JP5024075B2 - Vacuum deposition equipment - Google Patents

Vacuum deposition equipment Download PDF

Info

Publication number
JP5024075B2
JP5024075B2 JP2008015733A JP2008015733A JP5024075B2 JP 5024075 B2 JP5024075 B2 JP 5024075B2 JP 2008015733 A JP2008015733 A JP 2008015733A JP 2008015733 A JP2008015733 A JP 2008015733A JP 5024075 B2 JP5024075 B2 JP 5024075B2
Authority
JP
Japan
Prior art keywords
vapor deposition
deposition material
film thickness
evaporation source
guide path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008015733A
Other languages
Japanese (ja)
Other versions
JP2009174027A (en
Inventor
博之 佐々木
泰輔 西森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008015733A priority Critical patent/JP5024075B2/en
Publication of JP2009174027A publication Critical patent/JP2009174027A/en
Application granted granted Critical
Publication of JP5024075B2 publication Critical patent/JP5024075B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、真空雰囲気で蒸着材料を気化させると共に被蒸着体の表面に所定の蒸着レートで蒸着材料を蒸着させる真空蒸着装置に関する。   The present invention relates to a vacuum deposition apparatus that vaporizes a deposition material in a vacuum atmosphere and deposits the deposition material at a predetermined deposition rate on the surface of a deposition target.

真空蒸着装置は、真空チャンバ内に蒸着材料を収容した蒸発源と被蒸着体とを対向させて配置し、真空チャンバ内を減圧させて真空雰囲気とした状態で蒸発源を加熱して蒸着材料を気化させ、気化させた蒸着材料を被蒸着体の表面に堆積させることによって蒸着を行うものである。一般的な蒸発源の加熱方法としては、蒸発源に加速させた電子を照射する電子ビーム法や、タングステンやモリブデン等の高融点金属から成る抵抗体に電流を流してこれを発熱させ、この抵抗体を用いて蒸発源を加熱する抵抗加熱法等がある。これらの加熱方法によって気化された蒸着材料の気化分子は、蒸発源から放射状に拡散するので、被蒸着体へ向かって進行しない蒸着材料が多い。このような被蒸着体へ向かって進行しない蒸着材料は、被蒸着体の表面に付着せず、形成に寄与しない無効材料となり、蒸着の歩留まりを低下させると共に、被蒸着体の表面への蒸着速度を低下させる原因となる。   The vacuum evaporation apparatus is arranged in such a manner that an evaporation source containing an evaporation material and an object to be evaporated are placed opposite to each other in a vacuum chamber, and the evaporation source is heated in a vacuum atmosphere by reducing the pressure in the vacuum chamber. Evaporation is performed by vaporizing and depositing the vaporized vapor deposition material on the surface of the vapor deposition target. As a general method for heating the evaporation source, an electron beam method in which the evaporation source is irradiated with accelerated electrons, or an electric current is passed through a resistor made of a refractory metal such as tungsten or molybdenum to generate heat, and this resistance There is a resistance heating method in which an evaporation source is heated using a body. Since the vaporized molecules of the vapor deposition material vaporized by these heating methods diffuse radially from the evaporation source, there are many vapor deposition materials that do not travel toward the vapor deposition target. Such a vapor deposition material that does not proceed toward the vapor deposition body does not adhere to the surface of the vapor deposition body, becomes an ineffective material that does not contribute to formation, lowers the deposition yield, and vapor deposition rate on the surface of the vapor deposition body. It will cause the decrease.

そこで、真空チャンバ内の蒸発源と被蒸着体とが対向する空間を囲むように筒状体を配置して、蒸発源から気化した蒸着材料を、筒状体内を通して被蒸着体の表面に蒸着させると共に、筒状体の内側面を蒸着材料が堆積しない温度に加熱した真空蒸着装置が知られている(例えば、特許文献1参照)。   Therefore, the cylindrical body is disposed so as to surround the space where the evaporation source and the deposition target in the vacuum chamber face each other, and the vapor deposition material vaporized from the evaporation source is deposited on the surface of the deposition target through the cylindrical body. In addition, a vacuum vapor deposition apparatus is known in which the inner surface of a cylindrical body is heated to a temperature at which no vapor deposition material is deposited (see, for example, Patent Document 1).

図4は、この種の真空蒸着装置の構成の一例を示す。真空蒸着装置は、真空チャンバ101内に、蒸着材料102を収容する蒸発源103と、この蒸発源103と対向するように被蒸着体104とが配置され、蒸発源103と被蒸着体104との間には筒状体105が配置される。蒸発源103は、蒸発源ヒータ103aを備え、蒸着材料102を気化させる。筒状体105は、その周囲に筒状体ヒータ105aが設けられ、その内側面に蒸着材料102が堆積されない温度に加熱される。蒸発源103から気化した蒸着材料102は、直接又は筒状体105の内側面で反射されながら被蒸着体104の方向へ進み、被蒸着体104の表面に堆積する。また、被蒸着体104の方向へ直接進行しない蒸着材料102は筒状体105内でも加熱されるので、筒状体105の内側面に蒸着材料102が堆積することがなく、歩留まりの低下等を防止することができる。   FIG. 4 shows an example of the configuration of this type of vacuum deposition apparatus. In the vacuum evaporation apparatus, an evaporation source 103 that stores an evaporation material 102 and an evaporation target body 104 are arranged in the vacuum chamber 101 so as to face the evaporation source 103, and the evaporation source 103 and the evaporation target object 104 are separated from each other. A cylindrical body 105 is disposed between them. The evaporation source 103 includes an evaporation source heater 103a, and vaporizes the vapor deposition material 102. The tubular body 105 is provided with a tubular body heater 105a around it, and is heated to a temperature at which the vapor deposition material 102 is not deposited on the inner surface thereof. The vapor deposition material 102 vaporized from the evaporation source 103 proceeds in the direction of the vapor deposition target 104 while being reflected directly or on the inner surface of the cylindrical body 105, and is deposited on the surface of the vapor deposition target 104. Further, since the vapor deposition material 102 that does not travel directly in the direction of the vapor-deposited body 104 is also heated in the cylindrical body 105, the vapor deposition material 102 is not deposited on the inner side surface of the cylindrical body 105, resulting in reduced yield. Can be prevented.

また、この真空蒸着装置は、気化された蒸着材料102を、例えば水晶振動子等の検出素子161に付着させて時間当たりの蒸着膜厚(蒸着レート)を計測する膜厚計測部106と、筒状体105から膜厚計測部106へ蒸着材料102を誘導する誘導路107と、蒸発源103の温度を制御するコントローラ108とを備える。この真空蒸着装置は、膜厚計測部106で計測された蒸着レートに応じて蒸発源ヒータ103aの加熱温度を制御して蒸着材料102の蒸着速度を調整する、いわゆるフィードバック制御を行いながら被蒸着体104の表面に蒸着膜を形成する。
特開2004−59982号公報
Further, this vacuum vapor deposition apparatus includes a film thickness measuring unit 106 that measures the vapor deposition film thickness (deposition rate) per unit time by attaching the vaporized vapor deposition material 102 to a detection element 161 such as a crystal resonator, and a cylinder. A guide path 107 for guiding the vapor deposition material 102 from the solid body 105 to the film thickness measuring unit 106 and a controller 108 for controlling the temperature of the evaporation source 103 are provided. This vacuum deposition apparatus controls the heating temperature of the evaporation source heater 103a according to the deposition rate measured by the film thickness measuring unit 106 and adjusts the deposition rate of the deposition material 102 while performing so-called feedback control. A vapor deposition film is formed on the surface of 104.
JP 2004-59982 A

しかしながら、上述した真空蒸着装置は、筒状体105から誘導路107へ進んだ蒸着材料102の一部が誘導路107の内側面に付着して、膜厚計測部106へ流れる気化された蒸着材料102のコンダクタンスを経時的に変化させ、膜厚計測部106が蒸着レートを安定的に計測できないことがあった。また、加熱された筒状体105からの輻射熱によって膜厚計測部106が安定動作せず、正確な蒸着レートを計測できないことがあった。更に、誘導路107が蒸発源103の近傍に設けられると、蒸着材料102が突沸したときに、検出素子161の表面に液滴等の塊状の蒸着材料102が直接入射してしまい、膜厚計測部106が計測した蒸着レートが変動することがあった。そのため、この真空蒸着装置では、正確な蒸着レートに基づいたフィードバック制御を行うことができず、被蒸着体104に対して高精度な蒸着膜を形成することが困難であった。   However, in the above-described vacuum vapor deposition apparatus, a part of the vapor deposition material 102 that has advanced from the cylindrical body 105 to the guide path 107 adheres to the inner surface of the guide path 107 and flows into the film thickness measuring unit 106. In some cases, the film thickness measuring unit 106 cannot stably measure the deposition rate by changing the conductance of 102 over time. In addition, the film thickness measuring unit 106 may not operate stably due to the radiant heat from the heated tubular body 105, and an accurate deposition rate may not be measured. Furthermore, when the guide path 107 is provided in the vicinity of the evaporation source 103, when the vapor deposition material 102 bumps, the bulk vapor deposition material 102 such as droplets directly enters the surface of the detection element 161, and the film thickness measurement. The deposition rate measured by the unit 106 sometimes fluctuated. Therefore, in this vacuum vapor deposition apparatus, feedback control based on an accurate vapor deposition rate cannot be performed, and it is difficult to form a highly accurate vapor deposition film on the deposition target 104.

本発明は、上記課題を解決するものであり、正確な蒸着レートを安定的に計測することができ、この蒸着レートに基づいたフィードバック制御を行うことにより、被蒸着体に対して高精度な蒸着膜を形成することができる真空蒸着装置を提供することを目的とする。   The present invention solves the above-described problem, and can accurately measure an accurate deposition rate. By performing feedback control based on the deposition rate, highly accurate deposition can be performed on an object to be deposited. It aims at providing the vacuum evaporation system which can form a film | membrane.

上記課題を解決するため、請求項1の発明は、真空チャンバ内に蒸着材料を収容する蒸発源と被蒸着体とを配置すると共に、前記蒸発源と被蒸着体との間を前記蒸着材料が気化される温度に加熱された筒状体で囲み、前記蒸発源から気化した蒸着材料を前記筒状体内を通して前記被蒸着体の表面に蒸着させる真空蒸着装置において、前記筒状体外に設けられ、前記蒸発源から気化した蒸着材料を付着させてその蒸着膜厚を計測する膜厚計測部と、前記筒状体の内部空間と前記膜厚計測部との間を接続して設けられ、前記蒸発源から気
化した蒸着材料を前記膜厚計測部に誘導する誘導路と、を備え、前記誘導路は、屈曲部を備えると共に、誘導路ヒータが設けられ、前記蒸着材料が気化される温度に加熱されるものである。
In order to solve the above-mentioned problem, the invention of claim 1 is arranged such that an evaporation source for accommodating an evaporation material and an evaporation target are disposed in a vacuum chamber, and the evaporation material is disposed between the evaporation source and the evaporation target. In a vacuum vapor deposition apparatus that surrounds a cylindrical body heated to a temperature to be vaporized and vaporizes the vapor deposition material vaporized from the evaporation source through the cylindrical body on the surface of the deposition target, provided outside the cylindrical body, A film thickness measuring unit for measuring the film thickness of the vapor deposition by attaching a vapor deposition material vaporized from the evaporation source, and a connection between the internal space of the cylindrical body and the film thickness measuring unit are provided, and the evaporation A guide path that guides the vapor deposition material vaporized from a source to the film thickness measurement unit, and the guide path includes a bent portion and is provided with a guide path heater and heated to a temperature at which the vapor deposition material is vaporized. It is what is done.

請求項2の発明は、請求項1に記載の真空蒸着装置において、前記誘導路は、前記筒状体の側部の前記蒸発源の近傍に接続されるものである。   According to a second aspect of the present invention, in the vacuum vapor deposition apparatus according to the first aspect, the induction path is connected to the vicinity of the evaporation source on a side portion of the cylindrical body.

請求項3の発明は、請求項1又は請求項2に記載の真空蒸着装置において、前記誘導路を開閉して前記膜厚計測部へ流れる気化した蒸着材料の流量を調整可能に形成されると共に、前記蒸着材料が気化される温度に加熱される誘導路開閉手段を更に備えたものである。   According to a third aspect of the present invention, in the vacuum vapor deposition apparatus according to the first or second aspect, the flow rate of the vaporized vapor deposition material flowing to the film thickness measuring unit by opening and closing the guide path is adjustable. , Further comprising a guide path opening / closing means heated to a temperature at which the vapor deposition material is vaporized.

請求項1の発明によれば、蒸着材料が誘導路の内側面に堆積することがないので、筒状体から膜厚計測部へ流れる気化された蒸着材料のコンダクタンスを安定化させることができる。また、筒状体と膜厚計測部との距離を、膜厚計測部が筒状体からの輻射熱の影響を受け難くなるよう設定することができ、膜厚計測部を安定動作させることができる。更に、誘導路に備えられた屈曲部により、突沸した蒸着材料が膜厚計測部に直接入射することがないので、突沸によって蒸着レートが変動することもない。そのため、膜厚計測部は正確な蒸着レートを安定的に計測することができ、この蒸着レートに基づいて蒸発源の加熱温度を制御するフィードバック制御を行うことにより、被蒸着体に対して高精度な蒸着膜を形成することができる。   According to the first aspect of the present invention, since the vapor deposition material is not deposited on the inner side surface of the guide path, the conductance of the vaporized vapor deposition material flowing from the cylindrical body to the film thickness measuring unit can be stabilized. Further, the distance between the cylindrical body and the film thickness measuring unit can be set so that the film thickness measuring unit is not easily affected by the radiant heat from the cylindrical body, and the film thickness measuring unit can be operated stably. . Furthermore, since the vapor deposition material bumped at the guide path does not directly enter the film thickness measuring section, the vapor deposition rate does not fluctuate due to bumping. For this reason, the film thickness measurement unit can stably measure the accurate deposition rate, and by performing feedback control that controls the heating temperature of the evaporation source based on this deposition rate, it is highly accurate for the deposition target. A vapor-deposited film can be formed.

請求項2の発明によれば、膜厚計測部に備えられた検出素子に付着する蒸着材料の相対量が多くなるので、膜厚計測部における検出感度が向上し、より正確に蒸着レートを計測することができると共に、この蒸着レートに基づいてフィードバック制御を行うことにより、被蒸着体に対してより高精度な蒸着膜を形成することができる。   According to the invention of claim 2, since the relative amount of the vapor deposition material adhering to the detection element provided in the film thickness measurement unit is increased, the detection sensitivity in the film thickness measurement unit is improved, and the vapor deposition rate is measured more accurately. In addition, by performing feedback control based on this vapor deposition rate, a highly accurate vapor deposition film can be formed on the vapor deposition target.

請求項3の発明によれば、被蒸着体に蒸着膜を形成しない待機時間において誘導路を閉鎖して、膜厚計測部への蒸着材料の流入を遮断することにより、膜厚計測部に備えられた検出素子に対する蒸着材料の付着が低減され、検出素子の交換頻度を少なくすることができ、メンテナンスの頻度も少なくすることができる。   According to the invention of claim 3, the film thickness measuring unit is prepared by closing the guide path during the standby time in which the vapor deposition film is not formed on the deposition target and blocking the flow of the vapor deposition material to the film thickness measuring unit. Adhesion of the vapor deposition material to the detected element is reduced, the frequency of replacement of the detection element can be reduced, and the frequency of maintenance can also be reduced.

本発明の第1の実施形態に係る真空蒸着装置について、図1を参照して説明する。本実施形態の真空蒸着装置は、真空チャンバ1内に蒸着材料2を収容する蒸発源3と、蒸発源3から気化した蒸着材料2を蒸着させる被蒸着体4と、蒸発源3と被蒸着体4との間に配置される筒状体5とを備える。蒸発源3は、蒸着材料2を加熱する蒸発源ヒータ3aと、蒸着材料2の加熱温度を検知する適宜の温度センサ(図示せず)とを備える。真空チャンバ1は、蒸着材料2及び被蒸着体4を容易に交換できるよう構成されており、その側面には真空ポンプ(図示せず)が接続される。被蒸着体4は、蒸着作業を行うときに真空チャンバ1内に配置される。   A vacuum deposition apparatus according to a first embodiment of the present invention will be described with reference to FIG. The vacuum evaporation apparatus according to the present embodiment includes an evaporation source 3 that contains an evaporation material 2 in a vacuum chamber 1, an evaporation target 4 that deposits an evaporation material 2 vaporized from the evaporation source 3, an evaporation source 3, and an evaporation target. 4 and a cylindrical body 5 disposed between them. The evaporation source 3 includes an evaporation source heater 3 a that heats the vapor deposition material 2 and an appropriate temperature sensor (not shown) that detects the heating temperature of the vapor deposition material 2. The vacuum chamber 1 is configured so that the vapor deposition material 2 and the vapor deposition target 4 can be easily exchanged, and a vacuum pump (not shown) is connected to a side surface thereof. The deposition target 4 is disposed in the vacuum chamber 1 when performing a deposition operation.

筒状体5は、一方が閉口し、他方が開口した筒状部材であり、蒸発源3が配置される底部51と、被蒸着体4に向けて気化された蒸着材料2が放出される開口部52と、底部51と開口部52とを連接し、気化された蒸着材料2を被蒸着体4へ導く側部53とを備える。底部51及び側部53は、それらの外部に筒状体ヒータ5aが設けられ、蒸着材料2が気化される温度に加熱される。気化された蒸着材料2は筒状体5内を通って開口部52から放出され、被蒸着体4の表面に堆積する。なお、図1は、気化した蒸着材料2が上方向に進んで被蒸着体4に堆積するよう構成された例を示すが、本実施形態の真空蒸着装置は必ずしもこの構成に限られない。例えば、筒状体5が横方向に配置され、気化した蒸着材料2が横方向に進んで被蒸着体4に堆積するよう構成されていてもよい。また、筒状体5は、図示したような直管型に限られず、例えば屈曲型であってもよい。   The cylindrical body 5 is a cylindrical member that is closed on one side and opened on the other side, and has a bottom 51 on which the evaporation source 3 is disposed, and an opening through which the vapor deposition material 2 vaporized toward the deposition target body 4 is discharged. A portion 52, a bottom portion 51, and an opening 52 are connected to each other, and a side portion 53 that guides the vaporized deposition material 2 to the deposition target 4 is provided. The bottom part 51 and the side part 53 are provided with a cylindrical heater 5a outside thereof, and are heated to a temperature at which the vapor deposition material 2 is vaporized. The vaporized vapor deposition material 2 is discharged from the opening 52 through the cylindrical body 5 and deposited on the surface of the vapor deposition target 4. Although FIG. 1 shows an example in which the vaporized vapor deposition material 2 is configured to travel upward and deposit on the vapor deposition target 4, the vacuum vapor deposition apparatus of the present embodiment is not necessarily limited to this configuration. For example, the cylindrical body 5 may be arranged in the lateral direction, and the vaporized vapor deposition material 2 may proceed in the lateral direction and be deposited on the deposition target body 4. Further, the cylindrical body 5 is not limited to the straight pipe type as illustrated, and may be, for example, a bent type.

また、真空蒸着装置は、筒状体5の外部に設けられて蒸着材料2を付着させて時間当たりの蒸着膜厚(蒸着レート)を計測する膜厚計測部6と、筒状体5の内部空間と膜厚計測部6との間を接続するように設けられ、蒸発源3から気化された蒸着材料2を膜厚計測部6へ誘導する誘導路7と、膜厚計測部6が計測した蒸着レートに応じて蒸発源3の温度を制御するコントローラ8とを備える。膜厚計測部6は、例えば、検出素子61として水晶振動子を備えた水晶振動子膜厚計等が用いられ、蒸着材料2の付着に伴う水晶振動子の振動周波数の変化から蒸着膜厚を検出して蒸着レートを計測すると共に、蒸着レートに関する情報を含む制御信号をコントローラ8へ出力する。コントローラ8は、CPU及びメモリ等から成り、膜厚計測部6から受信した制御信号に応じて蒸発源ヒータ3aの加熱温度を制御して蒸着材料2の蒸着速度を調整する。   Further, the vacuum vapor deposition apparatus is provided outside the cylindrical body 5 to attach the vapor deposition material 2 and measure the vapor deposition film thickness (vapor deposition rate) per time, and the inside of the cylindrical body 5 The film thickness measuring unit 6 is provided so as to connect the space and the film thickness measuring unit 6 and guides the vapor deposition material 2 evaporated from the evaporation source 3 to the film thickness measuring unit 6. And a controller 8 for controlling the temperature of the evaporation source 3 in accordance with the deposition rate. The film thickness measurement unit 6 uses, for example, a crystal resonator film thickness meter including a crystal resonator as the detection element 61, and determines the deposition film thickness from the change in the vibration frequency of the crystal resonator accompanying the deposition of the deposition material 2. While detecting and measuring a vapor deposition rate, the control signal containing the information regarding a vapor deposition rate is output to the controller 8. FIG. The controller 8 includes a CPU, a memory, and the like, and controls the heating temperature of the evaporation source heater 3a according to the control signal received from the film thickness measurement unit 6 to adjust the evaporation rate of the evaporation material 2.

筒状体5の側部53には、開口部(以下、側部開口部という)54が形成され、この側部開口部54に誘導路7が接続される。誘導路7は屈曲部71を備え、この屈曲部71は蒸発源3と膜厚計測部6とが直面しない屈曲角を有するように形成される。また、誘導路7は、その外周に誘導路ヒータ7aが設けられ、蒸着材料2が気化される温度に加熱される。   An opening (hereinafter referred to as a side opening) 54 is formed in the side portion 53 of the cylindrical body 5, and the guide path 7 is connected to the side opening 54. The guide path 7 includes a bent portion 71, and the bent portion 71 is formed to have a bent angle that the evaporation source 3 and the film thickness measuring unit 6 do not face. In addition, the guide path 7 is provided with a guide path heater 7a on the outer periphery thereof, and is heated to a temperature at which the vapor deposition material 2 is vaporized.

次に、本実施形態の真空蒸着装置の動作を説明する。被蒸着体4に蒸着材料2を蒸着させるとき、まず、真空ポンプを用いて真空チャンバ1内を真空状態に減圧すると共に、筒状体ヒータ5a及び誘導路ヒータ7aを作動させて筒状体5及び誘導路7を加熱する。筒状体5及び誘導路7の温度は、蒸着材料2が気化される温度に設定される。続いて、蒸発源ヒータ3aを作動させて蒸発源3に収容された蒸着材料2を加熱してこれを気化させる。気化された蒸着材料2は、直接又は側部53の内側面で反射しながら被蒸着体4の方向へ進み、蒸着材料2と対向するよう配置された被蒸着体4の表面に堆積する。このとき、被蒸着体4の方向へ直接進行しない蒸着材料2は、筒状体5内でも加熱されるので気体状態のまま被蒸着体4へ飛翔する。そのため、側部53の内側面に蒸着材料2が堆積されず、歩留まりの低下等を防止することができる。   Next, operation | movement of the vacuum evaporation system of this embodiment is demonstrated. When the deposition material 2 is deposited on the deposition target body 4, first, the inside of the vacuum chamber 1 is reduced to a vacuum state using a vacuum pump, and the cylindrical body heater 5 a and the induction path heater 7 a are operated to form the cylindrical body 5. And the induction path 7 is heated. The temperature of the cylindrical body 5 and the guide path 7 is set to a temperature at which the vapor deposition material 2 is vaporized. Subsequently, the evaporation source heater 3a is operated to heat the vapor deposition material 2 accommodated in the evaporation source 3 to vaporize it. The vaporized vapor deposition material 2 travels in the direction of the vapor deposition target 4 while being reflected directly or on the inner side surface of the side portion 53, and is deposited on the surface of the vapor deposition target 4 arranged to face the vapor deposition material 2. At this time, the vapor deposition material 2 that does not proceed directly in the direction of the vapor deposition target 4 is heated in the cylindrical body 5, so that it flies to the vapor deposition target 4 in a gaseous state. Therefore, the vapor deposition material 2 is not deposited on the inner side surface of the side portion 53, and a decrease in yield can be prevented.

また、気化された蒸着材料2の一部は、側部開口部54から誘導路7を通って膜厚計測部6の検出素子61に付着し、膜厚計測部6は時間当りの蒸着膜厚(蒸着レート)を計測する。計測された蒸着レートに関する情報は制御信号に変換されてコントローラ8に入力される。コントローラ8はこの制御信号に応じて蒸発源ヒータ3aに供給される電力を制御して、蒸着材料2に対する加熱温度を調節することにより、蒸着材料2の蒸着速度を調整する。   Further, a part of the vaporized vapor deposition material 2 is attached to the detection element 61 of the film thickness measuring unit 6 from the side opening 54 through the guide path 7, and the film thickness measuring unit 6 performs vapor deposition film thickness per hour. (Deposition rate) is measured. Information on the measured deposition rate is converted into a control signal and input to the controller 8. The controller 8 adjusts the vapor deposition rate of the vapor deposition material 2 by controlling the power supplied to the evaporation source heater 3a in accordance with this control signal and adjusting the heating temperature for the vapor deposition material 2.

ここに誘導路7は、誘導路ヒータ7aによって蒸着材料2が気化される温度に加熱される。そのため、誘導路7に進入した蒸着材料2が誘導路7の内側面に堆積することはなく、筒状体5から膜厚計測部6へ流れる気化された蒸着材料2のコンダクタンスが安定化する。また、誘導路ヒータ7aを設けたことにより、誘導路7が長く設計されても蒸着材料2が誘導路7の内側面に堆積しないので、筒状体5と膜厚計測部6との距離を、膜厚計測部6が筒状体5や蒸発源3からの輻射熱の影響を受け難くなるよう設定することができ、膜厚計測部6を安定動作させることができる。そのため、膜厚計測部6は正確な蒸着レートを安定的に計測することができ、コントローラ8はこの蒸着レートに基づいて蒸発源ヒータ3aの加熱温度を制御して蒸着材料2の蒸着速度を調整することができる。なお、誘導路7は筒状体5に比べて遥かに小さな部材から成るので、誘導路7を蒸着材料2が気化される温度に加熱するために誘導路ヒータ7aから生じる輻射熱は、筒状体ヒータ5aからの輻射熱に比べると僅かであり、膜厚計測部6の動作に及ぼす影響は少ない。   Here, the induction path 7 is heated to a temperature at which the vapor deposition material 2 is vaporized by the induction path heater 7a. Therefore, the vapor deposition material 2 that has entered the guide path 7 does not accumulate on the inner surface of the guide path 7, and the conductance of the vaporized vapor deposition material 2 flowing from the cylindrical body 5 to the film thickness measuring unit 6 is stabilized. Moreover, since the induction path heater 7a is provided, the vapor deposition material 2 does not accumulate on the inner surface of the induction path 7 even if the induction path 7 is designed to be long. The film thickness measuring unit 6 can be set so as not to be easily affected by the radiant heat from the cylindrical body 5 or the evaporation source 3, and the film thickness measuring unit 6 can be operated stably. Therefore, the film thickness measuring unit 6 can stably measure an accurate deposition rate, and the controller 8 controls the heating temperature of the evaporation source heater 3a based on the deposition rate and adjusts the deposition rate of the deposition material 2. can do. Since the induction path 7 is made of a member that is much smaller than the cylindrical body 5, the radiant heat generated from the induction path heater 7a to heat the induction path 7 to a temperature at which the vapor deposition material 2 is vaporized is Compared to the radiant heat from the heater 5a, the amount of heat is small, and the influence on the operation of the film thickness measuring unit 6 is small.

また、誘導路7は屈曲部71を備えるので、蒸発源3で蒸着材料2が突沸しても、膜厚計測部6に液滴等の塊状の蒸着材料2が直接入射することがなく、突沸による蒸着レートの変動を生じることもない。これらの構成を備えたことにより、本実施形態の真空蒸着装置は、正確な蒸着レートを安定的に計測することができ、この蒸着レートに基づくフィードバック制御を行うことにより、被蒸着体4に対して高精度な蒸着膜を形成することができる。   Further, since the guide path 7 includes the bent portion 71, even when the vapor deposition material 2 bumps at the evaporation source 3, the bulk vapor deposition material 2 such as droplets does not directly enter the film thickness measuring unit 6, and bumping occurs. The deposition rate does not fluctuate due to. By providing these configurations, the vacuum vapor deposition apparatus according to the present embodiment can stably measure an accurate vapor deposition rate. By performing feedback control based on the vapor deposition rate, the vacuum deposition apparatus 4 can perform the feedback control. Highly accurate vapor deposition film can be formed.

好ましくは、図中に示したように、蒸発源3と筒状体5の開口部52との間には、気化された蒸着材料2が開口部52側へ飛翔しながら移動するときの飛翔経路を制御する制御部材55が設けられる。制御部材55は、筒状体5の内周の同形状の板材に所定個数の貫通孔を設けて形成されたものである。この制御部材55を設けることにより、開口部52を通過する蒸着材料2の濃度を均一にすることができ、被蒸着体4に蒸着される蒸着膜の膜厚の内面分布を均一化することができる。   Preferably, as shown in the figure, a flight path when the vaporized vapor deposition material 2 moves between the evaporation source 3 and the opening 52 of the cylindrical body 5 while flying toward the opening 52. A control member 55 for controlling the above is provided. The control member 55 is formed by providing a predetermined number of through holes in the same-shaped plate material on the inner periphery of the cylindrical body 5. By providing this control member 55, the concentration of the vapor deposition material 2 passing through the opening 52 can be made uniform, and the inner surface distribution of the film thickness of the vapor deposition film deposited on the vapor deposition target 4 can be made uniform. it can.

次に、本発明の第2の実施形態に係る真空蒸着装置について、図2を参照して説明する。本実施形態の真空蒸着装置は、誘導路7が、筒状体5の側部53のうち、蒸発源3の近傍に接続されているものである。その他の構成は上記第1の実施形態と同様である。蒸発源3の近傍は、筒状体5内の他の部分と比べて、気化された蒸着材料2の濃度が高くなる。そのため、蒸発源3の近傍に誘導路7を接続することにより、膜厚計測部6に備えられた検出素子(例えば水晶振動子)の表面に付着する蒸着材料2の相対量が多くなり、膜厚計測部6における検出感度が向上する。これにより、本実施形態の真空蒸着装置は、より正確に蒸着レートを計測することができ、この蒸着レートに基づいてフィードバック制御を行うことにより、被蒸着体4に対して更に高精度な蒸着膜を形成することができる。   Next, a vacuum deposition apparatus according to a second embodiment of the present invention will be described with reference to FIG. In the vacuum vapor deposition apparatus of the present embodiment, the guide path 7 is connected to the vicinity of the evaporation source 3 in the side portion 53 of the cylindrical body 5. Other configurations are the same as those in the first embodiment. The concentration of the vaporized vapor deposition material 2 is higher in the vicinity of the evaporation source 3 than in other portions in the cylindrical body 5. Therefore, by connecting the guide path 7 in the vicinity of the evaporation source 3, the relative amount of the vapor deposition material 2 adhering to the surface of the detection element (for example, a crystal resonator) provided in the film thickness measurement unit 6 increases, and the film The detection sensitivity in the thickness measuring unit 6 is improved. Thereby, the vacuum vapor deposition apparatus of this embodiment can measure a vapor deposition rate more correctly, and by performing feedback control based on this vapor deposition rate, a vapor deposition film with higher accuracy with respect to the vapor deposition target 4 Can be formed.

次に、本発明の第3の実施形態に係る真空蒸着装置について、図3を参照して説明する。本実施形態の真空蒸着装置は、誘導路7を開閉して膜厚計測部6へ流れる気化した蒸着材料2の流量を調整可能に形成されると共に、蒸着材料2が気化される温度に加熱される誘導路開閉部9(誘導路開閉手段)を更に備えたものである。この誘導路開閉部9は、側部開口部54の近傍に配置され、誘導路7の開口径に適合するように形成された板状部材を回転又はスライドさせて、誘導路7の開口度合いを任意に調整するものである。なお、誘導路開閉部9の開閉動作は、真空蒸着装置の作動状況に応じて自動的に行われるよう構成されていることが望ましいが、手動で行われてもよい。その他の構成は上記第1又は第2の実施形態と同様である。   Next, a vacuum evaporation apparatus according to a third embodiment of the present invention will be described with reference to FIG. The vacuum vapor deposition apparatus of this embodiment is formed so that the flow rate of the vaporized vapor deposition material 2 flowing to the film thickness measuring unit 6 by opening and closing the guide path 7 can be adjusted, and heated to a temperature at which the vapor deposition material 2 is vaporized. And a guide path opening / closing section 9 (guidance path opening / closing means). The guide path opening / closing section 9 is arranged in the vicinity of the side opening 54 and rotates or slides a plate-like member formed so as to match the opening diameter of the guide path 7 so that the opening degree of the guide path 7 is increased. Adjust arbitrarily. In addition, although it is desirable that the opening / closing operation of the guide path opening / closing unit 9 is automatically performed according to the operation state of the vacuum vapor deposition apparatus, it may be manually performed. Other configurations are the same as those in the first or second embodiment.

通常、真空蒸着装置を用いた蒸着作業においては、被蒸着体4を交換等するために、被蒸着体4に蒸着膜を形成しない待機時間がある。本実施形態においては、この待機時間中に、誘導路開閉部9を作動させて誘導路7を閉鎖して、膜厚計測部6への蒸着材料2の流入を遮断する。そして、フィードバック制御による蒸着を行うときのみ誘導路7を開くようにする。こうすれば、検出素子61に対する蒸着材料2の付着が低減され、検出素子61の交換頻度を少なくすることができ、メンテナンスの頻度も少なくなる。本実施形態は、上述した第2の実施形態のように、検出素子61に蒸着材料2が付着し易い構成において好適に用いられる。   Usually, in the vapor deposition operation using the vacuum vapor deposition apparatus, there is a waiting time during which the vapor deposition film is not formed on the vapor deposition target body 4 in order to replace the vapor deposition target body 4. In the present embodiment, during this waiting time, the guide path opening / closing unit 9 is operated to close the guide path 7 to block the flow of the vapor deposition material 2 into the film thickness measuring unit 6. The guide path 7 is opened only when vapor deposition is performed by feedback control. By doing so, the adhesion of the vapor deposition material 2 to the detection element 61 is reduced, the replacement frequency of the detection element 61 can be reduced, and the frequency of maintenance is also reduced. The present embodiment is suitably used in a configuration in which the vapor deposition material 2 is easily attached to the detection element 61 as in the second embodiment described above.

誘導路開閉部9は、図示したように、側部開口部54の近傍に設けられると、筒状体ヒータ3aによって筒状体3と共に加熱されるが、必ずしも側部開口部54の近傍に限らず、誘導路7のいずれの位置に設けられてもよい。また、誘導路開閉部9は、誘導路ヒータ7aによって誘導路7と共に加熱されるよう構成されてもよく、個別に開閉部ヒータ(図示せず)が設けられてもよい。このように、誘導路開閉部9が、蒸着材料2が気化される温度に加熱されることにより、その表面に蒸着材料2が堆積することはなく、その開閉動作に支障を生じることもない。   As shown in the figure, when the guide path opening / closing section 9 is provided in the vicinity of the side opening 54, it is heated together with the cylindrical body 3 by the cylindrical body heater 3a, but is not necessarily limited to the vicinity of the side opening 54. Instead, it may be provided at any position on the guide path 7. Further, the guide path opening / closing section 9 may be configured to be heated together with the guide path 7 by the guide path heater 7a, or an opening / closing section heater (not shown) may be provided individually. Thus, the induction path opening / closing part 9 is heated to a temperature at which the vapor deposition material 2 is vaporized, so that the vapor deposition material 2 is not deposited on the surface thereof, and the open / close operation is not hindered.

以下に、本発明の実施例について、比較例と対比することにより、より具体的に説明する。   Hereinafter, examples of the present invention will be described more specifically by comparing with comparative examples.

(実施例1)
実施例1は、図1に示した第1の実施形態に対応するものである。筒状体5として、内壁の一辺が100mm、高さ230mmの直方体状の角筒が用いられ、筒状体5の加熱温度は200℃に設定された。誘導路7が接続される側部開口部54は、蒸発源3から80mmの高さに、開口直径が10mmになるよう形成された。誘導路7は、その内径が側部開口部54の口径と同じ10mmに、側部開口部54との接続部から屈曲部71までの長さが30mm、屈曲部71から膜厚計測部6までの長さが30mmになるよう形成された。また、誘導路7は、側部53との成す角が40°となるよう接続され、屈曲部71の角度は130°となるよう形成された。膜厚計測部6には、水晶振動子膜厚計が用いられた。
Example 1
Example 1 corresponds to the first embodiment shown in FIG. As the cylindrical body 5, a rectangular parallelepiped having a side of an inner wall of 100 mm and a height of 230 mm was used, and the heating temperature of the cylindrical body 5 was set to 200 ° C. The side opening 54 to which the guide path 7 is connected was formed at a height of 80 mm from the evaporation source 3 and an opening diameter of 10 mm. The guide path 7 has an inner diameter of 10 mm which is the same as the diameter of the side opening 54, a length from the connecting part to the side opening 54 to the bent part 71 is 30 mm, and from the bent part 71 to the film thickness measuring part 6. Was formed to have a length of 30 mm. Further, the guide path 7 is connected so that the angle formed with the side portion 53 is 40 °, and the angle of the bent portion 71 is 130 °. For the film thickness measuring unit 6, a quartz oscillator film thickness meter was used.

(実施例2)
実施例2は、図2に示した第2の実施形態に対応するものである。誘導路7が接続される側部開口部54は、蒸発源3から40mmの高さに形成された。その他の構成は実施例1と同様である。
(Example 2)
Example 2 corresponds to the second embodiment shown in FIG. The side opening 54 to which the guide path 7 is connected was formed at a height of 40 mm from the evaporation source 3. Other configurations are the same as those of the first embodiment.

(実施例3)
実施例3は、図3に示した第3の実施形態に対応するものである。誘導路7が接続される側部開口部54の近傍に誘導路開閉部9が設けられ、被蒸着体4に蒸着膜を形成するときに誘導路7を開き、蒸着膜を形成しない待機時間に誘導路7を閉鎖した。その他の構成は実施例2と同様である。
(Example 3)
Example 3 corresponds to the third embodiment shown in FIG. A guideway opening / closing part 9 is provided in the vicinity of the side opening 54 to which the guideway 7 is connected. The taxiway 7 was closed. Other configurations are the same as those of the second embodiment.

(比較例)
比較例は、図4に示した従来の真空蒸着装置に対応するものである。誘導路107は、筒状体105の側部の、蒸発源103から80mmの高さに接続され、その口径が10mm、長さが30mmとなるよう形成された。また、誘導路107は、屈曲部を有しておらず、ヒータ等も設けられていない。その他の構成は実施例1と同様である。
(Comparative example)
The comparative example corresponds to the conventional vacuum deposition apparatus shown in FIG. The guide path 107 is connected to the side of the cylindrical body 105 at a height of 80 mm from the evaporation source 103 and has a diameter of 10 mm and a length of 30 mm. Further, the guide path 107 does not have a bent portion and is not provided with a heater or the like. Other configurations are the same as those of the first embodiment.

実施例1乃至実施例3及び比較例について、夫々蒸着材料2及び被蒸着体4を配置して蒸着実験を行った。蒸着材料2にはトリス(8−ヒドロキシキノリナート)アルミニウム錯体((株)同仁化学研究所製「Alq3」)を用いた。被蒸着体4にはガラス基板(100mm×100mm×厚み0.7mm)を用い、このガラス基板を蒸発源3から250mmの距離に水平に配置した。ガラス基板を配置した後、蒸着レートを4Å/s、形成膜厚を100nmに設定して、夫々20回の蒸着実験を繰り返し行った。また、各蒸着実験間には、ガラス基板の交換作業のため、約7分間のガラス基板に蒸着膜を形成しない時間(待機時間)があり、待機時間における蒸着レートを2Å/sとした。各蒸着実験で形成された蒸着膜の膜厚は、触針式段差計を用いて計測した。   About Example 1 thru | or Example 3 and the comparative example, the vapor deposition material 2 and the to-be-deposited body 4 were arrange | positioned, respectively, and the vapor deposition experiment was done. As the vapor deposition material 2, tris (8-hydroxyquinolinate) aluminum complex (“Alq3” manufactured by Dojindo Laboratories Co., Ltd.) was used. A glass substrate (100 mm × 100 mm × thickness 0.7 mm) was used as the deposition object 4, and this glass substrate was disposed horizontally at a distance of 250 mm from the evaporation source 3. After placing the glass substrate, the deposition rate was set to 4 Å / s and the formed film thickness was set to 100 nm, and the deposition experiment was repeated 20 times. In addition, between each vapor deposition experiment, there was a time (standby time) during which the vapor deposition film was not formed on the glass substrate for about 7 minutes due to the glass substrate replacement work, and the vapor deposition rate during the standby time was set to 2 liters / s. The film thickness of the vapor deposition film formed in each vapor deposition experiment was measured using a stylus type step gauge.

Figure 0005024075
Figure 0005024075

表1に示すように、実施例1乃至実施例3では、比較例と比べて、形成された蒸着膜の膜厚の差異が少ない。この結果は、実施例1乃至実施例3において形成された蒸着膜の再現性が高いことを示す。すなわち、実施例1乃至実施例3は、誘導路7が加熱され、しかも膜厚計測部6に対する筒状体5からの輻射熱の影響が少なくなるよう構成されているので、膜厚計測部6は正確な蒸着レートを安定的に計測することができ、この蒸着レートに基づくフィードバック制御を行うことにより、ガラス基板に対して高精度な蒸着膜を形成することができる。また、実施例2及び実施例3は、実施例1と比べて、形成された蒸着膜の再現性が更に高い。これは、誘導路7を蒸発源3の近傍に接続したことにより、膜厚計測部6における検出感度が向上し、より正確に蒸着レートを計測することができ、この蒸着レートに基づくフィードバック制御により、ガラス基板に対して更に高精度な蒸着膜を形成することができることを示す。更に、比較例では、蒸着材料2の突沸による蒸着レートの変動があったのに対して、実施例1乃至実施例3では、誘導路7に屈曲部71を備えたことにより、突沸による蒸着レートの変動はなかった。   As shown in Table 1, in Example 1 to Example 3, the difference in film thickness of the formed vapor deposition film is small compared to the comparative example. This result shows that the reproducibility of the deposited films formed in Examples 1 to 3 is high. That is, in the first to third embodiments, the guide path 7 is heated, and the influence of the radiant heat from the cylindrical body 5 on the film thickness measuring unit 6 is reduced. An accurate vapor deposition rate can be stably measured, and by performing feedback control based on the vapor deposition rate, a highly accurate vapor deposition film can be formed on the glass substrate. In addition, compared with Example 1, Example 2 and Example 3 have higher reproducibility of the formed deposited film. This is because, by connecting the guide path 7 in the vicinity of the evaporation source 3, the detection sensitivity in the film thickness measurement unit 6 is improved, and the deposition rate can be measured more accurately, and feedback control based on this deposition rate is performed. This shows that a highly accurate deposited film can be formed on a glass substrate. Further, in the comparative example, the deposition rate fluctuated due to bumping of the vapor deposition material 2, whereas in the first to third embodiments, the bending path 71 was provided in the guide path 7, so that the vapor deposition rate due to bumping. There was no change.

実施例2及び実施例3は、誘導路7が蒸発源3の近傍に接続され、検出素子61(水晶振動子)に蒸着材料2が付着し易い構成となっているが、実施例3では、誘導路開閉部9を設けたことにより、実施例2よりも水晶振動子の交換回数が少なくなった。なお、実施例3は、実施例2の構成に誘導路開閉部9を付加したものであるが、実施例3における水晶振動子の交換回数が実施例1よりも少ないことから明らかなように、誘導路開閉部9が実施例1の構成に付加されたときも水晶振動子の交換回数を少なくすることができる。   In Example 2 and Example 3, the guide path 7 is connected in the vicinity of the evaporation source 3 and the vapor deposition material 2 is easily attached to the detection element 61 (quartz crystal resonator). By providing the guide path opening / closing portion 9, the number of times of exchanging the crystal resonator is smaller than that in the second embodiment. In addition, although Example 3 adds the guidance path opening-and-closing part 9 to the structure of Example 2, since the frequency | count of replacement | exchange of the crystal oscillator in Example 3 is fewer than Example 1, it is clear, Even when the guide path opening / closing section 9 is added to the configuration of the first embodiment, the number of times of exchanging the crystal unit can be reduced.

本発明は、突沸を生じ易い有機材料を蒸着材料として蒸着膜を形成するための蒸着装置、例えば、有機エレクトロルミネッセンス(有機EL)素子の発光層を成膜するため蒸着装置に好適に用いられる。有機EL素子の発光層を成膜するための蒸着装置は、ゲスト蒸着材料及びホスト蒸着材料等を気化させるため、少なくとも2つの蒸発源3が備えられ、コントローラ8は、これらの蒸発源3の加熱温度を個別に制御できるように構成される。すなわち、本発明の真空蒸着装置において、蒸発源3の個数及びこの蒸発源3に収容される蒸着材料の種類等は特に限定されるものではない。   INDUSTRIAL APPLICABILITY The present invention is suitably used for a vapor deposition apparatus for forming a vapor deposition film using an organic material that easily causes bumping as a vapor deposition material, for example, a vapor deposition apparatus for forming a light emitting layer of an organic electroluminescence (organic EL) element. A vapor deposition apparatus for forming a light emitting layer of an organic EL element includes at least two evaporation sources 3 for vaporizing a guest vapor deposition material, a host vapor deposition material, and the like, and the controller 8 heats the evaporation sources 3. The temperature can be individually controlled. That is, in the vacuum vapor deposition apparatus of the present invention, the number of evaporation sources 3 and the type of vapor deposition material accommodated in the evaporation source 3 are not particularly limited.

本発明の第1の実施形態に係る真空蒸着装置の一部断面構成図。The partial cross section block diagram of the vacuum evaporation system which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る真空蒸着装置の一部断面構成図。The partial cross section block diagram of the vacuum evaporation system which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る真空蒸着装置の一部断面構成図。The partial cross section block diagram of the vacuum evaporation system which concerns on the 3rd Embodiment of this invention. 従来の真空蒸着装置の一部断面構成図。The partial cross section block diagram of the conventional vacuum evaporation system.

符号の説明Explanation of symbols

1 真空チャンバ
2 蒸着材料
3 蒸発源
3a 蒸発源ヒータ
4 被蒸着体
5 筒状体
5a 筒状体ヒータ
53 側部
6 膜厚計測部
7 誘導路
7a 誘導路ヒータ
71 屈曲部
9 誘導路開閉部(誘導路開閉手段)
DESCRIPTION OF SYMBOLS 1 Vacuum chamber 2 Evaporation material 3 Evaporation source 3a Evaporation source heater 4 Deposited body 5 Tubular body 5a Tubular body heater 53 Side part 6 Film thickness measurement part 7 Guidance path 7a Guidance path heater 71 Bending part 9 Guidance path opening / closing part ( Taxiway opening / closing means)

Claims (3)

真空チャンバ内に蒸着材料を収容する蒸発源と被蒸着体とを配置すると共に、前記蒸発源と被蒸着体との間を前記蒸着材料が気化される温度に加熱された筒状体で囲み、前記蒸発源から気化した蒸着材料を前記筒状体内を通して前記被蒸着体の表面に蒸着させる真空蒸着装置において、
前記筒状体外に設けられ、前記蒸発源から気化した蒸着材料を付着させてその蒸着膜厚を計測する膜厚計測部と、
前記筒状体の内部空間と前記膜厚計測部との間を接続して設けられ、前記蒸発源から気化した蒸着材料を前記膜厚計測部に誘導する誘導路と、を備え、
前記誘導路は、屈曲部を備えると共に、誘導路ヒータが設けられ、前記蒸着材料が気化される温度に加熱されることを特徴とする真空蒸着装置。
An evaporation source that accommodates the vapor deposition material in a vacuum chamber and a vapor deposition target are disposed, and a space between the evaporation source and the vapor deposition target is surrounded by a cylindrical body that is heated to a temperature at which the vapor deposition material is vaporized. In a vacuum deposition apparatus for depositing a vapor deposition material evaporated from the evaporation source on the surface of the deposition target through the cylindrical body,
A film thickness measuring unit that is provided outside the cylindrical body and measures the vapor deposition film thickness by attaching the vapor deposition material vaporized from the evaporation source,
Provided between the internal space of the cylindrical body and the film thickness measurement unit, and a guide path for guiding the vapor deposition material evaporated from the evaporation source to the film thickness measurement unit,
The induction path includes a bent portion and a induction path heater, and is heated to a temperature at which the vapor deposition material is vaporized.
前記誘導路は、前記筒状体の側部の前記蒸発源の近傍に接続されることを特徴とする請求項1に記載の真空蒸着装置。   The vacuum vapor deposition apparatus according to claim 1, wherein the guide path is connected to the vicinity of the evaporation source on a side portion of the cylindrical body. 前記誘導路を開閉して前記膜厚計測部へ流れる気化した蒸着材料の流量を調整可能に形成されると共に、前記蒸着材料が気化される温度に加熱される誘導路開閉手段を更に備えたことを特徴とする請求項1又は請求項2に記載の真空蒸着装置。   The guide path is further formed to be adjustable so that the flow rate of the vaporized vapor deposition material flowing to the film thickness measurement unit by opening and closing the guide path, and further includes a guide path opening / closing means that is heated to a temperature at which the vapor deposition material is vaporized. The vacuum evaporation apparatus according to claim 1 or 2, characterized by the above.
JP2008015733A 2008-01-28 2008-01-28 Vacuum deposition equipment Expired - Fee Related JP5024075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008015733A JP5024075B2 (en) 2008-01-28 2008-01-28 Vacuum deposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008015733A JP5024075B2 (en) 2008-01-28 2008-01-28 Vacuum deposition equipment

Publications (2)

Publication Number Publication Date
JP2009174027A JP2009174027A (en) 2009-08-06
JP5024075B2 true JP5024075B2 (en) 2012-09-12

Family

ID=41029416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008015733A Expired - Fee Related JP5024075B2 (en) 2008-01-28 2008-01-28 Vacuum deposition equipment

Country Status (1)

Country Link
JP (1) JP5024075B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101243031B1 (en) 2011-02-21 2013-03-20 엘아이지에이디피 주식회사 Thickness monitor device and evaporation device having it
TW201243083A (en) * 2011-03-16 2012-11-01 Panasonic Corp Vacuum evaporator
EP2508645B1 (en) * 2011-04-06 2015-02-25 Applied Materials, Inc. Evaporation system with measurement unit
JP2014515789A (en) * 2011-04-20 2014-07-03 コーニンクレッカ フィリップス エヌ ヴェ Measuring apparatus and method for vapor deposition applications
KR101446232B1 (en) 2012-10-19 2014-10-01 주식회사 선익시스템 Apparatus for Measuring Thickness of Deposited Film Having Shield

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3756458B2 (en) * 2002-03-26 2006-03-15 株式会社エイコー・エンジニアリング Molecular beam source cell for thin film deposition
JP3802846B2 (en) * 2002-06-20 2006-07-26 株式会社エイコー・エンジニアリング Molecular beam source cell for thin film deposition
JP4139158B2 (en) * 2002-07-26 2008-08-27 松下電工株式会社 Vacuum deposition method
JP4545028B2 (en) * 2005-03-30 2010-09-15 日立造船株式会社 Vapor deposition equipment

Also Published As

Publication number Publication date
JP2009174027A (en) 2009-08-06

Similar Documents

Publication Publication Date Title
JP5024075B2 (en) Vacuum deposition equipment
US10267768B2 (en) Device and method for determining the concentration of a vapor by means of an oscillating body sensor
US20100086681A1 (en) Control device of evaporating apparatus and control method of evaporating apparatus
US11024522B2 (en) Virtual sensor for spatially resolved wafer temperature control
JP4966028B2 (en) Vacuum deposition equipment
US20130209666A1 (en) Evaporating apparatus and evaporating method
KR102062224B1 (en) Vacuum evaporation apparatus
JP2012112034A (en) Vacuum vapor deposition system
JP2012112035A (en) Vacuum vapor deposition system
EP2261388A1 (en) Deposition rate monitor device, evaporator, coating installation, method for applying vapor to a substrate and method of operating a deposition rate monitor device
JP6116290B2 (en) Vapor deposition apparatus and vapor deposition method
US20130340679A1 (en) Vacuum deposition device
JP6207319B2 (en) Vacuum deposition equipment
JP2014070227A (en) Filming apparatus, and temperature control method and device for evaporation source of the filming apparatus
KR101981752B1 (en) Diffusion barriers for oscillation corrections, measurement assemblies for measuring deposition rates and methods therefor
KR20150114097A (en) Real Time Deposit Thickness Monitoring System and Monitoring Method Thereof
KR20210085415A (en) Thin film deposition apparatus and method
KR20180110004A (en) Thin Film Manufacturing Device, Thin Film Manufacturing Method
JP2013173965A (en) Vapor deposition apparatus
JP2015209559A (en) Vapor deposition apparatus
JP6464448B2 (en) Vapor deposition apparatus and vapor deposition method
CN104032264A (en) Film Coating System Capable Of Performing Thin Film Deposition In Rigorous Evaporation Environment
JP6150070B2 (en) Vapor deposition apparatus and vapor deposition method
US20160273097A1 (en) Method for monitoring se vapor in vacuum reactor apparatus
JP3210409B2 (en) Gas deposition equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101022

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5024075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees