JP5126108B2 - Nitride semiconductor substrate - Google Patents

Nitride semiconductor substrate Download PDF

Info

Publication number
JP5126108B2
JP5126108B2 JP2009038844A JP2009038844A JP5126108B2 JP 5126108 B2 JP5126108 B2 JP 5126108B2 JP 2009038844 A JP2009038844 A JP 2009038844A JP 2009038844 A JP2009038844 A JP 2009038844A JP 5126108 B2 JP5126108 B2 JP 5126108B2
Authority
JP
Japan
Prior art keywords
nitride semiconductor
semiconductor substrate
substrate
processing
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009038844A
Other languages
Japanese (ja)
Other versions
JP2010195598A (en
Inventor
健 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2009038844A priority Critical patent/JP5126108B2/en
Publication of JP2010195598A publication Critical patent/JP2010195598A/en
Application granted granted Critical
Publication of JP5126108B2 publication Critical patent/JP5126108B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Description

本発明は窒化物半導体基板に関する。   The present invention relates to a nitride semiconductor substrate.

近年、高寿命青色レーザーや高輝度青色LED、高特性電子デバイス向けに使用される窒化ガリウム単結晶基板として、HVPE(Hydride Vapor Phase Epitaxy)法等により成長された低転位の自立型窒化ガリウム単結晶基板が製造されている。本窒化ガリウム単結晶基板は、一般的に、両面ミラーで加工され、加工歪がない状態に加工すると透明な基板となる。したがって、半導体素子が形成される表面と、そうではない裏面とを判別する必要がある。従来、基板の表裏を判別するには種々の方法が採用されている。   In recent years, a low-dislocation free-standing gallium nitride single crystal grown by the HVPE (Hydride Vapor Phase Epitaxy) method or the like as a gallium nitride single crystal substrate used for a long-life blue laser, a high-intensity blue LED, or a high-performance electronic device The substrate is manufactured. The gallium nitride single crystal substrate is generally processed with a double-sided mirror, and becomes a transparent substrate when processed to have no processing strain. Therefore, it is necessary to distinguish between the front surface on which the semiconductor element is formed and the back surface that is not. Conventionally, various methods have been adopted for discriminating the front and back of a substrate.

例えば、インデックスフラット(IF)を形成する方法がある。基板の表裏は、一般的に、結晶方位を示すオリエンテーションフラット(OF)だけでは判別できない。また、透明で見えにくい窒化ガリウム基板にあっては、基板の表面側と裏面側とを単に面取りするだけでは、面取り形状が傾斜角であったり円弧断面であったりしても、輪郭がくっきりと見えるようにはなるが、基板の表裏を判別することはできない。そこで、OFと異なる長さに加工したIFを基板外周部に形成している(例えば、特許文献1参照)。   For example, there is a method of forming an index flat (IF). Generally, the front and back of the substrate cannot be distinguished only by the orientation flat (OF) indicating the crystal orientation. In addition, for a gallium nitride substrate that is transparent and difficult to see, simply chamfering the front side and the back side of the substrate makes the contour clear even if the chamfered shape has an inclined angle or an arc cross section. Although it can be seen, the front and back of the substrate cannot be distinguished. Therefore, an IF processed to a length different from that of the OF is formed on the outer periphery of the substrate (for example, see Patent Document 1).

また、基板の端面を片面だけ面取り加工する方法がある。基板の表裏面のうち表面側だけを面取りし、裏面側を面取りせずにそのまま残して表裏非対称に加工している(例えば、特許文献2参照)。   Further, there is a method of chamfering only one side of the end surface of the substrate. Of the front and back surfaces of the substrate, only the front surface side is chamfered, and the back surface side is left as it is without chamfering, so that the front and back surfaces are processed asymmetrically (for example, see Patent Document 2).

さらに、ノッチ部を面取りする方法がある。結晶方位を示すオリエンテーションフラット(OF)の代わりにノッチを形成する。ノッチだと表裏の判別がしづらいため、さらにノッチ部の表裏の面取り量を異ならせている(例えば、特許文献3参照)。   Furthermore, there is a method of chamfering the notch portion. A notch is formed instead of the orientation flat (OF) indicating the crystal orientation. Since it is difficult to discriminate between the front and the back with a notch, the amount of chamfering between the front and back of the notch is further varied (see, for example, Patent Document 3).

なお、基板の表裏を判別するものではないが、ウェハの裏面を研削して薄化する際に、ウェハにかかるストレスを低減し、クラックやワレ不良を抑制する方法として、裏面側の面取り量を表面側よりも多くなるように面取り加工する方法(例えば、特許文献4参照)がある。   Although it does not discriminate between the front and back of the substrate, when grinding and thinning the backside of the wafer, the chamfering amount on the backside is reduced as a method of reducing stress on the wafer and suppressing cracks and cracks. There is a method (for example, refer to Patent Document 4) in which chamfering is performed so as to be larger than the surface side.

特開2002−356398号公報( [0008]〜 [0009]、図6)JP 2002-356398 A ([0008] to [0009], FIG. 6) 特開昭58−71616号公報(第2頁、第12図、第13図)JP-A-58-71616 (2nd page, FIG. 12, FIG. 13) 特開2000−331898号公報( [0010]、図1)JP 2000-331898 ([0010], FIG. 1) 特開2005−251961号公報( [0011]、図1、図2)Japanese Patent Laying-Open No. 2005-251961 ([0011], FIG. 1 and FIG. 2)

しかし、特許文献1のようにIFをつけると、目視にて表裏の判別が可能となるものの、窒化ガリウム単結晶基板をはじめとする窒化物半導体基板が非常に高価な材料であり、基板面積が小さくなるため、取得できるチップ数が減少し、コスト高の要因となっていた。
また、特許文献2では、不透明な基板の場合には有効であるが、窒化物半導体基板のよ
うな透明な基板の場合、片面だけの面取り加工であると、表裏面の判別が必ずしも有効ではなかった。また、特許文献3のようにノッチ部に面取りを形成する方法では、SiやGaAsと異なり、窒化ガリウムのような硬い窒化物半導体基板の場合には、ノッチ自体の形成が困難であるため、その適用が困難であった。
However, when an IF is attached as in Patent Document 1, it is possible to visually discriminate the front and back, but nitride semiconductor substrates such as gallium nitride single crystal substrates are very expensive materials, and the substrate area is small. Since the size of the chip becomes smaller, the number of chips that can be acquired is reduced, which is a cause of high cost.
Further, in Patent Document 2, it is effective in the case of an opaque substrate, but in the case of a transparent substrate such as a nitride semiconductor substrate, it is not always effective to discriminate between the front and back surfaces when chamfering is performed on only one side. It was. Further, in the method of forming a chamfer at the notch portion as in Patent Document 3, unlike the case of Si or GaAs, it is difficult to form the notch itself in the case of a hard nitride semiconductor substrate such as gallium nitride. It was difficult to apply.

