JP5122314B2 - Vapor deposition equipment - Google Patents

Vapor deposition equipment Download PDF

Info

Publication number
JP5122314B2
JP5122314B2 JP2008025421A JP2008025421A JP5122314B2 JP 5122314 B2 JP5122314 B2 JP 5122314B2 JP 2008025421 A JP2008025421 A JP 2008025421A JP 2008025421 A JP2008025421 A JP 2008025421A JP 5122314 B2 JP5122314 B2 JP 5122314B2
Authority
JP
Japan
Prior art keywords
vapor deposition
deposition material
cylindrical body
side wall
metal film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008025421A
Other languages
Japanese (ja)
Other versions
JP2009185325A (en
Inventor
隆雄 宮井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008025421A priority Critical patent/JP5122314B2/en
Publication of JP2009185325A publication Critical patent/JP2009185325A/en
Application granted granted Critical
Publication of JP5122314B2 publication Critical patent/JP5122314B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、例えば、有機エレクトロルミネッセンス(有機EL)素子用の有機膜を蒸着により形成する蒸着装置に関する。   The present invention relates to a vapor deposition apparatus that forms, for example, an organic film for an organic electroluminescence (organic EL) element by vapor deposition.

有機EL素子用の有機膜を蒸着により形成する蒸着装置は、真空チャンバ内に蒸着材料を収容した蒸発源を配置して、真空チャンバ内を減圧させて真空雰囲気とした状態で蒸発源を加熱して蒸着材料を気化させ、気化させた蒸着材料を被蒸着体の表面に堆積させることによって蒸着を行うものである。一般的な蒸発源の加熱方法としては、タングステンやモリブデン等の高融点金属から成る抵抗体に電流を流してこれを発熱させ、この抵抗体を用いて蒸発源を加熱する抵抗加熱法が知られている。   An evaporation apparatus for forming an organic film for an organic EL element by evaporation arranges an evaporation source containing an evaporation material in a vacuum chamber, and heats the evaporation source in a vacuum atmosphere by reducing the pressure in the vacuum chamber. The vapor deposition material is vaporized, and vapor deposition is performed by depositing the vaporized vapor deposition material on the surface of the deposition target. As a general evaporation source heating method, a resistance heating method is known in which an electric current is supplied to a resistor made of a refractory metal such as tungsten or molybdenum to generate heat and the evaporation source is heated using this resistor. ing.

この抵抗加熱法を用いた蒸着装置では、抵抗体への電力量を調整することにより、蒸発源から気化する蒸着材料の量が制御される。また、この種の蒸着装置では、一般に、水晶振動子等から成る膜厚計を用いて時間当たりの蒸着膜厚(蒸着レート)を検出すると共に、この蒸着レートに応じて蒸発源から気化する蒸着材料の量を適宜に制御する、いわゆるフィードバック制御が行われる。   In the vapor deposition apparatus using this resistance heating method, the amount of vapor deposition material evaporated from the evaporation source is controlled by adjusting the amount of electric power to the resistor. In addition, in this type of vapor deposition apparatus, in general, the vapor deposition thickness per unit time (vapor deposition rate) is detected by using a film thickness meter made of a quartz vibrator or the like, and vapor deposition is vaporized from an evaporation source in accordance with the vapor deposition rate. So-called feedback control is performed to appropriately control the amount of material.

このようなフィードバック制御を行う蒸着装置においては、被蒸着体における蒸着膜厚をレスポンス良く制御できることが望ましい。特に、有機EL膜の蒸着においては、高精度なホスト層及びゲスト層等の有機EL膜層を得るため、蒸着膜厚をレスポンス良く制御できることが重要である。しかし、上述した抵抗加熱法では、抵抗体への電力量が調整されてから、実際に蒸発源から気化する蒸着材料の量が変化するまでの間にタイムラグがあり、被蒸着体における蒸着膜厚をレスポンス良く制御することが困難であった。また、レスポンスが悪くなると、蒸着膜の形成に寄与しない無効材料が生じ易く、高価な有機EL材料の使用効率を低下させることがあった。しかも、この無効材料は、真空チャンバの内壁に付着して堆積して、真空チャンバ内のパーティクルとなって有機EL素子の製造不良の原因にもなる。   In a vapor deposition apparatus that performs such feedback control, it is desirable that the vapor deposition film thickness in the vapor deposition target can be controlled with good response. In particular, in the vapor deposition of the organic EL film, it is important that the vapor deposition film thickness can be controlled with good response in order to obtain highly accurate organic EL film layers such as a host layer and a guest layer. However, in the above-described resistance heating method, there is a time lag between the adjustment of the amount of power to the resistor and the actual change in the amount of vapor deposition material evaporated from the evaporation source, and the vapor deposition film thickness in the vapor deposition target It was difficult to control with good response. Further, when the response is deteriorated, an ineffective material that does not contribute to the formation of the deposited film is likely to be generated, and the use efficiency of the expensive organic EL material may be reduced. In addition, the ineffective material adheres to and accumulates on the inner wall of the vacuum chamber, becomes particles in the vacuum chamber, and causes a manufacturing defect of the organic EL element.

これを解決するものとして、蒸発源から気化した蒸着材料を被蒸着体へ導流する導流路に、気化された蒸着材料の流量を制御する流量制御手段を設けたことにより、被蒸着体における蒸着膜厚をレスポンス良く制御すると共に、無効材料の発生を抑制した蒸着装置が知られている(例えば、特許文献1参照)。この蒸着装置は、先鋭なニードルと、このニードルの先端が嵌まり込む弁座とから成る流量制御手段を備え、先鋭なニードルを回転又は移動等させることにより、気化された蒸着材料の流路を開閉して、被蒸着体の表面に蒸着させる蒸着材料の膜厚を制御する。
特開2005−48244号公報
As a solution to this, by providing a flow rate control means for controlling the flow rate of the vaporized vapor deposition material in the channel for conducting vapor deposition material vaporized from the evaporation source to the vapor deposition material, A vapor deposition apparatus that controls the vapor deposition film thickness with good response and suppresses the generation of ineffective materials is known (for example, see Patent Document 1). This vapor deposition apparatus includes a flow rate control means including a sharp needle and a valve seat into which the tip of the needle fits. By rotating or moving the sharp needle, the vapor deposition material flow path is formed. The film thickness of the vapor deposition material deposited on the surface of the deposition target is controlled by opening and closing.
JP 2005-48244 A

しかしながら、この蒸着装置に備えられた流量制御手段は、気化された蒸着材料が堆積しないように、蒸着材料が気化される温度、例えば、300℃程度の高温に加熱される。しかし、先鋭なニードルは、高温に曝されると強度が低下するので、この種の流量制御手段を備えた蒸着装置においては、気化された蒸着材料の流量を正確に制御できないことがあり、故障も生じ易い。   However, the flow rate control means provided in the vapor deposition apparatus is heated to a temperature at which the vapor deposition material is vaporized, for example, a high temperature of about 300 ° C., so that the vaporized vapor deposition material is not deposited. However, since the strength of a sharp needle decreases when exposed to high temperatures, the flow rate of vaporized vapor deposition material may not be accurately controlled in a vapor deposition apparatus equipped with this type of flow rate control means. Is also likely to occur.

本発明は、上記課題を解決するものであり、熱に強くシンプルな構成で気化された蒸着材料の流量をレスポンス良く正確に制御することができる蒸着装置を提供することを目的とする。   An object of the present invention is to solve the above-described problems and to provide a vapor deposition apparatus capable of accurately controlling the flow rate of vapor deposition material that is resistant to heat and vaporized with a simple configuration with good response.

上記課題を解決するため、請求項1の発明は、蒸着材料を収容する蒸発源と、前記蒸着材料を前記蒸発源から被蒸着体へ飛翔導流させる流路となり、前記蒸着材料が気化される温度に加熱される筒状体と、前記筒状体内を流れる蒸着材料の流量を制御する流量制御手段と、を備えた蒸着装置において、前記筒状体は、前記蒸発源が配置される底部と、前記蒸発源から気化した蒸着材料を前記被蒸着体へ放出する開口部と、前記底部と開口部とを連接する側壁とを備え、前記流量制御手段は、一方の端部が前記側壁の内面に固定され、他方の端部に第1の磁性体が取り付けられた金属フィルムと、前記筒状体外に配置され、前記側壁を介して前記第1の磁性体と引き合う第2の磁性体とを備え、前記第2の磁性体を前記側壁の外面に沿って移動させて、前記第1の磁性体が取り付けられた金属フィルムを変形させることにより、前記筒状体内の流路面積を調整して前記蒸着材料の流量を制御するように構成されているものである。   In order to solve the above-mentioned problem, the invention of claim 1 is an evaporation source for accommodating a vapor deposition material, and a flow path for causing the vapor deposition material to fly and flow from the evaporation source to the vapor deposition target, and the vapor deposition material is vaporized. In a vapor deposition apparatus comprising: a cylindrical body heated to a temperature; and a flow rate control means for controlling a flow rate of a vapor deposition material flowing through the cylindrical body, the cylindrical body includes a bottom portion on which the evaporation source is disposed, And an opening for discharging the vapor deposition material evaporated from the evaporation source to the deposition target, and a side wall connecting the bottom and the opening, and the flow rate control means has one end at the inner surface of the side wall. And a second magnetic body that is disposed outside the cylindrical body and attracts the first magnetic body via the side wall. And moving the second magnetic body along the outer surface of the side wall Thus, the flow rate of the vapor deposition material is controlled by adjusting the flow path area in the cylindrical body by deforming the metal film to which the first magnetic body is attached. .

請求項2の発明は、請求項1に記載の蒸着装置において、前記筒状体は、該筒状体内を底部側空間と開口部側空間との少なくとも2つの空間に仕切る遮蔽板と、前記側壁の内面に形成され、前記遮蔽板によって仕切られた空間を連通させて前記蒸着材料を導流する溝部とを備え、前記金属フィルムは、その変形により、前記溝部を塞ぐ面積を変化させることによって流路面積を調整するものである。   According to a second aspect of the present invention, in the vapor deposition apparatus according to the first aspect, the cylindrical body includes a shielding plate that partitions the cylindrical body into at least two spaces of a bottom side space and an opening side space, and the side wall. A groove portion that communicates a space partitioned by the shielding plate and guides the vapor deposition material, and the metal film flows by changing an area that closes the groove portion by deformation thereof. The road area is adjusted.

請求項3の発明は、請求項1又は請求項2に記載の蒸着装置において、前記金属フィルムが非磁性体から成るものである。   According to a third aspect of the present invention, in the vapor deposition apparatus according to the first or second aspect, the metal film is made of a nonmagnetic material.

請求項4の発明は、請求項1乃至請求項3のいずれか一項に記載の蒸着装置において、前記開口部に配置され、該開口部を開閉自在として気化された蒸着材料を放出又は遮断するシャッタを更に備えたものである。   According to a fourth aspect of the present invention, in the vapor deposition apparatus according to any one of the first to third aspects, the vaporized vapor deposition material disposed in the opening and opening and closing is released or blocked. A shutter is further provided.

請求項1の発明によれば、流量制御手段が、高温に曝されても高い応力が働き難い金属フィルムを用いたシンプルな構成とされているので、熱に強く、筒状体内を流れる気化された蒸着材料の流量を正確に制御すことができる。また、金属フィルムは軽量で容易に変形するので、筒状体内の流路面積を速やかに変化させることができ、蒸着材料の流量をレスポンス良く制御することができる。   According to the first aspect of the present invention, since the flow rate control means has a simple configuration using a metal film that is difficult to work with high stress even when exposed to high temperatures, the flow control means is resistant to heat and is vaporized to flow through the cylindrical body. The flow rate of the deposited material can be accurately controlled. Further, since the metal film is lightweight and easily deformed, the flow channel area in the cylindrical body can be quickly changed, and the flow rate of the vapor deposition material can be controlled with good response.

請求項2の発明によれば、側壁の内面に形成された溝部が、気化された蒸着材料の流路となるので、金属フィルムが溝部を塞ぐ面積を変化させることにより蒸着材料の流量を制御することができる。   According to the second aspect of the present invention, the groove formed on the inner surface of the side wall serves as a flow path for the vaporized vapor deposition material. Therefore, the flow rate of the vapor deposition material is controlled by changing the area where the metal film closes the groove. be able to.

請求項3の発明によれば、第1及び第2の磁性体以外の磁性体によって金属フィルムが動かされることはないので、誤って蒸着材料の流量が制御されることを防止できる。   According to the invention of claim 3, since the metal film is not moved by a magnetic body other than the first and second magnetic bodies, it is possible to prevent the flow rate of the vapor deposition material from being erroneously controlled.

請求項4の発明によれば、必要に応じ、気化された蒸着材料を完全に筒状体内に閉じ込めることができる。   According to invention of Claim 4, the vapor-deposited vapor deposition material can be completely enclosed in a cylindrical body as needed.

本発明の一実施形態に係る蒸着装置について、図1及び図2を参照して説明する。本実施形態の蒸着装置は、真空チャンバ1内に、蒸着材料2を収容する蒸発源3と、蒸発源3から気化した蒸着材料2を被蒸着体4へ飛翔導流させる流路となる筒状体5と、筒状体5内を流れる蒸着材料2の流量を制御する流量制御手段6と、を備える。真空チャンバ1は蒸着材料2及び被蒸着体4を容易に交換できるよう構成されており、その側壁には真空ポンプ(図示せず)が接続される。流量制御手段6は、筒状体5内に取り付けられた金属フィルム7を変形させて筒状体5内の流路面積を調整することにより、気化された蒸着材料2の流量を制御するものである。   A vapor deposition apparatus according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2. The vapor deposition apparatus according to the present embodiment has a cylindrical shape serving as a flow path in which an evaporation source 3 that accommodates the vapor deposition material 2 and a vapor deposition material 2 vaporized from the evaporation source 3 fly and flow to the vapor deposition target 4 in the vacuum chamber 1. A body 5 and a flow rate control means 6 for controlling the flow rate of the vapor deposition material 2 flowing in the cylindrical body 5. The vacuum chamber 1 is configured so that the vapor deposition material 2 and the vapor deposition target 4 can be easily exchanged, and a vacuum pump (not shown) is connected to the side wall thereof. The flow rate control means 6 controls the flow rate of the vaporized deposition material 2 by deforming the metal film 7 attached in the cylindrical body 5 and adjusting the flow path area in the cylindrical body 5. is there.

蒸発源3は、蒸着材料2を収納する坩堝31と、この坩堝31を加熱して蒸着材料2を気化させるための蒸発源ヒータ32とを備える。蒸発源ヒータ32には、例えば、シーズヒータ等が用いられるが、坩堝31の加熱温度を適宜に制御可能であれば、その種類や形状等は特に限定されない。被蒸着体4は、蒸着作業を行うときに真空チャンバ1内に配置される。   The evaporation source 3 includes a crucible 31 for storing the vapor deposition material 2 and an evaporation source heater 32 for heating the crucible 31 to vaporize the vapor deposition material 2. For example, a sheathed heater or the like is used as the evaporation source heater 32, but the type and shape thereof are not particularly limited as long as the heating temperature of the crucible 31 can be appropriately controlled. The deposition target 4 is disposed in the vacuum chamber 1 when performing a deposition operation.

筒状体5は、一方が閉口し、他方が開口し、その断面が矩形状に形成された筒状部材であり、蒸発源3が配置される底部51と、被蒸着体4に向けて気化された蒸着材料2を放出する開口部52と、底部51と開口部52とを連通させる側壁53とを備える。底部51及び側壁53は、それらの外部に筒状体ヒータ(図示せず)が設けられ、蒸着材料2が気化される温度に加熱される。また、筒状体5は、筒状体5内を底部51側の空間(第1空間という)51Aと、開口部52側の空間(第2空間という)52Aとの、少なくとも2つの空間に仕切る遮蔽板54と、側壁53の内面に形成され、遮蔽板54によって仕切られた第1空間51Aと第2空間52Aとを連通させて蒸発源3から気化した蒸着材料2を第2空間52Aへ導流する溝部55とを備える。なお、筒状体5は、側部53のうち、溝部55が形成される面が平面となるよう構成されていればよく、例えば、底部51及び開口部52等の近傍は屈曲していてもよい。底部51、側壁53及び遮蔽板54の構成材としては、例えば、SUS305、Al等の熱伝導性が高い非磁性体材料が用いられる。   The cylindrical body 5 is a cylindrical member in which one side is closed and the other is opened and the cross section is formed in a rectangular shape, and is vaporized toward the bottom 51 where the evaporation source 3 is disposed and the deposition target 4. An opening 52 that discharges the deposited vapor deposition material 2 and a side wall 53 that communicates the bottom 51 and the opening 52 are provided. The bottom 51 and the side wall 53 are provided with a cylindrical heater (not shown) outside thereof, and are heated to a temperature at which the vapor deposition material 2 is vaporized. The tubular body 5 partitions the inside of the tubular body 5 into at least two spaces, a space 51A on the bottom 51 side (referred to as a first space) and a space 52A on the opening 52 side (referred to as a second space). The vapor deposition material 2 vaporized from the evaporation source 3 is guided to the second space 52A by connecting the first space 51A and the second space 52A formed on the inner surface of the shielding plate 54 and the side wall 53 and partitioned by the shielding plate 54. And a groove portion 55 that flows. In addition, the cylindrical body 5 should just be comprised so that the surface in which the groove part 55 is formed may become a plane among the side parts 53, for example, even if the vicinity of the bottom part 51, the opening part 52, etc. is bent. Good. As a constituent material of the bottom 51, the side wall 53, and the shielding plate 54, for example, a nonmagnetic material having high thermal conductivity such as SUS305 or Al is used.

遮蔽板54は、溝部55を除いて、第1空間51Aから第2空間52Aへ気化された蒸着材料2が漏れないように、側壁53の内面に溶接等によりシール及び固定される。遮蔽板54は、蒸発源3から気化した蒸着材料2を効果的に溝部55へ誘導できるように、底部51と平行な面に対して所定の傾斜角を有するように配置される。   Except for the groove portion 55, the shielding plate 54 is sealed and fixed to the inner surface of the side wall 53 by welding or the like so that the vapor deposition material 2 vaporized from the first space 51A to the second space 52A does not leak. The shielding plate 54 is disposed so as to have a predetermined inclination angle with respect to a plane parallel to the bottom portion 51 so that the vapor deposition material 2 vaporized from the evaporation source 3 can be effectively guided to the groove portion 55.

溝部55は、底部51側から開口部52側へ向けて、少なくとも筒状体5と遮蔽板54との接合部を貫通するように側壁53の内面に形成される。好ましくは、溝部55は、底部51側から開口部52側への断面積が異なるように、例えば、図示したように、底部51に近い部分の幅が広く、底部51から離れるに従って幅が連続的に狭くなるように形成される。また、溝部55はその深さが連続的に変化するように、例えば、底部51に近い部分が深く、底部51から離れるに従って浅くなるように形成されていてもよい(図示せず)。   The groove portion 55 is formed on the inner surface of the side wall 53 so as to penetrate at least the joint portion between the cylindrical body 5 and the shielding plate 54 from the bottom portion 51 side toward the opening portion 52 side. Preferably, the groove portion 55 has a wide width at a portion close to the bottom portion 51, for example, as shown in the drawing, so that the cross-sectional area from the bottom portion 51 side to the opening portion 52 side is different, and the width is continuous as the distance from the bottom portion 51 increases. It is formed to be narrow. Moreover, the groove part 55 may be formed so that the depth may change continuously, for example, the part close | similar to the bottom part 51 is deep, and it becomes shallow as it leaves | separates from the bottom part 51 (not shown).

金属フィルム7は、例えば、一方の端部7aが第2空間52A側の溝部55の下端を挟む領域56に固定されると共に、開口部52方向に向けて凸となるよう湾曲され、他方の端部7bが溝部55と対向する側壁53の内面と向かい合うように配置される。端部7aと領域56との固定方法としては、例えば、溶接、接着、リベット止め等が用いられ、好ましくは、隙間のない強固な接合が可能であり、しかも筒状体5から金属フィルム7への熱伝導性が良くなる溶接加工が用いられる。   The metal film 7 is curved, for example, so that one end 7a is fixed to a region 56 that sandwiches the lower end of the groove 55 on the second space 52A side, and is convex toward the opening 52, and the other end. The part 7 b is disposed so as to face the inner surface of the side wall 53 facing the groove part 55. As a method for fixing the end portion 7a and the region 56, for example, welding, adhesion, riveting, or the like is used. Preferably, strong joining without a gap is possible, and the tubular body 5 to the metal film 7 is possible. A welding process that improves the thermal conductivity is used.

金属フィルム7は、その変形により溝部55を塞ぐ面積を変化させられるように、その幅が第2空間52A側の溝部55の最大幅よりも更に広く、かつ少なくとも第2空間52A側の溝部55の長さよりも長く形成された柔軟性を有する金属薄板が用いられる。その構成材としては、例えば、SUS301,Cu又はAl等の熱伝導性が高い非磁性体材料が用いられる。好ましくは、金属フィルム7は、溝部55が形成された側壁53の内面と隙間なく接するように、その弾性により側壁53の内面を押圧する方向に付勢される。   The metal film 7 has a width wider than the maximum width of the groove portion 55 on the second space 52A side and at least the groove portion 55 on the second space 52A side so that the area covering the groove portion 55 can be changed by the deformation. A flexible metal thin plate formed longer than the length is used. As the constituent material, for example, a nonmagnetic material having high thermal conductivity such as SUS301, Cu, or Al is used. Preferably, the metal film 7 is urged in the direction of pressing the inner surface of the side wall 53 by its elasticity so as to be in contact with the inner surface of the side wall 53 in which the groove portion 55 is formed without a gap.

金属フィルム7の他方の端部7bは、側壁53の内面に固定されることなく移動自在とされ、第1の磁性体8aが取り付けられる。筒状体5外には、側壁53を介して第1の磁性体8aと引き合う第2の磁性体8bが配置される。端部7bは、第1の磁性体8aが第2の磁性体8bと引き合うことにより、第2の磁性体8bが側壁53の外面に沿って動かされると、側壁53を挟む第2の磁性体8bと同じ位置に移動する。このとき、端部7aは側壁53の内面に固定されているので、端部7bが移動することにより、金属フィルム7の形状が変化する。   The other end 7b of the metal film 7 is movable without being fixed to the inner surface of the side wall 53, and the first magnetic body 8a is attached thereto. A second magnetic body 8 b that attracts the first magnetic body 8 a through the side wall 53 is disposed outside the cylindrical body 5. When the second magnetic body 8b is moved along the outer surface of the side wall 53 by the first magnetic body 8a attracting to the second magnetic body 8b, the end portion 7b has a second magnetic body sandwiching the side wall 53. Move to the same position as 8b. At this time, since the end portion 7a is fixed to the inner surface of the side wall 53, the shape of the metal film 7 changes as the end portion 7b moves.

なお、第2の磁性体8bは、蒸着作業時、すなわち真空チャンバ1内が真空状態に置かれているとき、真空チャンバ1外からその位置を任意に動かすことができるように、適宜の操作機構(図示せず)が設けられる。好ましくは、側壁53の外面には溝部55と平行なレール状部材が適宜に設けられ、第2の磁性体8bはこのレール状部材に沿ってスライドするよう構成される。また、本実施形態の蒸着装置は、気化された蒸着材料2を付着させて時間当たりの蒸着膜厚(蒸着レート)を計測する膜厚計測部(図示せず)を備え、好ましくは、第2の磁性体8bは、膜厚計測部が計測した蒸着レートに応じて適宜に操作されるよう構成される。   The second magnetic body 8b has an appropriate operation mechanism so that its position can be arbitrarily moved from the outside of the vacuum chamber 1 during the vapor deposition operation, that is, when the inside of the vacuum chamber 1 is in a vacuum state. (Not shown) is provided. Preferably, a rail-like member parallel to the groove portion 55 is appropriately provided on the outer surface of the side wall 53, and the second magnetic body 8b is configured to slide along this rail-like member. Moreover, the vapor deposition apparatus of this embodiment is provided with the film thickness measurement part (not shown) which makes the vapor deposition material 2 adhere, and measures the vapor deposition film thickness (vapor deposition rate) per time, Preferably, 2nd The magnetic body 8b is configured to be appropriately operated according to the deposition rate measured by the film thickness measuring unit.

次に、本実施形態の蒸着装置の動作を説明する。被蒸着体4に蒸着材料2を蒸着させるとき、まず、真空ポンプを用いて真空チャンバ1内を真空状態に減圧すると共に、筒状体ヒータを作動させて筒状体5を加熱する。筒状体5の温度は蒸着材料2が気化される温度に設定される。遮蔽板54は、筒状体5の内面と接するので、筒状体5からの熱が伝達されて筒状体5と同等の温度になる。続いて、蒸発源ヒータ32を作動させて蒸発源3に収容された蒸着材料2を加熱してこれを気化させる。気化された蒸着材料2は、第1空間51Aに放出され、側壁53の内面及び遮蔽板54で反射しながら溝部55へ進む。側壁53、遮蔽板54及び溝部55は、いずれも筒状体ヒータによって蒸着材料2が気化される温度に加熱されているので、これらの表面には蒸着材料2が堆積しない。   Next, operation | movement of the vapor deposition apparatus of this embodiment is demonstrated. When the deposition material 2 is deposited on the deposition target body 4, first, the vacuum chamber 1 is decompressed to a vacuum state using a vacuum pump, and the cylindrical body heater 5 is operated to heat the cylindrical body 5. The temperature of the cylindrical body 5 is set to a temperature at which the vapor deposition material 2 is vaporized. Since the shielding plate 54 is in contact with the inner surface of the cylindrical body 5, heat from the cylindrical body 5 is transmitted to a temperature equivalent to that of the cylindrical body 5. Subsequently, the evaporation source heater 32 is operated to heat the vapor deposition material 2 accommodated in the evaporation source 3 and vaporize it. The vaporized vapor deposition material 2 is discharged into the first space 51 </ b> A and proceeds to the groove portion 55 while being reflected by the inner surface of the side wall 53 and the shielding plate 54. Since the side wall 53, the shielding plate 54, and the groove portion 55 are all heated to a temperature at which the vapor deposition material 2 is vaporized by the cylindrical heater, the vapor deposition material 2 is not deposited on these surfaces.

被蒸着体4に対する蒸着レートが高く設定されたとき、図1に示したように、第2の磁性体8bは底部51に近い位置に置かれる。第2の磁性体8bは、金属フィルム7の端部7bに取り付けられた第1の磁性体8aを引き寄せ、端部7bは第1の磁性体8aと共に側壁53を挟む第2の磁性体8bと同じ位置に停止する。このとき、金属フィルム7は全体として底部51側に引っ張られるので、側壁53の内面と金属フィルム7とが接する領域S1の面積が狭く、第2空間52A側にある溝部55の流路面積S2が広くなる。そのため、溝部55から第2空間52A側へ流れる蒸着材料2の流量が多くなり、筒状体5内を飛翔して開口部52から被蒸着体4の表面に堆積する蒸着材料2の蒸着量も多くなる。遮蔽板54が、図示したような傾斜角で配置されることにより、端部7bを底部51の近傍に移動させることができ、流路面積S2を広くすることができる。   When the deposition rate for the deposition target 4 is set high, the second magnetic body 8b is placed at a position close to the bottom 51 as shown in FIG. The second magnetic body 8b attracts the first magnetic body 8a attached to the end 7b of the metal film 7, and the end 7b and the second magnetic body 8b sandwiching the side wall 53 together with the first magnetic body 8a Stop at the same position. At this time, since the metal film 7 is pulled toward the bottom 51 as a whole, the area S1 where the inner surface of the side wall 53 and the metal film 7 are in contact with each other is small, and the flow path area S2 of the groove 55 on the second space 52A side is small. Become wider. Therefore, the flow rate of the vapor deposition material 2 flowing from the groove portion 55 toward the second space 52A increases, and the vapor deposition amount of the vapor deposition material 2 that flies through the cylindrical body 5 and deposits on the surface of the vapor deposition target 4 from the opening 52 is also obtained. Become more. By arranging the shielding plate 54 at an inclination angle as illustrated, the end 7b can be moved to the vicinity of the bottom 51, and the flow path area S2 can be increased.

これに対して、被蒸着体4に対する蒸着レートが低く設定されたとき、図2に示したように、第2の磁性体8bは開口部52に近い位置に置かれ、端部7bは側壁53を挟む第2の磁性体8bと同じ位置に停止する。このとき、金属フィルム7は全体として開口部52側に引っ張られて変形し、側壁53の内面と金属フィルム7とが接する領域S1の面積が広く、第2空間52A側にある溝部55の流路面積S2が狭くなる。そのため、第2空間52Aへ流れる蒸着材料2の流量は少なくなり、筒状体5内を飛翔して被蒸着体4の表面に堆積する蒸着材料2の蒸着量も少なくなる。   On the other hand, when the vapor deposition rate for the deposition target 4 is set low, the second magnetic body 8b is placed at a position close to the opening 52 and the end 7b has the side wall 53 as shown in FIG. Stops at the same position as the second magnetic body 8b. At this time, the metal film 7 as a whole is pulled and deformed toward the opening 52, and the area S1 where the inner surface of the side wall 53 and the metal film 7 are in contact with each other is wide, and the flow path of the groove 55 on the second space 52A side. The area S2 becomes narrow. Therefore, the flow rate of the vapor deposition material 2 flowing into the second space 52A is reduced, and the vapor deposition amount of the vapor deposition material 2 flying in the cylindrical body 5 and deposited on the surface of the vapor deposition target body 4 is also reduced.

このように、流量制御手段6は、筒状体5外に配置された第2の磁性体8bを移動させることにより、金属フィルム7を変形させて溝部55の流路面積S2を変化させ、筒状体5内を流れる蒸着材料2の流量を任意に制御することができる。また、溝部55の幅Wが、図示したように、底部51に近い部分は広く、底部51から離れるに従って連続的に狭くなるように形成されることにより、第2の磁性体8bが開口部51の近くに置かれる程、開口面積S2の幅Wが小さくなり、蒸着材料2の流量を高精度で制御することができる。更に、金属フィルム7は、非磁性体材料から構成されているので、第1及び第2の磁性体8a,8b以外の磁性体によって動かされることはなく、誤って蒸着材料の流量が制御されることを防止できる。   As described above, the flow rate control means 6 moves the second magnetic body 8b arranged outside the cylindrical body 5, thereby deforming the metal film 7 to change the flow path area S2 of the groove portion 55, thereby It is possible to arbitrarily control the flow rate of the vapor deposition material 2 flowing in the body 5. Further, as shown in the drawing, the width W of the groove portion 55 is wide at the portion close to the bottom portion 51 and continuously narrows away from the bottom portion 51, so that the second magnetic body 8 b is opened at the opening portion 51. The width W of the opening area S <b> 2 becomes smaller as it is placed closer to, and the flow rate of the vapor deposition material 2 can be controlled with high accuracy. Furthermore, since the metal film 7 is made of a non-magnetic material, it is not moved by a magnetic material other than the first and second magnetic materials 8a and 8b, and the flow rate of the vapor deposition material is controlled by mistake. Can be prevented.

また、流量制御手段6は、第1及び第2の磁性体8a,8bを用いて金属フィルム7を移動させるシンプルな構成とされているので、金属フィルム7が高温に曝されても、メカ式等の複雑な制御機構とは異なり、金属フィルム7にはそれ程高い応力は働かない。そのため、流量制御手段6は、熱に強く、筒状体5内を流れる蒸着材料2の流量を正確に制御すことができる。また、金属フィルム7は軽量であり、第2の磁性体8bの移動に応じて容易に変形するので、第2空間52Aにおける溝部55の流路面積S2を速やかに変化させることができる。そのため、本実施形態の蒸着装置は、筒状体5内を流れる蒸着材料2の流量をレスポンス良く制御することができる。   Moreover, since the flow rate control means 6 has a simple configuration in which the metal film 7 is moved using the first and second magnetic bodies 8a and 8b, even if the metal film 7 is exposed to a high temperature, it is mechanical. Unlike a complicated control mechanism such as the above, the metal film 7 does not have such a high stress. Therefore, the flow rate control means 6 is resistant to heat and can accurately control the flow rate of the vapor deposition material 2 flowing in the cylindrical body 5. Moreover, since the metal film 7 is lightweight and easily deforms according to the movement of the second magnetic body 8b, the flow path area S2 of the groove portion 55 in the second space 52A can be quickly changed. Therefore, the vapor deposition apparatus of this embodiment can control the flow rate of the vapor deposition material 2 flowing through the cylindrical body 5 with good response.

更に、金属フィルム7は、従来の蒸着装置に用いられた先鋭なニードル等に比べて熱伝導性が高いので、筒状体5が熱せられると、筒状体5からの伝熱によって蒸着材料2が気化される温度に容易に加熱される。そのため、別段のヒータ等を設けることなく、シンプルな構成で金属フィルム7への蒸着材料2の付着を抑制することができ、装置の小型化及び低コスト化が可能となる。   Furthermore, since the metal film 7 has a higher thermal conductivity than a sharp needle or the like used in a conventional vapor deposition apparatus, the vapor deposition material 2 is transferred by heat transfer from the cylindrical body 5 when the cylindrical body 5 is heated. Is easily heated to a temperature at which is vaporized. Therefore, the attachment of the vapor deposition material 2 to the metal film 7 can be suppressed with a simple configuration without providing a separate heater or the like, and the apparatus can be reduced in size and cost.

ここで、本実施形態の蒸着装置の変形例について、図3を参照して説明する。この変形例は、筒状体5の開口部52にシャッタ9を設けた点が上記実施形態とは異なる。シャッタ9は、開口部52の開口径に適合するように形成された板状部材を回転又はスライドさせて開口部52を開閉し、筒状体5から蒸着材料2を放出又は遮断するものである。好ましくは、シャッタ9は駆動機構を備え、この駆動機構は蒸着作業時に真空チャンバ1内が真空状態であって外部からシャッタ9の開閉を操作できるように構成される。   Here, the modification of the vapor deposition apparatus of this embodiment is demonstrated with reference to FIG. This modification differs from the above embodiment in that the shutter 9 is provided in the opening 52 of the cylindrical body 5. The shutter 9 opens or closes the opening 52 by rotating or sliding a plate-like member formed so as to match the opening diameter of the opening 52 to release or block the vapor deposition material 2 from the cylindrical body 5. . Preferably, the shutter 9 is provided with a drive mechanism, and this drive mechanism is configured so that the inside of the vacuum chamber 1 is in a vacuum state during the vapor deposition operation and the shutter 9 can be opened and closed from the outside.

金属フィルム7は、側壁53の領域56に固定された端部7aを除き、側壁53の内面と接しているだけであるので、開口面積S2をゼロとしたときであっても、気化された蒸着材料2の流動を完全に遮断することは困難である。そこで、この変形例のように、シャッタ9を設けることにより、必要に応じて、気化された蒸着材料2を完全に筒状体5内に閉じ込めることができる。この変形例は、被蒸着体4に対する蒸着材料2の堆積を停止させるとき、例えば、被蒸着体4の取り替えるときや、蒸着作業を緊急停止したいとき等に有効である。   Since the metal film 7 is only in contact with the inner surface of the side wall 53 except for the end portion 7a fixed to the region 56 of the side wall 53, vaporized vapor deposition is possible even when the opening area S2 is zero. It is difficult to completely block the flow of the material 2. Therefore, by providing the shutter 9 as in this modification, the vaporized vapor deposition material 2 can be completely confined in the cylindrical body 5 as necessary. This modification is effective when the deposition of the vapor deposition material 2 on the vapor deposition target 4 is stopped, for example, when the vapor deposition target 4 is replaced or when the vapor deposition operation is urgently stopped.

なお、本発明は、筒状体5内にその一端が固定された金属フィルム7を、磁性体8a,8bを用いて変形させて、筒状体5内を流れる蒸着材料2の流量を制御できるものであれば、上述した実施形態の構成に限られない。例えば、側壁53の内面に固定された端部7aと、第1の磁性体8aが取り付けられた端部7bとが、側部53の同一平面であって、底部51と開口部52とを結ぶ線分上に配置され、金属フィルム7が、端部7a及び端部7bが配置された内面と対向する面(対向面という)に向かって凸となるよう屈曲されて配置されてもよい。この構成によれば、端部7bが端部7aに近接するよう動かされると、金属フィルム7は、対向面の方に張り出すように変形し、筒状体5内の流路面積は小さくなる。一方、端部7bが端部7aと乖離するよう動かされると、金属フィルム7は側壁53の内面に沿う形状になり、筒状体5内の流路面積は大きくなる。こうすれば、溝部55及び遮蔽板54を用いることなく、筒状体5内を流れる蒸着材料2の流量を調整することができる。ただし、この例においては、金属フィルム7と側部53の内面との間に隙間が生じ易く、特に、蒸着レートが低く設定されたときに、蒸着材料2の流量を正確に制御できないことがある。これに対して、上述した実施形態のように、溝部55及び遮蔽板54を用いた構成においては、金属フィルム7が、十分な幅と長さを有するように形成されていれば、溝部55を容易に塞ぐことができ、蒸着材料2の流量を精度良く制御することができる。   In the present invention, the flow rate of the vapor deposition material 2 flowing through the cylindrical body 5 can be controlled by deforming the metal film 7 having one end fixed in the cylindrical body 5 using the magnetic bodies 8a and 8b. If it is a thing, it is not restricted to the structure of embodiment mentioned above. For example, the end 7 a fixed to the inner surface of the side wall 53 and the end 7 b to which the first magnetic body 8 a is attached are on the same plane of the side 53 and connect the bottom 51 and the opening 52. The metal film 7 may be arranged on the line segment and bent so as to be convex toward a surface (referred to as an opposing surface) facing the inner surface on which the end 7a and the end 7b are arranged. According to this configuration, when the end portion 7b is moved so as to be close to the end portion 7a, the metal film 7 is deformed so as to protrude toward the facing surface, and the flow path area in the cylindrical body 5 is reduced. . On the other hand, when the end portion 7b is moved so as to be separated from the end portion 7a, the metal film 7 has a shape along the inner surface of the side wall 53, and the flow path area in the cylindrical body 5 is increased. In this way, the flow rate of the vapor deposition material 2 flowing through the cylindrical body 5 can be adjusted without using the groove 55 and the shielding plate 54. However, in this example, a gap is likely to be generated between the metal film 7 and the inner surface of the side portion 53, and in particular, when the vapor deposition rate is set low, the flow rate of the vapor deposition material 2 may not be accurately controlled. . On the other hand, in the configuration using the groove portion 55 and the shielding plate 54 as in the above-described embodiment, if the metal film 7 is formed to have a sufficient width and length, the groove portion 55 is formed. It can be easily closed and the flow rate of the vapor deposition material 2 can be controlled with high accuracy.

また、本発明は、有機EL素子用の有機膜を蒸着により成膜する蒸着装置に好適に用いられ、この場合、ゲスト蒸着材料及びホスト蒸着材料等を気化させるため、少なくとも2つの蒸発源3が備えられる。また、有機膜以外の蒸着膜の成膜にも適宜に用いられ得る。すなわち、本発明の蒸着装置において、蒸発源3の個数及びこの蒸発源3に収容される材料の種類等は特に限定されるものではない。   In addition, the present invention is suitably used for a vapor deposition apparatus that deposits an organic film for an organic EL element by vapor deposition. In this case, at least two evaporation sources 3 are used to vaporize a guest vapor deposition material, a host vapor deposition material, and the like. Provided. It can also be used as appropriate for the deposition of vapor deposition films other than organic films. That is, in the vapor deposition apparatus of the present invention, the number of the evaporation sources 3 and the types of materials accommodated in the evaporation sources 3 are not particularly limited.

本発明の一実施形態に係る蒸着装置における蒸着レートが高く設定されたときの側断面図とそれに対応する正面断面図。The side sectional view when the vapor deposition rate is set high in the vapor deposition apparatus which concerns on one Embodiment of this invention, and front sectional drawing corresponding to it. 同蒸着装置における蒸着レートが低く設定されたときの側断面図とそれに対応する正面断面図。The side sectional view when the vapor deposition rate in the vapor deposition apparatus is set low, and the front sectional view corresponding thereto. 同蒸着装置の変形例を示す側断面図。The sectional side view which shows the modification of the vapor deposition apparatus.

符号の説明Explanation of symbols

2 蒸着材料
4 被蒸着体
3 蒸発源
5 筒状体
51 底部
52 開口部
53 側壁
54 遮蔽板
55 溝部
6 流量制御手段
7 金属フィルム
7a 端部
7b 端部
8a 第1の磁性体
8b 第2の磁性体
9 シャッタ
DESCRIPTION OF SYMBOLS 2 Vapor deposition material 4 Deposited body 3 Evaporation source 5 Cylindrical body 51 Bottom part 52 Opening part 53 Side wall 54 Shielding board 55 Groove part 6 Flow control means 7 Metal film 7a End part 7b End part 8a 1st magnetic body 8b 2nd magnetism Body 9 Shutter

Claims (4)

蒸着材料を収容する蒸発源と、前記蒸着材料を前記蒸発源から被蒸着体へ飛翔導流させる流路となり、前記蒸着材料が気化される温度に加熱される筒状体と、前記筒状体内を流れる蒸着材料の流量を制御する流量制御手段と、を備えた蒸着装置において、
前記筒状体は、前記蒸発源が配置される底部と、前記蒸発源から気化した蒸着材料を前記被蒸着体へ放出する開口部と、前記底部と開口部とを連接する側壁とを備え、
前記流量制御手段は、
一方の端部が前記側壁の内面に固定され、他方の端部に第1の磁性体が取り付けられた金属フィルムと、
前記筒状体外に配置され、前記側壁を介して前記第1の磁性体と引き合う第2の磁性体とを備え、
前記第2の磁性体を前記側壁の外面に沿って移動させて、前記第1の磁性体が取り付けられた金属フィルムを変形させることにより、前記筒状体内の流路面積を調整して前記蒸着材料の流量を制御するように構成されていることを特徴とする蒸着装置。
An evaporation source that accommodates the vapor deposition material, a flow path that causes the vapor deposition material to fly and flow from the evaporation source to the deposition target, and a cylindrical body that is heated to a temperature at which the vapor deposition material is vaporized; A flow rate control means for controlling the flow rate of the vapor deposition material flowing through the vapor deposition apparatus,
The cylindrical body includes a bottom portion on which the evaporation source is disposed, an opening that discharges vapor deposition material evaporated from the evaporation source to the deposition target, and a side wall that connects the bottom and the opening,
The flow rate control means is
A metal film having one end fixed to the inner surface of the side wall and a first magnetic body attached to the other end;
A second magnetic body disposed outside the cylindrical body and attracted to the first magnetic body via the side wall;
By moving the second magnetic body along the outer surface of the side wall and deforming the metal film to which the first magnetic body is attached, the flow area in the cylindrical body is adjusted and the vapor deposition is performed. A vapor deposition apparatus configured to control a flow rate of a material.
前記筒状体は、該筒状体内を底部側空間と開口部側空間との少なくとも2つの空間に仕切る遮蔽板と、前記側壁の内面に形成され、前記遮蔽板によって仕切られた空間を連通させて前記蒸着材料を導流する溝部とを備え、
前記金属フィルムは、その変形により、前記溝部を塞ぐ面積を変化させることによって流路面積を調整するものであることを特徴とする請求項1に記載の蒸着装置。
The cylindrical body is formed on the inner surface of the side wall and a shielding plate that partitions the cylindrical body into at least two spaces of a bottom side space and an opening side space, and communicates the space partitioned by the shielding plate. And a groove portion for guiding the vapor deposition material,
The vapor deposition apparatus according to claim 1, wherein the metal film adjusts a flow path area by changing an area that closes the groove portion by deformation.
前記金属フィルムは、非磁性体から成ることを特徴とする請求項1又は請求項2に記載の蒸着装置。   The vapor deposition apparatus according to claim 1, wherein the metal film is made of a nonmagnetic material. 前記開口部に配置され、該開口部を開閉自在として気化された蒸着材料を放出又は遮断するシャッタを更に備えたことを特徴とする請求項1乃至請求項3のいずれか一項に記載の蒸着装置。   The vapor deposition according to any one of claims 1 to 3, further comprising a shutter that is disposed in the opening and releases or blocks vaporized vapor deposition material with the opening being openable and closable. apparatus.
JP2008025421A 2008-02-05 2008-02-05 Vapor deposition equipment Expired - Fee Related JP5122314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008025421A JP5122314B2 (en) 2008-02-05 2008-02-05 Vapor deposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008025421A JP5122314B2 (en) 2008-02-05 2008-02-05 Vapor deposition equipment

Publications (2)

Publication Number Publication Date
JP2009185325A JP2009185325A (en) 2009-08-20
JP5122314B2 true JP5122314B2 (en) 2013-01-16

Family

ID=41068852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008025421A Expired - Fee Related JP5122314B2 (en) 2008-02-05 2008-02-05 Vapor deposition equipment

Country Status (1)

Country Link
JP (1) JP5122314B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108823534B (en) * 2018-06-25 2020-05-12 京东方科技集团股份有限公司 Vacuum evaporation crucible and vacuum evaporation equipment
CN114672784A (en) * 2022-03-28 2022-06-28 尚越光电科技股份有限公司 Flexible reel-to-reel CIGS evaporation plume control structure

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02265751A (en) * 1989-04-05 1990-10-30 Matsushita Electric Ind Co Ltd Ink-jet had
JPH0353061A (en) * 1989-07-18 1991-03-07 Agency Of Ind Science & Technol Method and device for vapor deposition to produce thin film of oxide superconductor
JP2003343756A (en) * 2002-05-24 2003-12-03 Seiko Epson Corp Valve device
JP4462989B2 (en) * 2004-04-14 2010-05-12 日立造船株式会社 Vapor deposition equipment
JP2005350731A (en) * 2004-06-10 2005-12-22 Fuji Photo Film Co Ltd Vacuum deposition system
JP2006104497A (en) * 2004-10-01 2006-04-20 Hitachi Zosen Corp Vapor deposition apparatus
JP2007024814A (en) * 2005-07-21 2007-02-01 Tokyo Electron Ltd Film thickness measurement method and device, and deposition apparatus

Also Published As

Publication number Publication date
JP2009185325A (en) 2009-08-20

Similar Documents

Publication Publication Date Title
TWI545024B (en) Compact organic vapor jet printing print head
US10941481B2 (en) Nozzle geometry for organic vapor jet printing
JP5705734B2 (en) Vaporizer for organic materials
US20180037982A1 (en) Linear evaporation source and deposition apparatus including the same
JP2004225058A (en) Film deposition apparatus, display panel manufacturing apparatus, and method for the same
JP5122314B2 (en) Vapor deposition equipment
CN106197718B (en) A kind of film temperature sensor and preparation method
JP4966028B2 (en) Vacuum deposition equipment
US20160205727A1 (en) Microfluidic-based apparatus and method vaporization of liquids using magnetic induction
US10329688B2 (en) Effusion cells, deposition systems including effusion cells, and related methods
CN106575593B (en) ion source temperature control device
EP3213100B1 (en) Lid and method for sealing a non-magnetic package
JP2018538429A (en) Measuring assembly, evaporation source, deposition apparatus and method therefor for measuring deposition rate
TWI398557B (en) A molecular beam source for use of thin-film accumulation and a method for controlling volume of molecular beam
JP5024075B2 (en) Vacuum deposition equipment
US20120052189A1 (en) Vapor deposition system
JP2006111961A (en) Vapor deposition source system
US20190203345A1 (en) Molten material supply unit and dry coating device comprising same
TWI606133B (en) Sputtering target
JP2012013170A (en) Electric valve, mass flow controller and substrate processing apparatus
JP4583200B2 (en) Vapor deposition equipment
JP2018526615A (en) Diffusion barrier for oscillating quartz, measurement assembly for measuring deposition rate and method thereof
JP2015209559A (en) Vapor deposition apparatus
JP7202815B2 (en) Film forming apparatus, film forming method, and electronic device manufacturing method
JP2004059981A (en) Vacuum vapor deposition method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101118

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees