JP5125098B2 - Manufacturing method of nitride semiconductor free-standing substrate - Google Patents

Manufacturing method of nitride semiconductor free-standing substrate Download PDF

Info

Publication number
JP5125098B2
JP5125098B2 JP2006349756A JP2006349756A JP5125098B2 JP 5125098 B2 JP5125098 B2 JP 5125098B2 JP 2006349756 A JP2006349756 A JP 2006349756A JP 2006349756 A JP2006349756 A JP 2006349756A JP 5125098 B2 JP5125098 B2 JP 5125098B2
Authority
JP
Japan
Prior art keywords
substrate
nitride semiconductor
standing
epitaxial growth
semiconductor free
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006349756A
Other languages
Japanese (ja)
Other versions
JP2008156189A (en
Inventor
彰一 高見澤
政孝 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006349756A priority Critical patent/JP5125098B2/en
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to AT07849786T priority patent/ATE556158T1/en
Priority to US12/448,272 priority patent/US9127376B2/en
Priority to KR20097013496A priority patent/KR20090101208A/en
Priority to CN200780048302.4A priority patent/CN101573480B/en
Priority to EP20070849786 priority patent/EP2119815B1/en
Priority to PCT/JP2007/001351 priority patent/WO2008078401A1/en
Priority to TW96147114A priority patent/TWI394874B/en
Publication of JP2008156189A publication Critical patent/JP2008156189A/en
Application granted granted Critical
Publication of JP5125098B2 publication Critical patent/JP5125098B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4488Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by in situ generation of reactive gas by chemical or electrochemical reaction
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)
  • Chemical Vapour Deposition (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

The present invention provides a method for manufacturing a nitride semiconductor self-supporting substrate and a nitride semiconductor self-supporting substrate manufactured by this manufacturing method, the method including at least: a step of preparing a nitride semiconductor self-supporting substrate serving as a seed substrate; a step of epitaxially growing the same type of nitride semiconductor as the seed substrate on the seed substrate; and a step of slicing an epitaxially grown substrate subjected to the epitaxial growth into two pieces in parallel to an epitaxial growth surface. As a result, there is provided a method for manufacturing a large-diameter nitride semiconductor self-supporting substrate having an excellent crystal quality and small warp with good productivity at a low cost, etc.

Description

本発明はGaN等のIII族窒化物半導体自立基板及びその製造方法に関する。   The present invention relates to a group III nitride semiconductor free-standing substrate such as GaN and a method for manufacturing the same.

III族窒化物系化合物半導体(窒化ガリウム(GaN)、窒化インジウムガリウム(InGaN)、窒化ガリウムアルミニウム(GaAlN)等:以下単に窒化物半導体とも言う)は、近年、青色、紫外発光ダイオード(LED)やレーザダイオード(LD)の材料として重要な役目を果たし始めている。また、窒化物半導体は、光素子以外にも耐熱性や耐環境性がよいため、或いは、高周波特性が良いため、この特長をいかした電子デバイスの開発が盛んに行われている。   Group III nitride compound semiconductors (gallium nitride (GaN), indium gallium nitride (InGaN), gallium aluminum nitride (GaAlN), etc .; hereinafter also simply referred to as nitride semiconductors) have recently become blue, ultraviolet light emitting diodes (LEDs), It has begun to play an important role as a material for laser diodes (LD). In addition to the optical elements, nitride semiconductors have good heat resistance and environmental resistance, or good high-frequency characteristics. Therefore, electronic devices that take advantage of this feature are being actively developed.

しかし、窒化物半導体は、バルク結晶成長をさせるのが難しく、GaN自立基板はコストを問題にしないレーザーダイオード用途等で限定的に用いられているだけである。現在広く実用化されているGaN成長用基板はサファイア(Al)基板であり、単結晶サファイア基板の上に有機金属気相成長方法(MOVPE法)等でGaNをエピタキシャル成長させる方法が一般に用いられている。 However, nitride semiconductors are difficult to grow bulk crystals, and GaN free-standing substrates are only used in limited applications such as laser diodes where cost is not an issue. A substrate for GaN growth that is currently in wide use is a sapphire (Al 2 O 3 ) substrate, and generally used is a method of epitaxially growing GaN on a single crystal sapphire substrate by a metal organic chemical vapor deposition method (MOVPE method) or the like. It has been.

この場合、サファイア基板は、GaNと格子定数が異なるため、サファイア基板上に直接GaNをエピタキシャル成長させるのでは単結晶膜を成長させることができない。このため、サファイア基板上に一旦低温でAlNやGaNのバッファ層を成長させ、この低温成長バッファ層で格子の歪みを緩和させてからそのバッファ層の上にGaNを成長させる方法が提案されている(特許文献1)。   In this case, since the sapphire substrate has a lattice constant different from that of GaN, a single crystal film cannot be grown by directly epitaxially growing GaN on the sapphire substrate. For this reason, a method is proposed in which an AlN or GaN buffer layer is once grown on a sapphire substrate at a low temperature, and lattice distortion is relaxed by the low temperature growth buffer layer, and then GaN is grown on the buffer layer. (Patent Document 1).

しかし、この低温成長バッファ層を用いたGaNの成長でもサファイア基板とGaNとの熱膨張係数の差からエピタキシャル成長後の基板に反りが発生し、クラックや割れに至ることもあるという問題がある。
また、エピタキシャル成長後の基板の反りは、フォトリソグラフィにおける微細パターンの露光状態が不均一になり、大きな問題となる。
また、今後実用化が望まれている照明用の青色、紫外LEDでは、高い電流密度でLEDを高輝度で発光させる必要があり、発光効率、寿命の観点から、GaN発光層の転位密度が低く、基板への熱伝導率の良い低価格のGaN自立基板が切望されている。
このように、結晶性、生産性に優れたGaN自立基板の成長法が望まれているが未だ満足できる解決策はない。
However, even in the growth of GaN using this low-temperature growth buffer layer, there is a problem that warpage occurs in the substrate after epitaxial growth due to the difference in thermal expansion coefficient between the sapphire substrate and GaN, leading to cracks and cracks.
Further, the warpage of the substrate after the epitaxial growth becomes a serious problem because the exposure state of the fine pattern in photolithography becomes uneven.
In addition, in blue and ultraviolet LEDs for illumination that are expected to be put to practical use in the future, it is necessary to cause the LED to emit light with high luminance at a high current density. From the viewpoint of luminous efficiency and lifetime, the dislocation density of the GaN light emitting layer is low. A low-priced GaN free-standing substrate with good thermal conductivity to the substrate is desired.
As described above, a method for growing a GaN free-standing substrate having excellent crystallinity and productivity is desired, but there is still no satisfactory solution.

このような問題を解決するために、サファイア基板上に厚く成長したGaNエピタキシャル成長基板から、サファイア基板をエッチングや研削等の方法により除去し、GaNの自立基板を得る試みもなされている。GaNの自立基板が得られれば、発光層形成のエピタキシャル成長における格子定数差や熱膨張係数差に起因する諸問題は解決する。   In order to solve such a problem, an attempt has been made to obtain a GaN free-standing substrate by removing the sapphire substrate by a method such as etching or grinding from a GaN epitaxial growth substrate that is thickly grown on the sapphire substrate. If a GaN free-standing substrate is obtained, various problems caused by the difference in lattice constant and the difference in thermal expansion coefficient in the epitaxial growth of the light emitting layer formation can be solved.

しかし、サファイア基板を除去するとサファイアとGaNとの熱膨張係数差に起因するGaNエピタキシャル層の内部歪みが局所的に開放され、その結果、GaN基板の反りが増大して基板が割れてしまうという問題は残る。サファイア基板上にHVPE法(Hydride Vapor Phase Epitaxy:ハイドライド気相成長法)でGaNを厚く成長させ、その後レーザパルスを照射して、GaN層だけを剥離させる方法の実用化が試みられているが(例えば、非特許文献1)、剥離の過程で基板にクラックが入りやすいという問題があり、大型のGaN基板を再現性よく得るためには複雑な処理を必要とするという問題があった。   However, when the sapphire substrate is removed, the internal strain of the GaN epitaxial layer due to the difference in thermal expansion coefficient between sapphire and GaN is locally released, resulting in increased warpage of the GaN substrate and cracking of the substrate. Remains. An attempt has been made to put into practical use a method in which GaN is grown thickly on a sapphire substrate by HVPE (hydride vapor phase epitaxy), and then only a GaN layer is peeled off by irradiation with a laser pulse ( For example, Non-Patent Document 1) has a problem that the substrate is easily cracked in the process of peeling, and there is a problem that complicated processing is required to obtain a large GaN substrate with good reproducibility.

また、サファイア基板に代えて、GaNとより格子定数の近い、LiAlOやZnOの単結晶を基板に用いて、GaNを成長させる方法が提案されている。これらの基板を用いた場合は、比較的基板の剥離は容易になるが、ヘテロエピタキシャル成長であることには違いなく、バッファ層が必要であり、基板の成長温度や融点などの違いから、未だ、結晶性に優れたGaN基板の実用化には、問題を抱えている。 Further, a method for growing GaN using a single crystal of LiAlO 2 or ZnO having a lattice constant closer to that of GaN instead of a sapphire substrate has been proposed. When these substrates are used, it is relatively easy to peel off the substrate, but it must be heteroepitaxial growth, and a buffer layer is necessary, and due to differences in the growth temperature and melting point of the substrate, There is a problem in putting a GaN substrate excellent in crystallinity into practical use.

また、GaAs基板に窓を有するSi等のマスクを形成し、低温バッファ層を形成した後にHVPE法で横方向のエピタキシャル成長を行い、低転位密度のエピタキシャル層を形成し、GaAs基板をエッチング等で除去してGaN自立基板を得る方法が行なわれている(特許文献2、3)。しかし、この方法では窓を有するSiマスクを形成する工程や低温バッファ層の形成工程等が必要となる。また、GaN自立基板に大きな反りが発生するという問題もあった。 Also, a mask such as Si 3 N 4 having a window is formed on the GaAs substrate, a low temperature buffer layer is formed, and then lateral epitaxial growth is performed by the HVPE method to form a low dislocation density epitaxial layer, and the GaAs substrate is etched. A method of obtaining a GaN free-standing substrate by removing the substrate by using a method such as that described above (Patent Documents 2 and 3). However, this method requires a step of forming a Si 3 N 4 mask having a window, a step of forming a low-temperature buffer layer, and the like. In addition, there is a problem that a large warp occurs in the GaN free-standing substrate.

また、HVPE法では比較的高速でGaNエピタキシャル成長が可能であるため、最近、その特徴を利用してブール(BOULE)すなわちGaN自立基板上に1cm〜10cm程度以上のような超厚膜のエピタキシャル成長を行って形成した単結晶インゴットをスライスして多数枚の基板(スライス基板)を得、スライス基板のスライス面を研磨して多数枚のGaN自立基板を得ようとする試み(以下、ブール法と言う)も行なわれている(例えば、特許文献2、3等参照)。しかし、この方法では、結晶品質の高いGaN自立基板を安定的に得ることは難しかった。   In addition, since the HVPE method enables GaN epitaxial growth at a relatively high speed, recently, an ultra-thick film of about 1 cm to 10 cm or more is grown on a Boolean (GaN) free-standing substrate using its characteristics. Attempts to obtain a large number of substrates (slice substrates) by slicing the single crystal ingot formed in this way, and to obtain a large number of free-standing GaN substrates by polishing the slice surface of the slice substrate (hereinafter referred to as the Boolean method) (See, for example, Patent Documents 2 and 3). However, with this method, it has been difficult to stably obtain a GaN free-standing substrate with high crystal quality.

特開昭61−188983号公報Japanese Patent Laid-Open No. 61-188983 特開2000−12900号公報Japanese Patent Laid-Open No. 2000-12900 特開2000−22212号公報JP 2000-22212 A Jpn.J.Appl.Phys.Vol.38(1999)pt.2,No.3A,L217−219Jpn. J. et al. Appl. Phys. Vol. 38 (1999) pt. 2, no. 3A, L217-219

本発明はこのような問題に鑑みてなされたもので、結晶品質に優れ、反りの少ない大口径の窒化物半導体自立基板を、生産性よく低コストで製造する方法を提供することを主目的とする。   The present invention has been made in view of such problems, and its main object is to provide a method for manufacturing a large-diameter nitride semiconductor free-standing substrate with excellent crystal quality and low warpage with high productivity and low cost. To do.

本発明は、上記課題を解決するためになされたもので、少なくとも、種基板となる窒化物半導体自立基板を準備する工程と、前記種基板上に、該種基板と同種の窒化物半導体をエピタキシャル成長する工程と、前記エピタキシャル成長を行ったエピタキシャル成長基板を、エピタキシャル成長面と平行にスライスして2分割するスライス工程とを含み、1枚の種基板から2枚の窒化物半導体自立基板を製造することを特徴とする窒化物半導体自立基板の製造方法を提供する。 The present invention has been made to solve the above problems, and at least a step of preparing a nitride semiconductor free-standing substrate to be a seed substrate, and epitaxial growth of a nitride semiconductor of the same type as the seed substrate on the seed substrate And a step of slicing the epitaxially grown substrate on which the epitaxial growth has been performed in parallel with the epitaxial growth surface to divide it into two, to produce two nitride semiconductor free-standing substrates from one seed substrate that provides a method of manufacture of a nitride semiconductor free-standing substrate according to.

このような工程を含み、1枚の種基板から2枚の窒化物半導体自立基板を製造することを特徴とする窒化物半導体自立基板の製造方法であれば、種基板となる窒化物半導体自立基板上に同種の結晶をエピタキシャル成長させるホモエピタキシャル成長であるので、ヘテロエピタキシャル成長の場合のような反りや歪、割れの問題は生ぜず、かつ、エピタキシャル層の転位密度を低く抑えることができる。その結果、2分割スライスによってエピタキシャル層側から得られた製品窒化物半導体自立基板の結晶性も高品質とすることができる。   If the nitride semiconductor free-standing substrate manufacturing method includes such steps and manufactures two nitride semiconductor free-standing substrates from one seed substrate, the nitride semiconductor free-standing substrate to be a seed substrate Since this is homoepitaxial growth in which the same kind of crystal is epitaxially grown, the problem of warping, distortion and cracking does not occur as in the case of heteroepitaxial growth, and the dislocation density of the epitaxial layer can be kept low. As a result, the crystallinity of the product nitride semiconductor free-standing substrate obtained from the epitaxial layer side by the two-division slice can be made high quality.

また、異種材料を用いて複雑な形状のマスクを形成するなどの煩雑な工程がなく、生産性よく低コストで窒化物半導体自立基板を製造することができる。
また、従来のブール法のように超厚膜のエピタキシャル成長を行わず、2分割スライスを行うのに十分な膜厚だけをエピタキシャル成長するので、エピタキシャル成長中のエピタキシャル成長面の管理が容易であり、エピタキシャル層の結晶品質を容易に高く維持することができる。
Moreover, there is no complicated process such as forming a mask having a complicated shape using different materials, and a nitride semiconductor free-standing substrate can be manufactured with high productivity and low cost.
In addition, since the ultra-thick film is not epitaxially grown as in the conventional Boolean method, only the film thickness sufficient to perform the two-division slice is epitaxially grown, so that the epitaxial growth surface during the epitaxial growth can be easily managed. Crystal quality can be easily maintained high.

この場合、上記の窒化物半導体自立基板の製造方法によって製造した窒化物半導体自立基板を再び前記種基板として用いることが好ましい。
このように、上記の窒化物半導体自立基板の製造方法によって製造した窒化物半導体自立基板を再び種基板として用いれば、低コストで得られた結晶品質の高い窒化物半導体自立基板を再び種基板として使用するので、製造コストを低く抑えて高品質の窒化物半導体自立基板を得ることができる。
In this case, it is not preferable to use as the seed substrate again nitride semiconductor free-standing substrate produced by the production method of the nitride semiconductor free-standing substrate.
Thus, if the nitride semiconductor free-standing substrate manufactured by the above-described nitride semiconductor free-standing substrate manufacturing method is used again as a seed substrate, the nitride semiconductor free-standing substrate with high crystal quality obtained at low cost can be used again as a seed substrate. Since it is used, it is possible to obtain a high-quality nitride semiconductor free-standing substrate while keeping the manufacturing cost low.

また、前記種基板となる窒化物半導体自立基板を複数枚準備し、前記エピタキシャル成長を、同一のチャンバー内で、前記複数枚の種基板に対して同時に行うことが好ましく、前記複数枚の種基板となる窒化物半導体自立基板を、8枚以上とすることが特に好ましい。
このように、種基板となる窒化物半導体自立基板を複数枚、特には8枚以上準備し、エピタキシャル成長を、同一のチャンバー内で、前記複数枚の種基板に対して同時に行えば、生産性を著しく向上することができる。また、本発明では、従来のブール法のような超厚膜のエピタキシャル成長を行わないので、成長面におけるガスフロー等の管理も容易であり、このように複数枚の種基板に対してエピタキシャル成長を行ってもエピタキシャル層の結晶性の維持も容易である。
Further, the seed substrate nitride semiconductor free-standing substrate comprising a ready plurality, wherein the epitaxial growth, in the same chamber, rather preferably be carried out simultaneously on the plurality of seed substrates, the plurality of species the nitride semiconductor free-standing substrate comprising a substrate, especially not preferable be eight or more.
In this way, if a plurality of nitride semiconductor free-standing substrates to be seed substrates, in particular, 8 or more are prepared, and epitaxial growth is simultaneously performed on the plurality of seed substrates in the same chamber, productivity can be improved. It can be significantly improved. Further, in the present invention, since the ultra-thick film is not epitaxially grown as in the conventional boule method, it is easy to manage the gas flow and the like on the growth surface. In this way, the epitaxial growth is performed on a plurality of seed substrates. However, it is easy to maintain the crystallinity of the epitaxial layer.

また、前記スライスして2分割したエピタキシャル成長基板の該スライス面を研磨することが好ましい。
このように、スライスして2分割したエピタキシャル成長基板の該スライス面を研磨すれば、窒化物半導体自立基板の平坦性を向上させることができる。
Moreover, it is not preferable to polish the slice plane of the slice to bisected epitaxial growth substrate.
Thus, by polishing the slice surface of the epitaxially grown substrate that has been sliced and divided into two, the flatness of the nitride semiconductor free-standing substrate can be improved.

また、前記エピタキシャル成長をHVPE法によって行うことが好ましい。
このように、エピタキシャル成長をHVPE法によって行えば、高速でエピタキシャル成長をすることができる。そのため、生産性よく窒化物半導体自立基板を製造することができる。
Moreover, it is not preferable to perform the epitaxial growth by the HVPE method.
Thus, if epitaxial growth is performed by the HVPE method, epitaxial growth can be performed at high speed. Therefore, a nitride semiconductor free-standing substrate can be manufactured with high productivity.

また、前記エピタキシャル成長工程において形成するエピタキシャル層の厚さを1mm以下とすることが好ましい。
このように、エピタキシャル成長工程において形成するエピタキシャル層の厚さを1mm以下とすれば、従来のブール法に比べて非常に薄い膜厚であるので、エピタキシャル成長中のエピタキシャル成長面の管理が容易となり、エピタキシャル層の結晶品質を高く維持することができる。
Moreover, it is not preferable that the thickness of the epitaxial layer and 1mm or less to form in the epitaxial growth step.
As described above, if the thickness of the epitaxial layer formed in the epitaxial growth process is 1 mm or less, the film thickness is much thinner than that of the conventional boule method. High crystal quality can be maintained.

また、前記種基板となる窒化物半導体自立基板及び前記製造する窒化物半導体自立基板をGaN自立基板とすることができる。
このように、種基板となる窒化物半導体自立基板及び製造する窒化物半導体自立基板をGaN自立基板とすれば、結晶品質の高いGaN自立基板を製造することができ、様々なデバイス用途に使用することができる。
Further, a nitride semiconductor free-standing substrate of the nitride semiconductor free-standing substrate and the manufacturing becomes the seed substrate Ru can be a GaN free-standing substrate.
Thus, if the nitride semiconductor free-standing substrate to be a seed substrate and the nitride semiconductor free-standing substrate to be manufactured are GaN free-standing substrates, a GaN free-standing substrate with high crystal quality can be manufactured and used for various device applications. be able to.

また、前記種基板となる窒化物半導体自立基板を、直径が37.5mm以上であり、厚さが250μm以上であり、ワープ値が35μm以下であるものとすることが好ましい。
このように、種基板となる窒化物半導体自立基板を、直径が37.5mm以上であり、厚さが250μm以上であり、ワープ値が35μm以下であるものとすれば、エピタキシャル層も同等程度の直径と平坦度とすることができる。その結果、エピタキシャル層側から得られた製品窒化物半導体自立基板も同等程度の直径と平坦度を有する大口径高品質の窒化物半導体自立基板とすることができる。
Further, the seed substrate to become a nitride semiconductor free-standing substrate, and a diameter of 37.5mm or more, is 250μm or more in thickness, have preferably be those warp value is 35μm or less.
As described above, if the nitride semiconductor free-standing substrate serving as the seed substrate has a diameter of 37.5 mm or more, a thickness of 250 μm or more, and a warp value of 35 μm or less, the epitaxial layer can be equivalent. Diameter and flatness can be used. As a result, the product nitride semiconductor free-standing substrate obtained from the epitaxial layer side can also be a large-diameter high-quality nitride semiconductor free-standing substrate having comparable diameter and flatness.

また、前記種基板となる窒化物半導体自立基板を、貫通転位密度が5×10/cm以下であるものとすることが好ましい。
このように、種基板となる窒化物半導体自立基板を、貫通転位密度が5×10/cm以下であるものとすれば、エピタキシャル層の転位も同程度に抑えることができ、エピタキシャル層側から得られた製品窒化物半導体自立基板の転位も同程度に抑えることができる。
Further, a nitride semiconductor free-standing substrate serving as the seed substrate, it is not preferable that as threading dislocation density of 5 × 10 7 / cm 2 or less.
In this way, if the nitride semiconductor free-standing substrate serving as the seed substrate has a threading dislocation density of 5 × 10 7 / cm 2 or less, the dislocation of the epitaxial layer can be suppressed to the same level, and the epitaxial layer side The dislocation of the product nitride semiconductor free-standing substrate obtained from the above can be suppressed to the same extent.

また、前記エピタキシャル成長工程の後、前記スライス工程の前に、前記エピタキシャル成長基板の周辺部に対して面取りを行うともにスライスするためのツールを誘導する溝を形成することが好ましい。
このように、エピタキシャル成長工程の後、スライス工程の前に、エピタキシャル成長基板の周辺部に対して面取りを行うともにスライスするためのツール(内周刃ブレード、ワイヤー等)を誘導する溝を形成すれば、スライス工程時の基板周辺部の割れや欠けを防ぐことができ、また、スライス後の基板(スライス基板)の厚さを高精度に制御することができるとともに平坦度を向上させることができる。
Further, after said epitaxial growth step, the before slicing step, the epitaxial growth has is preferable to form the groove to induce tools to both slicing perform chamfering the peripheral portion of the substrate.
In this way, after the epitaxial growth step, before the slicing step, if a groove for guiding a tool (inner peripheral blade, wire, etc.) for chamfering and slicing the peripheral portion of the epitaxial growth substrate is formed, It is possible to prevent cracks and chips at the periphery of the substrate during the slicing process, and it is possible to control the thickness of the substrate after slicing (slice substrate) with high accuracy and improve flatness.

また、前記スライス工程を、ブレードの刃厚が250μm以下の内周刃ブレード、ワイヤーの直径が200μm以下のシングルワイヤーソー、又はブレードの刃厚が250μm以下のシングルブレードソーを用いて行うことができる。
このように、スライス工程を内周刃ブレードやシングルブレードソーを用いて行えば、スライス面において高い平行度を確保することができる。また、ブレードの刃厚が250μm以下の内周刃ブレードやシングルブレードソーを用いて行えば、スライスによる切り代を少なくすることができ、材料の損失を低減することができる。また、スライス工程を、ワイヤーの直径が200μm以下のシングルワイヤーソーを用いて行えば、スライスによる切り代をより少なくすることができ、材料の損失をさらに低減することができる。
The slicing step can be performed using an inner peripheral blade having a blade thickness of 250 μm or less, a single wire saw having a wire diameter of 200 μm or less, or a single blade saw having a blade thickness of 250 μm or less. The
Thus, if the slicing step is performed using an inner peripheral blade or a single blade saw, high parallelism can be ensured on the slicing surface. Further, if an inner peripheral blade or a single blade saw having a blade thickness of 250 μm or less is used, the cutting allowance by slicing can be reduced, and the loss of material can be reduced. Further, if the slicing step is performed using a single wire saw having a wire diameter of 200 μm or less, the cutting allowance by slicing can be further reduced, and the loss of material can be further reduced.

また、前記スライス工程を、前記エピタキシャル成長基板を複数枚スタックし、ワイヤーの直径が200μm以下のマルチワイヤーソー、又はブレードの刃厚が250μm以下のマルチブレードソーを用いて前記スタックした複数枚のエピタキシャル成長基板を同時にスライスすることによって行うこともできる。
このように、スライス工程を、エピタキシャル成長基板を複数枚スタックし、ワイヤーの直径が200μm以下のマルチワイヤーソー、又はブレードの刃厚が250μm以下のマルチブレードソーを用いてスタックした複数枚のエピタキシャル成長基板を同時にスライスすることによって行えば、複数枚のエピタキシャル成長基板を同時にスライスするので、生産性を向上させることができる。
In the slicing step, a plurality of the epitaxial growth substrates are stacked using a multi-wire saw having a wire diameter of 200 μm or less, or a multi-blade saw having a blade thickness of 250 μm or less. Ru can also be carried out by slicing at the same time.
In this way, a plurality of epitaxial growth substrates are stacked by stacking a plurality of epitaxial growth substrates using a multi-wire saw having a wire diameter of 200 μm or less, or a multi-blade saw having a blade thickness of 250 μm or less. If slicing is performed simultaneously, a plurality of epitaxial growth substrates are sliced at the same time, so that productivity can be improved.

また、本発明は、上記のいずれかの窒化物半導体単結晶基板の製造方法によって製造されたことを特徴とする窒化物半導体自立基板を提供する。
このように、上記のいずれかの窒化物半導体単結晶基板の製造方法によって製造されたことを特徴とする窒化物半導体自立基板であれば、結晶品質が高い窒化物半導体自立基板である。
Further, the present invention is that provides a nitride semiconductor free-standing substrate, characterized in that it is manufactured by the method of any of a nitride semiconductor single crystal substrate described above.
Thus, a nitride semiconductor free-standing substrate manufactured by any one of the above-described methods for manufacturing a nitride semiconductor single-crystal substrate is a nitride semiconductor free-standing substrate having high crystal quality.

この場合、直径が37.5mm以上であり、厚さ250μm以上であり、ワープ値が35μm以下であるものとすることができる。
このように、直径が37.5mm以上であり、厚さ250μm以上であり、ワープ値が35μm以下である窒化物半導体自立基板であれば、大口径であり、かつ平坦性の高い窒化物半導体自立基板として様々なデバイス用途に使用することができる。
In this case, the diameter is not less than 37.5 mm, and a thickness of 250μm or more, Ru can be assumed warp value is 35μm or less.
As described above, a nitride semiconductor free-standing substrate having a diameter of 37.5 mm or more, a thickness of 250 μm or more, and a warp value of 35 μm or less has a large diameter and high flatness. It can be used as a substrate for various device applications.

また、貫通転位密度が5×10/cm以下であることが好ましい。
このように、貫通転位密度が5×10/cm以下である窒化物半導体自立基板であれば、十分に結晶品質の高い窒化物半導体自立基板である。
Moreover, it is not preferable threading dislocation density of 5 × 10 7 / cm 2 or less.
Thus, a nitride semiconductor free-standing substrate having a threading dislocation density of 5 × 10 7 / cm 2 or less is a nitride semiconductor free-standing substrate having sufficiently high crystal quality.

本発明に係る窒化物半導体自立基板の製造方法であれば、結晶品質に優れ、ワープの小さな大口径の窒化物半導体自立基板を、生産性よく低コストで製造することができる。   With the method for manufacturing a nitride semiconductor free-standing substrate according to the present invention, a large-diameter nitride semiconductor free-standing substrate with excellent crystal quality and small warp can be manufactured with high productivity and low cost.

以下、本発明についてさらに詳細に説明するが、本発明はこれに限定されるものではない。
前述のように、GaN自立基板の製造方法として、GaAs基板等にマスクを形成して横方向エピタキシャル成長を行う方法では、非常に複雑な工程が必要となるという問題があり、非常に複雑な工程となるため、高コストにつながっていた。また、このような手法のように、異種基板上にHVPE法等によりGaNを成長する場合には、種基板とエピタキシャル層との格子定数の違い、熱膨張係数の違いからエピタキシャル成長基板に大きな反りが生じ、リフトオフにより基板を除去後にも製品GaN自立基板に大きな反りが残り、その後の加工工程でこの反りを修正することは極めて難しく、素子製造工程で問題となっていた。
Hereinafter, the present invention will be described in more detail, but the present invention is not limited thereto.
As described above, as a method of manufacturing a GaN free-standing substrate, the method of forming a mask on a GaAs substrate or the like and performing lateral epitaxial growth has a problem that a very complicated process is required. Therefore, it led to high cost. Further, when GaN is grown on a heterogeneous substrate by the HVPE method or the like like this method, the epitaxial growth substrate is greatly warped due to the difference in the lattice constant and the thermal expansion coefficient between the seed substrate and the epitaxial layer. As a result, even after the substrate is removed by lift-off, a large warp remains in the product GaN free-standing substrate, and it is extremely difficult to correct this warp in the subsequent processing steps, which has been a problem in the device manufacturing process.

一方、ブール法では、基板にGaN単結晶を用いることができるなどの利点がある。しかし、厚いエピタキシャル成長を行なう場合には、エピタキシャル層表面に異物の付着があると大きな突起となり、その部分に結晶欠陥、多結晶の成長が生ずることになる。異物の付着を避けるためには、成長面を下向きにすることが有利であるが、基板のホルダーへの装着が難しくなるといった新たな問題が出てくる。このように結晶欠陥の発生源となる異物の付着が長時間にわたって生じないようにしなければならず、また、長時間行われる超厚膜のエピタキシャル成長中に、エピタキシャル成長面を長時間にわたって一定に保たなければならない事情などがあり、高品質の窒化物半導体自立基板を生産性及び歩留まりよく得ることは極めて困難である。また、成長面におけるガスフロー等の管理に微妙な調整が必要であるため、同一チャンバー(反応管)内で製造するブールの個数を増やすことができず、生産性を高められなかった。   On the other hand, the Boolean method has an advantage that a GaN single crystal can be used for the substrate. However, when thick epitaxial growth is performed, if foreign matter adheres to the surface of the epitaxial layer, large protrusions are formed, and crystal defects and polycrystal growth occur in those portions. In order to avoid the adhesion of foreign substances, it is advantageous to face the growth surface downward, but a new problem arises that it becomes difficult to attach the substrate to the holder. Thus, it is necessary to prevent adhesion of foreign substances that are the source of crystal defects over a long period of time, and the epitaxial growth surface is kept constant over a long period of time during the epitaxial growth of an ultra-thick film that is performed for a long time. For example, it is extremely difficult to obtain a high-quality nitride semiconductor free-standing substrate with high productivity and yield. Further, since fine adjustment is necessary for management of gas flow and the like on the growth surface, the number of boules to be manufactured in the same chamber (reaction tube) cannot be increased, and productivity cannot be increased.

そこで、本発明者らは、低コストで生産性よく窒化物半導体自立基板を製造する方法について鋭意実験及び検討を行った。その結果、種基板として窒化物半導体自立基板を用い、所定の厚さまでホモエピタキシャル成長させ、得られた窒化物半導体エピタキシャル成長基板を2分割スライスすれば、生産性よく低コストで、結晶品質の高い窒化物半導体自立基板を、種結晶の数の2倍の枚数得ることができることに想到した。また、このようにして製造した窒化物半導体自立基板は、再び種基板として用いることができ、製造サイクルの全体としても低コストとすることができることに想到し、本発明を完成させた。   Therefore, the present inventors have conducted intensive experiments and studies on a method for manufacturing a nitride semiconductor free-standing substrate at low cost and with high productivity. As a result, if a nitride semiconductor free-standing substrate is used as a seed substrate, homoepitaxially grown to a predetermined thickness, and the obtained nitride semiconductor epitaxially grown substrate is sliced into two, nitride with high productivity and low cost and high crystal quality It has been conceived that the number of semiconductor free-standing substrates can be obtained twice as many as the number of seed crystals. In addition, the nitride semiconductor free-standing substrate manufactured as described above can be used again as a seed substrate, and the cost of the entire manufacturing cycle can be reduced, and the present invention has been completed.

本発明は種々のIII族窒化物半導体(III族金属であるアルミニウム、ガリウム、インジウム等の窒化物、あるいはこれらの混晶)について適用することができるが、以下では、主にGaN自立基板を製造する場合を例に挙げて説明する。
図1は、本発明に係る窒化物半導体自立基板の製造方法の一例を示す工程図である。
The present invention can be applied to various group III nitride semiconductors (group III metal nitrides such as aluminum, gallium, and indium, or mixed crystals thereof). An example of the case will be described.
FIG. 1 is a process diagram showing an example of a method for manufacturing a nitride semiconductor free-standing substrate according to the present invention.

まず、種基板101として窒化物半導体自立基板を準備する(工程a)。
この種基板101は、最終的に製造する窒化物半導体自立基板と同種のものとする。種基板となる窒化物半導体自立基板としては、どのような製造方法によって製造されたものでもよく、例えば、特許文献2、3等に記載された製造方法によって製造されたものとすることができる。ただし、以下のような条件を満たす窒化物半導体自立基板を用いることが好ましい。
First, a nitride semiconductor free-standing substrate is prepared as a seed substrate 101 (step a).
The seed substrate 101 is the same type as the nitride semiconductor free-standing substrate that is finally manufactured. The nitride semiconductor free-standing substrate to be the seed substrate may be manufactured by any manufacturing method, and for example, may be manufactured by a manufacturing method described in Patent Documents 2, 3 and the like. However, it is preferable to use a nitride semiconductor free-standing substrate that satisfies the following conditions.

まず、貫通転位密度はできるだけ低い方が好ましく、特には5×10/cm以下、さらには1×10/cm以下であることが好ましい。本発明は種基板上に同種の窒化物半導体を成長させるホモエピタキシャル成長であり、エピタキシャル層は種基板の結晶品質に影響されるので、種基板として貫通転位密度の低いものを用いることが好ましい。 First, the threading dislocation density is preferably as low as possible, particularly 5 × 10 7 / cm 2 or less, more preferably 1 × 10 7 / cm 2 or less. The present invention is homoepitaxial growth in which the same kind of nitride semiconductor is grown on a seed substrate. Since the epitaxial layer is affected by the crystal quality of the seed substrate, it is preferable to use a seed substrate having a low threading dislocation density.

また、種基板の直径が37.5mm(1.5インチ)以上であることが好ましく、さらには50mm(2インチ)以上であることが好ましい。LED等のデバイスを工業的に低コストで製造するためには、より基板面積の広いものが良い。また、最終的に製造される窒化物半導体自立基板の大きさは種基板の大きさに影響される。従ってこのような大直径の種基板を用いる。   Further, the diameter of the seed substrate is preferably 37.5 mm (1.5 inches) or more, and more preferably 50 mm (2 inches) or more. In order to manufacture a device such as an LED industrially at low cost, a device having a larger substrate area is preferable. In addition, the size of the nitride semiconductor free-standing substrate that is finally produced is affected by the size of the seed substrate. Therefore, such a large-diameter seed substrate is used.

また、50mm(2インチ)径換算時のワープ値が35μm以下であることが好ましい。本発明はホモエピタキシーであるから、ヘテロエピタキシーの場合と異なり、2分割後のエピタキシャル成長基板も同等程度の反りとすることができ、最終的に製造される窒化物半導体自立基板も同等程度の反りに抑えることが可能となる。基板の反りを小さく抑えることができれば、例えばデバイス作製工程におけるフォトリソグラフィなどに支障をきたすことがなく、安定的に進めることができる。   Moreover, it is preferable that the warp value at the time of 50 mm (2 inch) diameter conversion is 35 micrometers or less. Since the present invention is homoepitaxy, unlike the case of heteroepitaxy, the epitaxially grown substrate after bisection can be warped to the same extent, and the finally produced nitride semiconductor free-standing substrate is also warped to the same extent. It becomes possible to suppress. If warpage of the substrate can be suppressed to a small level, for example, photolithography in the device manufacturing process is not hindered, and the process can be proceeded stably.

また、厚さが250μm以上であることが好ましい。このような厚さであれば、強度やたわみへの耐性は十分であり、また、後述する工程dの2分割スライス工程時において種基板101側の強度を十分に保ってスライスすることができる。   Moreover, it is preferable that thickness is 250 micrometers or more. With such a thickness, the strength and resistance to deflection are sufficient, and the seed substrate 101 side can be sliced with sufficient strength in the two-division slicing step of step d described later.

次に、種基板101上に、種基板101と同種の窒化物半導体をエピタキシャル成長してエピタキシャル層102を形成し、エピタキシャル成長基板103とする(工程b)。
図2に、本発明において用いるエピタキシャル成長装置の一例として縦型タイプのHVPE装置を示す。
HVPE装置1は、縦型反応管(チャンバー)2の内部に、III族金属化合物を生成するIII族金属化合物生成管8を具備する。III族金属化合物生成管8は以下のように構成される。III族金属を搭載した原料III族金属用ボート6と、反応ガスとして例えば塩化水素を水素ガスをキャリアガスとして導入する反応ガス導入管4と、生成したIII族金属化合物ガスのフローを調節する整流板10と、生成したIII族金属化合物ガスの流速調整用の希釈用ガスを導入する希釈用ガス導入管5と、III族金属化合物ガスを吹き出すIII族金属化合物吹き出し管11を具備する。また、III族金属化合物生成管8は第一のヒーター7によって加熱される。複数のIII族金属元素を含む窒化物半導体自立基板を製造する場合にはそれらの金属の混合物を比率を調整して原料III族金属用ボート6に搭載すればよい。
Next, a nitride semiconductor of the same type as the seed substrate 101 is epitaxially grown on the seed substrate 101 to form an epitaxial layer 102, thereby forming an epitaxial growth substrate 103 (step b).
FIG. 2 shows a vertical type HVPE apparatus as an example of an epitaxial growth apparatus used in the present invention.
The HVPE apparatus 1 includes a group III metal compound generation tube 8 that generates a group III metal compound inside a vertical reaction tube (chamber) 2. The group III metal compound production tube 8 is configured as follows. A group III metal boat 6 loaded with a group III metal, a reaction gas introduction pipe 4 for introducing hydrogen chloride as a carrier gas, for example, as a reaction gas, and a rectification for adjusting the flow of the generated group III metal compound gas A plate 10, a dilution gas introduction pipe 5 for introducing a dilution gas for adjusting the flow rate of the generated group III metal compound gas, and a group III metal compound blowing pipe 11 for blowing out the group III metal compound gas are provided. The group III metal compound production tube 8 is heated by the first heater 7. When manufacturing a nitride semiconductor free-standing substrate containing a plurality of group III metal elements, the ratio of the mixture of these metals may be adjusted and mounted on the raw material group III metal boat 6.

HVPE装置1は、さらに、アンモニアを導入するアンモニア導入管3と、種基板101を載置する回転自在のサセプター13と、縦型反応管2の内部に反応物が析出するのを防ぐ内部保護管14と、各種ガスを排出するガス排出管15と、基板を加熱する第二のヒーター9等を具備する。   The HVPE apparatus 1 further includes an ammonia introduction tube 3 for introducing ammonia, a rotatable susceptor 13 on which the seed substrate 101 is placed, and an internal protective tube for preventing the reactant from being deposited inside the vertical reaction tube 2. 14, a gas discharge pipe 15 for discharging various gases, a second heater 9 for heating the substrate, and the like.

このような構造を有するHVPE装置1を用いて、以下のように窒化物半導体のホモエピタキシャル成長を行う。
まず、原料III族金属用ボート6に搭載した原料III族金属を第一のヒーター7により例えば800〜850℃に加熱する。溶融した原料III族金属(例えばガリウム)に反応ガス導入管4から塩化水素等の反応ガスを吹きつけ、反応させてIII族金属化合物ガス(III金属がガリウムであり、反応ガスが塩化水素である場合には塩化ガリウム)を生成させる。
生成したIII族金属化合物ガスは、整流板10を通過し、III族金属化合物吹き出し管11から、回転するサセプター13上に載置された種基板101に吹き付けられる。このIII族金属化合物ガスの流速は希釈用ガス導入管5によって導入される希釈用ガス(水素や窒素等)の流速を制御することで調節することができる。種基板101は第二のヒーター9で加熱され、上記III族金属化合物ガスと、アンモニア導入管3から導入されたアンモニアが反応し、種基板101上にIII族窒化物半導体のエピタキシャル層102がエピタキシャル成長する。
Using the HVPE apparatus 1 having such a structure, homoepitaxial growth of a nitride semiconductor is performed as follows.
First, the raw material group III metal mounted on the raw material group III metal boat 6 is heated to, for example, 800 to 850 ° C. by the first heater 7. A reaction gas such as hydrogen chloride is blown from the reaction gas introduction tube 4 to the molten raw material group III metal (for example, gallium) and reacted to cause a group III metal compound gas (III metal is gallium and the reaction gas is hydrogen chloride). In this case, gallium chloride) is produced.
The generated group III metal compound gas passes through the rectifying plate 10 and is blown from the group III metal compound blowing tube 11 onto the seed substrate 101 mounted on the rotating susceptor 13. The flow rate of the group III metal compound gas can be adjusted by controlling the flow rate of the dilution gas (hydrogen, nitrogen, etc.) introduced by the dilution gas introduction pipe 5. The seed substrate 101 is heated by the second heater 9, and the group III metal compound gas reacts with the ammonia introduced from the ammonia introduction tube 3, and the epitaxial layer 102 of the group III nitride semiconductor is epitaxially grown on the seed substrate 101. To do.

本発明に係る窒化物半導体自立基板の製造方法では、ブール法と比較して、エピタキシャル成長面の変動が少ないので、エピタキシャル成長ガスの供給のためのガスフローに対し略一定の条件を保てるため、膜厚分布を悪化させることがない。ブール形成において行なわれるようなエピタキシャル成長中の基板を移動させ、ガスフローに対し成長界面を一定に保つといった対応は不要であり、装置が複雑にならないという利点をもつ。   In the method for manufacturing a nitride semiconductor free-standing substrate according to the present invention, since the fluctuation of the epitaxial growth surface is small as compared with the boule method, the film thickness can be kept constant with respect to the gas flow for supplying the epitaxial growth gas. The distribution is not deteriorated. It is not necessary to move the substrate during epitaxial growth as in the boule formation and keep the growth interface constant with respect to the gas flow, and there is an advantage that the apparatus is not complicated.

エピタキシャル層102の厚さは、必要最小限にとどめることが望ましい。このエピタキシャル層102の厚さは、最終的にエピタキシャル層102側から得ようとする窒化物半導体自立基板の厚さにもよるが、最大でも1mm以下とすることが望ましい。
このような厚さであれば、エピタキシャル層を必要最小限の厚さまでしか成長させないため、通常のHVPE装置で、同時に非常に多くの種基板101を仕込んでも、成長面がガスフローに対し影響を大きく受けない(すなわち、基板面内の厚さ分布の悪化がない)範囲でエピタキシャル成長を行うことができ、高品質なエピタキシャル層を生産性良く形成することができる。このような点で本発明の窒化物半導体自立基板の製造方法は、従来のブール法よりも優れている。
It is desirable to keep the thickness of the epitaxial layer 102 to the minimum necessary. The thickness of this epitaxial layer 102 is preferably 1 mm or less at the maximum, although it depends on the thickness of the nitride semiconductor free-standing substrate to be finally obtained from the epitaxial layer 102 side.
With such a thickness, the epitaxial layer can be grown only to the minimum necessary thickness. Therefore, even if a large number of seed substrates 101 are charged simultaneously with a normal HVPE apparatus, the growth surface has an influence on the gas flow. Epitaxial growth can be performed within a range that is not greatly affected (that is, the thickness distribution in the substrate is not deteriorated), and a high-quality epitaxial layer can be formed with high productivity. In this respect, the nitride semiconductor free-standing substrate manufacturing method of the present invention is superior to the conventional boule method.

本発明におけるエピタキシャル成長は、上記のHVPE法に限定されるものではないが、1mm以下程度のようなやや厚めの窒化物半導体エピタキシャル層の形成を行う必要のある本発明では、HVPE法を用いれば、例えば毎時100μm以上のような高速で窒化物半導体のエピタキシャル成長をすることができるので好ましい。   Epitaxial growth in the present invention is not limited to the above HVPE method, but in the present invention in which it is necessary to form a slightly thick nitride semiconductor epitaxial layer of about 1 mm or less, if the HVPE method is used, For example, it is preferable because the nitride semiconductor can be epitaxially grown at a high speed of 100 μm / hour or more.

また、本発明では上記したブール法のように1cm〜10cm程度以上のような超厚膜のエピタキシャル成長を行う必要がないので、成長面におけるガスフロー等の管理も容易であり、上記のように複数枚の種基板に対してエピタキシャル成長を行ってもエピタキシャル層の結晶品質を維持することも容易である。そのため、種基板101を複数枚準備し、同一のチャンバー2内で、前記複数枚の種基板101に対して同時にエピタキシャル成長を行うことができ、このようにすれば、生産性を向上することができる。特に、同時に処理する基板を8枚以上とすることもでき、20枚以上の同時処理も可能である。   Further, in the present invention, it is not necessary to perform the epitaxial growth of an ultra-thick film having a thickness of about 1 cm to 10 cm or more as in the above-described boule method, so that the management of the gas flow and the like on the growth surface is easy. Even if epitaxial growth is performed on a single seed substrate, the crystal quality of the epitaxial layer can be easily maintained. Therefore, a plurality of seed substrates 101 can be prepared and epitaxial growth can be simultaneously performed on the plurality of seed substrates 101 in the same chamber 2. In this way, productivity can be improved. . In particular, 8 or more substrates can be processed simultaneously, and 20 or more substrates can be processed simultaneously.

GaNのホモエピタキシャル成長においては、比較的転位密度の低い種基板101を用いても、現状のHVPE法によるエピタキシャル成長では、成長初期に転位密度が5×10/cm程度に増加するが、エピタキシャル成長が進むとともに転位密度は低下し、400〜800μm程度成長した段階で転位密度は5×10/cm以下となる。本発明に係る窒化物半導体自立基板の製造方法においては、転位密度が増大する、エピタキシャル成長厚さ0〜300μm程度の領域が後述の2分割スライス工程で切り代として除去される領域に相当させれば、エピタキシャル層側102から得られる製品窒化物半導体自立基板の結晶品質も5×10/cm程度以下を確保することができるという利点もある。 In homoepitaxial growth of GaN, even if the seed substrate 101 having a relatively low dislocation density is used, in the current epitaxial growth by the HVPE method, the dislocation density increases to about 5 × 10 8 / cm 2 at the initial stage of growth. As it progresses, the dislocation density decreases, and the dislocation density becomes 5 × 10 7 / cm 2 or less at the stage of growing about 400 to 800 μm. In the method for manufacturing a nitride semiconductor free-standing substrate according to the present invention, if a region having an epitaxial growth thickness of about 0 to 300 μm where the dislocation density is increased corresponds to a region that is removed as a cutting margin in a two-division slice process described later. There is also an advantage that the crystal quality of the product nitride semiconductor free-standing substrate obtained from the epitaxial layer side 102 can be secured to about 5 × 10 7 / cm 2 or less.

また、本発明の方法に従って製造された窒化物半導体自立基板は、ホモエピタキシャル成長で作製されることから、エピタキシャル成長基板103の内部歪はヘテロエピタキシャル成長の場合に比べて格段に小さい。そのため、エピタキシャル成長時のV−III比(窒素原子とIII族金属原子の比)を管理すること、及び種基板101の反りを後述のスライス工程で修正することにより基板の湾曲(反り)は問題にならなくなる。   In addition, since the nitride semiconductor free-standing substrate manufactured according to the method of the present invention is manufactured by homoepitaxial growth, the internal strain of the epitaxial growth substrate 103 is much smaller than that in the case of heteroepitaxial growth. Therefore, the curvature (warp) of the substrate becomes a problem by managing the V-III ratio (ratio of nitrogen atom to group III metal atom) during epitaxial growth and correcting the warp of the seed substrate 101 in the slicing process described later. No longer.

次に、エピタキシャル成長基板103の周辺部に対して面取りを行うともにスライスするためのツールを誘導する溝を形成してもよい(工程c)。すなわち、工程dの2分割スライス工程前に、ダイアモンドホイール等で面取り及び溝の形成を行うことが有効である。
このように面取りおよび溝の形成を行うことにより、工程dの2分割スライス工程においては、スライスの方向に対し、より容易に基板外周面を垂直にすることができ、ブレードやワイヤーが所定の切断面から逸脱することを防止することができる。その結果、2分割スライス後の基板(スライス基板)の厚さのバラツキや局所的湾曲(ワープ)をより小さくすることができる。また、基板は所定の形状、直径となるようにすることが求められており、スライス終了後の窒化物半導体自立基板の取り扱い中に、外周部において割れや欠けを防止できるようにする。具体的には、例えば図3(a)のような形状となっているエピタキシャル成長直後のエピタキシャル成長基板103の周辺部に、図3(b)に示したような面取り部103a及び溝103bを形成し、全体としてW型の形状とすることが好ましい。このような面取り形状であれば、図3(c)に示したように、工程dにおいて2分割スライスした後、2枚の窒化物半導体自立基板104双方が面取りされた形になるようにすることができ、スライス終了後の窒化物半導体自立基板104の取り扱い中に、外周部において割れや欠けを防止することができる。なお、スライス工程後にさらに面取りを行ってもよい。
Next, a groove for guiding a tool for slicing and slicing the peripheral portion of the epitaxial growth substrate 103 may be formed (step c). That is, it is effective to perform chamfering and groove formation with a diamond wheel or the like before the two-division slicing step of step d.
By performing chamfering and groove formation in this way, in the two-division slicing step of step d, the outer peripheral surface of the substrate can be more easily made perpendicular to the direction of slicing, and the blade or wire can be cut into a predetermined shape. It is possible to prevent deviation from the surface. As a result, the thickness variation and local curvature (warp) of the substrate (slice substrate) after the two-division slice can be further reduced. Further, the substrate is required to have a predetermined shape and diameter, and it is possible to prevent cracking and chipping at the outer peripheral portion during handling of the nitride semiconductor free-standing substrate after completion of slicing. Specifically, for example, a chamfer 103a and a groove 103b as shown in FIG. 3B are formed in the peripheral portion of the epitaxial growth substrate 103 immediately after the epitaxial growth having a shape as shown in FIG. The overall shape is preferably W-shaped. If it is such a chamfered shape, as shown in FIG. 3C, after the two slices are sliced in step d, both of the two nitride semiconductor free-standing substrates 104 are chamfered. During the handling of the nitride semiconductor free-standing substrate 104 after completion of slicing, it is possible to prevent cracking and chipping at the outer peripheral portion. In addition, you may chamfer further after a slice process.

次に、上記のエピタキシャル成長を行ったエピタキシャル成長基板103を、エピタキシャル成長面と平行にスライスして2分割して、2枚の窒化物半導体自立基板(スライス基板)104とする。(工程d)。
この2分割スライスは、図4のような例えばダイアモンドが電着された内周刃ブレード34を用いて行うことができる。まず、エピタキシャル成長基板103をインゴットホルダー31にウエーハステージ32を介して吸着(接着)する。このエピタキシャル成長基板103のウエーハステージ32への吸着(接着)は真空チャック等種々の方法を用いることができ、適宜選択すればよいが、エピタキシャル成長基板103にわずかに反りがあるような場合には、例えば、図6に示したような、ワックス38によってウエーハステージ32に接着すれば、わずかな反りにより基板が破損することを防止できる。なお、スライス面はウエーハ形状に合わせる必要は特になく、水平にスライスを行えばよい。
Next, the epitaxially grown substrate 103 on which the above-described epitaxial growth has been performed is sliced in parallel with the epitaxial growth surface and divided into two to form two nitride semiconductor free-standing substrates (sliced substrates) 104. (Step d).
This two-division slice can be performed by using, for example, an inner peripheral blade 34 electrodeposited with diamond as shown in FIG. First, the epitaxial growth substrate 103 is adsorbed (adhered) to the ingot holder 31 via the wafer stage 32. Various methods such as a vacuum chuck can be used for adsorbing (adhering) the epitaxial growth substrate 103 to the wafer stage 32 and may be appropriately selected. However, when the epitaxial growth substrate 103 is slightly warped, for example, If the wafer 38 is bonded to the wafer stage 32 with the wax 38 as shown in FIG. 6, it is possible to prevent the substrate from being damaged by slight warping. Note that the slice surface does not have to be matched to the wafer shape and may be sliced horizontally.

また、スライスの後半に基板が割れるのを防ぐため、基板に当て板35を接着することが望ましい。この当て板35はオリエンテーションフラット側に取り付け、スライスはその反対側から始めることが好ましい。このときの内周刃ブレード34としては、平行度を確保できるブレードの張力が確保できる範囲で極力薄いブレード(例えば刃厚250μm以下)を用いれば、スライスの切り代(カーフロス)を少なくでき、そのため、エピタキシャル成長厚さを薄くすることができるとともに材料の損失も低減することができるので好ましい。また、スライス中は、内周刃ブレード34のスライス部位に切削クーラント供給手段36から切削クーラントを供給する。   In addition, in order to prevent the substrate from cracking in the second half of the slice, it is desirable to adhere the contact plate 35 to the substrate. The pad 35 is preferably attached to the orientation flat side, and the slice is preferably started from the opposite side. As the inner peripheral blade 34 at this time, if a blade that is as thin as possible (for example, a blade thickness of 250 μm or less) is used as long as the tension of the blade that can secure parallelism can be secured, the cutting allowance (kerfloss) can be reduced. It is preferable because the epitaxial growth thickness can be reduced and the loss of material can be reduced. Further, during the slicing, the cutting coolant is supplied from the cutting coolant supply means 36 to the slicing portion of the inner peripheral blade 34.

また上記の2分割スライスは、図5のような例えばダイアモンドが電着されたワイヤーソー51を用いて以下のように行うこともできる。まず、ウエーハステージ32にワックス等で接着(吸着)し、当て板35をオリエンテーションフラット側に取り付ける。そして、ワイヤーソー51に切削クーラント供給手段36から切削クーラントを供給しながらエピタキシャル成長基板103を2分割スライスする。
この方法によれば、一般にワイヤーは内周刃の厚さより細いのでスライスによる切り代をより少なくすることができ、材料の損失を低減することができる。なお、上記の内周刃ブレードの場合と同様にスライスにおける平行度を確保できるワイヤーの張力を確保して維持できる範囲で細いワイヤーを用いることが好ましく、例えばワイヤーの直径を200μm以下とすることが好ましい。
In addition, the above-mentioned two-division slice can be performed as follows using a wire saw 51 in which diamond is electrodeposited as shown in FIG. First, the wafer stage 32 is adhered (adsorbed) with wax or the like, and the contact plate 35 is attached to the orientation flat side. Then, the epitaxial growth substrate 103 is sliced into two while the cutting coolant is supplied from the cutting coolant supply means 36 to the wire saw 51.
According to this method, since the wire is generally thinner than the thickness of the inner peripheral blade, the cutting allowance by slicing can be further reduced, and the loss of material can be reduced. In addition, it is preferable to use a thin wire as long as the tension of the wire that can ensure the parallelism in the slice can be secured and maintained as in the case of the inner peripheral blade, and the diameter of the wire is, for example, 200 μm or less. preferable.

また、エピタキシャル成長基板103を複数枚スタックし、複数のワイヤーを有するマルチワイヤーソー、又は複数のブレードを有するマルチブレードソーを用いてスタックした複数枚のエピタキシャル成長基板103を同時にスライスすることによって行うこともできる。この方法によれば、複数枚のエピタキシャル成長基板103を同時にスライスするので、生産性を向上させることができる。   It is also possible to stack a plurality of epitaxial growth substrates 103 and simultaneously slice a plurality of epitaxial growth substrates 103 stacked using a multi-wire saw having a plurality of wires or a multi-blade saw having a plurality of blades. . According to this method, since a plurality of epitaxial growth substrates 103 are sliced at the same time, productivity can be improved.

2分割スライス工程においては、エピタキシャル成長基板103のうち、スライスで除去される領域が、エピタキシャル層102の種基板101の直上の領域であることが好ましい。この領域はその上下の領域よりも比較的転位密度が高い領域であり、上述したようにGaNのホモエピタキシャル成長においては、比較的転位密度の低い種基板101を用いても、現状のHVPE法によるエピタキシャル成長では、成長初期に転位密度が5×10/cm程度に増加するが、エピタキシャル成長が進むとともに転位密度は低下し、400〜800μm程度成長した段階で転位密度は5×10/cm以下となる。そのため、転位密度が増大する領域を2分割スライス工程で除去される領域に相当させて、この領域を除去領域とすることでエピタキシャル層102側から得られる窒化物半導体自立基板の転位密度を低くすることができる。さらに、このようにすることによって、2分割スライス後の種基板の厚さを元のものと同じとしたものを得ることができる。 In the two-split slicing step, it is preferable that the region removed by slicing in the epitaxial growth substrate 103 is a region immediately above the seed substrate 101 of the epitaxial layer 102. This region has a relatively higher dislocation density than the upper and lower regions. As described above, in the GaN homoepitaxial growth, even if the seed substrate 101 having a relatively low dislocation density is used, the epitaxial growth by the current HVPE method is performed. In this case, the dislocation density increases to about 5 × 10 8 / cm 2 in the initial stage of growth, but the dislocation density decreases as the epitaxial growth proceeds, and the dislocation density is 5 × 10 7 / cm 2 or less when grown to about 400 to 800 μm. It becomes. Therefore, the dislocation density of the nitride semiconductor free-standing substrate obtained from the epitaxial layer 102 side is lowered by making the region where the dislocation density increases correspond to the region removed by the two-slice slice process and making this region the removal region. be able to. Furthermore, by doing in this way, it is possible to obtain a seed substrate having the same thickness as the original one after the two-division slice.

また、2分割スライス工程時のブレードやワイヤーの変位を管理し、スライス面の局所的湾曲(ワープ)を少なくすることで、後のデバイス作製工程を安定的に進めることができる。本発明では、同種の種基板上にホモエピタキシャル成長によりエピタキシャル層を成長させているので、異種基板上にヘテロエピタキシャル成長により窒化物半導体のエピタキシャル層を成長させる場合よりも反りを極めて小さくすることができる。スライス時のブレード、ワイヤーの変位によるワープは残るが、その大きさは2インチ基板(直径50mm)の場合でも35μm以下、特には20μm以下に制御することができる。   In addition, by managing the displacement of the blade and wire during the two-slice process and reducing the local curvature (warp) of the slice surface, the subsequent device fabrication process can be stably advanced. In the present invention, since the epitaxial layer is grown on the same type of seed substrate by homoepitaxial growth, the warpage can be made extremely smaller than when the nitride semiconductor epitaxial layer is grown on the heterogeneous substrate by heteroepitaxial growth. The warp due to the displacement of the blade and wire during slicing remains, but the size can be controlled to 35 μm or less, particularly 20 μm or less even in the case of a 2-inch substrate (diameter 50 mm).

スライス工程(工程d)の後はスライス基板104のスライス面にダメージ層があるので、この面をラップして、平坦性を向上させるとともに、該スライス基板104の厚さを所定の厚さにする。この工程では、スラリーのラップ砥粒を段階的に小さくして、ダメージ層を浅くする手法をとるのが良い。その後、該スライス基板104を熱KOH等でエッチングし、ダメージ層を除去しても良い(工程e)。
ラップ工程は、図7に示すような研磨装置によって研磨を行う。回転自在の研磨ヘッド41にスライス基板104のスライス面とは反対側の面を吸着し、回転自在の定盤44上に貼り付けられた研磨布42に、スラリー45を供給しながらスライス基板104のスライス面を押しつけ、研磨ヘッド41と定盤44をともに回転させて行う。
その後、エピタキシャル成長を行う側の面、すなわちガリウム面((0001)面)側を研磨面として、ラップ工程と同様な、例えば図7に示すような研磨装置によって研磨を行う。この工程では、スラリーのpH等を調整し、化学的機械的研磨により表面のダメージ層を除去する(工程f)。
After the slicing step (step d), since there is a damaged layer on the slice surface of the slice substrate 104, this surface is wrapped to improve flatness and to make the slice substrate 104 have a predetermined thickness. . In this step, it is preferable to take a method of making the damaged layer shallow by gradually reducing the lapping abrasive grains of the slurry. Thereafter, the damaged substrate may be removed by etching the slice substrate 104 with hot KOH or the like (step e).
In the lapping step, polishing is performed by a polishing apparatus as shown in FIG. The surface of the slice substrate 104 opposite to the slice surface is adsorbed to the rotatable polishing head 41, and the slurry 45 is supplied to the polishing cloth 42 affixed on the rotatable surface plate 44 while supplying the slurry 45. The slicing surface is pressed and the polishing head 41 and the surface plate 44 are rotated together.
Thereafter, the surface on which epitaxial growth is performed, that is, the gallium surface ((0001) surface) side is used as a polishing surface, and polishing is performed by a polishing apparatus similar to that in the lapping process, for example, as shown in FIG. In this step, the pH of the slurry is adjusted and the damaged layer on the surface is removed by chemical mechanical polishing (step f).

また、種基板101の反りが大きい場合、エピタキシャル成長後のエピタキシャル成長基板103の反りが大きくなる。その場合は、図6に示すように、反りを矯正することなく、ワックスでウエーハステージ32に貼り付けてスライスし、その後、スライス面側を研磨ヘッド41に圧着して、図8(a)、図8(b)のようにラップすることにより、反りを修正することができる。
以上のような研磨を行うことにより、スライス面のダメージ層が除去され、平坦度が高い窒化物半導体自立基板が得られる。
なお、上記研磨の他に各種のエッチング等によってもダメージ層を除去してもよい。
Moreover, when the warpage of the seed substrate 101 is large, the warpage of the epitaxial growth substrate 103 after the epitaxial growth becomes large. In that case, as shown in FIG. 6, without correcting the warp, the wafer stage 32 is affixed to the wafer stage 32 and sliced, and then the slice surface side is pressure-bonded to the polishing head 41. Warping can be corrected by lapping as shown in FIG.
By performing the polishing as described above, the damaged layer on the slice surface is removed, and a nitride semiconductor free-standing substrate with high flatness can be obtained.
In addition to the above polishing, the damaged layer may be removed by various etchings.

そして、以上のような工程により製造された窒化物半導体自立基板104は、直径が種基板101と同等である。また、ホモエピタキシャル成長により形成したエピタキシャル層102から新規の窒化物半導体自立基板を製造することになるので、エピタキシャル層102の格子定数は種基板101と同じであり、種基板101の結晶性が良く、適切なエピタキシャル前処理を行えば、歪や転位密度の少ないエピタキシャル層を成長し、製品窒化物半導体自立基板とすることができる。種基板101として貫通転位密度が5×10/cm以下のものを用いた場合には、製品窒化物半導体自立基板104の貫通転位密度も5×10/cm以下のものを得ることができ、発光ダイオード、レーザーダイオード、電子デバイスなどのデバイス材料用基板として優れた窒化物半導体自立基板が得られる。なお、種基板101として貫通転位密度が1×10/cm以下のものを用いた場合には、製品窒化物半導体自立基板104としても貫通転位密度が1×10/cm以下のものを得ることも可能となる。 The nitride semiconductor free-standing substrate 104 manufactured by the process as described above has a diameter equivalent to that of the seed substrate 101. In addition, since a new nitride semiconductor free-standing substrate is manufactured from the epitaxial layer 102 formed by homoepitaxial growth, the lattice constant of the epitaxial layer 102 is the same as that of the seed substrate 101, and the crystallinity of the seed substrate 101 is good. If an appropriate epitaxial pretreatment is performed, an epitaxial layer having a small strain and dislocation density can be grown to obtain a product nitride semiconductor free-standing substrate. When a threading dislocation density of 5 × 10 7 / cm 2 or less is used as the seed substrate 101, a threading dislocation density of the product nitride semiconductor free-standing substrate 104 is 5 × 10 7 / cm 2 or less. Thus, a nitride semiconductor free-standing substrate excellent as a substrate for device materials such as light emitting diodes, laser diodes, and electronic devices can be obtained. In the case where the threading dislocation density is used as a 1 × 10 7 / cm 2 or less as the seed substrate 101, as also the threading dislocation density as the product nitride semiconductor free-standing substrate 104 is 1 × 10 7 / cm 2 or less Can also be obtained.

また、種基板101として直径が37.5mm(1.5インチ)以上のものを用いた場合には、製品窒化物半導体自立基板104として直径が37.5mm以上のものを得ることができる。   When a seed substrate 101 having a diameter of 37.5 mm (1.5 inches) or more is used, a product nitride semiconductor free-standing substrate 104 having a diameter of 37.5 mm or more can be obtained.

また、強度やたわみへの耐性等を考慮すると、製品窒化物半導体自立基板104は厚さ250μm以上の窒化物半導体自立基板であることが好ましいが、このような厚さを得るためには、工程dの2分割スライス工程でのスライスでの切り代を考慮して工程bのエピタキシャル成長工程におけるエピタキシャル層102の厚さを調節すればよい。例えば、工程dの2分割スライス工程において直径200μmのワイヤーを用いたマルチワイヤーソーを用いてスライスする場合には、スライスでの切り代及び工程eの研磨代を計300μm程度と見積もり、エピタキシャル層102の厚さを550μm以上とすればよい。但し、上述のようにエピタキシャル層102の厚さは1mm以下とすることが望ましい。   In consideration of strength, resistance to deflection, etc., the product nitride semiconductor free-standing substrate 104 is preferably a nitride semiconductor free-standing substrate having a thickness of 250 μm or more. In order to obtain such a thickness, The thickness of the epitaxial layer 102 in the epitaxial growth step of the step b may be adjusted in consideration of the cutting margin in the slice in the two-division slicing step of d. For example, in the case of slicing using a multi-wire saw using a wire having a diameter of 200 μm in the two-division slicing step of step d, the cutting margin in the slice and the polishing margin of step e are estimated to be about 300 μm in total, and the epitaxial layer 102 The thickness may be 550 μm or more. However, as described above, the thickness of the epitaxial layer 102 is desirably 1 mm or less.

この製品窒化物半導体自立基板104はデバイス作製工程(例えば、LEDやLDを製造するためのMOCVD工程)へ送ることができるが、再び工程aの種基板として用いることもできる。本発明による窒化物半導体自立基板の製造は、上記したように低コストで行うことができるので、窒化物半導体自立基板104を再び種基板として用いることで、製造サイクル全体としても低コストとすることができるので好ましい。   The product nitride semiconductor free-standing substrate 104 can be sent to a device manufacturing process (for example, an MOCVD process for manufacturing an LED or an LD), but can also be used as a seed substrate for the process a. Since the nitride semiconductor free-standing substrate according to the present invention can be manufactured at a low cost as described above, the nitride semiconductor free-standing substrate 104 can be used again as a seed substrate to reduce the cost of the entire manufacturing cycle. Is preferable.

従来のサファイア基板等の異種基板上の窒化物半導体の厚膜エピタキシャル基板の製造する方法でも、レーザーリフトオフや化学的エッチングで初期基板を除去して窒化物半導体自立基板を製造することができるが、初期基板は費消してしまう。一方、本発明のホモエピタキシャル成長による窒化物半導体自立基板の製造方法では、2分割スライス後、初期の種基板101側も利用できるので、スライスによる切り代を考慮しても、無駄が少ない。   Even in the conventional method of manufacturing a nitride semiconductor thick film epitaxial substrate on a heterogeneous substrate such as a sapphire substrate, a nitride semiconductor free-standing substrate can be manufactured by removing the initial substrate by laser lift-off or chemical etching, The initial board is consumed. On the other hand, in the method of manufacturing a nitride semiconductor free-standing substrate by homoepitaxial growth according to the present invention, the initial seed substrate 101 side can be used after two-division slicing.

以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples of the present invention, but the present invention is not limited to these.

(実施例1)
以下のようにして、図1に示した方法によりGaN自立基板を製造した。
種基板101として、直径50.8mm(2インチ)、厚さ400μmであり、(0001)ガリウム面がエピタキシャル成長用品質に研磨された転位密度が1×10/cm以下のGaN自立基板を8枚準備した(工程a)。
Example 1
A GaN free-standing substrate was manufactured by the method shown in FIG. 1 as follows.
As the seed substrate 101, a GaN free-standing substrate having a diameter of 50.8 mm (2 inches) and a thickness of 400 μm and having a dislocation density of 1 × 10 7 / cm 2 or less with a (0001) gallium surface polished to the quality for epitaxial growth is 8 A sheet was prepared (step a).

次に、図2に示したようなエピタキシャル成長装置1を用いて、下記のようにGaNのエピタキシャル成長を行った(工程b)。
内径200mmの縦型のチャンバー(石英反応管)2の内部において、(0001)ガリウム面を上にして、種基板8枚をサセプター13上に載置した(工程a)。また、間隔が1cmの仕切りを設けたガリウム源ボート6に400gの金属ガリウムを入れた塩化ガリウム生成管8を設けた。第一のヒーター7により、塩化ガリウム生成管8を800℃に加熱し、サセプター13上に載置した種基板101の周囲を第二のヒーター9により1030℃に加熱した。塩化ガリウム生成管8には、塩化水素導入管4から塩化水素を窒素をキャリアガスとして、塩化水素150ml/分、水素500ml/分の流速で導入した。さらに、希釈用ガス導入管5から窒素を導入し、内径8mmの4本の塩化ガリウム吹き出し管11から線速度約30cm/秒でサセプター13上の種基板101に向けて吹き付けた。
Next, using the epitaxial growth apparatus 1 as shown in FIG. 2, GaN was epitaxially grown as follows (step b).
Within the vertical chamber (quartz reaction tube) 2 having an inner diameter of 200 mm, eight seed substrates were placed on the susceptor 13 with the (0001) gallium surface facing up (step a). Further, a gallium chloride production tube 8 containing 400 g of metal gallium was provided in a gallium source boat 6 provided with a partition having a spacing of 1 cm. The gallium chloride production tube 8 was heated to 800 ° C. by the first heater 7, and the periphery of the seed substrate 101 placed on the susceptor 13 was heated to 1030 ° C. by the second heater 9. Hydrogen chloride was introduced into the gallium chloride production pipe 8 from the hydrogen chloride introduction pipe 4 using nitrogen as a carrier gas at a flow rate of 150 ml / min for hydrogen chloride and 500 ml / min for hydrogen. Further, nitrogen was introduced from the dilution gas introduction tube 5 and sprayed from the four gallium chloride blowing tubes 11 having an inner diameter of 8 mm toward the seed substrate 101 on the susceptor 13 at a linear velocity of about 30 cm / second.

アンモニア導入管3からは、上記塩化ガリウムガスの種基板101への供給方向と同一の方向へ、アンモニアを窒素とともに導入した。成長時の反応管内の全圧は100kPa(1.0気圧)、アンモニアの分圧は25kPa(0.25気圧)、塩化ガリウムの分圧は0.5kPaとした。
なお、種基板101上には、初期は窒素ガスのみ、その後、アンモニアガスを供給し、表面が安定化した後、塩化ガリウムを供給しエピタキシャル成長を開始した。
From the ammonia introduction pipe 3, ammonia was introduced together with nitrogen in the same direction as the supply direction of the gallium chloride gas to the seed substrate 101. The total pressure in the reaction tube during growth was 100 kPa (1.0 atm), the partial pressure of ammonia was 25 kPa (0.25 atm), and the partial pressure of gallium chloride was 0.5 kPa.
Note that on the seed substrate 101, only nitrogen gas was initially supplied and then ammonia gas was supplied, and after the surface was stabilized, gallium chloride was supplied to start epitaxial growth.

なお、サセプター13としては、炭素製の基材上に炭化珪素を100μmの厚さに被覆したものを用いた。このサセプター13を回転速度10rpmで回転させて種基板101上に10時間GaNのエピタキシャル成長を行った。得られたエピタキシャル成長基板103のうちエピタキシャル層102の成長膜厚は850μmであり、サセプター13の周辺部や裏面には、多結晶の析出は起こらず、また、基板の割れも生じなかった。エピタキシャル成長基板103の厚さの均一性は±5%以内であり、表面の転位密度は1×10/cmであった。 As the susceptor 13, a carbon substrate coated with silicon carbide to a thickness of 100 μm was used. The susceptor 13 was rotated at a rotational speed of 10 rpm, and GaN was epitaxially grown on the seed substrate 101 for 10 hours. Of the obtained epitaxial growth substrate 103, the growth thickness of the epitaxial layer 102 was 850 μm. Polycrystalline deposition did not occur on the periphery and the back surface of the susceptor 13, and the substrate did not crack. The uniformity of the thickness of the epitaxial growth substrate 103 was within ± 5%, and the dislocation density on the surface was 1 × 10 7 / cm 2 .

次に、種基板101の裏面を基準に、面取りの中心位置を決め、#1200のダイアモンド砥石を用いて図3(b)に示したようなW型の面取りを行なった(工程c)。
面取り部のフラットな部分の長さは内周刃ブレードで2分割スライスを行うので、ブレードの厚さ250μmを基準に250μmプラスした500μmとした。
Next, the center position of the chamfering was determined based on the back surface of the seed substrate 101, and W-shaped chamfering as shown in FIG. 3B was performed using a # 1200 diamond grindstone (step c).
The flat portion of the chamfered portion was divided into two slices with an inner peripheral blade, and thus the thickness of the blade was set to 500 μm, which was 250 μm plus the blade thickness of 250 μm.

次に、図4に示したように、インゴットホルダー31にウエーハステージ32を介してエピタキシャル成長基板103を貼り付け、ダイアモンドが電着された内周刃ブレード34で2分割スライスを行った(工程d)。なお、エピタキシャル成長基板103に40〜50μm程度の反りがあったので、エピタキシャル成長基板103のウエーハステージ32への貼り付けは、荷重をかけずワックス38を用いて接着した。また、スライスの後半に基板が割れるのを防ぐため、エピタキシャル成長基板1枚毎に当て板35を接着した。切削クーラントを供給しながら0.2mm/分の切断速度でスライスを行なった。
スライスにおける切り代はこの場合、約300μmであった。スライス後の製品GaN自立基板の厚さは、目標中心厚さに対しおよそ±40μm以内であった。スライス終了後に当て板35は除去した。
Next, as shown in FIG. 4, the epitaxial growth substrate 103 was attached to the ingot holder 31 via the wafer stage 32, and the slice was divided into two by the inner peripheral blade blade 34 electrodeposited with diamond (step d). . Since the epitaxial growth substrate 103 was warped by about 40 to 50 μm, the epitaxial growth substrate 103 was adhered to the wafer stage 32 using a wax 38 without applying a load. Further, in order to prevent the substrate from cracking in the latter half of the slice, a contact plate 35 was bonded to each epitaxial growth substrate. Slicing was performed at a cutting speed of 0.2 mm / min while supplying cutting coolant.
In this case, the cutting allowance in the slice was about 300 μm. The thickness of the product GaN free-standing substrate after slicing was within about ± 40 μm with respect to the target center thickness. The patch plate 35 was removed after slicing.

スライス後のスライス基板104の面取り部の形状は、図3(c)に示したような形状であり、対称にはなっていないが、後の工程での割れ、欠けの防止には十分な効果が認められた。   The shape of the chamfered portion of the slice substrate 104 after slicing is a shape as shown in FIG. 3C and is not symmetrical, but it is sufficient for preventing cracks and chipping in later steps. Was recognized.

次に、以下のようにしてスライス基板104の両面を研磨してダメージ層の除去を行い(工程e)、ガリウム面を鏡面状態とした(工程f)。
スライス基板104のスライス面を研磨ヘッド41に接着し、まず粒径15μmのダイアモンドスラリーを用い荷重を1.0kg/cmの荷重でラッピング(粗ラップ)を行いスライス基板104の平坦度を向上させた。次に粒径6μmのダイアモンドスラリーを用い、2.0kg/cmの荷重でラッピング(精ラップ)を行なった。その後、エピタキシャル層側から得られたスライス基板104は、KOHによるエッチングを行なった。精ラップを行なったスライス基板104を洗浄し、ガリウム面側を0.1μmの粒径のダイアモンドスラリーとスエードタイプの研磨布を用い、荷重2.0kg/cmで鏡面研磨を行なった。さらに、スライス面に残された潜傷、結晶歪を除去するために、洗浄後、反応性イオンエッチング(RIE)により表層をエッチングした。市販の装置に厚い酸化膜を形成したシリコンウエーハ上にスライス基板を設置し、ヘリウムをベースにした塩素ガスを用い250Wの条件でエッチングを行なった。
Next, both surfaces of the slice substrate 104 were polished as follows to remove the damaged layer (step e), and the gallium surface was in a mirror state (step f).
The slice surface of the slice substrate 104 is bonded to the polishing head 41, and first, lapping (coarse wrap) is performed at a load of 1.0 kg / cm 2 using a diamond slurry having a particle diameter of 15 μm to improve the flatness of the slice substrate 104. It was. Next, lapping (fine wrapping) was performed with a load of 2.0 kg / cm 2 using a diamond slurry having a particle diameter of 6 μm. Thereafter, the slice substrate 104 obtained from the epitaxial layer side was etched with KOH. The slice substrate 104 on which the fine lapping was performed was washed, and the gallium surface side was mirror-polished with a load of 2.0 kg / cm 2 using a diamond slurry having a particle diameter of 0.1 μm and a suede type polishing cloth. Further, in order to remove latent scratches and crystal distortion left on the sliced surface, the surface layer was etched by reactive ion etching (RIE) after cleaning. A slice substrate was placed on a silicon wafer on which a thick oxide film was formed in a commercially available apparatus, and etching was performed under a condition of 250 W using chlorine gas based on helium.

以上の方法で、準備した8枚の2倍の16枚のGaN自立基板を得ることができた。全てのGaN自立基板において、直径50.8mmの略円形であり、厚さは約400μm、ワープ値は25μm以下であった。また、表面の転位密度は5×10/cm以下であり、また、X線のロッキングカーブの測定で全半値幅(FWHM)は、170〜260arcsecの範囲であり、非常に高品質であった。 By the above method, 16 GaN free-standing substrates that were twice as many as the prepared 8 substrates could be obtained. All of the GaN free-standing substrates were substantially circular with a diameter of 50.8 mm, the thickness was about 400 μm, and the warp value was 25 μm or less. Also, the dislocation density on the surface is 5 × 10 7 / cm 2 or less, and the full width at half maximum (FWHM) in the X-ray rocking curve measurement is in the range of 170 to 260 arcsec, which is very high quality. It was.

(実施例2)
実施例1で得られた16枚のうち8枚のGaN自立基板を再び種基板101として使用し、以下のようにしてGaN自立基板の製造を行った。
(Example 2)
Of the 16 substrates obtained in Example 1, eight GaN free-standing substrates were used again as seed substrates 101, and GaN free-standing substrates were manufactured as follows.

8枚の種基板101は、前述のように、直径50.8mm、厚さは約400μm、ワープ値は25μm以下、貫通転位密度は5×10/cm以下のGaN自立基板であった(工程a)。
次に、実施例1と同様にHPVE装置1を用いて、ただし成長時間を7時間30分として成長を行った(工程b)。エピタキシャル層102の厚さは610μmとなった。
次に、エピタキシャル成長基板103に対し、実施例1と同様に面取り工程(工程c)を行った。
As described above, the eight seed substrates 101 were GaN free-standing substrates having a diameter of 50.8 mm, a thickness of about 400 μm, a warp value of 25 μm or less, and a threading dislocation density of 5 × 10 7 / cm 2 or less ( Step a).
Next, growth was performed using the HPVE apparatus 1 as in Example 1, except that the growth time was 7 hours 30 minutes (step b). The thickness of the epitaxial layer 102 was 610 μm.
Next, a chamfering process (process c) was performed on the epitaxial growth substrate 103 in the same manner as in Example 1.

次に、面取りを行なったエピタキシャル成長基板103に対し、オリエンテーションフラット部に当て板35を貼り付け、図5に示すようなワイヤーソーのウエーハステージ32に設置した。ウエーハステージ32の位置設定はエピタキシャル成長基板103をスライスする前にシリコンウエーハをスライスして、ウエーハステージ32側のウエーハが並行に所定の厚さにスライスされることを確認して行なった。
エピタキシャル成長基板103のスライスにおいては、種基板101側をウエーハステージ32に圧着した。ワイヤーは、20μmのダイアモンドが電着された直径130μmのワイヤーを用いた。2mm/時のワーク送り速度でスライスを行なった(工程d)。エピタキシャル成長基板103を2分割スライスした後、当て板35を除去した。ウエーハステージ32側のスライス基板(エピタキシャル層102側から得られたスライス基板)の厚さは、420±10μmであり、このときの切り代は、約160μmであった。スライス後、スライス面側を面取り加工した。
Next, a backing plate 35 was attached to the orientation flat portion of the chamfered epitaxial growth substrate 103 and placed on a wire saw wafer stage 32 as shown in FIG. The position of the wafer stage 32 was set by slicing the silicon wafer before slicing the epitaxial growth substrate 103 and confirming that the wafer on the wafer stage 32 side was sliced to a predetermined thickness in parallel.
In slicing the epitaxial growth substrate 103, the seed substrate 101 side was pressure bonded to the wafer stage 32. The wire used was a 130 μm diameter wire electrodeposited with 20 μm diamond. Slicing was performed at a work feed speed of 2 mm / hour (step d). After the epitaxial growth substrate 103 was sliced into two parts, the contact plate 35 was removed. The thickness of the slice substrate on the wafer stage 32 side (the slice substrate obtained from the epitaxial layer 102 side) was 420 ± 10 μm, and the cutting margin at this time was about 160 μm. After slicing, the slice surface side was chamfered.

次に、実施例1と同様にスライス基板104に粗ラップ及び精ラップを行った後KOHによりエッチングした。ただし、本実施例ではスライス基板の厚さばらつきが小さかったので、粗ラップの荷重を2.0kg/cmで行い、研磨時間を短時間とした。その後、スライス基板104を十分洗浄して、0.1μmのダイアモンド砥粒により鏡面研磨を行いスライス基板104を研磨ヘッドから剥がした後、十分な洗浄を行い、実施例1と同様の条件でRIEにより研磨歪の除去を行なった。その後、再び洗浄をして、新たに製品GaN自立基板を16枚得た。このGaN自立基板の寸法、結晶品質は実施例1と同等であった。 Next, in the same manner as in Example 1, the slice substrate 104 was subjected to rough wrapping and fine wrapping, and then etched with KOH. However, in this example, since the thickness variation of the slice substrate was small, the load of the rough lap was set at 2.0 kg / cm 2 and the polishing time was shortened. Thereafter, the slice substrate 104 is sufficiently washed, mirror polished with 0.1 μm diamond abrasive grains, and the slice substrate 104 is peeled off from the polishing head, and then sufficiently washed, and subjected to RIE under the same conditions as in Example 1. Polishing strain was removed. Thereafter, cleaning was performed again to obtain 16 new product GaN free-standing substrates. The dimensions and crystal quality of this GaN free-standing substrate were the same as in Example 1.

(実施例3)
実施例1と同様に、貫通転位密度が1×10/cmの3枚の種基板101について同時にエピタキシャル層を1mm(=1000μm)成長させ、エピタキシャル成長基板103を作製する工程まで行った。3枚のエピタキシャル成長基板103を斜め研磨して、高温の水酸化カリウム溶液でエッチングして、エッチピット(転位ピット)の密度の深さ方向の分布を調べた。図9にエピタキシャル層厚さとエッチピット密度の関係を示すグラフを示した。エピタキシャル層厚さが0μmの方が種基板101側との界面である。転位密度はエピタキシャル成長初期に基板の転位密度よりも1桁以上増えるが、エピタキシャル表面に向かって徐々に減少し400〜800μm程度エピタキシャル成長が行なわれた段階で、ほぼ、種基板101の転位密度に近づく結果となった。転位密度が種基板101よりも大幅に高いエピタキシャル層厚さ0〜300μm程度の部位は2分割スライス工程によって取り除かれるので、エピタキシャル層102側から得られた製品GaN自立基板104の結晶品質も種基板101と同等程度のものとなることがわかる。ただし、1mmを超えた厚さにエピタキシャル成長すると、表面の均一性が徐々に悪化し、突起が生じるようになった。
(Example 3)
Similarly to Example 1, the epitaxial layer was simultaneously grown by 1 mm (= 1000 μm) on three seed substrates 101 having a threading dislocation density of 1 × 10 7 / cm 2 , and the process up to manufacturing the epitaxial growth substrate 103 was performed. Three epitaxial growth substrates 103 were obliquely polished and etched with a high-temperature potassium hydroxide solution, and the density distribution of etch pits (dislocation pits) in the depth direction was examined. FIG. 9 is a graph showing the relationship between the epitaxial layer thickness and the etch pit density. The epitaxial layer thickness of 0 μm is the interface with the seed substrate 101 side. The dislocation density increases by an order of magnitude or more than the dislocation density of the substrate in the initial stage of epitaxial growth, but gradually decreases toward the epitaxial surface and approaches the dislocation density of the seed substrate 101 at a stage where the epitaxial growth is performed by about 400 to 800 μm. It became. Since the portion of the epitaxial layer thickness of about 0 to 300 μm whose dislocation density is significantly higher than that of the seed substrate 101 is removed by the two-slice process, the crystal quality of the product GaN free-standing substrate 104 obtained from the epitaxial layer 102 side is also improved. It turns out that it becomes a thing equivalent to 101. However, when the epitaxial growth was performed to a thickness exceeding 1 mm, the uniformity of the surface gradually deteriorated and protrusions were generated.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

例えば、上記実施例では窒化物半導体がガリウムの窒化物であるGaNである場合について主に述べたが、III族窒化物半導体であれば、本発明を適用することができる。   For example, in the above embodiment, the case where the nitride semiconductor is GaN which is a gallium nitride is mainly described, but the present invention can be applied to any group III nitride semiconductor.

本発明に係る窒化物半導体自立基板の製造工程を示したフローシートである。It is the flow sheet which showed the manufacturing process of the nitride semiconductor self-supporting substrate concerning the present invention. 本発明に用いることができる縦型HVPEエピタキシャル装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the vertical HVPE epitaxial apparatus which can be used for this invention. 本発明に係る窒化物半導体自立基板の製造方法において、エピタキシャル成長後の2分割スライス前後の基板の概略断面図を示したものであり、(a)は、2分割スライス工程前のエピタキシャル成長基板の周辺部を示した概略断面図であり、(b)は、2分割スライス前にエピタキシャル成長基板の周辺部に施した面取りの形状を示す概略断面図であり、(c)は、2分割スライスされた後のスライス基板の周辺部を示す概略断面図である。In the manufacturing method of the nitride semiconductor self-supporting substrate according to the present invention, a schematic cross-sectional view of the substrate before and after the two-division slice after epitaxial growth is shown, (a) is a peripheral portion of the epitaxial growth substrate before the two-division slice process (B) is a schematic cross-sectional view showing the shape of chamfering applied to the peripheral portion of the epitaxial growth substrate before the 2-division slice, and (c) is a view after the 2-division slice is obtained. It is a schematic sectional drawing which shows the peripheral part of a slice board | substrate. エピタキシャル成長基板を内周刃ブレードを用いて2分割スライスを行なう際の様子を示した概要説明図である。It is outline explanatory drawing which showed the mode at the time of performing a 2 division | segmentation slice using an internal peripheral blade with an epitaxial growth board | substrate. エピタキシャル成長基板をワイヤーソーを用いて2分割スライスを行なう際の様子を示した概要説明図である。It is outline | summary explanatory drawing which showed the mode at the time of performing a 2 division | segmentation slice using a wire saw on an epitaxial growth board | substrate. エピタキシャル成長基板に反りがある場合のウエーハチャックへのエピタキシャル成長基板の接着の様子を示した概略断面図である。It is the schematic sectional drawing which showed the mode of adhesion | attachment of the epitaxial growth board | substrate to a wafer chuck when there exists curvature in an epitaxial growth board | substrate. 2分割スライス工程の後に行うことができる機械研磨(化学的機械研磨)の様子を示す概略図である。It is the schematic which shows the mode of the mechanical polishing (chemical mechanical polishing) which can be performed after a 2 division | segmentation slice process. 2分割スライス工程の後に行うことができる機械研磨の様子を示す概略図であり、(a)は2分割スライス時にスライス面が凹になった場合であり、(b)は2分割スライス時にスライス面が凸になった場合である。It is the schematic which shows the mode of the mechanical polishing which can be performed after a 2 division | segmentation slice process, (a) is a case where a slice surface becomes concave at the time of 2 division | segmentation slice, (b) is a slice surface at the time of 2 division | segmentation slice This is the case where becomes convex. 実施例3におけるエピタキシャル成長基板のエピタキシャル層厚さとエッチピット密度の関係を示したグラフである。6 is a graph showing the relationship between the epitaxial layer thickness of the epitaxially grown substrate and the etch pit density in Example 3.

符号の説明Explanation of symbols

101…種基板、 102…エピタキシャル層、
103…エピタキシャル成長基板、 103a…面取り部、 103b…溝、
104…(製品)窒化物半導体自立基板(スライス基板)、
1…エピタキシャル成長装置(HVPE装置)、 2…縦型反応管(チャンバー)、
3…アンモニア導入管、 4…反応ガス(塩化水素)導入管、
5…希釈用ガス導入管、
6…原料III族金属(ガリウム)用ボート、 7…第一のヒーター、
8…III族金属化合物(塩化ガリウム)生成管、 9…第二のヒーター、
10…整流板、 11…III族金属化合物(塩化ガリウム)吹き出し管、
13…サセプター、 14…内部保護管、 15…ガス排出管、
31…インゴットホルダー、 32…ウエーハステージ、 34…内周刃ブレード、
35…当て板、 36…切削クーラント供給手段、 38…ワックス、
41…研磨ヘッド、 42…研磨布、 44…定盤、 45…スラリー、
51…ワイヤーソー。
101 ... Seed substrate, 102 ... Epitaxial layer,
103 ... epitaxial growth substrate, 103a ... chamfered portion, 103b ... groove,
104 ... (Product) Nitride semiconductor free-standing substrate (slice substrate),
DESCRIPTION OF SYMBOLS 1 ... Epitaxial growth apparatus (HVPE apparatus), 2 ... Vertical reaction tube (chamber),
3 ... Ammonia introduction pipe, 4 ... Reaction gas (hydrogen chloride) introduction pipe,
5 ... Gas introduction pipe for dilution,
6 ... Raw material group III metal (gallium) boat, 7 ... First heater,
8 ... Group III metal compound (gallium chloride) production tube, 9 ... Second heater,
10 ... Rectifying plate, 11 ... Group III metal compound (gallium chloride) blowing tube,
13 ... Susceptor, 14 ... Internal protective pipe, 15 ... Gas exhaust pipe,
31 ... Ingot holder, 32 ... Wafer stage, 34 ... Inner blade,
35 ... Watt plate, 36 ... Cutting coolant supply means, 38 ... Wax,
41 ... Polishing head, 42 ... Polishing cloth, 44 ... Surface plate, 45 ... Slurry,
51 ... Wire saw.

Claims (10)

少なくとも、
種基板となる窒化物半導体自立基板を8枚以上準備する工程と、
縦型タイプのHVPE装置を用いたHVPE法によって、前記8枚以上の種基板上に、該種基板と同種の窒化物半導体を、同一のチャンバー内で、前記8枚以上の種基板に対して同時にエピタキシャル成長する工程と、
前記エピタキシャル成長を行ったエピタキシャル成長基板を、エピタキシャル成長面と平行にスライスして2分割するスライス工程と
を含み、1枚の種基板から2枚の窒化物半導体自立基板を製造することを特徴とする窒化物半導体自立基板の製造方法。
at least,
Preparing eight or more nitride semiconductor free-standing substrates to be seed substrates;
By the HVPE method using a vertical type HVPE apparatus, a nitride semiconductor of the same type as the seed substrate is applied to the eight or more seed substrates on the eight or more seed substrates in the same chamber. A process of epitaxial growth at the same time ;
Slicing the epitaxially grown substrate that has undergone the epitaxial growth in parallel with the epitaxial growth surface and dividing it into two to produce two nitride semiconductor free-standing substrates from one seed substrate Manufacturing method of semiconductor free-standing substrate.
請求項1の窒化物半導体自立基板の製造方法によって製造した窒化物半導体自立基板を再び前記種基板として用いることを特徴とする請求項1に記載の窒化物半導体自立基板の製造方法。   The method for manufacturing a nitride semiconductor free-standing substrate according to claim 1, wherein the nitride semiconductor free-standing substrate manufactured by the method for manufacturing a nitride semiconductor free-standing substrate according to claim 1 is used again as the seed substrate. 前記スライスして2分割したエピタキシャル成長基板の該スライス面を研磨することを特徴とする請求項1または請求項2に記載の窒化物半導体自立基板の製造方法。 Method for manufacturing a nitride semiconductor free-standing substrate according to claim 1 or claim 2, characterized in that polishing the slice plane of the slice to bisected epitaxial growth substrate. 前記エピタキシャル成長工程において形成するエピタキシャル層の厚さを1mm以下とすることを特徴とする請求項1ないし請求項のいずれか一項に記載の窒化物半導体自立基板の製造方法。 Method for manufacturing a nitride semiconductor free-standing substrate according to any one of claims 1 to 3, characterized in that the thickness of the epitaxial layer and 1mm or less to form in the epitaxial growth step. 前記種基板となる窒化物半導体自立基板及び前記製造する窒化物半導体自立基板をGaN自立基板とすることを特徴とする請求項1ないし請求項のいずれか一項に記載の窒化物半導体自立基板の製造方法。 The nitride semiconductor free-standing substrate according to any one of claims 1 to 4 , wherein the nitride semiconductor free-standing substrate serving as the seed substrate and the nitride semiconductor free-standing substrate to be manufactured are GaN free-standing substrates. Manufacturing method. 前記種基板となる窒化物半導体自立基板を、直径が37.5mm以上であり、厚さが250μm以上であり、ワープ値が35μm以下であるものとすることを特徴とする請求項1ないし請求項のいずれか一項に記載の窒化物半導体自立基板の製造方法。 The nitride semiconductor free-standing substrate serving as the seed substrate has a diameter of 37.5 mm or more, a thickness of 250 µm or more, and a warp value of 35 µm or less. The method for producing a nitride semiconductor free-standing substrate according to any one of claims 5 to 6. 前記種基板となる窒化物半導体自立基板を、貫通転位密度が5×10/cm以下であるものとすることを特徴とする請求項1ないし請求項のいずれか一項に記載の窒化物半導体自立基板の製造方法。 Nitriding according the nitride semiconductor free-standing substrate serving as the seed substrate, in any one of claims 1 to 6, characterized in that as the threading dislocation density of 5 × 10 7 / cm 2 or less Method for manufacturing a self-supporting semiconductor substrate. 前記エピタキシャル成長工程の後、前記スライス工程の前に、前記エピタキシャル成長基板の周辺部に対して面取りを行うともにスライスするためのツールを誘導する溝を形成することを特徴とする請求項1ないし請求項のいずれか一項に記載の窒化物半導体自立基板の製造方法。 After it said epitaxial growth step, the slice before the step, the epitaxial growth according to claim 1 to claim 7, characterized in that a groove for guiding a tool for both slicing perform chamfering the peripheral portion of the substrate A method for producing a nitride semiconductor free-standing substrate according to any one of the above. 前記スライス工程を、ブレードの刃厚が250μm以下の内周刃ブレード、ワイヤーの直径が200μm以下のシングルワイヤーソー、又はブレードの刃厚が250μm以下のシングルブレードソーを用いて行うことを特徴とする請求項1ないし請求項のいずれか一項に記載の窒化物半導体自立基板の製造方法。 The slicing step is performed using an inner peripheral blade with a blade thickness of 250 μm or less, a single wire saw with a wire diameter of 200 μm or less, or a single blade saw with a blade thickness of 250 μm or less. A method for manufacturing a nitride semiconductor free-standing substrate according to any one of claims 1 to 8 . 前記スライス工程を、前記エピタキシャル成長基板を複数枚スタックし、ワイヤーの直径が200μm以下のマルチワイヤーソー、又はブレードの刃厚が250μm以下のマルチブレードソーを用いて前記スタックした複数枚のエピタキシャル成長基板を同時にスライスすることによって行うことを特徴とする請求項1ないし請求項のいずれか一項に記載の窒化物半導体自立基板の製造方法。 In the slicing step, a plurality of the epitaxial growth substrates are stacked, and a plurality of the epitaxial growth substrates stacked using a multi-wire saw having a wire diameter of 200 μm or less, or a multi-blade saw having a blade thickness of 250 μm or less are simultaneously formed. The method for manufacturing a nitride semiconductor free-standing substrate according to any one of claims 1 to 8 , wherein the method is performed by slicing.
JP2006349756A 2006-12-26 2006-12-26 Manufacturing method of nitride semiconductor free-standing substrate Active JP5125098B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2006349756A JP5125098B2 (en) 2006-12-26 2006-12-26 Manufacturing method of nitride semiconductor free-standing substrate
US12/448,272 US9127376B2 (en) 2006-12-26 2007-12-05 Method for manufacturing nitride semiconductor self-supporting substrate and nitride semiconductor self-supporting substrate
KR20097013496A KR20090101208A (en) 2006-12-26 2007-12-05 Method for producing self-supporting nitride semiconductor substrate and self-supporting nitride semiconductor substrate
CN200780048302.4A CN101573480B (en) 2006-12-26 2007-12-05 Self-supporting nitride semiconductor substrate and manufacturing method thereof
AT07849786T ATE556158T1 (en) 2006-12-26 2007-12-05 METHOD FOR PRODUCING A SELF-SUPPORTING NITRIDE SEMICONDUCTOR SUBSTRATE
EP20070849786 EP2119815B1 (en) 2006-12-26 2007-12-05 Method for manufacturing self-supporting nitride semiconductor substrate
PCT/JP2007/001351 WO2008078401A1 (en) 2006-12-26 2007-12-05 Method for producing self-supporting nitride semiconductor substrate and self-supporting nitride semiconductor substrate
TW96147114A TWI394874B (en) 2006-12-26 2007-12-10 A nitride semiconductor-independent substrate manufacturing method, and a nitride semiconductor-independent substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006349756A JP5125098B2 (en) 2006-12-26 2006-12-26 Manufacturing method of nitride semiconductor free-standing substrate

Publications (2)

Publication Number Publication Date
JP2008156189A JP2008156189A (en) 2008-07-10
JP5125098B2 true JP5125098B2 (en) 2013-01-23

Family

ID=39562198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006349756A Active JP5125098B2 (en) 2006-12-26 2006-12-26 Manufacturing method of nitride semiconductor free-standing substrate

Country Status (8)

Country Link
US (1) US9127376B2 (en)
EP (1) EP2119815B1 (en)
JP (1) JP5125098B2 (en)
KR (1) KR20090101208A (en)
CN (1) CN101573480B (en)
AT (1) ATE556158T1 (en)
TW (1) TWI394874B (en)
WO (1) WO2008078401A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011077325A (en) * 2009-09-30 2011-04-14 Sumitomo Electric Ind Ltd Method of manufacturing group iii nitride semiconductor substrate
JP2011201759A (en) * 2010-03-05 2011-10-13 Namiki Precision Jewel Co Ltd Single crystal substrate with multilayer film, production method for single crystal substrate with multilayer film, and device production method
JP5416650B2 (en) * 2010-05-10 2014-02-12 日立金属株式会社 Gallium nitride substrate
JP5518566B2 (en) * 2010-05-10 2014-06-11 信越半導体株式会社 Manufacturing method of nitride semiconductor free-standing substrate
JP5830973B2 (en) * 2010-12-01 2015-12-09 三菱化学株式会社 GaN free-standing substrate and method for manufacturing semiconductor light-emitting device
JP2012156246A (en) 2011-01-25 2012-08-16 Hitachi Cable Ltd Semiconductor wafer and semiconductor device wafer
RU2479892C2 (en) * 2011-07-25 2013-04-20 Общество с ограниченной ответственностью "Галлий-Н" Method of making semiconductor light-emitting elements
JP5808208B2 (en) * 2011-09-15 2015-11-10 株式会社サイオクス Manufacturing method of nitride semiconductor substrate
WO2014057748A1 (en) * 2012-10-12 2014-04-17 住友電気工業株式会社 Group iii nitride composite substrate, manufacturing method therefor, and group iii nitride semiconductor device manufacturing method
WO2017158747A1 (en) * 2016-03-16 2017-09-21 株式会社日立製作所 Epitaxial substrate manufacturing method and semiconductor device manufacturing method
US20200091016A1 (en) * 2016-12-27 2020-03-19 Sumitomo Chemical Company, Limited Manufacturing method and inspection method of group-iii nitride laminate, and group-iii nitride laminate
JP6983570B2 (en) * 2017-08-01 2021-12-17 株式会社サイオクス Manufacturing method of semiconductor laminate, manufacturing method of nitride semiconductor self-supporting substrate, semiconductor laminate and semiconductor device
WO2019059009A1 (en) * 2017-09-25 2019-03-28 国立大学法人名古屋大学 Vapor deposition apparatus
WO2022104074A1 (en) * 2020-11-13 2022-05-19 The Regents Of The University Of California Epitaxy-enabled substrate transfer
CN113345798B (en) * 2021-06-01 2022-07-12 中科汇通(内蒙古)投资控股有限公司 Method for preparing GaN by SiC substrate epitaxy

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4686682A (en) * 1984-10-09 1987-08-11 Mitsubishi Denki Kabushiki Kaisha Discharge excitation type short pulse laser device
JPS61188983A (en) 1985-02-18 1986-08-22 Mitsubishi Electric Corp Discharge excitation type short pulse laser device
JP3624441B2 (en) * 1994-12-06 2005-03-02 株式会社ディスコ Ingot grooving device
JPH1053789A (en) * 1996-08-12 1998-02-24 Nippei Toyama Corp Water-base working fluid composition for wire cutter
CN100344004C (en) * 1997-10-30 2007-10-17 住友电气工业株式会社 GaN single crystal substrate and method of making the same
KR19990075107A (en) 1998-03-17 1999-10-05 김규현 Structure of cutting blade for semiconductor wafer and cutting method using the same
TW417315B (en) * 1998-06-18 2001-01-01 Sumitomo Electric Industries GaN single crystal substrate and its manufacture method of the same
JP3788041B2 (en) * 1998-06-30 2006-06-21 住友電気工業株式会社 Manufacturing method of GaN single crystal substrate
JP3788037B2 (en) * 1998-06-18 2006-06-21 住友電気工業株式会社 GaN single crystal substrate
JP4145437B2 (en) * 1999-09-28 2008-09-03 住友電気工業株式会社 Single crystal GaN crystal growth method, single crystal GaN substrate manufacturing method, and single crystal GaN substrate
US6596079B1 (en) * 2000-03-13 2003-07-22 Advanced Technology Materials, Inc. III-V nitride substrate boule and method of making and using the same
JP3968968B2 (en) * 2000-07-10 2007-08-29 住友電気工業株式会社 Manufacturing method of single crystal GaN substrate
EP1346085B1 (en) * 2000-11-30 2011-10-12 North Carolina State University Method for producing group iii metal nitride based materials
US6613143B1 (en) * 2001-07-06 2003-09-02 Technologies And Devices International, Inc. Method for fabricating bulk GaN single crystals
US20060011135A1 (en) * 2001-07-06 2006-01-19 Dmitriev Vladimir A HVPE apparatus for simultaneously producing multiple wafers during a single epitaxial growth run
JP4558502B2 (en) * 2002-12-11 2010-10-06 アンモノ・スプウカ・ジ・オグラニチョノン・オドポヴィエドニアウノシツィオン Template type substrate manufacturing method
FR2860248B1 (en) * 2003-09-26 2006-02-17 Centre Nat Rech Scient PROCESS FOR PRODUCING AUTOMATED SUBSTRATES OF ELEMENT III NITRIDES BY HETERO-EPITAXIA ON A SACRIFICIAL LAYER
US7323256B2 (en) * 2003-11-13 2008-01-29 Cree, Inc. Large area, uniformly low dislocation density GaN substrate and process for making the same
KR100533636B1 (en) * 2003-12-20 2005-12-06 삼성전기주식회사 Fabrication method of nitride semiconductor and nitride semiconductor structure fabricated thereby
JP3888374B2 (en) * 2004-03-17 2007-02-28 住友電気工業株式会社 Manufacturing method of GaN single crystal substrate
JP4581490B2 (en) * 2004-05-31 2010-11-17 日立電線株式会社 III-V group nitride semiconductor free-standing substrate manufacturing method and III-V group nitride semiconductor manufacturing method
KR20070058465A (en) * 2004-08-06 2007-06-08 미쓰비시 가가꾸 가부시키가이샤 Nitride semiconductor single crystal including ga, method for manufacturing the same, and substrate and device using the crystal
JP4720125B2 (en) * 2004-08-10 2011-07-13 日立電線株式会社 III-V nitride semiconductor substrate, method of manufacturing the same, and III-V nitride semiconductor
JP4525353B2 (en) * 2005-01-07 2010-08-18 住友電気工業株式会社 Method for manufacturing group III nitride substrate
JP4735949B2 (en) * 2005-04-08 2011-07-27 日立電線株式会社 Method for producing group III-V nitride semiconductor crystal and method for producing group III-V nitride semiconductor substrate
JP2006290677A (en) * 2005-04-11 2006-10-26 Hitachi Cable Ltd Method for manufacturing nitride-based compound semiconductor crystal and method for manufacturing nitride-based compound semiconductor substrate

Also Published As

Publication number Publication date
KR20090101208A (en) 2009-09-24
EP2119815A4 (en) 2010-05-26
TWI394874B (en) 2013-05-01
CN101573480A (en) 2009-11-04
JP2008156189A (en) 2008-07-10
EP2119815A1 (en) 2009-11-18
WO2008078401A1 (en) 2008-07-03
CN101573480B (en) 2014-08-13
EP2119815B1 (en) 2012-05-02
ATE556158T1 (en) 2012-05-15
US9127376B2 (en) 2015-09-08
TW200833884A (en) 2008-08-16
US20100001376A1 (en) 2010-01-07

Similar Documents

Publication Publication Date Title
JP5125098B2 (en) Manufacturing method of nitride semiconductor free-standing substrate
US8012882B2 (en) Method of manufacturing nitride substrate for semiconductors
JP4991116B2 (en) Method for producing crack-free group III nitride semiconductor material
JP4862442B2 (en) Method for manufacturing group III-V nitride semiconductor substrate and method for manufacturing group III-V nitride device
EP1577933A2 (en) Method of manufacturing single-crystal GaN substrate, and single-crystal GaN substrate
US9428386B2 (en) Process for producing a group-III nitride crystal and process for producing a light-emitting semiconductor element or a semiconductor device comprising a group-III nitride crystal
JP5569112B2 (en) Method for manufacturing silicon carbide single crystal wafer and silicon carbide single crystal wafer obtained by this method
JP6212203B2 (en) Manufacturing method of nitride semiconductor single crystal substrate
CN1240304A (en) GaN monocrystal substrate and making method thereof
KR102372706B1 (en) β-Ga₂O₃-BASED-SINGLE CRYSTAL SUBSTRATE
JP2007197276A (en) Group iii-v nitride-based semiconductor substrate, its manufacturing method, and group iii-v nitride-based light emitting element
JP2008028259A (en) Method for manufacturing monocrystal garium-nitride substrate
JP6526811B2 (en) Method of processing a group III nitride crystal
JP4513326B2 (en) Nitride semiconductor crystal manufacturing method and nitride semiconductor substrate manufacturing method
JP5518566B2 (en) Manufacturing method of nitride semiconductor free-standing substrate
JP2005251961A (en) Group iii nitride single crystal wafer and method for manufacturing semiconductor device using same
US20160076168A1 (en) Substrates for growing group iii nitride crystals and their fabrication method
JP2001253794A (en) Method for producing semiconductor bulk single crystal
EP3191626A1 (en) Substrates for growing group iii nitride crystals and their fabrication method
KR20040014872A (en) Method for manufacturing substrate of Nitride chemical semiconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5125098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250