なお、特許文献4の技術を窒化物半導体基板に適用して、裏面側の面取量が多くなるように加工することも考えられるが、面取り加工時の加工歪みを取るために行われるドライエッチングでは、ガスが裏面まで回りこみにくく面取加工時に生じた加工歪が残り、残留応力により後工程でワレが生じやすくなるというおそれがあった。   Although it is conceivable to apply the technique of Patent Document 4 to a nitride semiconductor substrate so as to increase the amount of chamfering on the back surface side, dry etching is performed to remove processing distortion during chamfering processing. In this case, it is difficult for the gas to flow to the back surface, and the processing strain generated during the chamfering process remains, and there is a risk that cracking is likely to occur in the subsequent process due to the residual stress.

したがって、透明基板では、従来、表裏面を目視にて判別するには、IF加工がもっとも有効とされていた。   Therefore, in the past, IF processing has been most effective for visually distinguishing the front and back surfaces of a transparent substrate.

本発明の目的は、IF加工を省略しても目視にて表裏の判別が可能で、しかも端面部の加工歪を除去することが可能な窒化物半導体基板を提供することにある。   An object of the present invention is to provide a nitride semiconductor substrate that can be visually discriminated even if IF processing is omitted, and that can remove processing strain at an end face.

本発明の主要な観点によれば、半導体素子が形成される面を表面とし、該表面の反対側を裏面とし、前記表面及び前記裏面に連接する面を端面とする透明な窒化物半導体基板に
おいて、前記端面が前記表面から前記裏面にわたり傾斜しており、前記窒化物半導体基板の前記表面及び裏面の中心を通る基板厚さ方向の断面において、前記表面と前記端面とのなす角度をθ1、前記裏面と前記端面とのなす角度をθ2とするとき、θ1>θ2であり、前記角度θ1と前記角度θ2との差が10°以上であることを特徴とする窒化物半導体基板が提供される。この場合において、前記端面の傾斜が直線状であったり、弧を持つ形状であったりすることが好ましい。後者においては特に、窒化物半導体基板の中心側に向かって凹状に反った弧を持つ形状であることが好ましい。また、前記角度θ1と前記角度θ2との差が60°以下であることが好ましい。
According to a main aspect of the present invention, in a transparent nitride semiconductor substrate in which a surface on which a semiconductor element is formed is a front surface, the opposite side of the front surface is a back surface, and the front surface and the surface connected to the back surface are end surfaces. The end surface is inclined from the front surface to the back surface, and in a cross section in the substrate thickness direction passing through the center of the front surface and the back surface of the nitride semiconductor substrate, an angle formed by the front surface and the end surface is θ1, Provided is a nitride semiconductor substrate characterized in that θ1> θ2 when the angle between the back surface and the end surface is θ2, and the difference between the angle θ1 and the angle θ2 is 10 ° or more. In this case, it is preferable that the end surface has a linear inclination or a shape having an arc. In the latter, in particular, it is preferable to have a shape having an arc that curves in a concave shape toward the center side of the nitride semiconductor substrate . The difference between the angle θ1 and the angle θ2 is preferably 60 ° or less.

本発明によれば、IF加工を省略しても目視にて表裏の判別ができ、しかも端面部の加工歪を除去することができる。   According to the present invention, it is possible to visually discriminate between the front and the back even if the IF processing is omitted, and it is possible to remove the processing distortion of the end face portion.

本発明の一実施形態の窒化物半導体基板の表面と傾斜がなす角θ1が、裏面と傾斜のなす角θ2より大きい場合の基板中心を通る断面図である。FIG. 5 is a cross-sectional view passing through the center of the substrate when an angle θ1 formed with the surface of the nitride semiconductor substrate according to an embodiment of the present invention is larger than an angle θ2 formed with the back surface. 本発明の一実施形態の窒化物半導体基板の断面形状に加工するために、傾斜を持つ砥石により加工する一例を示す説明図である。It is explanatory drawing which shows an example processed with the grindstone which has an inclination, in order to process into the cross-sectional shape of the nitride semiconductor substrate of one Embodiment of this invention. 本発明の一実施の形態の窒化物半導体基板と、端面の傾斜がθ1<θ2である窒化物半導体基板とを比較したドライエッチングの説明図である。It is explanatory drawing of the dry etching which compared the nitride semiconductor substrate of one embodiment of this invention, and the nitride semiconductor substrate whose inclination of an end surface is (theta) 1 <(theta) 2. 本発明の一実施形態の窒化物半導体基板の断面形状に加工するために、基板中心厚さより、砥石中心軸を上方に位置させて加工する一例を示す説明図である。It is explanatory drawing which shows an example which processes a grindstone center axis | shaft upwards rather than substrate center thickness, in order to process into the cross-sectional shape of the nitride semiconductor substrate of one Embodiment of this invention. 本発明の一実施形態の窒化物半導体基板の弧を持つ形状に加工された傾斜に対するθ1、θ2の定義を示す説明図である。It is explanatory drawing which shows the definition of (theta) 1 and (theta) 2 with respect to the inclination processed into the shape with the arc of the nitride semiconductor substrate of one Embodiment of this invention. 本発明の一実施形態の窒化物半導体基板の自立したGaN基板上に、AlxGa(1−x)N(1≧x>0)で表される層を含むLED構造のエピタキシャル成長層を積層したLED用エピタキシャルウェハの断面構造を示す模式図である。For an LED in which an epitaxially grown layer having an LED structure including a layer represented by AlxGa (1-x) N (1 ≧ x> 0) is stacked on a self-standing GaN substrate of a nitride semiconductor substrate according to an embodiment of the present invention. It is a schematic diagram which shows the cross-section of an epitaxial wafer.

本発明の一実施の形態について述べる。   An embodiment of the present invention will be described.

