not strong. On the other hand, a heat cycle in which the light emitting module expands and contracts with the start and stop of light emission of the light emitting module is known.

そのため、発光モジュールをなした各部材の熱膨張率の差を原因とする各部材の寸法変化により、封止樹脂とこれが接している部材との界面にストレスが作用することは避けられない。そして、既述のように封止樹脂とこれに被着されている熱拡散層との接着の信頼性は低いので、前記ストレスによって封止樹脂が剥離する恐れが考えられる。このような事態に至ることは適当ではなく、発光モジュールの耐久性を担保する上では改善の余地がある。   Therefore, it is inevitable that stress acts on the interface between the sealing resin and the member in contact with the member due to the dimensional change of each member caused by the difference in thermal expansion coefficient between the members constituting the light emitting module. And since the reliability of adhesion | attachment with sealing resin and the thermal diffusion layer adhering to this is low as mentioned above, there exists a possibility that sealing resin may peel by the said stress. It is not appropriate to reach such a situation, and there is room for improvement in ensuring the durability of the light emitting module.

以上のように従来技術では、基板上に実装されたLEDからの放熱性を改善する余地があるとともに、その改善において封止樹脂が剥離する恐れがあるという課題がある。   As described above, in the conventional technology, there is a room for improving the heat dissipation from the LED mounted on the substrate, and there is a problem that the sealing resin may be peeled off in the improvement.

前記課題を解決するために、請求項1の発明は、モジュール基板と;前記モジュール基板の表面に設けられて、前記モジュール基板の表面に凹凸を形成するとともに光を反射する複数の配線導体と;前記複数の配線導体間であって、これら配線導体に隣接して前記モジュール基板の表面の一部に設けられて、前記配線導体とともに前記モジュール基板の表面に凹凸を形成し、かつ、隣接した前記配線導体との間に前記凹凸の凹部を形成する金属からなり光を反射する熱拡散層と;前記配線導体を通じて給電されるとともに前記熱拡散層の全長より短い発光グループを形成し、この発光グループから前記熱拡散層が食み出すように前記熱拡散層上に各素子電極がワイヤによって直接接続されて並べて実装された複数のLEDと;前記熱拡散層、配線導体、及びLEDを埋めるとともに前記凹部を満たしかつ一部が前記熱拡散層の前記発光グループから食み出した部位及び前記熱拡散層上に並べて実装された複数のLED間の部位に接着して前記モュール基板に被着された蛍光体入りの透光性封止樹脂と;を具備したことを特徴とする。 In order to solve the above-mentioned problem, the invention of claim 1 is a module substrate; and a plurality of wiring conductors provided on a surface of the module substrate to form irregularities on the surface of the module substrate and reflect light; Between the plurality of wiring conductors , adjacent to these wiring conductors, provided on a part of the surface of the module substrate , and forming unevenness on the surface of the module substrate together with the wiring conductor , and adjacent to the wiring conductor A heat diffusion layer made of a metal that forms the concave and convex portions between the wiring conductors and reflecting light; and a light emitting group that is fed through the wiring conductor and shorter than the total length of the heat diffusion layer is formed. a plurality of LED and each device electrode on the thermal diffusion layer as the heat diffusion layer protrudes is mounted side by side are connected directly by wire from; the thermal diffusion layer, Line conductors, and the filled recesses and partially adhered to the region between the plurality of LED mounted side by side to the heat diffusion layer of the portion protruding from the light-emitting group and the thermal diffusion layer with fill LED characterized by comprising a; and translucent sealing resin of the motor joules substrate deposited been phosphor-containing Te.

請求項1の発明で、チップ状のLED(発光ダイオード)とは、ベアチップからなるLEDを指している。請求項1の発明で、モジュール基板は、合成樹脂又はガラス或いはセラミックスの絶縁層を用いることができ、この場合、絶縁層は一枚であっても複数積層しあってもよく、又、絶縁層の裏面に放熱促進用の金属板を積層してなるモジュール基板を用いることができる。請求項1の発明で、モジュール基板の表面とは発光モジュールが発光した光が取出される側を指している。   In the invention of claim 1, the chip-like LED (light emitting diode) refers to an LED made of a bare chip. In the first aspect of the invention, the module substrate can use an insulating layer of synthetic resin or glass or ceramics. In this case, the insulating layer may be a single insulating layer or a plurality of insulating layers. A module substrate formed by laminating a metal plate for promoting heat dissipation on the back surface of the substrate can be used. In the first aspect of the invention, the surface of the module substrate refers to the side from which the light emitted from the light emitting module is extracted.

請求項1の発明で熱拡散層は、複数のLEDを実装できる大きさであり、この熱拡散層をなす金属層は単層又は異種金属を二層以上積層して形成されていても良く、その表面での良好な光の反射性能を得るために少なくとも前記表面を、銀又は金或いはニッケルで形成することが好ましい。請求項1の発明で、配線導体はLEDに電気的に接続されこのLEDへの通電を担うために設けられていて、この配線導体を熱拡散層と同種の金属製とすることは、配線導体と熱拡散層を同時に製造できる点で好ましい。更に、配線導体を熱拡散層に沿うように熱拡散層の周りに設けることは、この配線導体とLEDとの電気的接続の距離を短くし、それにより、モジュール基板の大形化を抑制できる点で好ましい。   In the invention of claim 1, the heat diffusion layer is sized to mount a plurality of LEDs, and the metal layer forming the heat diffusion layer may be formed by laminating two or more single layers or different metals, In order to obtain good light reflection performance on the surface, at least the surface is preferably formed of silver, gold, or nickel. In the invention of claim 1, the wiring conductor is provided to be electrically connected to the LED and to carry electricity to the LED, and the wiring conductor is made of the same kind of metal as the heat diffusion layer. And the thermal diffusion layer can be produced simultaneously. Furthermore, providing the wiring conductor around the heat diffusion layer along the heat diffusion layer shortens the distance of electrical connection between the wiring conductor and the LED, thereby suppressing the increase in size of the module substrate. This is preferable.

請求項1の発明で、封止樹脂には、透明シリコーン樹脂、透明ウレタン樹脂、透明アクリル樹脂等の透光性樹脂を用いることができる。発光モジュールから白色の光を出射させるために、LEDが青色の光を放射する場合、放射された青色の光で励起されて黄色の光を放射する黄色蛍光体を封止樹脂に混ぜるとよい。同様に、発光モジュールから白色の光を出射させるために、LEDが紫外線を放射する場合、放射された紫外線で励起されて赤色の光を放射する赤色蛍光体、同紫外線で励起されて緑色の光を放射する緑色蛍光体、同紫外線で励起されて青色の光を放射する青色蛍光体を封止樹脂に混ぜると良い。更に、赤色、緑色、青色の光を放射する三種のLEDを一組として、この組が熱拡散層上に複数実装される場合、蛍光体を混ぜていない封止樹脂を用いればよい。   In the first aspect of the invention, the sealing resin may be a translucent resin such as a transparent silicone resin, a transparent urethane resin, or a transparent acrylic resin. In order to emit white light from the light emitting module, when the LED emits blue light, a yellow phosphor that emits yellow light when excited by the emitted blue light may be mixed with the sealing resin. Similarly, in order to emit white light from the light emitting module, when the LED emits ultraviolet light, a red phosphor that is excited by the emitted ultraviolet light and emits red light, and is excited by the ultraviolet light and emitted green light. A green phosphor that emits blue light and a blue phosphor that emits blue light when excited by the same ultraviolet light may be mixed in the sealing resin. Furthermore, when three types of LEDs emitting red, green, and blue light are used as a set and a plurality of sets are mounted on the heat diffusion layer, a sealing resin that does not mix phosphors may be used.

この請求項1に係る発明の発光モジュールは、モジュール基板上に複数の熱拡散層を設けて、それらの上に夫々複数のLEDを実装し、これらLEDがモジュール基板上に設けた配線導体を通じて給電される構成を有している。これにより、発光中に各LEDが発した熱の多くが、個々のLEDよりも遥かに大面積の熱拡散層全体に熱伝導して拡散された上で、この熱拡散層全体からモジュール基板に熱伝導により伝えられるので、LEDからの放熱性が向上され、LEDの温度過昇を抑制できる。また、更に、各LEDが発した熱の一部が封止樹脂に伝えられるとともに、封止樹脂内で励起される蛍光体は発熱するが、この封止樹脂の熱の一部を、前記熱拡散層上に並べて実装された複数のLED間の部位で受け速やかにモジュール基板に伝導させることができるため、封止樹脂に熱が篭ることが抑制されてLEDの温度上昇を更に抑制できる。   In the light emitting module according to the first aspect of the present invention, a plurality of heat diffusion layers are provided on a module substrate, and a plurality of LEDs are mounted on each of them, and these LEDs are fed through wiring conductors provided on the module substrate. It has the composition which is done. As a result, most of the heat generated by each LED during light emission is diffused by thermal conduction to the entire heat diffusion layer having a much larger area than that of the individual LED, and from the entire heat diffusion layer to the module substrate. Since it is transmitted by heat conduction, the heat dissipation from the LED is improved, and the temperature rise of the LED can be suppressed. Furthermore, a part of the heat generated by each LED is transmitted to the sealing resin, and the phosphor excited in the sealing resin generates heat. Since it can be received and quickly conducted to the module substrate at a portion between the plurality of LEDs mounted side by side on the diffusion layer, it is possible to suppress heat from being applied to the sealing resin and to further suppress the temperature rise of the LEDs.

更に、請求項1に係る発明の発光モジュールでは、モジュール基板上に被着された封止樹脂の内で、熱拡散層及び配線導体を埋めた部分が、これら熱拡散層及び配線導体により形成された凹凸に見合った形状をなして熱拡散層及び配線導体に接着されている。そのため、熱拡散層及び配線導体に対する封止樹脂の接着部分を、封止樹脂に対するアンカーとして機能させることができる。したがって、熱拡散層を用いたことに伴いこの層と封止樹脂との接着性が良くないにも拘らず、モジュール基板に対する封止樹脂の接着性を前記アンカー機能により補って、LEDの発光とその停止に伴うヒートサイクルに起因して封止樹脂がモジュール基板から剥離することを抑制できる。   Furthermore, in the light emitting module of the invention according to claim 1, a portion of the sealing resin deposited on the module substrate in which the heat diffusion layer and the wiring conductor are buried is formed by the heat diffusion layer and the wiring conductor. It is bonded to the heat diffusion layer and the wiring conductor in a shape corresponding to the unevenness. Therefore, the adhesion portion of the sealing resin to the heat diffusion layer and the wiring conductor can function as an anchor for the sealing resin. Therefore, in spite of the poor adhesion between this layer and the sealing resin due to the use of the thermal diffusion layer, the adhesion of the sealing resin to the module substrate is supplemented by the anchor function, and the light emission of the LED It can suppress that sealing resin peels from a module board | substrate resulting from the heat cycle accompanying the stop.

請求項1の発明によれば、基板上に実装されたLEDからの放熱性を改善できるとともに、LEDの発光とその停止に伴うヒートサイクルに起因してモジュール基板に対し封止樹脂が剥離することを抑制でき、発光モジュールの耐久性を向上できる。   According to the first aspect of the present invention, the heat radiation from the LED mounted on the substrate can be improved, and the sealing resin is peeled off from the module substrate due to the light emission of the LED and the heat cycle accompanying its stop. And the durability of the light emitting module can be improved.

本発明の一実施の形態に係る発光モジュールをその一部を省略して示す正面図である。It is a front view which abbreviate | omits and shows the light emitting module which concerns on one embodiment of this invention. 図1中矢印F2−F2線に沿って示す断面図である。It is sectional drawing shown along the arrow F2-F2 line | wire in FIG. 図1中F3部の拡大正面図である。It is an enlarged front view of the F3 part in FIG.

以下、図1〜図3を参照して本発明の一実施の形態について、詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to FIGS.

図1中符号1はCOB(chip on
board)型の発光モジュールを示している。発光モジュール1は、例えばスポットライトの投影レンズ群の焦点に配置されて、このライトの光源として使用される。
In FIG. 1, reference numeral 1 denotes COB (chip on
board) type light emitting module. The light emitting module 1 is disposed at the focal point of a projection lens group of a spotlight, for example, and used as a light source of this light.

発光モジュール1は、モジュール基板2と、複数の熱拡散層6〜10と、複数の配線導体11〜20と、発光グループ21〜30と、端部ボンディングワイヤ41と、保護層42と、枠体44と、封止樹脂48とを具備している。   The light emitting module 1 includes a module substrate 2, a plurality of heat diffusion layers 6 to 10, a plurality of wiring conductors 11 to 20, light emitting groups 21 to 30, an end bonding wire 41, a protective layer 42, a frame body 44 and a sealing resin 48.

モジュール基板2は、所定形状例えば図1に示すように四角形であるとともに、図2に示すように絶縁層3の裏面に金属板4を積層して形成されている。絶縁層3は合成樹脂製である。金属板4はアルミニウム又はその合金からなる。なお、図1中符号2aはモジュール基板2の四隅に開口された取付け孔を示している。   The module substrate 2 has a predetermined shape, for example, a quadrangle as shown in FIG. 1, and is formed by laminating a metal plate 4 on the back surface of the insulating layer 3 as shown in FIG. The insulating layer 3 is made of synthetic resin. The metal plate 4 is made of aluminum or an alloy thereof. In FIG. 1, reference numeral 2 a indicates attachment holes opened at the four corners of the module substrate 2.

図1に示すように例えば5個の熱拡散層6〜10は、モジュール基板2の互いに平行な二辺を結ぶ方向に延びる長方形状をなしていて、同じ大きさであるとともに、モジュール基板2の互いに平行な他の二辺を結ぶ方向に間隔を置いて並べられている。これら熱拡散層6〜10は、図2に示すようにモジュール基板2の表面に積層されている。   As shown in FIG. 1, for example, the five heat diffusion layers 6 to 10 have a rectangular shape extending in a direction connecting two parallel sides of the module substrate 2, have the same size, and They are arranged at intervals in the direction connecting the other two parallel sides. These thermal diffusion layers 6 to 10 are laminated on the surface of the module substrate 2 as shown in FIG.

各熱拡散層6〜10は、例えば絶縁層3上に積層された銅と、この銅層上にめっき等により積層されたニッケルと、このニッケル上にめっき等により積層された表層で形成されている。表層は、絶縁層3よりも光の反射率が高い金属からなり、その光反射率は60%以上である。こうした条件を好適に満たす表層として例えば本実施形態で採用した銀の層を挙げることができる。これら熱拡散層6〜10の厚みは、可能な限り厚い方が好ましく、例えば35μmである。   Each of the thermal diffusion layers 6 to 10 is formed of, for example, copper laminated on the insulating layer 3, nickel laminated on the copper layer by plating or the like, and a surface layer laminated on the nickel by plating or the like. Yes. The surface layer is made of a metal having a higher light reflectivity than the insulating layer 3, and the light reflectivity is 60% or more. As a surface layer that preferably satisfies these conditions, for example, a silver layer employed in this embodiment can be exemplified. The thickness of these heat diffusion layers 6 to 10 is preferably as thick as possible, for example, 35 μm.

なお、熱拡散層6〜10は二層でも一層でも差し支えず、例えば銀又は金或いはニッケルの単層でもよいとともに、銅層の上に銀又は金或いはニッケルの表層を積層してなる二層であっても良いが、その少なくとも表層は銀製であることが好ましい。   The heat diffusion layers 6 to 10 may be two layers or one layer, for example, a single layer of silver, gold, or nickel, and two layers formed by laminating a surface layer of silver, gold, or nickel on a copper layer. However, at least the surface layer is preferably made of silver.

夫々が一対の配線導体11〜20は、モジュール基板2の表面に積層され、これらも、銅とニッケルと銀の三層構造をなしているが、熱拡散層6〜10と同様に二層でも一層でも差し支えない。配線導体11〜20と熱拡散層6〜10は、エッチングやめっき処理等により同時に形成されたものである。したがって、配線導体11〜20の厚みも例えば35μmであり、それらの表層は例えば銀製で60%以上の光反射率を有している。このような表層を有した各配線導体11〜20は、その表層に入射した光を効果的に光の利用方向に反射できるので、発光モジュール1での光の取出し性能を向上する上で好ましい。   Each of the pair of wiring conductors 11 to 20 is laminated on the surface of the module substrate 2, and these also have a three-layer structure of copper, nickel and silver. Even one layer can be used. The wiring conductors 11 to 20 and the thermal diffusion layers 6 to 10 are formed simultaneously by etching, plating treatment, or the like. Therefore, the thickness of the wiring conductors 11 to 20 is also 35 μm, for example, and their surface layer is made of, for example, silver and has a light reflectance of 60% or more. Each of the wiring conductors 11 to 20 having such a surface layer can effectively reflect the light incident on the surface layer in the light utilization direction, which is preferable in improving the light extraction performance of the light emitting module 1.

配線導体11〜20は、熱拡散層6〜10に沿うようにこれら熱拡散層6〜10とは非接触にその周りに設けられている。   The wiring conductors 11 to 20 are provided around the heat diffusion layers 6 to 10 in a non-contact manner along the heat diffusion layers 6 to 10.

即ち、図1に示すようにアノード側及びカソード側を担う一対の配線導体11は、熱拡散層6に対して必要な絶縁距離を隔ててこの熱拡散層6の両側に沿うように延びて設けられている。これら配線導体11の一端部は端子部11a又は11bをなしている、同様に、一対の配線導体12は熱拡散層7に対して設けられていて端子部12a又は12bを有し、一対の配線導体13は熱拡散層8に対して設けられていて端子部13a又は13bを有し、一対の配線導体14は熱拡散層9に対して設けられていて端子部14a又は14bを有し、一対の配線導体15は熱拡散層10に対して設けられていて端子部15a又は15bを有している。各端子部11a〜15a,11b〜15bは、夫々熱拡散層6〜10の長手方向一端(図1ではモジュール基板2の下端)から離れて熱拡散層6〜10の並び方向と同方向に並べられている。   That is, as shown in FIG. 1, the pair of wiring conductors 11 serving as the anode side and the cathode side are provided so as to extend along both sides of the heat diffusion layer 6 with a necessary insulation distance from the heat diffusion layer 6. It has been. One end portions of these wiring conductors 11 form terminal portions 11a or 11b. Similarly, a pair of wiring conductors 12 are provided for the thermal diffusion layer 7 and have terminal portions 12a or 12b. The conductor 13 is provided for the thermal diffusion layer 8 and has a terminal portion 13a or 13b. The pair of wiring conductors 14 is provided for the thermal diffusion layer 9 and has a terminal portion 14a or 14b. The wiring conductor 15 is provided for the thermal diffusion layer 10 and has a terminal portion 15a or 15b. The terminal portions 11a to 15a and 11b to 15b are arranged in the same direction as the arrangement direction of the heat diffusion layers 6 to 10 apart from one end in the longitudinal direction of the heat diffusion layers 6 to 10 (the lower end of the module substrate 2 in FIG. 1). It has been.

同様に、アノード側及びカソード側を担う一対の配線導体16は、熱拡散層6に対して必要な絶縁距離を隔ててこの熱拡散層6の両側に沿うように延びて設けられている。これら配線導体16の一端部は端子部16a又は16bをなしている、同様に、一対の配線導体17は熱拡散層7に対して設けられていて端子部17a又は17bを有し、一対の配線導体18は熱拡散層8に対して設けられていて端子部18a又は18bを有し、一対の配線導体19は熱拡散層9に対して設けられていて端子部19a又は19bを有し、一対の配線導体20は熱拡散層10に対して設けられていて端子部20a又は20bを有している。各端子部16a〜20a,16b〜20bは、夫々熱拡散層6〜10の長手方向他端(図1ではモジュール基板2の上端)から離れて熱拡散層6〜10の並び方向と同方向に並べられている。   Similarly, the pair of wiring conductors 16 serving as the anode side and the cathode side are provided so as to extend along both sides of the thermal diffusion layer 6 with a necessary insulating distance from the thermal diffusion layer 6. One end portions of these wiring conductors 16 form terminal portions 16a or 16b. Similarly, a pair of wiring conductors 17 are provided for the thermal diffusion layer 7 and have terminal portions 17a or 17b. The conductor 18 is provided for the thermal diffusion layer 8 and has terminal portions 18a or 18b. The pair of wiring conductors 19 is provided for the thermal diffusion layer 9 and has terminal portions 19a or 19b. The wiring conductor 20 is provided for the thermal diffusion layer 10 and has a terminal portion 20a or 20b. Each of the terminal portions 16a to 20a and 16b to 20b is away from the other longitudinal end of the thermal diffusion layers 6 to 10 (the upper end of the module substrate 2 in FIG. 1) and is in the same direction as the arrangement direction of the thermal diffusion layers 6 to 10. Are lined up.

モジュール基板2の図1中一点鎖線で示す中心線Aを境に、配線導体11,16は線対称であり、同様に、配線導体12,17、配線導体13,18、配線導体14,19、及び配線導体15,20の夫々も中心線Aを境に線対称である。   The wiring conductors 11 and 16 are axisymmetrical with respect to the center line A indicated by the one-dot chain line in FIG. 1 of the module substrate 2. Similarly, the wiring conductors 12 and 17, the wiring conductors 13 and 18, the wiring conductors 14 and 19, Each of the wiring conductors 15 and 20 is line symmetric with respect to the center line A.

こうして各配線導体11〜20が設けられたことにより、恰も連続して一直線に延びるように位置された一組の配線導体11,16が図1において左端の熱拡散層6の左側に配設され、恰も連続して一直線に延びるように位置された一組の配線導体15,20が図1において右端の熱拡散層10の右側に配設されている。これとともに、熱拡散層6,10間の熱拡散層7〜9の左右両側の夫々に、恰も連続して一直線に延びるようなに位置された二組の配線導体が夫々配設されている。つまり、他の一組の配線導体11,16と一組の配線導体12,17が熱拡散層6,7間に配設され、他の一組の配線導体12,17と一組の配線導体13,18が熱拡散層7,8間に配設されている。同様に、他の一組の配線導体13,18と一組の配線導体14,19が熱拡散層8,9間に配設され、他の一組の配線導体14,19と他の一組の配線導体15,20が熱拡散層9,10間に配設されている。   By providing the wiring conductors 11 to 20 in this way, a pair of wiring conductors 11 and 16 positioned so as to continuously extend in a straight line are disposed on the left side of the heat diffusion layer 6 at the left end in FIG. A pair of wiring conductors 15 and 20 positioned so as to continuously extend in a straight line are disposed on the right side of the thermal diffusion layer 10 at the right end in FIG. At the same time, two sets of wiring conductors are arranged on each of the left and right sides of the thermal diffusion layers 7 to 9 between the thermal diffusion layers 6 and 10 so as to continuously extend in a straight line. That is, the other set of wiring conductors 11 and 16 and the set of wiring conductors 12 and 17 are disposed between the heat diffusion layers 6 and 7, and the other set of wiring conductors 12 and 17 and the set of wiring conductors are arranged. 13 and 18 are disposed between the thermal diffusion layers 7 and 8. Similarly, another set of wiring conductors 13 and 18 and a set of wiring conductors 14 and 19 are disposed between the heat diffusion layers 8 and 9, and the other set of wiring conductors 14 and 19 and the other set of wiring conductors are disposed. Wiring conductors 15 and 20 are disposed between the thermal diffusion layers 9 and 10.

以上のように互いに隣接された各熱拡散層6〜10及び各配線導体11〜20により、図2に示すようにモジュール基板2の表面に凹凸が形成されている。即ち、各熱拡散層6〜10及び各配線導体11〜20が凸部を担い、隣接した熱拡散層と配線導体間の隙間、及び隣接した配線導体間の隙間が凹部Cを担って、凹凸が形成されている。   As described above, the heat diffusion layers 6 to 10 and the wiring conductors 11 to 20 adjacent to each other form irregularities on the surface of the module substrate 2 as shown in FIG. That is, each of the heat diffusion layers 6 to 10 and each of the wiring conductors 11 to 20 bears a convex portion, and the gap between the adjacent heat diffusion layer and the wiring conductor, and the gap between the adjacent wiring conductors bears the concave portion C, and is uneven. Is formed.

発光グループ21〜30は全長が異なる三種に分けられている。即ち、図1に示すように全長が最長の発光グループ23,28と、全長が最短の発光グループ21,25,26,30と、全長が中間長さの発光グループ22,24,27,29とに分けられている。なお、各発光グループ21〜30の全長とは、後述するLED列の並び方向(図1では上下方向)の長さを指している。   The light emitting groups 21 to 30 are divided into three types having different overall lengths. That is, as shown in FIG. 1, the light emitting groups 23 and 28 having the longest overall length, the light emitting groups 21, 25, 26, and 30 having the shortest overall length, and the light emitting groups 22, 24, 27, and 29 having the intermediate total length. It is divided into. In addition, the full length of each light emission group 21-30 points out the length of the row direction (up-down direction in FIG. 1) of the LED row mentioned later.

最長の全長を有した発光グループ23,28は、熱拡散層6〜10の内でそれらの並び方向中央部に位置された熱拡散層8上に実装されていて、中心線Aを境に線対称である。最短の全長を有した発光グループ21,26は、熱拡散層6〜10の内でそれらの並び方向一端に位置された熱拡散層6上に実装されていて、中心線Aを境に線対称であり、同様に最短の全長を有した発光グループ25,30は、熱拡散層6〜10の内でそれらの並び方向他端に位置された熱拡散層10上に実装されていて、中心線Aを境に線対称である。中間長さの全長を有した発光グループ22,27は、熱拡散層6,8間の熱拡散層7上に実装されていて、中心線Aを境に線対称であり、同様に中間長さの全長を有した発光グループ24,29は、熱拡散層8,10間の熱拡散層9上に実装されていて、中心線Aを境に線対称である。   The light emitting groups 23 and 28 having the longest total length are mounted on the thermal diffusion layer 8 located in the center in the arrangement direction of the thermal diffusion layers 6 to 10, and are lined with the center line A as a boundary. Symmetric. The light emitting groups 21 and 26 having the shortest overall length are mounted on the thermal diffusion layer 6 located at one end in the arrangement direction of the thermal diffusion layers 6 to 10 and are symmetrical with respect to the center line A. Similarly, the light emitting groups 25 and 30 having the shortest overall length are mounted on the thermal diffusion layer 10 located at the other end in the arrangement direction of the thermal diffusion layers 6 to 10, and the center line It is line symmetric with respect to A. The light emitting groups 22 and 27 having an intermediate length are mounted on the thermal diffusion layer 7 between the thermal diffusion layers 6 and 8, and are symmetrical with respect to the center line A. Similarly, the intermediate length The light emitting groups 24 and 29 having the total length are mounted on the thermal diffusion layer 9 between the thermal diffusion layers 8 and 10 and are symmetrical with respect to the center line A.

したがって、図1に示すように三種の発光グループの内で最長の全長を有した発光グループ23,28の両側に配置された発光モジュールの全長は、発光グループ23,28から遠く配置された発光モジュールほど短い。   Therefore, as shown in FIG. 1, the total length of the light emitting modules disposed on both sides of the light emitting groups 23 and 28 having the longest total length among the three types of light emitting groups is the light emitting module disposed far from the light emitting groups 23 and 28. Short enough.

以上のように三種に分けられたグループ毎に応じて全長が異なっている他は、各発光グループ21〜30の構成は同じである。そのため、ここでは、図2に示した発光グループ26で代表して説明する。   As described above, the configuration of each of the light emitting groups 21 to 30 is the same except that the total length is different according to each of the three groups. Therefore, here, the light emission group 26 shown in FIG. 2 will be described as a representative.

発光グループ26は複数のLED列31を備えている。各LED列31は、発光素子であるチップ状の複数のLED(発光ダイオード)32及びボンディングワイヤ37からなる。   The light emitting group 26 includes a plurality of LED rows 31. Each LED row 31 includes a plurality of chip-like LEDs (light emitting diodes) 32 which are light emitting elements and bonding wires 37.

図2に示すように各LED32は、サファイアガラス等の絶縁性を有した透光性のLED基板32aに発光層32bが設けられたベアチップからなり、通電されることにより発光層32bは青色系の光を発光する。図3に示すようにLED32は平面視長方形状であり、その発光層32b上に一対の素子電極を有している。一方の素子電極はアノード用であり、他方の素子電極はカソード用である。   As shown in FIG. 2, each LED 32 is composed of a bare chip in which a light emitting layer 32b is provided on a translucent LED substrate 32a having an insulating property such as sapphire glass. Emits light. As shown in FIG. 3, the LED 32 has a rectangular shape in plan view, and has a pair of element electrodes on the light emitting layer 32b. One element electrode is for the anode and the other element electrode is for the cathode.

これらLED32は、モジュール基板2に積層された熱拡散層6〜10上に、これら熱拡散層6〜10の長手方向及び配線導体11〜20が延びる方向と直交する方向、つまり、図1において左右方向に好ましくは真っ直ぐな列をなして並べられ固定されている。これらの固定は、LED基板32aの発光層32bが設けられた面とは反対側の面を、透光性のダイボンド材35で接着することでなされている。ダイボンド材35には透光性のシリコーン樹脂等が用いられている。   These LEDs 32 are formed on the heat diffusion layers 6 to 10 stacked on the module substrate 2 in a direction orthogonal to the longitudinal direction of the heat diffusion layers 6 to 10 and the direction in which the wiring conductors 11 to 20 extend, that is, left and right in FIG. The direction is preferably arranged and fixed in a straight line. These are fixed by adhering the surface of the LED substrate 32 a opposite to the surface on which the light emitting layer 32 b is provided with a light-transmitting die bond material 35. For the die bond material 35, a translucent silicone resin or the like is used.

ボンディングワイヤ37は金属細線好ましくは金の細線からなる。このボンディングワイヤ37は、その両端を、図3で代表して示すようにLED列31が延びる方向に隣接したLED32同士のアノード用とカソード用の素子電極にワイヤボンディングにより接続して設けられている。それにより、列をなした複数のLED32が電気的に直列接続されている。   The bonding wire 37 is made of a fine metal wire, preferably a gold fine wire. As shown in FIG. 3, the bonding wire 37 is connected to the anode and cathode element electrodes of the LEDs 32 adjacent to each other in the extending direction of the LED row 31 by wire bonding. . Thereby, the some LED32 which made the row | line | column is electrically connected in series.

図3で代表して示すように各発光グループが備えた複数のLED列31の夫々に含まれるLED32の個数は同じである。そして、図1に示すように各LED列31は、それが延びる方向と直交する方向に並べられていて、モジュール基板2上に四角い領域を占めて既述のように配設されている。そのため、各発光グループ21〜30において、それらが有したLED32はマトリックス状をなして縦横に整列して配設されている。   As representatively shown in FIG. 3, the number of LEDs 32 included in each of the plurality of LED rows 31 included in each light emitting group is the same. As shown in FIG. 1, the LED rows 31 are arranged in a direction perpendicular to the extending direction, and occupy a square area on the module substrate 2 and are arranged as described above. For this reason, in each of the light emitting groups 21 to 30, the LEDs 32 that they have are arranged in a matrix and aligned vertically and horizontally.

端部ボンディングワイヤ41は金属細線例えば金の細線からなる。この端部ボンディングワイヤ41は、発光グループ21〜30の夫々において、それらが有した各LED列31の両端に位置されているLED32と、発光グループの両側に位置された一対の配線導体とを接続している。   The end bonding wire 41 is made of a fine metal wire, for example, a gold fine wire. The end bonding wires 41 connect the LEDs 32 positioned at both ends of the LED rows 31 of the light emitting groups 21 to 30 to a pair of wiring conductors positioned on both sides of the light emitting group. doing.

即ち、図2で代表して示すように発光グループ26の両側に位置された一対の配線導体16と、発光グループ26が有した各LED列31の両端のLED32とが、端部ボンディングワイヤ41により接続されている。したがって、発光グループ26が有した各LED列31は電気的に並列接続されている。この接続関係は、他の発光グループとその両側に配置された一対の配線導体についても同様である。   That is, as representatively shown in FIG. 2, the pair of wiring conductors 16 positioned on both sides of the light emitting group 26 and the LEDs 32 at both ends of each LED row 31 included in the light emitting group 26 are connected by the end bonding wires 41. It is connected. Therefore, the LED rows 31 included in the light emitting group 26 are electrically connected in parallel. This connection relationship is the same for other light emitting groups and a pair of wiring conductors arranged on both sides thereof.

保護層42は、絶縁性のレジストからなり、四角枠状をなしていて、モジュール基板2の周部に積層されている。保護層42は、モジュール基板2と同じ大きさであって、各熱拡散層6〜10を囲んでいる。この保護層42は、取付け孔2a及び各端子部11a〜20a,11b〜20bを露出させる逃げ孔42aを有している。   The protective layer 42 is made of an insulating resist, has a rectangular frame shape, and is laminated on the peripheral portion of the module substrate 2. The protective layer 42 has the same size as the module substrate 2 and surrounds the heat diffusion layers 6 to 10. The protective layer 42 has a mounting hole 2a and an escape hole 42a that exposes the terminal portions 11a to 20a and 11b to 20b.

枠体44は合成樹脂等の絶縁材からなり、モジュール基板2に積層された保護層42上に固定されている。そのため、図1に示すように枠体44の内側に、熱拡散層6〜10、配線導体11〜20の熱拡散層6〜10に沿う部位、発光グループ21〜30、及び端部ボンディングワイヤ41が配設されている。   The frame 44 is made of an insulating material such as synthetic resin, and is fixed on the protective layer 42 laminated on the module substrate 2. Therefore, as shown in FIG. 1, inside the frame body 44, the thermal diffusion layers 6 to 10, the portions along the thermal diffusion layers 6 to 10 of the wiring conductors 11 to 20, the light emitting groups 21 to 30, and the end bonding wires 41. Is arranged.

封止樹脂48(図1及び図2参照)は枠体44内に充填されモジュール基板2上に被着されていて、枠体44の内側に配置された部材を埋めてこれらの部材を封止している。封止樹脂48は透光性を有する合成樹脂からなり、例えば透明シリコーン樹脂製である。枠体44内に未硬化の状態で注入され、その後に加熱硬化された封止樹脂48の裏面の一部は、図2に例示したように熱拡散層6〜10及び配線導体11〜20により形成された凹凸に見合った形状をなして、これら各熱拡散層6〜10及び各配線導体11〜20に接着されているとともに、これら部材間に形成された凹部Cに満たされて熱拡散層6〜10にも接着されている。なお、図2中符号48aは凹部Cに対する熱拡散層6〜10の入り込み部を示している。更に、各熱拡散層6〜10及び各配線導体11〜20から外れた領域において封止樹脂48は、保護層42及びモジュール基板2の絶縁層3にも接着されている。   The sealing resin 48 (see FIGS. 1 and 2) is filled in the frame body 44 and attached onto the module substrate 2, and the members arranged inside the frame body 44 are filled to seal these members. doing. The sealing resin 48 is made of a synthetic resin having translucency, and is made of, for example, a transparent silicone resin. A part of the back surface of the sealing resin 48 which is injected into the frame body 44 in an uncured state and then cured by heating is formed by the heat diffusion layers 6 to 10 and the wiring conductors 11 to 20 as illustrated in FIG. A shape commensurate with the formed irregularities is adhered to each of the thermal diffusion layers 6 to 10 and the wiring conductors 11 to 20, and the thermal diffusion layer is filled with the recess C formed between these members. It is also adhered to 6-10. In addition, the code | symbol 48a in FIG. 2 has shown the penetration part of the thermal-diffusion layer 6-10 with respect to the recessed part C. FIG. Further, the sealing resin 48 is also bonded to the protective layer 42 and the insulating layer 3 of the module substrate 2 in the regions separated from the heat diffusion layers 6 to 10 and the wiring conductors 11 to 20.

この封止樹脂48には図示しないが蛍光体が分散して混ぜられている。蛍光体には、例えば各LED32が発する青色系の光によって励起されて黄色系の光を放射する黄色蛍光体が用いられているが、演色性向上のために赤色系蛍光体や緑色系蛍光体が添加されていてもよい。   Although not shown, the phosphor is dispersed and mixed in the sealing resin 48. For example, a yellow phosphor that is excited by blue light emitted from each LED 32 and emits yellow light is used as the phosphor, but a red phosphor or a green phosphor is used to improve color rendering. May be added.

前記COB型の発光モジュール1は、以上説明したように四角い領域を占めて配設される三種類の発光グループ21〜30をそれらのLED列31の並び方向の長さ(全長)が最長の発光グループ23,28を基準に、その両側に前記並び方向の長さ(全長)が短い発光グループ22,27、及び28,29が長さ順に配置されている。そのため、こうした三種類の発光グループ21〜30の組み合わせ形状を擬似的に略丸くできる。それに伴い、この発光モジュール1を光源としたスポットライトから被照射部に投影される配光パターンを擬似的に略丸くできる。   As described above, the COB type light emitting module 1 has three types of light emitting groups 21 to 30 arranged so as to occupy a square area and emits light having the longest length (full length) in the direction in which the LED rows 31 are arranged. On the basis of the groups 23 and 28, the light emitting groups 22, 27 and 28, 29 having a short length (full length) in the arrangement direction are arranged on the both sides in order of length. Therefore, the combined shape of these three types of light emitting groups 21 to 30 can be made substantially round. Accordingly, the light distribution pattern projected on the irradiated portion from the spotlight using the light emitting module 1 as a light source can be substantially rounded.

更に、前記COB型の発光モジュール1では、各発光グループ21〜30が夫々有した複数のLED列31は、折り返えされておらず、図3に例示したように真っ直ぐに延びているので、個々のLED列31をなす複数のLED32を直列接続するボンディングワイヤ37の向きが変わらない。加えて、LED列31の両端に配置されたLED32が、各発光グループ21〜30が配設されたモジュール基板2上の配線導体11〜20に端部ボンディングワイヤ41により接続されていて、これらボンディングワイヤ37及び端部ボンディングワイヤ41は、LED列31が延びた方向に沿うように配線される。したがって、ボンディングワイヤ37及び端部ボンディングワイヤ41の引き回しを単純化でき、製造上有利である。   Further, in the COB type light emitting module 1, the plurality of LED rows 31 included in each of the light emitting groups 21 to 30 are not folded back and extend straight as illustrated in FIG. The direction of the bonding wire 37 that connects the plurality of LEDs 32 forming the individual LED rows 31 in series does not change. In addition, the LEDs 32 arranged at both ends of the LED row 31 are connected to the wiring conductors 11 to 20 on the module substrate 2 on which the light emitting groups 21 to 30 are arranged by the end bonding wires 41, and these bondings are performed. The wires 37 and the end bonding wires 41 are wired along the direction in which the LED rows 31 extend. Therefore, the routing of the bonding wire 37 and the end bonding wire 41 can be simplified, which is advantageous in manufacturing.

前記構成の発光モジュール1は、その各発光グループ21〜30の夫々に、それらの端子部11a〜20a,11b〜20bを通じて給電されることにより、これら発光グループ21〜30が有した各LED32を一斉に発光させることができる。この発光により放射された青色系の光と、この光の一部で励起された封止樹脂48内の蛍光体が発した黄色系の光とが混じって、白色系の光が形成されて、それが発光モジュール1から光の利用方向に出射される。   The light emitting module 1 having the above-described configuration is configured such that the LEDs 32 included in the light emitting groups 21 to 30 are simultaneously transmitted by supplying power to the light emitting groups 21 to 30 through the terminal portions 11a to 20a and 11b to 20b. Can emit light. The blue light emitted by this light emission and the yellow light emitted from the phosphor in the sealing resin 48 excited by a part of this light are mixed to form white light, It is emitted from the light emitting module 1 in the light utilization direction.

この場合、LED32の発光層32bからその裏側に放射された光は、ダイボンド材35を通ることなく熱拡散層6〜10のいずれかに入射され、或いはダイボンド材35を通って熱拡散層6〜10のいずれかに入射される。いずれにしても、こうして熱拡散層6〜10に入射された青色系の光は、熱拡散層6〜10のいずれかで光の利用方向に反射されるので、この点で光の取出し効率が良い。   In this case, the light emitted from the light emitting layer 32 b of the LED 32 to the back side thereof is incident on one of the thermal diffusion layers 6 to 10 without passing through the die bonding material 35, or passes through the die bonding material 35 and enters the thermal diffusion layers 6 to 6. 10 is incident. In any case, the blue light incident on the heat diffusion layers 6 to 10 is reflected in the light utilization direction by any one of the heat diffusion layers 6 to 10, so that the light extraction efficiency is improved in this respect. good.

しかも、熱拡散層6〜10の全長は、発光グループ21〜30の各全長よりも長く、図1に示すように熱拡散層6〜10は発光グループ21〜30から食み出した部位を有している。そして、この部位は蛍光体入りの封止樹脂48で覆われている。そのため、前記部位上の封止樹脂48に入射された光により励起された蛍光体の放射光の一部を、前記部位で光の利用方向に反射できるので、この点で更に光の取出し効率を向上できる。   In addition, the total length of the heat diffusion layers 6 to 10 is longer than the total length of each of the light emitting groups 21 to 30, and the heat diffusion layers 6 to 10 have portions protruding from the light emitting groups 21 to 30 as shown in FIG. doing. This part is covered with a sealing resin 48 containing a phosphor. Therefore, a part of the radiated light of the phosphor excited by the light incident on the sealing resin 48 on the part can be reflected in the light utilization direction at the part, so that the light extraction efficiency is further improved in this respect. Can be improved.

各LED32はその発光に伴い発熱する。この熱の多くは、モジュール基板2に伝導されて、その金属板4から外部の図示しないヒートシンク等の放熱部材に放出される。この場合、モジュール基板2上の金属製の熱拡散層6〜10の夫々がヒートスプレッダとして機能して、これら熱拡散層6〜10の全体にわたり熱を拡散した上で、こうした広い面積からモジュール基板2に伝えられるので、LED32の熱を速やかにモジュール基板2に伝導させてLED32の温度上昇を抑制できる。   Each LED 32 generates heat as it emits light. Most of this heat is conducted to the module substrate 2 and released from the metal plate 4 to an external heat radiating member such as a heat sink (not shown). In this case, each of the metal heat diffusion layers 6 to 10 on the module substrate 2 functions as a heat spreader and diffuses heat over the entire heat diffusion layers 6 to 10. Therefore, it is possible to quickly conduct the heat of the LED 32 to the module substrate 2 and suppress the temperature rise of the LED 32.

更に、各LED32が発した熱の一部は、封止樹脂48に伝えられる。これとともに、発光グループ21〜30から食み出した熱拡散層6〜10の部位を覆った封止樹脂48内で励起される蛍光体は発熱する。封止樹脂48の一部は前記食み出した部位に接着されているので、封止樹脂48の熱の一部を、熱拡散層6〜10の前記食み出した部位で受けて、速やかにモジュール基板2に伝導させることができる。そのため、封止樹脂48に熱が篭ることが抑制され、それに伴いLED32の温度上昇を更に抑制できる。   Further, part of the heat generated by each LED 32 is transmitted to the sealing resin 48. At the same time, the phosphor excited in the sealing resin 48 that covers the portions of the thermal diffusion layers 6 to 10 protruding from the light emitting groups 21 to 30 generates heat. Since a part of the sealing resin 48 is bonded to the protruding part, a part of the heat of the sealing resin 48 is received at the protruding part of the thermal diffusion layers 6 to 10 to quickly Can be conducted to the module substrate 2. Therefore, it is possible to suppress the heat from flowing into the sealing resin 48, and accordingly, it is possible to further suppress the temperature increase of the LED 32.

しかも、封止樹脂48は、熱拡散層6〜10及び配線導体11〜20によりモジュール基板2の表面に形成された凹凸の凹部Cへの入り込み部48aを有しているので、配線導体11〜20に対する封止樹脂48の接触面積は、配線導体11〜20の表層より大きい。これにより、封止樹脂48の熱が配線導体11〜20に伝わり易く、封止樹脂48外に配置されている各配線導体11〜20の端子部11a〜20a,11b〜20bの夫々に、封止樹脂48の熱を逃がすことができる。したがって、この点でも封止樹脂48に熱が篭ることが抑制され、それに伴いLED32の温度上昇を更に抑制できる。   In addition, since the sealing resin 48 has the intrusion 48a into the concave and convex recess C formed on the surface of the module substrate 2 by the heat diffusion layers 6 to 10 and the wiring conductors 11 to 20, the wiring conductors 11 to 20 is larger than the surface layer of the wiring conductors 11 to 20. Thereby, the heat of the sealing resin 48 is easily transmitted to the wiring conductors 11 to 20, and the terminal portions 11 a to 20 a and 11 b to 20 b of the wiring conductors 11 to 20 arranged outside the sealing resin 48 are sealed. The heat of the stop resin 48 can be released. Therefore, also in this respect, it is possible to suppress the heat from flowing into the sealing resin 48, and accordingly, the temperature increase of the LED 32 can be further suppressed.

又、既述のようにモジュール基板2上に被着された封止樹脂48の内で、熱拡散層6〜10及び配線導体11〜20を埋めた部分は、これら熱拡散層6〜10及び配線導体11〜20により形成された凹凸に見合った形状をなして熱拡散層6〜10及び配線導体11〜20に接着されている。そのため、熱拡散層6〜10及び配線導体11〜20に対する封止樹脂48の接着部分を、封止樹脂48に対するアンカーとして機能させることができる。   Further, as described above, in the sealing resin 48 deposited on the module substrate 2, the portions where the thermal diffusion layers 6 to 10 and the wiring conductors 11 to 20 are buried are the thermal diffusion layers 6 to 10 and The heat diffusion layers 6 to 10 and the wiring conductors 11 to 20 are bonded to each other in a shape corresponding to the unevenness formed by the wiring conductors 11 to 20. Therefore, the adhesion part of the sealing resin 48 to the heat diffusion layers 6 to 10 and the wiring conductors 11 to 20 can function as an anchor for the sealing resin 48.

したがって、放熱性及び光の取出し効率を向上させるために用いた熱拡散層6〜10と、これを埋めた封止樹脂48との接着性が良くないにも拘らず、モジュール基板2に対する封止樹脂48の接着性を前記アンカー機能により補うことができる。これにより、各LED32の発光とその停止に伴う発光モジュール1のヒートサイクルに起因して封止樹脂48がモジュール基板2から剥離することを抑制できる。   Therefore, the thermal diffusion layers 6 to 10 used for improving the heat radiation performance and the light extraction efficiency and the sealing with respect to the module substrate 2 are not good even though the adhesion between the sealing resin 48 filling the thermal diffusion layers 6 to 10 is not good. The adhesiveness of the resin 48 can be supplemented by the anchor function. Thereby, it can suppress that sealing resin 48 peels from the module board | substrate 2 resulting from the light cycle of each LED32, and the heat cycle of the light emitting module 1 accompanying the stop.

しかも、熱拡散層6〜10及び配線導体11〜20が延びる方向に対して交差する方向に、前記ヒ−トサイクルに伴い封止樹脂48が膨縮しようとする場合、既述のアンカー機能を担う前記凹凸の凹部C及びこれを満たした封止樹脂48の入り込み部48aとの係合部が、前記膨縮に対する抵抗となる。これにより、前記交差方向に位置された枠体44の枠部に対する封止樹脂48の膨縮の影響が軽減され、それに伴い前記枠部とモジュール基板2との間に作用するストレスが軽減される。よって、この点でも封止樹脂48がモジュール基板2から剥離することを抑制できる。   In addition, when the sealing resin 48 is to expand and contract with the heat cycle in the direction intersecting with the direction in which the heat diffusion layers 6 to 10 and the wiring conductors 11 to 20 extend, the anchor function described above is performed. The concave / convex concave portion C to be carried and the engaging portion with the enclosing portion 48a of the sealing resin 48 filling the concave / convex portion provide resistance to the expansion / contraction. As a result, the influence of expansion / contraction of the sealing resin 48 on the frame portion of the frame body 44 positioned in the intersecting direction is reduced, and the stress acting between the frame portion and the module substrate 2 is reduced accordingly. . Therefore, it is possible to suppress the sealing resin 48 from peeling from the module substrate 2 in this respect.

加えて、発光グループ21〜30の組み合わせ形状が擬似的に略丸いにも拘らず、枠体44が四角いので、各発光グループ21〜30が既述のように配置された領域から外れた領域、言い換えれば、LED32が配置されていない枠体44の四隅部等の部位にも、枠体44内に充填された封止樹脂48が設けられている。そして、この部位において封止樹脂48の熱が既述のようにモジュール基板2に与えられる。こうして、枠体44の内側全域からモジュール基板2への放熱が行われるに伴い、このモジュール基板2の温度分布の均一化を図り易い。これにより、モジュール基板2の熱分布が異なることに伴うモジュール基板2の熱応力を発生し難くできる。したがって、前記熱応力の発生を原因として封止樹脂48がモジュール基板2から剥離することを抑制できる。   In addition, despite the fact that the combined shape of the light emitting groups 21 to 30 is pseudo-round, the frame 44 is square, so that the areas where the light emitting groups 21 to 30 deviate from the regions arranged as described above, In other words, the sealing resin 48 filled in the frame body 44 is also provided at portions such as the four corners of the frame body 44 where the LEDs 32 are not disposed. And the heat | fever of the sealing resin 48 is given to the module board | substrate 2 as stated above in this part. Thus, as heat is radiated from the entire inner side of the frame body 44 to the module substrate 2, it is easy to make the temperature distribution of the module substrate 2 uniform. Thereby, it is possible to make it difficult to generate the thermal stress of the module substrate 2 due to the different heat distribution of the module substrate 2. Therefore, the sealing resin 48 can be prevented from peeling from the module substrate 2 due to the generation of the thermal stress.

又、前記構成の発光モジュール1において、各発光グループ21〜30の幅は同じであり、そのLED列31が有したLED32の数は同じである。そのため、各LED列31に印加される電流値、したがって、夫々のLED列31が有した複数のLED32に対する順方向印加電圧を同じにできるので、各LED32の発光強度のばらつきを抑制できる。   Moreover, in the light emitting module 1 of the said structure, the width | variety of each light emission group 21-30 is the same, and the number of LED32 which the LED row 31 has is the same. For this reason, the current value applied to each LED row 31 and, therefore, the forward applied voltage to the plurality of LEDs 32 included in each LED row 31 can be made the same, so that variations in the emission intensity of each LED 32 can be suppressed.

なお、本発明は、前記一実施形態には制約されない。例えばモジュール基板2の少なくとも表面部をなす絶縁材に、白色を呈する材料を用いることもできる。このようにした場合、前記表面部での光の反射性能が向上され、それに伴い光の利用方向への光の取出し効率を向上させることできる。それだけではなく、熱拡散層6〜10及び配線導体11〜20の表層が銀製である場合に、これら熱拡散層6〜10及び配線導体11〜20を、透光性の封止樹脂48を通して透視し難くできる点で好ましい。又、前記一実施形態では、枠体44を用いたが、この枠体44は省略してもよい。   The present invention is not limited to the one embodiment. For example, a white material can be used for the insulating material forming at least the surface portion of the module substrate 2. In this case, the light reflection performance at the surface portion is improved, and accordingly, the light extraction efficiency in the light utilization direction can be improved. In addition, when the surface layers of the thermal diffusion layers 6 to 10 and the wiring conductors 11 to 20 are made of silver, the thermal diffusion layers 6 to 10 and the wiring conductors 11 to 20 are seen through the translucent sealing resin 48. It is preferable in that it can be made difficult. In the embodiment, the frame body 44 is used. However, the frame body 44 may be omitted.

1…発光モジュール、2…モジュール基板、6〜10…熱拡散層、11〜20…配線導体、32…LED、37…ボンディングワイヤ、41…端部ボンディングワイヤ、44…枠体、48…封止樹脂、48a…入り込み部、C…凹部   DESCRIPTION OF SYMBOLS 1 ... Light emitting module, 2 ... Module board | substrate, 6-10 ... Thermal diffusion layer, 11-20 ... Wiring conductor, 32 ... LED, 37 ... Bonding wire, 41 ... End part bonding wire, 44 ... Frame, 48 ... Sealing Resin, 48a ... entering portion, C ... recessed portion

Claims (1)

モジュール基板と;
前記モジュール基板の表面に設けられて、前記モジュール基板の表面に凹凸を形成するとともに光を反射する複数の配線導体と;
前記複数の配線導体間であって、これら配線導体に隣接して前記モジュール基板の表面の一部に設けられて、前記配線導体とともに前記モジュール基板の表面に凹凸を形成し、かつ、隣接した前記配線導体との間に前記凹凸の凹部を形成する金属からなり光を反射する熱拡散層と;
前記配線導体を通じて給電されるとともに前記熱拡散層の全長より短い発光グループを形成し、この発光グループから前記熱拡散層が食み出すように前記熱拡散層上に各素子電極がワイヤによって直接接続されて並べて実装された複数のLEDと;
前記熱拡散層、配線導体、及びLEDを埋めるとともに前記凹部を満たしかつ一部が前記熱拡散層の前記発光グループから食み出した部位及び前記熱拡散層上に並べて実装された複数のLED間の部位に接着して前記モュール基板に被着された蛍光体入りの透光性封止樹脂と;
を具備したことを特徴とする発光モジュール。
A module substrate;
A plurality of wiring conductors provided on the surface of the module substrate to form irregularities on the surface of the module substrate and reflect light;
Between the plurality of wiring conductors , adjacent to these wiring conductors, provided on a part of the surface of the module substrate , and forming unevenness on the surface of the module substrate together with the wiring conductor , and adjacent to the wiring conductor A heat diffusion layer made of a metal that forms the concave and convex portions between the wiring conductor and reflecting light;
A light emitting group that is fed through the wiring conductor and shorter than the entire length of the heat diffusion layer is formed, and each element electrode is directly connected to the heat diffusion layer by a wire so that the heat diffusion layer protrudes from the light emission group. A plurality of LEDs mounted side by side;
Between the plurality of LEDs that fill the heat diffusion layer, the wiring conductor, and the LED, fill the recess, and part of the heat diffusion layer protrudes from the light emitting group and are mounted side by side on the heat diffusion layer and adhered to the site of translucent sealing resin of the motor joules substrate deposited been phosphor;
A light emitting module comprising:
JP2010255672A 2010-11-16 2010-11-16 Light emitting module Expired - Fee Related JP5126632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010255672A JP5126632B2 (en) 2010-11-16 2010-11-16 Light emitting module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010255672A JP5126632B2 (en) 2010-11-16 2010-11-16 Light emitting module

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009046739A Division JP4640514B2 (en) 2009-02-27 2009-02-27 Light emitting module

Publications (2)

Publication Number Publication Date
JP2011035431A JP2011035431A (en) 2011-02-17
JP5126632B2 true JP5126632B2 (en) 2013-01-23

Family

ID=43764112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010255672A Expired - Fee Related JP5126632B2 (en) 2010-11-16 2010-11-16 Light emitting module

Country Status (1)

Country Link
JP (1) JP5126632B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007061033A1 (en) * 2005-11-28 2009-05-07 シャープ株式会社 LIGHTING DEVICE AND ITS MANUFACTURING METHOD
JP4894354B2 (en) * 2006-05-31 2012-03-14 豊田合成株式会社 Light emitting device
JP4678391B2 (en) * 2006-08-29 2011-04-27 東芝ライテック株式会社 Lighting equipment
JP2008117538A (en) * 2006-10-31 2008-05-22 Toshiba Lighting & Technology Corp Luminaire
TW200845423A (en) * 2006-12-04 2008-11-16 Alps Electric Co Ltd Light emitting device and projector
JP2008147512A (en) * 2006-12-12 2008-06-26 Sanyo Electric Co Ltd Light-emitting device and manufacturing method thereof
JP2008277561A (en) * 2007-04-27 2008-11-13 Toshiba Lighting & Technology Corp Luminaire

Also Published As

Publication number Publication date
JP2011035431A (en) 2011-02-17

Similar Documents

Publication Publication Date Title
JP4640514B2 (en) Light emitting module
JP5522462B2 (en) Light emitting device and lighting device
JP4808550B2 (en) Light emitting diode light source device, lighting device, display device, and traffic signal device
TW201424064A (en) Light emitting device and illuminating device
JP2008244165A (en) Lighting system
JP2011192703A (en) Light emitting device, and illumination apparatus
JP2012004391A (en) Light-emitting device and luminaire
JP2008166081A (en) Lighting device, and lighting apparatus having lighting device
JP5515822B2 (en) Light emitting device and lighting device
JP5447686B2 (en) Light emitting module and lighting apparatus
JP5333771B2 (en) Light emitting device and lighting device
WO2012057163A1 (en) Light emitting device and illumination device
JP2010251796A (en) Light emitting module
JP5067631B2 (en) Lighting device
JP2009231397A (en) Lighting system
JP4890576B2 (en) Light emitting module
JP2010080796A (en) Lighting device
JP5769129B2 (en) Light emitting device and lighting device
JP5656051B2 (en) Light emitting device and lighting device
JP2009212126A (en) Lighting system
JP5212178B2 (en) Light emitting module
JP6537410B2 (en) Method of manufacturing light emitting device
JP5126632B2 (en) Light emitting module
JP2011096876A (en) Light emitting device, and lighting apparatus
JP2011166036A (en) Light emitting device and lighting apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121017

R151 Written notification of patent or utility model registration

Ref document number: 5126632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees