JP5120785B2 - 非同期式論理回路の論理回路設計装置、論理回路設計方法および論理回路設計プログラム - Google Patents

非同期式論理回路の論理回路設計装置、論理回路設計方法および論理回路設計プログラム Download PDF

Info

Publication number
JP5120785B2
JP5120785B2 JP2008551115A JP2008551115A JP5120785B2 JP 5120785 B2 JP5120785 B2 JP 5120785B2 JP 2008551115 A JP2008551115 A JP 2008551115A JP 2008551115 A JP2008551115 A JP 2008551115A JP 5120785 B2 JP5120785 B2 JP 5120785B2
Authority
JP
Japan
Prior art keywords
control signal
design
circuit
state storage
logic circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008551115A
Other languages
English (en)
Other versions
JPWO2008078740A1 (ja
Inventor
克典 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2008551115A priority Critical patent/JP5120785B2/ja
Publication of JPWO2008078740A1 publication Critical patent/JPWO2008078740A1/ja
Application granted granted Critical
Publication of JP5120785B2 publication Critical patent/JP5120785B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/35Delay-insensitive circuit design, e.g. asynchronous or self-timed

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Logic Circuits (AREA)

Description

本発明は、論理回路の設計に関し、特に、非同期式論理回路の論理回路設計装置、論理回路設計方法および論理回路設計プログラムに関する。
この種の非同期式論理回路の設計装置は、例えば非特許文献1および非特許文献2に示されるように、設計対象となる回路の構成要素である論理素子を正常に機能させて、当該回路全体を仕様に従った動作をさせるために、設計者が指定する制約に当該回路の構成要素の性能や制約の一部を加味してタイミングに関する設計制約を自動的に設定する機能を有していた。
論理回路は、組合せ回路と順序回路とに分類され、組合せ回路は、前状態に依らず入力信号に対して一意に出力信号が決まる論理回路であり、順序回路は、組合せ回路および状態記憶部を持ち、現在の状態と入力信号に対して出力信号が決まる論理回路である。中央演算装置などの実用的機能を持つ論理回路は、順序回路として設計される。
順序回路は、図12に示されるように、外部からの信号入力端子1230、外部への信号出力端子1240、状態記憶部1220、次状態計算部1210を構成要素として持ち、状態記憶部1220はラッチやフリップ・フロップに代表される状態記憶素子1221で実現され、次状態計算部1210はAND、OR、NOTセルによる組合せ回路1211で実現される。
順序回路1200において次状態計算部1210と状態記憶部1220はまとめてデータパスとよばれ、データパスにおいて、次状態計算部1210の組合せ回路1211は、信号入力端子1230を介して外部から入力された信号データである外部信号入力データや状態記憶部1220で保持されているデータに対する計算を行って当該計算の結果を信号出力端子1240あるいは状態記憶部1220へ出力する動作を行い、状態記憶部1220は前記計算の結果を記憶する動作を行う。
上述したように、順序回路1200を実現するための状態記憶素子1221として、ラッチとフリップ・フロップが用いられる。
ラッチは、図13の論理素子記号1301で示されるように、入力端子としてデータ入力(D入力)端子とゲート入力(G入力)端子を持ち、出力端子としてデータ出力(Q出力)端子を持つ論理素子である。
ラッチは、図13のタイミング図1302に示されるように、G入力の値が1であるときはD入力の値をQ出力へ通過させる動作を行い、G入力の値が1から0に変化するときに通過中のD入力の値を記憶してQ出力の値とする動作を行い、G入力の値が0であるときはQ出力の値を保持する動作を行い、G入力の値が0から1に変化するときは保持されていたQ出力の値をD入力の値にする動作を行う。
フリップ・フロップは、図14の論理素子記号1401で示されるように、入力信号端子としてデータ入力(D入力)端子とクロック入力(C入力)端子を持ち、出力端子としてデータ出力(Q出力)端子を持つ論理素子である。
フリップ・フロップは、図14のタイミング図1402に示されるように、C入力の値が0から1に変化するときにD入力の値を記憶してQ出力の値とする動作を行い、C入力の値が変化しないあるいは1から0に変化するときはQ出力の値を保持する動作を行う。
前記のように、ラッチのG入力およびフリップ・フロップのC入力は、当該状態記憶素子の記憶を制御しているため、当該入力を記憶制御入力あるいは単に制御入力とよぶ。
状態記憶素子を正常動作させるためには、図15のタイミング図1501およびタイミング図1502のセットアップタイムとして示される、制御入力の値がD入力の値を記憶するための変化を行う前にD入力の値を安定させる時間と、同図のホールドタイムとして示される、制御入力の値がD入力の値を記憶するための変化を行い当該変化を行った後に当該状態記憶素子の内部の信号が安定するまでの間D入力の値を安定させる時間と、同図のパルス幅として示される、制御入力の値の変化の後に当該状態記憶素子の内部の信号が安定するまでの間制御入力の値を安定させる時間とが必要である。状態記憶素子のこれらセットアップタイム、ホールドタイム、パルス幅についての最小時間制約を、それぞれセットアップタイム制約、ホールドタイム制約、最小パルス幅制約という。これらの制約は当該状態記憶素子の特性に基づく制約である。
順序回路は、当該順序回路内の状態記憶素子の制御入力への信号により、同期式順序回路と非同期式順序回路に分類される。
同期式順序回路は、図16の回路例(同期式順序回路1601)に示されるような構成をとり、状態記憶部内の全ての状態記憶素子の制御入力へ、タイミング図1602のC(入力)に示されるように一定周期で0と1の間を振動するクロック信号を入力して、全ての状態記憶素子の動作をクロック信号に同期させる順序回路である。
同期式順序回路についての設計では、クロック信号を分配するクロック信号分配回路及びデータパスについての設計が行われる。
クロック信号分配回路は、クロック信号を入力するクロック入力端子から全ての状態記憶素子の制御入力の端子までの遅延を可能な限り均等にするように設計される。
同期式順序回路のデータパスについての設計において、状態記憶部は、必要な状態記憶素子で構成されるように設計され、状態記憶素子間の次状態計算部内の組合せ回路は、設計仕様として与えられる論理関数を実現するように設計される。当該設計においては、当該組合せ回路は設計者により任意に設定される1クロックサイクル時間内で計算を完了するという制約が課される。
通常、同期式順序回路についての設計は、例えば非特許文献1に示されるように、状態記憶素子間の次状態計算部内の組合せ回路の設計において状態記憶素子の特性に基づく制約全てを考慮するために、図16のタイミング図1602に示されるように、当該組合せ回路の組合せ回路遅延が、出力側の状態記憶素子のホールドタイム以上、クロック周期時間から出力側の状態記憶素子のセットアップタイムを減じた時間以下であるという制約の設定と、クロック信号の周期時間とデューティ比の適切な設定を行う。
これに対し、非同期式順序回路は、当該非同期式順序回路内の状態記憶素子の制御入力へクロック信号を入力せず、データパスにおいて次状態計算部組合せ回路を介して隣接する状態記憶素子が、記憶を要求する要求信号及び当該記憶動作の完了を示す通知信号のハンドシェイク信号の通信により協調動作を行う順序回路である。
非同期式順序回路は、前記ハンドシェイク信号の通信による状態記憶素子の協調動作を行うため、図17のブロック図に示される基本構成をとり、次状態計算部1710、状態記憶部1720および、状態記憶素子1721の制御入力の端子への信号出力を行う状態記憶制御部1730を構成要素として持つ。
非同期式順序回路内の状態記憶制御部1730は、図18の非同期式順序回路1801の構成例に示されるように、各状態記憶素子を制御する回路である状態記憶素子制御回路1731と、当該状態記憶素子制御回路間のハンドシェイク信号線である要求信号線1732と通知信号線1733とを備えて構成される。
非同期式順序回路のデータパスにおける次状態計算部内の組合せ回路を介して隣接する状態記憶素子間の協調動作は、図19において回路例(非同期式順序回路1901)に対するタイミング図1902で例示されるように、当該組合せ回路の入力側の状態記憶素子の記憶動作時に当該状態記憶素子を制御する状態記憶素子制御回路が、記憶を要求する要求信号(Rin)を当該組合せ回路の出力側の状態記憶素子を制御する状態記憶素子制御回路に送り(Rout)、前記出力側の状態記憶素子を制御する状態記憶素子制御回路が、前記要求信号(Rout)の到着とともに当該出力側の状態記憶素子が記憶動作を行うように状態記憶制御信号(Gout)を当該出力側の状態記憶素子に送り、当該記憶動作の完了を通知信号(Aout)で前記入力側の状態記憶素子制御回路へ送る(Ain)ことにより、行われる。
非同期式順序回路についての設計は、データパスについての設計と状態記憶制御部についての設計とにより行われる。
非同期式順序回路のデータパスについての設計において、状態記憶部は状態記憶素子で構成されるように設計され、次状態計算部は設計仕様に定められた論理関数を実現する組合せ回路として設計される。
状態記憶制御部についての設計は、実現されるべき信号遷移系列を、信号遷移の節点として信号遷移間の順序関係を有向枝とするグラフ表現である状態遷移グラフとして定義し、当該状態遷移グラフから信号状態を節点として信号遷移を有向枝とする状態グラフを生成し、当該状態グラフから中間信号および出力信号で実現すべき論理関数を回路内の信号による表現として抽出し、前記論理関数を実現する論理回路を合成することによって行われる。
通常、非同期式論理設計技術は、非特許文献2に示されるように、データパス内の組合せ回路の計算が完了した後に当該組合せ回路の出力側の状態記憶素子が当該計算の結果を記憶するという順序を実現するために、状態記憶制御部についての設計において、要求信号線遅延が当該要求信号線に併走する次状態計算部内の組合せ回路の遅延よりも大きいという制約が課される。従って、一般の非同期式論理設計技術は、状態記憶素子のセットアップタイム制約およびホールドタイム制約を満足するために、前記要求信号線遅延制約において制約値に充分な余裕がとられる。
しかし、上記の方法を用いる非同期式論理回路設計は、状態記憶素子の特性に基づく制約のうち、最小パルス幅制約が満たされない可能性があった。
その理由は、回路技術の進歩とともに論理ゲートや配線の遅延が小さくなり、状態記憶素子の記憶動作を制御する出力タイミング制御信号の高速な生成回路を設計することが可能となり、かつ前記制御信号の立上りおよび立下りの時間間隔であるパルス幅が前記状態記憶素子の正常動作を保証する下限値である最小パルス幅制約値よりも小さくなったことにより設計結果の回路が当該制約を違反している可能性が大きくなってきている一方で、文献記載の非同期式論理回路設計方法は、上記の技術では前記の制約違反の可能性が極めて低かったために、前記制約を明示的に考慮しなかったためである。
これに対し、特許文献1は、パルス幅チェック方式を開示し、パルス検出装置がシミュレーション装置におけるイベント発生時刻の検出情報を用いることによって、パルス幅制約をチェックする。
特許第2633648号公報 ジャン・ラバエイ(Jan M. Rabaey)、アナンタ・チャンドラカサン(Ananda Chandrakasan)、ボリボジュ・ニコリック(Borivoje Nikolic)「ディジタル集積回路(Digital Integrated Circuits)第2版」、パーソン・エデュケーション出版社(Person Education Inc.)、pp.491−533 ジェンス・スパーソ(Jens Sparso)、スティーブ・ファーバー(Steve Furber)著「非同期式回路設計の原理(Principles of Asynchronous Circuit Design)」、クルーワー学術出版(Kluwer Academic Publishers)、2001年、pp.16−27、pp.81−114
しかし、上記特許文献1等に記載される方法による非同期式論理回路設計における問題点は、状態記憶素子の特性に基づく制約のうち、最小パルス幅制約が満たされない可能性があることである。
その理由は、シミュレーションベースによるパルス幅チェック方式では、パルスが起こる前の状態が不明確であるため、理論的に正しい最小パルス幅制約を算出できるわけではないからである。
(発明の目的)
本発明の目的は、状態記憶素子の理論的に正しい最小パルス幅制約を考慮し、当該制約を満足する非同期式論理回路を設計できる論理回路設計装置、論理回路設計方法および論理回路設計プログラムを提供することにある。
本発明の非同期式論理回路設計装置は、状態記憶素子の記憶動作を制御する制御信号を生成する信号線パスに対する設計上の制約情報として、当該信号線パスの最小遅延時間を、状態記憶素子の正常動作のために必要な制御信号の立上り遷移および立下り遷移の間の最小時間間隔とする制約を設定する設計制約設定手段を含む。
本発明によれば、理論的に正しいタイミング制約全てを考慮した論理素子の設計ができる。
本発明の第1の実施の形態の構成を示すブロック図である。 第1の実施の形態による非同期式論理回路設計システムの非同期式論理回路設計装置100のハードウェア構成例を示すブロック図である。 第1の実施の形態の動作を示すフローチャートである。 本発明の実施例1のデータパス設計情報例である。 実施例1の設計対象非同期式論理回路の全体構成設計情報例である。 実施例1の状態記憶制御部の状態遷移グラフ例である。 実施例1の状態記憶制御部の入出力信号情報例である。 実施例1の設計制約入力情報例である。 実施例1のセルライブラリ例である。 実施例1のパルス生成信号線パス最小遅延制約追加の例である。 実施例1の本発明の適用結果による状態記憶制御部内部分回路の設計例である。 順序回路の一般的モデルである。 ラッチの素子記号およびラッチのタイミング図である。 フリップ・フロップの素子記号およびフリップ・フロップのタイミング図である。 ラッチおよびフリップ・フロップのセットアップタイムおよびホールドタイムを示すタイミング図である。 同期式順序回路の構成を示すブロック図および同期式順序回路における、セットアップタイム制約、ホールドタイム制約、次状態計算部の組合せ回路遅延の関係を示すタイミング図である。 非同期式順序回路の一般的モデルである。 非同期式順序回路における、状態記憶素子と、状態記憶制御回路と、ハンドシェイク信号の接続関係を説明する回路構成図である。 非同期式順序回路の部分回路例と当該回路例の動作および、当該回路例内の各信号と、セットアップタイム制約と、ホールドタイム制約と、パルス幅の関係を示すタイミング図である。
(第1の実施の形態)
次に、本発明の第1の実施の形態について図面を参照して詳細に説明する。
(第1の実施の形態の構成)
図1は、本実施の形態による非同期式論理回路設計システムの構成を示すブロック図である。
図1を参照すると、本実施の形態による非同期式論理回路設計システムは、非同期式論理回路設計装置100と、データパス・全体構成設計情報入力手段101と、状態記憶制御部入出力情報入力手段102と、状態記憶制御部状態遷移グラフ入力手段103と、セルライブラリ入力手段104と、設計制約入力手段105と、ゲートレベルネットリスト出力手段199とを備える。
非同期式論理回路設計装置100は、状態記憶素子制御信号抽出部111と、状態記憶制御信号遷移系列抽出部112と、状態記憶素子制御信号制約抽出部113と、データパス論理合成・最適化・テクノロジマッピング部114と、パルス生成パス遅延制約設定追加部115と、状態記憶制御部論理合成・最適化・テクノロジマッピング部116と、ネットリスト接続部117とを含む。
これらの手段および部分はそれぞれつぎのような機能を有する。
データパス・全体構成設計情報入力手段101は、設計対象の非同期式論理回路のうち次状態計算部と状態記憶部からなるデータパスの設計仕様に関する情報と、当該非同期式論理回路の各部の接続関係を示す全体構成設計に関する情報とを、非同期式論理回路設計装置100に入力する機能を有する。
状態記憶制御部入出力情報入力手段102は、設計対象の非同期式論理回路のうち状態記憶制御部の入出力信号名に関する情報を非同期式論理回路設計装置100に入力する機能を有する。
状態記憶制御部状態遷移グラフ入力手段103は、設計対象の非同期式論理回路のうち状態記憶制御部の動作仕様と当該部内回路の内部信号遷移の順序関係とを示す情報(状態遷移グラフ)を非同期式論理回路設計装置100に入力する機能を有する。
セルライブラリ入力手段104は、設計対象の非同期式論理回路の構成要素として用いられるセルならびにセルの性能およびタイミング制約に関する情報であるセルライブラリを非同期式論理回路設計装置100に入力する機能を有する。
設計制約入力手段105は、設計対象の非同期式論理回路の要求仕様性能に基づいて任意に設定される設計上の制約情報(設計制約)を非同期式論理回路設計装置100に入力する機能を有する。
ゲートレベルネットリスト出力手段199は、設計結果の非同期式論理回路のゲートレベルのネットリストを、非同期式論理回路設計装置100から出力する機能を有する。
状態記憶素子制御信号抽出部111は、データパス・全体構成設計情報入力手段101から当該部に入力されたデータパスの設計仕様に関する情報および全体構成設計に関する情報(データパス・全体構成設計情報)から、状態記憶素子の記憶を制御する状態記憶制御信号の信号名を抽出して状態記憶制御信号遷移系列抽出部112に入力する機能を有する。
状態記憶制御信号遷移系列抽出部112は、状態記憶制御部状態遷移グラフ入力手段103および状態記憶素子制御信号抽出部111から当該部に入力された状態遷移グラフと信号名とから、当該状態遷移グラフ中の当該信号名の信号立上りおよび立下りの信号遷移の節点を特定して、当該節点間の枝でつながれた一続きの節点列である信号遷移系列を抽出する機能を有する。
状態記憶素子制御信号制約抽出部113は、セルライブラリ入力手段104から当該部に入力されたセルライブラリから状態記憶素子と当該素子の制御信号の最小パルス幅制約を抽出する機能を有する。
データパス論理合成・論理最適化・テクノロジマッピング部114は、データパス・全体構成設計情報入力手段101から当該部に入力されたデータパス・全体構成設計情報を解釈し、設計制約入力手段105から当該部に入力された設計制約を満足するように、セルライブラリ入力手段104から当該部に入力されたセルライブラリ内に定義されるセルを構成要素とするゲートレベルのデータパス回路に関する情報を生成し、当該ゲートレベルのデータパス回路に関する情報とともに全体構成に関する情報をパルス生成パス遅延制約設定追加部115およびネットリスト接続部117に対して出力する機能を有する。
パルス生成パス遅延制約設定追加部115は、状態記憶制御信号遷移系列抽出部112から当該部に入力された信号遷移系列の起点および終点である信号を制御信号とする状態記憶素子がラッチであるかフリップ・フロップであるかを示す種類情報を、データパス論理合成・論理最適化・テクノロジマッピング部114から当該部に入力されたデータパス論理回路のゲートレベルに関する情報から抽出して対応をつけ、当該信号遷移系列の信号線パスの最小遅延を当該部に入力された状態記憶素子の最小パルス幅制約値に設定し、当該信号線パスの最小遅延の設定(遅延情報)を設計制約入力手段105から当該部に入力された設計制約に関する情報に追加する機能を有する。
状態記憶制御部論理合成・最適化・テクノロジマッピング部116は、状態記憶制御部状態遷移グラフ入力手段103から当該部に入力された状態遷移グラフから状態グラフを生成して信号線間の論理関数を抽出して当該論理関数を実現する論理回路を、セルライブラリ入力手段104から当該部に入力されたセルライブラリ内に定義されているセルで構成される論理回路として、設計制約入力手段105から当該部に入力された設計制約を満足するように遅延追加等を行いながら論理合成、論理最適化、テクノロジマッピングを行う機能を有する。
ネットリスト接続部117は、個別に論理合成・論理最適化・テクノロジマッピングされてデータパス論理合成・論理最適化・テクノロジマッピング部114および状態記憶制御部論理合成・最適化・テクノロジマッピング部116から当該部に入力された設計対象の非同期式論理回路の部分回路のネットリストを、当該部に入力された全体構成に関する情報に従って接続し、設計対象の非同期式論理回路全体のネットリストを生成する機能を有する。
ここで、非同期式論理回路設計装置100のハードウェア構成の説明をする。
図2は、本実施の形態による非同期式論理回路設計システムの非同期式論理回路設計装置100のハードウェア構成例を示すブロック図である。
図2を参照すると、本発明による非同期式論理回路設計装置100は、一般的なコンピュータ装置と同様のハードウェア構成によって実現することができ、CPU(Central Processing Unit)201、RAM(Random Access Memory)等のメインメモリであり、データの作業領域やデータの一時退避領域に用いられる主記憶部202、インターネット300を介してデータの送受信を行う通信制御部203、液晶ディスプレイ、プリンタやスピーカ等の提示部204、キーボードやマウス等の入力部205、周辺機器と接続してデータの送受信を行うインタフェース部206、ROM(Read Only Memory)、磁気ディスク、半導体メモリ等の不揮発性メモリから構成されるハードディスク装置である補助記憶部207、本情報処理装置の上記各構成要素を相互に接続するシステムバス208等を備えている。
本発明による非同期式論理回路設計装置100は、その動作を、非同期式論理回路設計装置100内部にそのような機能を実現するプログラムを組み込んだ、LSI(Large Scale Integration)等のハードウェア部品からなる回路部品を実装してハードウェア的に実現することは勿論として、上記した各構成要素の各機能を提供するプログラムを、コンピュータ処理装置上のCPU201で実行することにより、ソフトウェア的に実現することができる。
すなわち、CPU201は、補助記憶部207に格納されているプログラムを、主記憶部302にロードして実行し、非同期式論理回路設計装置100の動作を制御することにより、上述した各機能をソフトウェア的に実現する。
なお、非同期式論理回路設計システムの他の構成要素が、上述のような構成を有し、上述した各構成要素の機能をハードウェア的又はソフトウェア的に実現してもよい。
(第1の実施の形態の動作)
次に、図1及び図3を参照し、本実施の形態による非同期式論理回路設計システム全体の動作について詳細に説明する。
図3は、本実施の形態の動作を示すフローチャートである。
データパス設計、全体構成設計、状態記憶制御部入出力、状態記憶制御部状態遷移グラフ、セルライブラリおよび設計制約に関する情報は、データパス・全体構成設計情報入力手段101と、状態記憶制御部入出力情報入力手段102と、状態記憶制御部状態遷移グラフ入力手段103と、セルライブラリ入力手段104と、設計制約入力手段105を介して、非同期式論理回路設計装置100へ入力される(ステップS11)。
前記データパス・全体構成設計と状態記憶制御部入出力に関する情報は、状態記憶素子制御信号抽出部111に入力され、状態記憶素子制御信号抽出部111は、当該データパス・全体構成設計に関する情報から状態記憶素子の制御信号名等の制御信号情報(状態記憶制御信号情報)を抽出して、当該状態記憶制御部入出力に関する情報中に定義される状態記憶制御部の入出力信号のうち状態記憶素子の制御信号であるものを指定して抽出する(ステップS12)。
前記状態記憶制御部状態遷移グラフおよび、記憶制御信号抽出部111において抽出された状態記憶制御信号情報は、状態記憶制御信号遷移系列抽出部112に入力され、状態記憶制御信号遷移系列抽出部112は、状態記憶制御信号情報に基づいて、当該状態遷移グラフから当該状態記憶制御信号の立上りおよび立下りの信号遷移の節点を特定して、当該節点間の枝でつながれた一続きの節点列である信号遷移系列を、立上り節点から立下り節点の間と、立下り節点から立上り節点の間について、抽出する(ステップS13)。
前記セルライブラリは、状態記憶素子制御信号制約抽出部113に入力され、状態記憶素子制御信号制約抽出部113は、当該セルライブラリから各状態記憶素子について、当該素子の素子名と制御信号の最小パルス幅制約を組として抽出する(ステップS14)。
前記データパス設計に関する情報と、セルライブラリと、設計上の制約情報(設計制約)は、データパス論理合成・最適化・テクノロジマッピング部114に入力され、データパス論理合成・最適化・テクノロジマッピング部114は、当該データパス設計に関する情報を解釈して、当該設計制約を満足するように、当該セルライブラリ内に定義されるセルを構成要素とするゲートレベルのデータパス回路情報を生成する(ステップS15)。
状態記憶制御信号遷移系列抽出部112において抽出された状態記憶制御信号遷移系列と、状態記憶素子制御信号制約抽出部113において抽出された状態記憶素子の素子名と最小パルス幅制約の組と、データパス論理合成・最適化・テクノロジマッピング部114において生成されたゲートレベルのデータパス回路情報と、設計制約入力手段105を介して入力された設計制約とは、パルス生成パス遅延制約設定追加部115に入力され、パルス生成パス遅延制約設定追加部115は、当該状態記憶制御信号遷移系列の起点および終点である信号を制御信号とする状態記憶素子の素子名を当該データパス論理回路のゲートレベル情報から抽出し、当該素子名の状態記憶素子の最小パルス幅制約を、前記素子名と最小パルス幅制約の組から得て、当該状態記憶制御信号遷移系列の共通信号線が多く含まれれば共通信号線から成るパスの最小遅延を当該最小パルス幅制約値に設定し、もしくは各状態記憶制御信号遷移系列に対して信号線パスの最小遅延を当該最小パルス幅制約値に設定し、当該設定を当該部に入力された設計制約に関する情報に追加し、追加結果の設計制約に関する情報を出力する(ステップS16)。
前記状態記憶制御部入出力情報と、状態記憶制御部状態遷移グラフと、セルライブラリと、パルス生成パス遅延制約設定追加部115において出力された設計制約に関する情報とは、状態記憶制御部論理合成・最適化・テクノロジマッピング部116に入力され、状態記憶制御部論理合成・最適化・テクノロジマッピング部116は、当該状態記憶制御部状態遷移グラフから状態グラフを生成して抽出した信号線間の論理関数を実現する論理回路を、当該セルライブラリ内に定義されているセルで構成される論理回路として、当該設計制約を満足するように論理合成、論理最適化、テクノロジマッピングを行う(ステップS17)。
データパス論理合成・最適化・テクノロジマッピング部114において生成されたゲートレベルのデータパス回路情報および全体構成に関する情報と、状態記憶制御部論理合成・最適化・テクノロジマッピング部116において生成されたゲートレベルの状態記憶制御部回路情報とは、ネットリスト接続部117に入力され、ネットリスト接続部117は、当該データパスおよび状態記憶制御部のゲートレベルのネットリストを、全体構成に関する情報に従って接続して、設計対象の非同期式論理回路全体のゲートレベルネットリストを生成する(ステップS18)。
ネットリスト接続部117により生成された設計対象の非同期式論理回路全体のゲートレベルネットリストは、ゲートレベルネットリスト出力手段199により、非同期式論理回路設計装置100の設計結果として出力される(ステップS19)。
(第1の実施の形態の効果)
次に、本実施の形態の効果について説明する。
本実施の形態によれば、理論的に正しいタイミング制約全てを考慮した論理素子の設計ができる。
その理由は、状態記憶素子の記憶動作を制御する制御信号のパルス生成を行う状態記憶制御部内の信号線パスを抽出して、当該制御信号のパルス幅を決定する当該信号線パスの最小遅延を、状態記憶素子の最小パルス幅制約値として設定するように構成されているため、当該制御信号の立上り遷移および立下り遷移の間の時間が最小パルス幅制約値以上に確保され、最小パルス幅制約を満足する非同期式論理回路を設計することができるからである。
すなわち、タイミング制約が規定されている論理素子はラッチやフリップ・フロップに代表される状態記憶素子のみで、状態記憶素子の正常動作条件は、セットアップタイム制約、ホールドタイム制約、最小パルス幅制約の全てを満たすことであり、前記制約のうちこれまでの方法で考慮されない最小パルス幅制約は当該制約が課される信号線における2つの信号遷移のそれぞれについて、当該遷移を引き起こすに至る他の信号線での遷移の系列を状態遷移グラフから抽出し、当該系列に対応する信号線パスの最小遅延を最小パルス幅と設定し、バッファ挿入に代表される遅延調整手段を持つ論理合成・最適化・テクノロジマッピングを適用することで、当該制約が課される信号線における2つの遷移の時間間隔が制約値以上となる非同期式順序回路が得られるためである。
次に、具体的な実施例を用いて本発明の動作を説明する。本実施例は上記第1の実施の形態に対応するものである。
設計例として、図4のデータパスの設計情報400と図5の非同期式論理回路全体の設計情報(全体設計情報)500とが、図1のデータパス設計情報入力手段101によって、図1の非同期式論理回路設計装置100に入力される。
図6の状態記憶制御部の状態遷移グラフ600が、図1の状態記憶制御部状態遷移グラフ入力手段103によって、図1の非同期式論理回路設計装置100に入力される。
図7の状態記憶制御部の入出力端子に関する情報(入出力信号情報700)が、図1の状態記憶制御部入出力情報入力手段102によって、図1の非同期式論理回路設計装置100に入力される。
図8の設計制約に関する情報(入力設計制約情報800)が、図1の設計制約入力手段105によって、図1の非同期式論理回路設計装置100に入力される。
図1のセルライブラリ入力手段104によって図1の非同期式論理回路設計装置100に入力された図9のセルライブラリ情報900内に定義されるセルが、設計結果回路の部品として用いられるとする。
ここで、図4のデータパスの設計情報400は、次状態計算部の設計情報401と状態記憶部の設計情報402とを含んでいる。
また、図5の非同期式論理回路全体の設計情報(全体設計情報)500は、状態記憶制御部の設計情報(状態記憶制御部設計情報)501と、図4のデータパス設計情報400の回路の実体生成が行われる部分であるデータパスの設計情報(データパス設計実体化情報)502とを含んでいる。
図1の状態記憶素子制御信号抽出部111は、図4の状態記憶部の設計情報(状態記憶部設計情報)402から、状態記憶制御部はLt1とLt2は状態記憶素子の制御信号(状態記憶素子制御信号)であるという情報(状態記憶素子制御信号情報)を得て、図5のデータパス設計実体化情報502と前記状態記憶素子制御信号情報とから、状態記憶制御部内の部分回路LC1およびLC2における入出力信号Lt1およびLt2は状態記憶素子の制御信号であり、当該部分回路の設計情報において第一入出力信号は状態記憶素子制御信号であるという情報を得て、当該情報から図7の状態記憶制御回路LatchCtrlの入出力信号情報700にある出力Ltが状態記憶制御信号であるという情報を抽出する。
図6の状態記憶制御部の状態遷移グラフ600と、図1の状態記憶素子制御信号抽出部111により抽出されたLatchCtrlの出力Ltが状態記憶制御信号であるという情報とから、図1の状態記憶制御遷移系列抽出部112は、当該状態遷移グラフ上のLt+およびLt−の間の信号遷移系列Lt−→Ain+→B+→A−→Lt+およびLt+→B−→A+→Lt−を、状態記憶制御遷移系列として抽出する。
図1の状態記憶素子制御信号制約抽出部113は、図9のセルライブラリ情報900から、状態記憶素子の素子名と当該素子の最小パルス幅制約とを組として抽出し、当該組のうちの一つとして、例えば、図9の設計制約に関する情報(ラッチの最小パルス幅制約情報901)で定義され素子名がDラッチおよび最小パルス幅制約300psの組を抽出する。
図1のデータパス論理合成・最適化・テクノロジマッピング部114は、図9のセルライブラリ情報900と従来のツールとを用いて図4のデータパスの設計情報400に対して論理合成・最適化・テクノロジマッピングを行うことによって、前記の状態記憶制御信号Ltで制御される状態記憶素子の種類(ラッチ/フリップ・フロップ)を確定する。本実施例では、図4の状態記憶部の設計情報(状態記憶部設計情報)402は図9のセルライブラリ情報900のDラッチへマッピングされるとする。
図1のパルス生成パス遅延制約設定部115は、前記状態記憶制御信号が状態記憶素子の最小パルス幅制約を満足させるためには、前記状態記憶制御遷移系列Lt−→Ain+→B+→A−→Lt+およびLt+→B−→A+→Lt−の遷移時間を前記Dラッチの最小パルス幅制約値である300ps以上にする必要があるため、前記2つの信号遷移系列が共通に含む信号線Lt、B、Aを通過するパスの最小遅延を300psとして遅延情報を設定し、当該部に入力された図8の入力設計制約情報800に当該制約設定(設定した遅延情報)をパルス生成パス遅延制約1001としてを加え、図10に例示される設計制約に関する情報(設計制約1000)を得る。
図1の状態記憶制御部論理合成・最適化・テクノロジマッピング部116は、前記設定した遅延情報、前記状態遷移グラフ、前記セルライブラリを入力として、図11に例示されるような状態記憶制御部内部分回路1100を出力し、前記設定した遅延情報を反映する機能を持ち、当該機能により、当該部分回路内のパス(状態記憶部を制御する制御信号のための制御信号生成パス1101)の遅延値は300ps以上となる。
前記状態記憶制御部論理合成・最適化・テクノロジマッピング部114により得られた状態記憶制御部の論理回路のゲートレベルのネットリストと、前記データパス論理合成・最適化・テクノロジマッピング部114により得られたデータパス回路のゲートレベルのネットリストとを、図1のネットリスト接続部117により図5の全体設計情報500に従って接続し、本発明が目的とする最小パルス幅制約を満足する非同期式順序回路を、接続結果として図1のゲートレベルネットリスト出力手段199により出力する。
以上好ましい実施の形態をあげて本発明を説明したが、本発明は必ずしも、上記実施の形態に限定されるものでなく、その技術的思想の範囲内において様々に変形して実施することができる。
本発明の実施の形態は、上記のような構成を採用して、状態記憶素子の制御信号の立上り遷移と立下り遷移の間の時間を最小パルス幅制約値以上になるような制約の下で、論理合成・論理最適化・テクノロジマッピングを行うことにより、理論的に正しいタイミング制約全てを考慮した論理素子の設計ができる。その理由は、非同期式論理回路を設計するための論理回路設計装置において、状態記憶素子の記憶動作を制御する制御信号を生成する信号線パスに対する設計上の制約情報として、当該信号線パスの最小遅延時間を、前記状態記憶素子の正常動作のために必要な前記制御信号の立上り遷移および立下り遷移の間の最小時間間隔とする制約を設定するからである。
この出願は、2006年12月26日に出願された日本出願特願2006−349365号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
本発明によれば、ディジタル集積回路の設計装置、システムおよびプログラムといった用途に適用できる。また、ディジタル集積回路の設計制約検証装置、システムおよびプログラムや、ディジタル集積回路の設計制約違反箇所修正装置、システムおよびプログラムといった用途にも適用可能である。

Claims (6)

  1. 非同期式論理回路を設計するための論理回路設計装置において、
    状態記憶素子の記憶動作を制御する制御信号を生成する信号線パスに対する設計上の制約情報として、当該信号線パスの最小遅延時間を、前記状態記憶素子の正常動作のために必要な前記制御信号の立上り遷移および立下り遷移の間の最小時間間隔とする制約を設定する設計制約設定手段と、
    前記制御信号を生成する制御信号生成回路の設計仕様情報に基づいて、前記制御信号を遷移させるための制御信号生成回路入出力および内部信号の遷移系列を抽出し、当該遷移系列に対応する制御信号生成回路内信号線パスを抽出する遷移系列対応信号線パス抽出手段と
    を含むことを特徴とする論理回路設計装置。
  2. データパス回路に関する設計情報から前記制御信号を抽出する制御信号抽出手段と、
    前記データパス回路に関する設計情報に基づいて論理合成・最適化・テクノロジマッピングを行う第1の論理合成手段と、
    前記データパス回路に基づいて前記状態記憶素子の種類を抽出し、セルライブラリに基づいて前記種類の状態記憶素子の前記最小時間間隔の値を抽出する最小時間間隔抽出手段と、
    前記制御信号を生成する制御信号生成回路の設計仕様情報に対して、設定された前記設計上の制約情報を満足させる遅延追加を行いながら論理合成・最適化・テクノロジマッピングを行う第2の論理合成手段と、
    前記データパス回路と前記制御信号生成回路を接続して非同期式論理回路を生成する論理回路生成手段とを含むことを特徴とする請求項1に記載の論理回路設計装置
  3. 非同期式論理回路を設計するための論理回路設計装置による論理回路設計方法であって、
    設計制約設定手段が、状態記憶素子の記憶動作を制御する制御信号を生成する信号線パスに対する設計上の制約情報として、当該信号線パスの最小遅延時間を、前記状態記憶素子の正常動作のために必要な前記制御信号の立上り遷移および立下り遷移の間の最小時間間隔とする制約を設定し、
    遷移系列対応信号線パス抽出手段が、前記制御信号を生成する制御信号生成回路の設計仕様情報に基づいて、前記制御信号を遷移させるための制御信号生成回路入出力および内部信号の遷移系列を抽出し、当該遷移系列に対応する制御信号生成回路内信号線パスを抽出することを特徴とする論理回路設計方法
  4. 制御信号抽出手段が、データパス回路に関する設計情報から前記制御信号を抽出し、
    第1の論理合成手段が、前記データパス回路に関する設計情報に基づいて論理合成・最適化・テクノロジマッピングを行い、
    最小時間間隔抽出手段が、前記データパス回路に基づいて前記状態記憶素子の種類を抽出し、セルライブラリに基づいて前記種類の状態記憶素子の前記最小時間間隔の値を抽出し、
    第2の論理合成手段が、前記制御信号を生成する制御信号生成回路の設計仕様情報に対して、設定された前記設計上の制約情報を満足させる遅延追加を行いながら論理合成・最適化・テクノロジマッピングを行い、
    論理回路生成手段が、前記データパス回路と前記制御信号生成回路を接続して非同期式論理回路を生成することを特徴とする請求項3に記載の論理回路設計方法
  5. 非同期式論理回路を設計するための論理回路設計装置の論理回路設計プログラムであって、
    設計制約設定手段に、
    状態記憶素子の記憶動作を制御する制御信号を生成する信号線パスに対する設計上の制約情報として、当該信号線パスの最小遅延時間を、前記状態記憶素子の正常動作のために必要な前記制御信号の立上り遷移および立下り遷移の間の最小時間間隔とする制約を設定する処理と、
    遷移系列対応信号線パス抽出手段に、
    前記制御信号を生成する制御信号生成回路の設計仕様情報に基づいて、前記制御信号を遷移させるための制御信号生成回路入出力および内部信号の遷移系列を抽出し、当該遷移系列に対応する制御信号生成回路内信号線パスを抽出する処理を実行させることを特徴とする論理回路設計プログラム
  6. 制御信号抽出手段に、
    データパス回路に関する設計情報から前記制御信号を抽出する処理を実行させ、
    第1の論理合成手段に、
    前記データパス回路に関する設計情報に基づいて論理合成・最適化・テクノロジマッピングを行う処理を実行させ、
    最小時間間隔抽出手段に、
    前記データパス回路に基づいて前記状態記憶素子の種類を抽出し、セルライブラリに基づいて前記種類の状態記憶素子の前記最小時間間隔の値を抽出する処理を実行させ、
    第2の論理合成手段に、
    前記制御信号を生成する制御信号生成回路の設計仕様情報に対して、設定された前記設計上の制約情報を満足させる遅延追加を行いながら論理合成・最適化・テクノロジマッピングを行う処理を実行させ、
    論理回路生成手段に、
    前記データパス回路と前記制御信号生成回路を接続して非同期式論理回路を生成する処理を実行させることを特徴とする請求項5に記載の論理回路設計プログラム
JP2008551115A 2006-12-26 2007-12-25 非同期式論理回路の論理回路設計装置、論理回路設計方法および論理回路設計プログラム Expired - Fee Related JP5120785B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008551115A JP5120785B2 (ja) 2006-12-26 2007-12-25 非同期式論理回路の論理回路設計装置、論理回路設計方法および論理回路設計プログラム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006349365 2006-12-26
JP2006349365 2006-12-26
JP2008551115A JP5120785B2 (ja) 2006-12-26 2007-12-25 非同期式論理回路の論理回路設計装置、論理回路設計方法および論理回路設計プログラム
PCT/JP2007/074833 WO2008078740A1 (ja) 2006-12-26 2007-12-25 非同期式論理回路の論理回路設計装置、論理回路設計方法および論理回路設計プログラム

Publications (2)

Publication Number Publication Date
JPWO2008078740A1 JPWO2008078740A1 (ja) 2010-04-30
JP5120785B2 true JP5120785B2 (ja) 2013-01-16

Family

ID=39562529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008551115A Expired - Fee Related JP5120785B2 (ja) 2006-12-26 2007-12-25 非同期式論理回路の論理回路設計装置、論理回路設計方法および論理回路設計プログラム

Country Status (5)

Country Link
US (1) US20090271747A1 (ja)
EP (1) EP2098969A4 (ja)
JP (1) JP5120785B2 (ja)
TW (1) TWI402708B (ja)
WO (1) WO2008078740A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8086975B2 (en) * 2008-04-10 2011-12-27 University Of Southern California Power aware asynchronous circuits
US8448105B2 (en) 2008-04-24 2013-05-21 University Of Southern California Clustering and fanout optimizations of asynchronous circuits
US8024696B1 (en) * 2008-11-13 2011-09-20 Xilinx, Inc. Clock speed for a digital circuit
DE102010032314A1 (de) * 2010-07-27 2012-02-02 Volkswagen Ag Verfahren und Vorrichtung zum modellbasierten Entwurf einer elektronischen Schaltung
WO2013118119A1 (en) * 2012-02-09 2013-08-15 B.G. Negev Technologies & Applications Ltd. Design of dual mode logic circuits
US8901965B2 (en) 2011-08-03 2014-12-02 Ben-Gurion University Of The Negev Research And Development Authority Device and method for dual-mode logic
US8656326B1 (en) * 2013-02-13 2014-02-18 Atrenta, Inc. Sequential clock gating using net activity and XOR technique on semiconductor designs including already gated pipeline design

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004030186A (ja) * 2002-06-25 2004-01-29 Renesas Technology Corp 論理シミュレータ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2633648B2 (ja) 1988-09-16 1997-07-23 富士通株式会社 シミュレーション装置のパルス幅チェック方式
US5469367A (en) * 1994-06-06 1995-11-21 University Technologies International Inc. Methodology and apparatus for modular partitioning for the machine design of asynchronous circuits
US6502180B1 (en) * 1997-09-12 2002-12-31 California Institute Of Technology Asynchronous circuits with pipelined completion process
US6314553B1 (en) * 1998-11-02 2001-11-06 Intel Corporation Circuit synthesis and verification using relative timing
US6621302B2 (en) * 2001-03-21 2003-09-16 Bae Systems Information And Electronic Systems Integration, Inc Efficient sequential circuits using critical race control
US6557161B2 (en) * 2001-06-28 2003-04-29 Sun Microsystems, Inc. Method for prototyping asynchronous circuits using synchronous devices
US6785875B2 (en) * 2002-08-15 2004-08-31 Fulcrum Microsystems, Inc. Methods and apparatus for facilitating physical synthesis of an integrated circuit design
JP2005222581A (ja) * 2004-02-03 2005-08-18 Renesas Technology Corp 半導体記憶装置
JP4628193B2 (ja) 2005-06-13 2011-02-09 旭化成ホームズ株式会社 トレーサーガスの放散方法及び放散容器
US7610567B2 (en) * 2006-04-27 2009-10-27 Achronix Semiconductor Corporation Systems and methods for performing automated conversion of representations of synchronous circuit designs to and from representations of asynchronous circuit designs

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004030186A (ja) * 2002-06-25 2004-01-29 Renesas Technology Corp 論理シミュレータ

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CSNG200500396012; 齋藤寛,外4名: 'セルコントローラに基づいた非同期回路の合成' 電子情報通信学会技術研究報告 Vol.103, No.480, 20031121, pp.79〜84, 社団法人電子情報通信学会 *
CSNG200500396040; 清水雅一,外1名: '局所同期型非同期式回路におけるローカルタイミング信号生成回路の低消費電力設計' 電子情報通信学会技術研究報告 Vol.103,No.480, 20031121, pp.259〜264(VLD2003-113), 社団法人電子情報通信学会 *
JPN6008003331; 清水雅一,外1名: '局所同期型非同期式回路におけるローカルタイミング信号生成回路の低消費電力設計' 電子情報通信学会技術研究報告 Vol.103,No.480, 20031121, pp.259〜264(VLD2003-113), 社団法人電子情報通信学会 *
JPN6008003332; 河野寛行,外2名: '非同期式回路をFPGAに実装するための一設計手法' 情報処理学会第67回全国大会講演論文集 Vol.67, No.1, 20050302, pp.107〜108, 社団法人情報処理学会 *
JPN6008003333; 齋藤寛,外4名: 'セルコントローラに基づいた非同期回路の合成' 電子情報通信学会技術研究報告 Vol.103, No.480, 20031121, pp.79〜84, 社団法人電子情報通信学会 *

Also Published As

Publication number Publication date
TW200846960A (en) 2008-12-01
EP2098969A1 (en) 2009-09-09
WO2008078740A1 (ja) 2008-07-03
US20090271747A1 (en) 2009-10-29
TWI402708B (zh) 2013-07-21
EP2098969A4 (en) 2013-01-02
JPWO2008078740A1 (ja) 2010-04-30

Similar Documents

Publication Publication Date Title
US8291358B2 (en) Synchronous to asynchronous logic conversion
JP5120785B2 (ja) 非同期式論理回路の論理回路設計装置、論理回路設計方法および論理回路設計プログラム
KR101061864B1 (ko) 동기 회로 설계 표현과 비동기 회로 설계 표현간의 자동 변환을 수행하기 위한 시스템 및 방법
US8074190B1 (en) Integrated circuit design systems for replacing flip-flops with pulsed latches
Moreira et al. Impact of C-elements in asynchronous circuits
US10084434B2 (en) Relative timed clock gating cell
JP4200465B2 (ja) 半導体集積回路の設計方法及び設計システム
US10318691B2 (en) Timing analysis and optimization of asynchronous circuit designs
JPWO2008133116A1 (ja) 回路設計装置、回路設計方法および回路設計プログラム
US8745558B1 (en) Deployment of transmission gate logic cells in application specific integrated circuits
CN109885850B (zh) 一种局部寄存器的生成方法及生成系统
Bhandari et al. Fpga based high performance asynchronous alu based on modified 4 phase handshaking protocol with tapered buffers
Kebaili et al. Enabler-based synchronizer model for clock domain crossing static verification
US7284217B2 (en) Method of LSI designing and a computer program for designing LSIS
CN113688587B (zh) 一种电路布图的生成方法、装置、计算机设备及存储介质
US11928409B2 (en) Dynamic abstract generation and synthesis flow with area prediction
Łuczyk A method to manage unknown values generation and propagation during gate level simulations of multi-clock digital circuits
JPWO2011074044A1 (ja) 集積回路の消費電力算出方法、消費電力算出プログラム及び消費電力算出装置
Kudo et al. Comparison of Pipelined Asynchronous Circuits Designed for FPGA
Smith et al. Low-latency multiple clock domain interfacing without alteration of local clocks
JP5531479B2 (ja) 回路設計方法、及び回路設計プログラム
Suhaili et al. Performance evaluation of verilog coding techniques for optimized md5 algorithm
JP2011035826A (ja) 半導体装置およびデータ転送方法
CN114185396A (zh) 设计的时钟域转换方法、验证系统及存储介质
Wadsworth et al. Advanced ASIC Sign-Off Features of IEEE 1076.4-2000 And Standards updates to Verilog and SDF

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121001

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121014

LAPS Cancellation because of no payment of annual fees