図1に実施の形態の窒化物半導体基板の断面図を示す。窒化物半導体基板10は透明で
あり、半導体素子が形成される面を表面11とし、この表面11の反対側を裏面12とし、前記表面11及び前記裏面12に連接する外周面を端面13とする面を有する。表面11と裏面12とは相対向する一対の面をなす。このような窒化物半導体基板10は、端面13が表面11から裏面12にわたり傾斜している。かつ、窒化物半導体基板10の表面11及び裏面12の中心を通る基板厚さ方向の断面において、表面11と端面13の傾斜とのなす角度をθ1、裏面12の端面13の傾斜とのなす角度をθ2とするとき、θ1>θ2である形状に端面加工してある。
FIG. 1 shows a cross-sectional view of the nitride semiconductor substrate of the embodiment. The nitride semiconductor substrate 10 is transparent, the surface on which the semiconductor element is formed is the front surface 11, the opposite side of the front surface 11 is the back surface 12, and the outer peripheral surface connected to the front surface 11 and the back surface 12 is the end surface 13. Has a surface. The front surface 11 and the back surface 12 form a pair of opposing surfaces. In such a nitride semiconductor substrate 10, the end surface 13 is inclined from the front surface 11 to the back surface 12. In addition, in the cross section in the substrate thickness direction passing through the centers of the front surface 11 and the back surface 12 of the nitride semiconductor substrate 10, the angle formed by the inclination of the front surface 11 and the end surface 13 is θ1, and the angle formed by the inclination of the end surface 13 of the back surface 12. When θ2 is θ2, the end face is processed into a shape satisfying θ1> θ2.

ここで、端面13が表面11から裏面12にわたり傾斜しておりとは、表面11と裏面12とに直交する垂直面ないし削り残し面がなく、端面全面が加工されて傾斜しているということである。したがって、表面11側の縁端部のみが面取り加工され、裏面12側の縁端部が面取り加工されず端面に垂直面が残り、結果的にθ1>θ2を満たしているような片面加工のものは含まれない。   Here, the end surface 13 is inclined from the front surface 11 to the back surface 12 because there is no vertical surface or uncut surface orthogonal to the front surface 11 and the back surface 12 and the entire end surface is processed and inclined. is there. Therefore, only the edge portion on the front surface 11 side is chamfered, the edge portion on the back surface 12 side is not chamfered, and a vertical surface remains on the end surface, and as a result, θ1> θ2 is satisfied. Is not included.

端面13を表面11から裏面12にわたり傾斜させ、かつθ1>θ2で、θ1とθ2との差を10°以上とすることによって、IF加工を省略しても表裏を判別できることがわかった。なお、窒化物半導体は、例えば窒化ガリウムが一般的であるが、その他のAlNやAlGaNなどの六方晶系でも良い。   By inclining the end face 13 from the front surface 11 to the back surface 12 and θ1> θ2 and setting the difference between θ1 and θ2 to 10 ° or more, it was found that the front and back sides can be discriminated even if IF processing is omitted. The nitride semiconductor is generally gallium nitride, for example, but may be other hexagonal systems such as AlN and AlGaN.

本実施の形態において、表面11と傾斜面のなす角度θ1と裏面12と傾斜面のなす角度θ2との差が、60°以下であることが望ましい。角度θ1と角度θ2の差を10°以上60°以下した理由は、10°より小さくなると、目視にて傾斜方向の判別が難しくなり、また、60°より大きくなると、外周部の尖りが顕著になり始め、エピタキシャル成長時のクラックやワレなどの不良が発生し始めるためである。   In the present embodiment, the difference between the angle θ1 formed by the front surface 11 and the inclined surface and the angle θ2 formed by the rear surface 12 and the inclined surface is preferably 60 ° or less. The reason why the difference between the angle θ1 and the angle θ2 is 10 ° or more and 60 ° or less is that when the angle θ is smaller than 10 °, it is difficult to visually determine the inclination direction. This is because defects such as cracks and cracks during epitaxial growth begin to occur.

上記端面の形状の傾斜をまっすぐな直線とする実施態様の場合、端面加工は、図2に示すように、総形研削砥石15によって窒化物半導体基板10の表面11側縁端部から端面全面を研削することにより実施できる。
総形研削砥石15は、その回転軸16が、窒化物半導体基板10を吸着させて回転させる吸着ステージ17の回転軸と平行となるように設けられる。総形研削砥石15は、窒化物半導体基板10との当接面となる研削面(端面)18が、基板の端面傾斜形状と一致するような傾斜した直線となるような傾斜面を持つ砥石が使用される。この総形研削砥石15は高速回転させ、窒化物半導体基板10をその軸方向と直角に移動させて、総形研削砥石15の研削面18を窒化物半導体基板10の表面側端面の稜線に当接させる。窒化物半導体基板10は、ゆっくり回転させ、1回転の間で端面加工を完了させる。この際、クーラントノズル19からクーラント20を総形研削砥石15に向けて吐出させて、総形研削砥石15を冷却すると共に加工に伴って発生する研削熱及び切りくずを除去する。これによって、窒化物半導体基板10の端面13を傾斜直線状に加工することができる。
なお、窒化物半導体基板10にOFを形成する場合は、上記端面加工中、窒化物半導体基板10の回転位置がOFを形成したい位置に来たところで、窒化物半導体基板10が総形研削砥石15に更に近づくように窒化物半導体基板10の移動を開始させ(窒化物半導体基板10は常に一定速度でゆっくり回転している)、OF長さの半分を形成したところで、今度は逆に窒化物半導体基板10が総形研削砥石15から遠ざかるように窒化物半導体基板10の移動を開始させ、OFの形成が終了したところで、窒化物半導体基板10の移動を停止させることにより形成している。窒化物半導体基板10の移動停止後は、外周円弧部の端面加工が再開される。このように、窒化物半導体基板10が1回転する間にすなわち、1回のシーケンスで、外周円弧部の端面加工とOF形成およびOFの端面加工を実現することができる。
In the embodiment in which the inclination of the shape of the end face is a straight straight line, the end face processing is performed on the entire end face from the edge of the nitride semiconductor substrate 10 on the side of the surface 11 by a total grinding wheel 15 as shown in FIG. This can be done by grinding.
The overall grinding wheel 15 is provided such that its rotating shaft 16 is parallel to the rotating shaft of the suction stage 17 that sucks and rotates the nitride semiconductor substrate 10. The overall grinding wheel 15 is a grindstone having an inclined surface such that a grinding surface (end surface) 18 that is a contact surface with the nitride semiconductor substrate 10 is an inclined straight line that matches the inclined shape of the end surface of the substrate. used. The overall grinding wheel 15 is rotated at a high speed, and the nitride semiconductor substrate 10 is moved at right angles to the axial direction thereof, so that the grinding surface 18 of the overall grinding wheel 15 is brought into contact with the ridgeline on the front end surface of the nitride semiconductor substrate 10. Make contact. The nitride semiconductor substrate 10 is rotated slowly to complete the end face processing in one rotation. At this time, the coolant 20 is discharged from the coolant nozzle 19 toward the overall grinding wheel 15 to cool the overall grinding wheel 15 and remove grinding heat and chips generated during processing. As a result, the end face 13 of the nitride semiconductor substrate 10 can be processed into an inclined linear shape.
In the case of forming OF on the nitride semiconductor substrate 10, the nitride semiconductor substrate 10 is formed into the total grinding wheel 15 when the rotational position of the nitride semiconductor substrate 10 reaches a position where the OF is to be formed during the end face processing. The nitride semiconductor substrate 10 starts to move closer to (the nitride semiconductor substrate 10 is always rotating slowly at a constant speed), and half of the OF length is formed. The movement of the nitride semiconductor substrate 10 is started so that the substrate 10 moves away from the overall grinding wheel 15, and the formation of the OF is completed by stopping the movement of the nitride semiconductor substrate 10. After the movement of the nitride semiconductor substrate 10 is stopped, the end surface processing of the outer circumferential arc portion is resumed. As described above, the end surface processing of the outer circumferential arc portion, the OF formation, and the end surface processing of the OF can be realized while the nitride semiconductor substrate 10 is rotated once, that is, in one sequence.

なお、図2に示す加工方法の場合、加工したい傾斜角に対応した総形研削砥石15を用
意することにより、窒化物半導体基板10の端面13の傾斜角を自在に変更することができる。
In the case of the processing method shown in FIG. 2, the inclination angle of the end face 13 of the nitride semiconductor substrate 10 can be freely changed by preparing a general grinding wheel 15 corresponding to the inclination angle to be processed.

このように端面13が表面11から裏面12にわたり傾斜し、かつθ1>θ2とすることによって、1回のシーケンスで端面加工を行うことができる。窒化物半導体基板10の表面側と裏面側の両面を面取り加工するような従来例の場合、1回目のシーケンスで窒化物半導体基板の円形加工(外径加工ともいう)およびOF、IF加工を行い、2回目のシーケンスで円弧外周部およびOF、IFの表面(または裏面)側の面取り加工を行い、3回目のシーケンスで円弧外周部およびOF、IFの裏面(または表面)側の面取り加工を行うことになる。このため加工時間が非常に長くなり、装置能力が非常に低い。この点で、本実施の形態のように外周を削りながら端面を直線傾斜状に加工する方法だと、外径加工と同時に端面加工が1回のシーケンスで行えるので、加工時間を短縮化でき、加工装置能力も高めることができる。   As described above, the end surface 13 is inclined from the front surface 11 to the back surface 12 and θ1> θ2 is established, so that the end surface processing can be performed in one sequence. In the case of the conventional example in which both the front surface side and the back surface side of the nitride semiconductor substrate 10 are chamfered, the nitride semiconductor substrate is circularly processed (also called outer diameter processing) and OF / IF processing is performed in the first sequence. In the second sequence, chamfering is performed on the outer periphery of the arc and the front (or back) side of the OF, IF, and in the third sequence, chamfering is performed on the outer periphery of the arc and the back (or front) side of the OF, IF. It will be. For this reason, processing time becomes very long and apparatus capability is very low. In this respect, if the end face is processed into a linearly inclined shape while cutting the outer periphery as in the present embodiment, the end face processing can be performed in one sequence simultaneously with the outer diameter processing, so the processing time can be shortened, Processing device capability can also be increased.

また、基板の面取り加工をすると研削量が増加するため砥石寿命も短くなり、コスト高の要因となっていたが、本実施の形態によれば、研削量が低減するため、そのようなことが改善できる。   Further, when the substrate is chamfered, the grinding amount increases, so the life of the grindstone is shortened, which causes a high cost.However, according to the present embodiment, the grinding amount is reduced. Can improve.

上述したように端面加工した窒化物半導体基板10は、通常、基板表面の加工歪みを除去すると共に、端面加工時に生じた加工歪みを除去するためにドライエッチングを行う。ドライエッチングの原理は、図3に示すように、高真空下のチャンバ20a内で、エッチングガス、例えば塩素系ガスをプラズマ化し、プラズマ化によりエッチングガスのイオン種21を発生する。発生したエッチングガスのイオン種21が、基板を置く陰極22に高周波電圧を印可することにより加速されて直線的に基板に衝突し化学反応が進み、基板表面がエッチングされる。このプラズマ化されたエッチングガスのイオン種21は、非常に直線性が高く、基板の裏面に回り込みにくい性質がある。
したがって、ドライエッチング時、窒化物半導体基板の端面の傾斜がθ1<θ2となるように加工した基板14の断面形状では、イオン種21が裏面まで効率よく回り込めない。このため、外径及び端面加工時に生じた端面の加工歪みが除去できず、後工程でワレやクラックが生じやすくなる。しかし、本実施の形態による端面が表面から裏面にわたり傾斜し、かつθ1>θ2である窒化物半導体基板10の形状だと、ガスが端面全面に確実に供給されるため、加工歪みが除去でき、後工程でワレやクラックの発生を有効に抑止できる。
As described above, nitride semiconductor substrate 10 whose end face is processed is usually subjected to dry etching in order to remove the processing distortion on the substrate surface and to remove the processing distortion generated during the end face processing. As shown in FIG. 3, the principle of dry etching is that an etching gas, for example, a chlorine-based gas is converted into plasma in a chamber 20a under a high vacuum, and ion species 21 of the etching gas is generated by plasma formation. The generated ion species 21 of the etching gas are accelerated by applying a high-frequency voltage to the cathode 22 on which the substrate is placed, and linearly collide with the substrate to cause a chemical reaction, and the substrate surface is etched. The ionized species 21 of the plasma-ized etching gas has a very high linearity and is difficult to go around the back surface of the substrate.
Therefore, in dry etching, the ion species 21 cannot efficiently wrap around the back surface in the cross-sectional shape of the substrate 14 processed so that the inclination of the end face of the nitride semiconductor substrate satisfies θ1 <θ2. For this reason, the processing distortion of the end face that occurred during the outer diameter and end face processing cannot be removed, and cracks and cracks are likely to occur in the subsequent process. However, when the end face according to the present embodiment is inclined from the front surface to the back face and the shape of the nitride semiconductor substrate 10 is θ1> θ2, the gas is reliably supplied to the entire end face, so that the processing strain can be removed, Generation of cracks and cracks can be effectively suppressed in the subsequent process.

また、本発明を実施する場合、端面の傾斜はまっすぐな直線でなければならないというわけではなく、端面の傾斜が弧を持つ形状とすることもできる。この場合、端面加工は、図4に示すように円筒研削砥石28によって窒化物半導体基板10の表面側縁端部から端面を研削することにより実施できる。円筒研削砥石28は、その回転軸26が窒化物半導体基板10を吸着させて回転させる吸着ステージ17の回転軸と直交するように設けられる。また、回転軸26は、基板中心厚さの高さより上方に位置させている。円筒研削砥石28は基板回転方向に対し直交するように回転させる。円筒研削砥石28は、窒化物半導体基板10との当接面となる端面が、円筒面を持つ砥石が使用される。この円筒研削砥石28を回転させ、窒化物半導体基板10をその軸方向と直角に移動させて、円筒研削砥石28の研削面を窒化物半導体基板10の表面側端面の稜線に当接させる。この際、クーラントノズル19からクーラント20を砥石に向けて吐出させて、円筒研削砥石28を冷却すると共に加工に伴って発生する研削熱及び切りくずを除去する。これによって、窒化物半導体基板10の端面を弧を持つ傾斜形状に加工することができる。
なお、この方式でOFを形成する場合、上記端面加工を終えた後、窒化物半導体基板10の回転を停止させ、窒化物半導体基板10のOFを形成させたい部分が円筒研削砥石28に対向するように窒化物半導体基板10の位置決めを行い、円筒研削砥石28を回転さ
せると共に窒化物半導体基板10をその軸方向と直角に移動させて、円筒研削砥石28に当接させOFを形成する。このように2回のシーケンスで実現可能となる。
窒化物半導体基板の表面側と裏面側の両面を面取り加工するような従来例の場合は、例えば、1回目のシーケンスで、窒化物半導体基板の外径加工を行い、2回目のシーケンスで外周部の表面(または裏面)側の面取り加工を行い、3回目のシーケンスで外周部の裏面(または表面)側の面取り加工を行い、4回目のシーケンスでOF加工を行い、5回目のシーケンスでOF部の表面(または裏面)側の面取り加工を行い、6回目のシーケンスでOF部の裏面(または表面)側の面取り加工を行い、7回目のシーケンスでIF加工を行い、8回目のシーケンスでIF部の表面(または裏面)側の面取り加工を行い、9回目のシーケンスでIF部の裏面(または表面)側の面取り加工を行うことになる。
Moreover, when implementing this invention, the inclination of an end surface does not necessarily need to be a straight straight line, but it can also be set as the shape where the inclination of an end surface has an arc. In this case, the end surface processing can be performed by grinding the end surface from the surface side edge end portion of the nitride semiconductor substrate 10 with a cylindrical grinding wheel 28 as shown in FIG. The cylindrical grinding wheel 28 is provided so that the rotation axis 26 is orthogonal to the rotation axis of the adsorption stage 17 that adsorbs and rotates the nitride semiconductor substrate 10. The rotation shaft 26 is positioned above the height of the substrate center thickness. The cylindrical grinding wheel 28 is rotated so as to be orthogonal to the substrate rotation direction. As the cylindrical grinding wheel 28, a grinding wheel having a cylindrical surface at an end surface to be in contact with the nitride semiconductor substrate 10 is used. The cylindrical grinding wheel 28 is rotated to move the nitride semiconductor substrate 10 at a right angle to the axial direction thereof, so that the grinding surface of the cylindrical grinding wheel 28 is brought into contact with the ridgeline of the front surface side end surface of the nitride semiconductor substrate 10. At this time, the coolant 20 is discharged from the coolant nozzle 19 toward the grindstone to cool the cylindrical grindstone 28 and remove grinding heat and chips generated during processing. Thereby, the end surface of the nitride semiconductor substrate 10 can be processed into an inclined shape having an arc.
In addition, when forming OF by this method, after finishing the end face processing, the rotation of the nitride semiconductor substrate 10 is stopped, and the portion of the nitride semiconductor substrate 10 where the OF is to be formed faces the cylindrical grinding wheel 28. Thus, the nitride semiconductor substrate 10 is positioned, the cylindrical grinding wheel 28 is rotated, and the nitride semiconductor substrate 10 is moved at right angles to the axial direction thereof to contact the cylindrical grinding wheel 28 to form the OF. In this way, it can be realized by two sequences.
In the case of the conventional example in which both the front surface side and the back surface side of the nitride semiconductor substrate are chamfered, for example, the outer diameter of the nitride semiconductor substrate is processed in the first sequence, and the outer peripheral portion is processed in the second sequence. Chamfering is performed on the front surface (or back surface) side, chamfering processing is performed on the back surface (or front surface) side of the outer peripheral portion in the third sequence, OF processing is performed in the fourth sequence, and OF portion is processed in the fifth sequence. Chamfering on the front surface (or back surface) side, chamfering on the back surface (or front surface) side of the OF section in the sixth sequence, IF processing in the seventh sequence, and IF section in the eighth sequence The front surface (or back surface) side is chamfered, and the back surface (or front surface) side of the IF portion is chamfered in the ninth sequence.

図4に示す加工方法の場合、基板厚さの中心位置より、円筒研削砥石28の回転軸26をどのくらい上方、または下方の位置にて加工をするかを設定することにより、傾斜角を任意に変更できる。   In the case of the processing method shown in FIG. 4, by setting how much the rotating shaft 26 of the cylindrical grinding wheel 28 is processed at the upper or lower position from the center position of the substrate thickness, the inclination angle can be arbitrarily set. Can change.

このように端面の傾斜を、弧を描く形状とする場合、一般に基板厚さdは、通常250〜450μmくらいであり、大きな弧とはならないが、直線の場合と違って、θ1、θ2の定義が問題になる。ここでは、図5に示すように、弧を描く形状とする場合、基板厚さdの中心を通る表裏面と平行な直線31と弧32との交点33における弧32の接線34が表面11となす角をθ1、裏面12とのなす角θ2と定義する。   In this way, when the inclination of the end face is an arcuate shape, the substrate thickness d is generally about 250 to 450 μm and is not a large arc. However, unlike the case of a straight line, the definition of θ1 and θ2 is different. Becomes a problem. Here, as shown in FIG. 5, when the arc is drawn, the tangent 34 of the arc 32 at the intersection 33 between the straight line 31 passing through the center of the substrate thickness d and the arc 32 and the arc 32 is the surface 11. The angle formed is defined as θ1 and the angle θ2 formed with the back surface 12.

SiやGaAsの面取り加工に使用される砥石のボンド材はメタルが一般的であるが、GaNなどの窒化物半導体基板の場合は、SiやGaAsに比べ硬質材料であり、砥粒の目つぶれ、目詰まりが生じやすいため、一般的に自生発刃しやすいレジンやセラミック材を用いたボンド材が使用される。その際、砥石の形状が変形しやすいため、基板の面取り形状を簡易に維持できるメリットから、図2に示す総形研削砥石を用いた方式ではなく、図4に示す円筒研削砥石を基板回転方向に対し垂直に回転させトレースすることにより端面加工する方式を採用することが好ましい。   The bond material of the grindstone used for chamfering of Si or GaAs is generally metal, but in the case of a nitride semiconductor substrate such as GaN, it is a hard material compared to Si or GaAs, and the abrasive grains are clogged. Since clogging is likely to occur, generally, a bond material using a resin or a ceramic material that is easy to spontaneously cut is used. At this time, since the shape of the grindstone is easily deformed, the cylindrical grindstone shown in FIG. 4 is used instead of the method using the general grinding grindstone shown in FIG. In contrast, it is preferable to adopt a method of processing the end face by rotating it vertically and tracing it.

このように基板外周を削りながら端面を傾斜状に加工する方法だと、外径加工と同時に傾斜形状が形成されるため面取り加工のシーケンスを動作させる必要が無いため、加工時間を大幅に短縮できる。   In this way, when the end surface is processed to be inclined while the outer periphery of the substrate is being cut, since the inclined shape is formed at the same time as the outer diameter processing, it is not necessary to operate the chamfering sequence, so the processing time can be greatly reduced. .

本発明の実施の形態によれば、以下に挙げる一つ又はそれ以上の効果を有する。
(1)基板の端面を表面から裏面にわたり傾斜させ、かつθ1>θ2とすることによって、窒化物半導体の透明基板に対し、IF加工を省略しても目視にて表裏の判別ができる。(2)従来よりも端面加工のためのシーケンスを減らせるので、コスト高の一つの要因となっている面取り加工コストを低減できる。
(3)表裏面の面取り角度の関係をθ1>θ2とすることによって、ドライエッチング時、基板の端面全面をエッチングガスに晒すことができることにより、端面部の加工歪を有効に除去できる。その結果、エピタキシャル成長時のクラック、ワレ不良も生じない。
(4)外径加工及び端面加工が1回のシーケンスで済むことにより、外径加工時のスループットが向上するため、コストを低減できる。また、透明基板にてIFが不要となるため、IF加工に起因する砥石の劣化促進やチップ取得面積の減少が解消でき、チップ取得数が増え、コストを低減できる。
According to embodiments of the present invention, one or more of the following effects are provided.
(1) By tilting the end surface of the substrate from the front surface to the back surface and satisfying θ1> θ2, it is possible to visually distinguish the front and back surfaces of the nitride semiconductor transparent substrate even if IF processing is omitted. (2) Since the sequence for end face processing can be reduced as compared with the conventional case, it is possible to reduce the chamfering processing cost which is one factor of high cost.
(3) By setting the relationship between the chamfering angles of the front and back surfaces to θ1> θ2, the entire end surface of the substrate can be exposed to an etching gas during dry etching, so that the processing distortion of the end surface portion can be effectively removed. As a result, cracks and crack defects during epitaxial growth do not occur.
(4) Since the outer diameter machining and the end face machining need only be performed once, the throughput during the outer diameter machining is improved, so that the cost can be reduced. In addition, since the IF is not required for the transparent substrate, it is possible to eliminate the deterioration of the grindstone caused by IF processing and the reduction of the chip acquisition area, increase the number of chip acquisition, and reduce the cost.

次に実施例について説明する。   Next, examples will be described.

(実施例1)
実施例1では、透明な窒化ガリウム基板を作製し、その表裏面の判別を行った。
C面を表面とするサファイヤ基板の上に、HVPE成長にて窒化ガリウムの厚膜基板を得た。厚膜基板の表面(Ga極性面)を平坦な面を持つセラミックプレートに裏面(N極性面)が加工面となるようにワックスを用いて貼り付けた。そして、ダイヤモンド砥粒砥石#325を用い基板の裏面を研削し平坦な面にした。次に溝加工を施した錫定盤にダイヤモンドスラリーを供給しながら、定盤と加圧したワークを回転し基板裏面の加工を行った。さらに汎用的な市販のコロイダルシリカのスラリーを用い基板裏面のポリッシュを行った。そして、セラミックプレートを加熱してワックスを液状にし、ワークを取り外し、有機洗浄を行った。
Example 1
In Example 1, a transparent gallium nitride substrate was produced, and the front and back surfaces were discriminated.
A gallium nitride thick film substrate was obtained by HVPE growth on a sapphire substrate with the C-plane as the surface. The front surface (Ga polar surface) of the thick film substrate was attached to a ceramic plate having a flat surface using wax so that the back surface (N polar surface) was a processed surface. Then, the back surface of the substrate was ground using a diamond abrasive wheel # 325 to obtain a flat surface. Next, while supplying the diamond slurry to the grooved tin surface plate, the surface plate and the pressed work were rotated to process the back surface of the substrate. Furthermore, the back surface of the substrate was polished using a general-purpose commercially available colloidal silica slurry. Then, the ceramic plate was heated to make the wax liquid, the workpiece was removed, and organic cleaning was performed.

次に、平坦な面を持つセラミックプレートに基板の表面(Ga極性面)が加工面となるようにワックスを用いて貼り付けた。そして、ダイヤモンド砥粒砥石#325を用い基板表面を研削し平坦な面にした。次に溝加工を施した錫定盤にダイヤモンドスラリーを供給ながら、定盤と加圧したワークを回転し基板表面の加工を行った。ダイヤモンド砥粒径を徐々に微細なものに変え、最終的に1μmダイヤ砥粒を用い基板表面を平坦な鏡面に仕上げた。さらに、セラミックプレートを加熱してワックスを液状にし、ワークを取り外し、有機洗浄を行った。そして、ドライエッチングをおこない、表面(Ga極性面)の加工歪を除去し、透明な厚さ300μmの窒化ガリウム基板を得た。   Next, it was attached to a ceramic plate having a flat surface using wax so that the surface of the substrate (Ga polar surface) was a processed surface. Then, the substrate surface was ground to a flat surface using a diamond abrasive wheel # 325. Next, the surface of the substrate was processed by rotating the surface plate and the pressed workpiece while supplying diamond slurry to the grooved tin surface plate. The diamond abrasive grain size was gradually changed to a fine one, and finally the substrate surface was finished to a flat mirror surface using 1 μm diamond abrasive grains. Furthermore, the ceramic plate was heated to make the wax liquid, the workpiece was removed, and organic cleaning was performed. Then, dry etching was performed to remove the processing strain on the surface (Ga polar surface), and a transparent gallium nitride substrate having a thickness of 300 μm was obtained.

次に、図4に示す加工方法で外周を削りながら端面を表面から裏面にわたり傾斜状に加工した。この方法だと、外径加工と同時に傾斜形状が形成され、面取り加工のシーケンスを動作させる必要が無いため、加工時間を大幅に短縮できた。基板中心を通るように基板を割り断面を顕微鏡で観察し、傾斜角を求めた。このような方法で、表1に示す種々の角度θ1、θ2を持つサンプルを用意した。次に、被験者を30人集め、サンプルを表裏教えずにどちらの方向に傾斜しているか判別実験を行った。その結果、端面が表面から裏面にわたり傾斜した端面の角度がθ1>θ2で、その傾斜の差が10°以上になると、目視判別を行った30人全員が正確に判別できるという結果となった。   Next, the end surface was processed to be inclined from the front surface to the back surface while the outer periphery was cut by the processing method shown in FIG. With this method, an inclined shape is formed at the same time as the outer diameter machining, and it is not necessary to operate a chamfering sequence, so that the machining time can be greatly reduced. The substrate was divided so as to pass through the center of the substrate, and the cross section was observed with a microscope to determine the tilt angle. In this way, samples having various angles θ1 and θ2 shown in Table 1 were prepared. Next, 30 test subjects were collected, and a discrimination experiment was performed to determine which direction the sample was inclined without teaching the front and back. As a result, when the angle of the end surface where the end surface was inclined from the front surface to the back surface was θ1> θ2 and the difference in inclination was 10 ° or more, all 30 people who performed visual determination could be determined accurately.

Figure 0005126108
Figure 0005126108

(実施例2)
実施例2では、実施例1で得られた窒化ガリウム基板にさらにLED用エピタキシャル層を成長させ、その基板の外周部に生じるクラックやワレを調べた。
実施例1と同様な方法で、透明な厚さ300μmの窒化ガリウム基板を得た。次に、図4に示す加工方法で外周を削りながら傾斜状に加工した。基板中心を通るように基板を割り断面を顕微鏡で観察し、傾斜角を求めた。同様の方法で、表2に示すサンプルを各5枚ずつ用意した。各サンプルについてエッチング加工を行い、傾斜部の加工歪を除去した後、有機洗浄を行った。
(Example 2)
In Example 2, an LED epitaxial layer was further grown on the gallium nitride substrate obtained in Example 1, and cracks and cracks generated on the outer periphery of the substrate were examined.
A transparent gallium nitride substrate having a thickness of 300 μm was obtained in the same manner as in Example 1. Next, it was processed into an inclined shape while cutting the outer periphery by the processing method shown in FIG. The substrate was divided so as to pass through the center of the substrate, and the cross section was observed with a microscope to determine the tilt angle. In the same manner, five samples shown in Table 2 were prepared. Each sample was subjected to an etching process, and after removing the processing distortion of the inclined portion, organic cleaning was performed.

基板端面が表面から裏面にわたり傾斜しており、かつθ1>θ2である形状に加工されていることから、エッチングガスが十分供給されるため外周加工時に生じた加工歪は除去された。これらの基板上に、減圧MOVPE法を用いて、図6に示す構造のLED用エピタキシャル層を成長した。成長した層は、窒化ガリウム基板1側から順に、Siドープn型GaNバッファ層2、Siドープn型Al0.15GaNクラッド層3、3周期のInGaN−MQW層4、Mgドープp型Al0.15GaNクラッド層5、Mgドープp型Al0.10GaNクラッド層6及びMgドープp型GaNコンタクト層7である。 Since the substrate end face is inclined from the front surface to the back surface and is processed into a shape satisfying θ1> θ2, the etching gas is sufficiently supplied, so that the processing strain generated during the outer periphery processing is removed. An epitaxial layer for LED having a structure shown in FIG. 6 was grown on these substrates by using a reduced pressure MOVPE method. The grown layers are, in order from the gallium nitride substrate 1, the Si-doped n-type GaN buffer layer 2, the Si-doped n-type Al 0.15 GaN cladding layer 3, the three-period InGaN-MQW layer 4, and the Mg-doped p-type Al 0. .15 GaN cladding layer 5, Mg-doped p-type Al 0.10 GaN cladding layer 6 and Mg-doped p-type GaN contact layer 7.

その際、基板の外周部にクラックやワレが生じた枚数を調べた。その結果、θ1とθ2の差が60°までの基板は5枚中クラックやワレが生じなかったが、70°〜90°のサンプルは5枚中1、2枚クラックやワレ不良が発生した。   At that time, the number of cracks and cracks on the outer periphery of the substrate was examined. As a result, no cracks or cracks occurred in the five substrates for the difference between θ1 and θ2 up to 60 °, but one or two cracks or cracks in the samples of 70 ° to 90 ° occurred.

Figure 0005126108
Figure 0005126108

10 窒化物半導体基板
11 表面
12 裏面
13 端面
15 総形研削砥石
17 吸着ステージ
21 イオン種
DESCRIPTION OF SYMBOLS 10 Nitride semiconductor substrate 11 Front surface 12 Back surface 13 End surface 15 Total grinding wheel 17 Adsorption stage 21 Ion species

Claims (3)

半導体素子が形成される面を表面とし、該表面の反対側を裏面とし、前記表面及び前記裏面に連接する面を端面とする透明な窒化物半導体基板において、
前記端面が前記表面から前記裏面にわたり直線状に傾斜しており、
前記窒化物半導体基板の前記表面及び裏面の中心を通る基板厚さ方向の断面において、
前記表面と前記端面とのなす角度をθ1、前記裏面と前記端面とのなす角度をθ2とするとき、θ1>θ2であり、前記角度θ1と前記角度θ2との差が10°以上60°以下である
ことを特徴とする窒化物半導体基板。
In a transparent nitride semiconductor substrate having a surface on which a semiconductor element is formed as a front surface, a side opposite to the surface as a back surface, and a surface connected to the front surface and the back surface as an end surface,
The end surface is inclined linearly from the front surface to the back surface;
In the cross section in the substrate thickness direction passing through the center of the front and back surfaces of the nitride semiconductor substrate,
When the angle between the front surface and the end surface is θ1, and the angle between the back surface and the end surface is θ2, θ1> θ2, and the difference between the angle θ1 and the angle θ2 is 10 ° or more and 60 ° or less. A nitride semiconductor substrate, characterized in that
半導体素子が形成される面を表面とし、該表面の反対側を裏面とし、前記表面及び前記裏面に連接する面を端面とする透明な窒化物半導体基板において、
前記端面が前記表面から前記裏面にわたり弧を持つ形状に傾斜しており
前記窒化物半導体基板の前記表面及び裏面の中心を通る基板厚さ方向の断面において、
前記表面と前記端面とのなす角度をθ1、前記裏面と前記端面とのなす角度をθ2とするとき、θ1>θ2であり、前記角度θ1と前記角度θ2との差が10°以上60°以下である
ことを特徴とする窒化物半導体基板。
In a transparent nitride semiconductor substrate having a surface on which a semiconductor element is formed as a front surface, a side opposite to the surface as a back surface, and a surface connected to the front surface and the back surface as an end surface,
The end surface is inclined in a shape having an arc from the front surface to the back surface ;
In the cross section in the substrate thickness direction passing through the center of the front and back surfaces of the nitride semiconductor substrate,
When the angle between the front surface and the end surface is θ1, and the angle between the back surface and the end surface is θ2, θ1> θ2, and the difference between the angle θ1 and the angle θ2 is 10 ° or more and 60 ° or less. nitride semiconductor substrate according to claim <br/> that is.
前記端面の傾斜が前記窒化物半導体基板の中心側に向かって凹状に反った弧を持つ形状であることを特徴とする請求項2に記載の窒化物半導体基板。3. The nitride semiconductor substrate according to claim 2, wherein the slope of the end face has a shape having an arc that is concavely curved toward the center side of the nitride semiconductor substrate.
JP2009038844A 2009-02-23 2009-02-23 Nitride semiconductor substrate Expired - Fee Related JP5126108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009038844A JP5126108B2 (en) 2009-02-23 2009-02-23 Nitride semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009038844A JP5126108B2 (en) 2009-02-23 2009-02-23 Nitride semiconductor substrate

Publications (2)

Publication Number Publication Date
JP2010195598A JP2010195598A (en) 2010-09-09
JP5126108B2 true JP5126108B2 (en) 2013-01-23

Family

ID=42820735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009038844A Expired - Fee Related JP5126108B2 (en) 2009-02-23 2009-02-23 Nitride semiconductor substrate

Country Status (1)

Country Link
JP (1) JP5126108B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6315579B2 (en) 2014-07-28 2018-04-25 昭和電工株式会社 Method for manufacturing SiC epitaxial wafer
JP6481790B2 (en) * 2018-03-20 2019-03-13 昭和電工株式会社 SiC epitaxial wafer
JP7284043B2 (en) * 2019-08-30 2023-05-30 日機装株式会社 semiconductor light emitting device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02144908A (en) * 1988-11-28 1990-06-04 Hitachi Ltd Manufacture of semiconductor device
JP2000331940A (en) * 1999-05-20 2000-11-30 Sony Corp Sapphire substrate, growing method for nitride iii-v compound semiconductor layer, and manufacture thereof
JP2000331898A (en) * 1999-05-21 2000-11-30 Hitachi Cable Ltd Notched semiconductor wafer
JP4457432B2 (en) * 1999-06-17 2010-04-28 株式会社デンソー Seed crystal and silicon carbide single crystal production method, silicon carbide single crystal and single crystal production apparatus using the same
JP2002356398A (en) * 2001-06-01 2002-12-13 Sumitomo Electric Ind Ltd Gallium nitride wafer
JP3580311B1 (en) * 2003-03-28 2004-10-20 住友電気工業株式会社 Rectangular nitride semiconductor substrate with front and back identification
JP2005251961A (en) * 2004-03-04 2005-09-15 Matsushita Electric Ind Co Ltd Group iii nitride single crystal wafer and method for manufacturing semiconductor device using same
JP2006147891A (en) * 2004-11-22 2006-06-08 Sumitomo Metal Mining Co Ltd Epitaxial growth sapphire substrate and its manufacturing method
JP4797793B2 (en) * 2006-05-23 2011-10-19 三菱化学株式会社 Method for manufacturing nitride semiconductor crystal

Also Published As

Publication number Publication date
JP2010195598A (en) 2010-09-09

Similar Documents

Publication Publication Date Title
JP4395812B2 (en) Nitride semiconductor wafer-processing method
JP5040977B2 (en) Nitride semiconductor substrate, semiconductor device and manufacturing method thereof
JP4404162B2 (en) Nitride semiconductor wafer
JP2006222453A (en) Silicon wafer, method for manufacturing the same, and soi wafer
CN112513348B (en) SiC wafer and method for producing SiC wafer
JP6279619B2 (en) Manufacturing method of semiconductor substrate
CN1324660C (en) Rectangular nitride semiconductor substrate capable of identifying outside and inside
JP2019210206A (en) Chamfered silicon carbide substrate and chamfering method
JP5126108B2 (en) Nitride semiconductor substrate
CN110060959B (en) Method for manufacturing bonded wafer
TW200301931A (en) Semiconductor wafer and method of manufacturing the same
CN113492343A (en) Semiconductor substrate and method for manufacturing the same
JP2015135902A (en) Method and device for manufacturing wafer
WO2022137727A1 (en) Indium phosphide substrate, method for manufacturing indium phosphide substrate, and semiconductor epitaxial wafer
JP7166324B2 (en) Indium phosphide substrate, method for producing indium phosphide substrate, and semiconductor epitaxial wafer
US20130149941A1 (en) Method Of Machining Semiconductor Substrate And Apparatus For Machining Semiconductor Substrate
TWI737339B (en) Determination method of resistivity of single crystal silicon
CN114068773A (en) Sapphire substrate manufacturing method
JP4939087B2 (en) Gallium nitride substrate, gallium nitride substrate evaluation method, and gallium nitride substrate manufacturing method.
JP5515253B2 (en) Manufacturing method of semiconductor wafer
TWI810847B (en) Indium Phosphide Substrate
JP5886522B2 (en) Wafer production method
JP2014028720A (en) Group 13 element nitride substrate
JP2004043257A (en) Compound semiconductor wafer and method for working the same
CN106783579B (en) Group III nitride substrate and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees