JP5120131B2 - Multi-electrode submerged arc welding method - Google Patents

Multi-electrode submerged arc welding method Download PDF

Info

Publication number
JP5120131B2
JP5120131B2 JP2008197278A JP2008197278A JP5120131B2 JP 5120131 B2 JP5120131 B2 JP 5120131B2 JP 2008197278 A JP2008197278 A JP 2008197278A JP 2008197278 A JP2008197278 A JP 2008197278A JP 5120131 B2 JP5120131 B2 JP 5120131B2
Authority
JP
Japan
Prior art keywords
welding
electrode
flux
shield
shield cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008197278A
Other languages
Japanese (ja)
Other versions
JP2010029931A (en
Inventor
善明 村上
謙司 嶋田
正丈 小高
篤史 石神
直哉 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008197278A priority Critical patent/JP5120131B2/en
Publication of JP2010029931A publication Critical patent/JP2010029931A/en
Application granted granted Critical
Publication of JP5120131B2 publication Critical patent/JP5120131B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、多電極サブマージアーク溶接方法に関し、天然ガス、原油輸送用ラインパイプ等、あるいは構造用パイプ等用途に供される大径溶接鋼管の製管溶接に好適なものに関する。   The present invention relates to a multi-electrode submerged arc welding method and relates to a method suitable for pipe welding of large-diameter welded steel pipes used for natural gas, crude oil transportation line pipes, structural pipes and the like.

近年、天然ガス、あるいは原油輸送用パイプラインのトータルコスト削減のため、操業圧力の高圧化とともに使用鋼材量の低減と現地溶接施工コスト削減が可能である高強度厚肉大径鋼管の適用が検討され始めている。このような溶接鋼管は、その溶接部の品質が優れていること、溶接ビード概観が美麗であること、また、大入熱での高速溶接が可能であること等の特性が要求されるため、一般的にサブマージアーク溶接による内外面からの両面一層溶接によって製造される。しかしながら、高強度鋼板、あるいは板厚の厚い鋼管の溶接部においてはしばしば溶接入熱が過大に投入されることにより低温靱性が低下する場合がある。特に、X80〜X120級の高強度溶接鋼管にはこの傾向が著しい。   In recent years, in order to reduce the total cost of natural gas or crude oil transportation pipelines, consideration has been given to the application of high-strength thick-walled large-diameter steel pipes that can increase the operating pressure, reduce the amount of steel used, and reduce the costs of on-site welding. Being started. Such welded steel pipes are required to have properties such as excellent weld quality, a beautiful weld bead appearance, and high-speed welding with high heat input. Generally, it is manufactured by double-sided single-layer welding from the inner and outer surfaces by submerged arc welding. However, in a welded portion of a high-strength steel plate or a thick steel pipe, the low temperature toughness is often lowered due to excessive heat input. In particular, this tendency is remarkable in high-strength welded steel pipes of X80 to X120 class.

溶接部の高靱化のためには、鋼板、溶接材料の高靱化など材料面からの対策と共に、溶接入熱を低減させることが有効であることが知られている。溶接入熱を低減するためには、単位溶接長当たりの溶着量を減らす必要があり、溶着量の減少に応じて開先断面積も減少させる。しかしながら、開先断面積の減少は、鋼管の両面一層溶接においては、ルートフェースを厚くすることとほぼ同義であることから、ルート面に溶け残しのない健全な溶接部を得るためには、少ない投入熱量で溶け込み深さを大きくすることが課題となる。   In order to increase the toughness of the welded part, it is known that it is effective to reduce the heat input of welding together with measures from the material side such as toughening of steel plates and welding materials. In order to reduce the welding heat input, it is necessary to reduce the amount of welding per unit weld length, and the groove cross-sectional area is also reduced as the amount of welding decreases. However, the reduction in the groove cross-sectional area is almost synonymous with thickening the root face in double-sided single-layer welding of steel pipes, so there is little to obtain a sound weld that does not remain undissolved on the root surface. Increasing the depth of penetration with the amount of heat input is an issue.

この課題を達成するため、細径(ワイヤ径が3.2mm以下)溶接ワイヤを先行1極目、あるいは1、2極目に適用した多電極溶接方法が提案され(例えば、特許文献1,2)、細径ワイヤに高電流密度が得られる溶接電流とを組み合わせて、深い溶け込みと高溶着量、さらには溶接の高速化を同時に達成し、その結果、溶接入熱が大幅に低減されることが記載されている。   In order to achieve this problem, a multi-electrode welding method in which a small-diameter (wire diameter of 3.2 mm or less) welding wire is applied to the first pole or the first and second poles has been proposed (for example, Patent Documents 1 and 2). It is described that deep welding, high welding amount, and higher welding speed can be achieved at the same time by combining welding current that can obtain high current density on thin wire, and as a result, welding heat input is greatly reduced. Has been.

しかし、前記溶接方法では、溶接の高速化にともなう溶接ワイヤの高速送給に起因して、溶接金属中窒素量の増大が懸念される。即ち、サブマージアーク溶接は、アーク発生部をフラックスにより大気から遮蔽し、窒素の混入を極力抑えることの可能な溶接方法であるものの、上述のような細径溶接ワイヤが高速送給される溶接方法の場合、フラックス粒子間に内在する大気成分が送給ワイヤ周辺の高流速に巻き込まれてアーク空洞内に侵入し、溶接金属部の窒素量を増大させる可能性がある。溶接金属中の窒素量は、溶接入熱量と同じく、溶接金属部の靱性を大きく支配する因子の一つであることが知られており、混入窒素量は低減すべきものである。   However, in the welding method, there is a concern that the amount of nitrogen in the weld metal increases due to the high-speed feeding of the welding wire as the welding speed increases. That is, submerged arc welding is a welding method in which the arc generating part is shielded from the atmosphere by a flux and mixing of nitrogen can be suppressed as much as possible, but a welding method in which the small-diameter welding wire as described above is fed at high speed. In this case, atmospheric components existing between the flux particles may be caught in a high flow velocity around the feeding wire and enter the arc cavity to increase the amount of nitrogen in the weld metal part. It is known that the amount of nitrogen in the weld metal is one of the factors that largely control the toughness of the weld metal portion, as is the amount of heat input by welding, and the amount of mixed nitrogen should be reduced.

さらに、生産性向上の観点から高速溶接を指向すると、溶接速度の増加に伴い溶接金属部の窒素量は増大する傾向がある(例えば、非特許文献1)。この原因に関しては諸説有り、現時点においても明確な結論を得るには至っていないが、アーク雰囲気内を落下する溶滴の脱窒現象に及ぼす溶接速度の影響、アーク雰囲気の窒素分圧変動に及ぼす溶接速度の影響等が指摘されており、いずれにせよ、溶接速度の増加による溶接金属窒素量の増大は、上述した溶接ワイヤの高速送給による増加分と重畳して発現する可能性がある。   Furthermore, when high-speed welding is directed from the viewpoint of productivity improvement, the amount of nitrogen in the weld metal portion tends to increase with increasing welding speed (for example, Non-Patent Document 1). There are various theories regarding this cause, and no clear conclusion has been reached at this point, but the effect of welding speed on the denitrification phenomenon of droplets falling in the arc atmosphere and the effect on the nitrogen partial pressure fluctuation in the arc atmosphere The influence of the speed has been pointed out, and in any case, the increase in the amount of weld metal nitrogen due to the increase in the welding speed may be superimposed on the increase due to the high-speed feeding of the welding wire described above.

他方、溶接金属中の窒素量を低減させる手法として、高炭素系の溶接ワイヤを使用することが提案されている(非特許文献2)。ワイヤ中に含まれる炭素がアークの高温雰囲気下でCOガスを発生させることによりアーク中の窒素分圧を低下せしめ、溶融金属内に取り込まれる窒素量を低減させる効果を狙ったものである。しかしながら、溶接ワイヤの炭素量を高く設定するため、溶接金属の炭素量が高くなって靱性を低下させ、高速溶接条件下においては、アークの通過速度が早く、溶融池形状が長くなることから、窒素分圧を低下させたアーク雰囲気が得られても、完全に溶融池をシールドすることは困難である。   On the other hand, as a technique for reducing the amount of nitrogen in the weld metal, it has been proposed to use a high-carbon welding wire (Non-Patent Document 2). The carbon contained in the wire aims at the effect of lowering the nitrogen partial pressure in the arc by generating CO gas in the high temperature atmosphere of the arc and reducing the amount of nitrogen taken into the molten metal. However, since the carbon content of the welding wire is set high, the carbon content of the weld metal is increased and the toughness is reduced. Under high-speed welding conditions, the arc passing speed is fast, and the molten pool shape becomes long. Even if an arc atmosphere with a reduced nitrogen partial pressure is obtained, it is difficult to completely shield the molten pool.

このため、特許文献3および非特許文献3には、散布されたフラックス中、あるいは散布前のフラックス中にNを含まないガスを流し、フラックス粒子間のガス成分からNを排除する技術が開示されている。しかしながら、細径ワイヤを使用した高速サブマージアーク溶接の場合、上述したようにワイヤ送給の高速化に伴い、アーク空洞内に巻き込まれる大気成分が増加すること、溶接速度の高速化に起因する溶接方向に伸長した溶融池を完全に大気と遮断することが困難であること等から、前記手法では十分なシールド効果が期待できないことが懸念される。
特開2006−272377号公報 特開2007−268564号公報 特開昭50−33956号公報 溶接学会論文集,第二巻(1984),第三号,P541 溶接学会全国大会講演概要,No.21,(1977),P8 溶接学会全国大会講演概要,No.18,(1976),P4
For this reason, Patent Document 3 and Non-Patent Document 3 disclose a technique in which a gas not containing N 2 is allowed to flow in the dispersed flux or in the flux before spreading, and N 2 is excluded from the gas components between the flux particles. It is disclosed. However, in the case of high-speed submerged arc welding using a thin wire, as described above, as the wire feed speed increases, the atmospheric components involved in the arc cavity increase, and the welding due to the increased welding speed. Since it is difficult to completely block the molten pool extending in the direction from the atmosphere, there is a concern that a sufficient shielding effect cannot be expected with the above method.
JP 2006-272377 A JP 2007-268564 A JP 50-33956 A Journal of the Japan Welding Society, Vol. 2 (1984), No. 3, P541 Outline of National Conference of Japan Welding Society, No. 21, (1977), P8 Outline of National Conference of Japan Welding Society, No. 18, (1976), P4

上述したように、細径ワイヤを適用したサブマージ高速溶接は、その投入熱量を大幅に低減可能で、将来需要の増大が期待される低温靱性仕様厚肉大径溶接鋼管の製造に極めて有効な技術である。しかし、その反面、施工方法に起因した溶接金属中窒素量増大という懸念を内包しているため、シールド技術や溶接材料の検討により、健全な溶接部を一層安定して確保することが要望されている。   As mentioned above, submerged high-speed welding using small-diameter wires can greatly reduce the amount of heat input, and is an extremely effective technology for the production of thick, large-diameter welded steel pipes with low-temperature toughness specifications that are expected to increase in future demand. It is. However, on the other hand, because it contains the concern of increased nitrogen content in the weld metal due to the construction method, it is desired to secure a more stable weld by investigating shield technology and welding materials. Yes.

本発明は、係る課題を解決するためになされたもので、細径ワイヤの高速送給を特徴とする高能率サブマージアーク溶接方法の特性を堅持しつつ、同法適用に際して懸念となる溶接金属中の窒素量増大を、溶接ワイヤの炭素量を上げることなく解決することを目的としている。   The present invention has been made in order to solve the above-mentioned problems, and while maintaining the characteristics of a high-efficiency submerged arc welding method characterized by high-speed feeding of a thin wire, the present invention is suitable for the application of the method. The purpose is to solve the increase in the amount of nitrogen without increasing the carbon content of the welding wire.

本発明者等は、内外面一層溶接による溶接継手の溶接金属中の窒素量について、太径(一般的には4.0mm以上)ワイヤを用い、低速で溶接施工する場合と、細径(3.2mm以下)ワイヤを用い、高速溶接で溶接施工する場合について比較検討し、以下の知見を得た。尚、溶接継手は、太径ワイヤと細径ワイヤで同一板厚の供試材で製作した。   As for the nitrogen amount in the weld metal of the welded joint by inner and outer surface single-layer welding, the present inventors use a large diameter (generally, 4.0 mm or more) wire and perform welding at a low speed and a small diameter (3 .2 mm or less) The case where welding was performed by high-speed welding using a wire was compared and the following knowledge was obtained. In addition, the weld joint was manufactured with the test material of the same board thickness with a thick wire and a thin wire.

(1)太径ワイヤを用い、低速で溶接施工する場合、溶接前、散布直前までのフラックスにNが含まれないガス(以下、単にガスと記載する。)を吹き込み、粒子間の大気成分を置換させることが溶接金属の窒素の増加量を極小化させるためには有効な手段である。 (1) When welding is performed at a low speed using a large-diameter wire, a gas not containing N 2 (hereinafter simply referred to as gas) is blown into the flux before welding and immediately before spraying, and atmospheric components between particles. It is an effective means for minimizing the amount of increase in nitrogen in the weld metal.

(2)一方、細径ワイヤを用いた溶接施工の場合、ワイヤの送給速度を太径ワイヤでの溶接に比して増加させる必要があることから、溶接トーチ内を通過する溶接ワイヤ周辺の大気成分を巻き込む可能性がある。   (2) On the other hand, in the case of welding construction using a thin wire, it is necessary to increase the wire feeding speed as compared with welding with a large wire. There is a possibility of involving atmospheric components.

(3)更に、溶接速度を上昇させる場合や多電極溶接時に溶融池の安定性の観点から電極間距離を広げる必要がある場合、溶融池の形状が溶接線方向に伸長してしまうために、特に溶融池後方部において第一電極前方から散布したフラックス内の置換ガスによるシールド効果が消失し、溶融池後方部での窒素混入が顕著となる場合がある。   (3) Further, when the welding speed is increased or when it is necessary to increase the distance between the electrodes from the viewpoint of the stability of the molten pool during multi-electrode welding, the shape of the molten pool extends in the weld line direction. In particular, the shielding effect due to the replacement gas in the flux sprayed from the front of the first electrode may disappear in the rear part of the molten pool, and nitrogen mixing may be significant in the rear part of the molten pool.

(4)また、溶接入熱が小さく、溶接金属の凝固速度が速くなるために溶融金属中の窒素が排出される時間が短く、凝固後の溶接金属内に窒素が残留する。   (4) Further, since the welding heat input is small and the solidification speed of the weld metal is increased, the time for discharging nitrogen in the molten metal is short, and nitrogen remains in the solidified weld metal.

(5)これらの諸問題を解決するために、1.0m/minを越える高溶接速度では、溶融池後方まで大気成分混入をシールドする施策が必要である。   (5) In order to solve these problems, at high welding speeds exceeding 1.0 m / min, it is necessary to take measures to shield atmospheric components from mixing up to the back of the molten pool.

(6)具体的には、多電極溶接においては、そのシールドされるべき溶接線方向距離は、高速溶接により伸長する溶融池形状を反映して、最終電極のワイヤ突き出し位置先端より後方まで、且つ、溶接速度に比例した長さ分が必要である。   (6) Specifically, in multi-electrode welding, the welding line direction distance to be shielded reflects the shape of the molten pool extended by high-speed welding, and extends backward from the tip of the wire protruding position of the final electrode, and A length proportional to the welding speed is required.

本発明は、得られた知見を基に更に検討を加えてなされたもので、すなわち、本発明は、
1.第1、第2電極の溶接ワイヤをワイヤ径3.2mm以下、溶接速度80cm/min以上とする3電極以上の多電極サブマージアーク溶接方法であって、散布前のフラックス粒子間の大気成分をNを含まないガスで置換し、且つ、フラックス散布位置の前縁から、溶融池後方までを大気混入防止のためのシールドカバーで覆うことを特徴とする多電極サブマージアーク溶接方法。
2.フラックス散布位置の前縁から、溶融池後方までを大気混入防止のためのシールドカバーで覆う際、最終電極の溶接ワイヤ突出部の先端から後方側へ少なくとも式(1)を満たす距離Lであることを特徴とする1記載の多電極サブマージアーク溶接方法。
The present invention has been made based on further studies based on the obtained knowledge, that is, the present invention
1. A multi-electrode submerged arc welding method with three or more electrodes in which the welding wire of the first and second electrodes has a wire diameter of 3.2 mm or less and a welding speed of 80 cm / min or more. A multi-electrode submerged arc welding method characterized in that the gas is replaced with a gas not containing 2 and the shield from the front edge of the flux distribution position to the rear of the molten pool is covered with a shield cover for preventing air contamination.
2. When covering from the leading edge of the flux distribution position to the back of the molten pool with a shield cover for preventing air contamination, the distance L satisfies at least the formula (1) from the tip of the welding wire protrusion of the final electrode to the rear side. 2. The multi-electrode submerged arc welding method according to 1 above.

L≧2+0.04×v (1)
v:溶接速度 [cm/min]
3.多電極サブマージアーク溶接機の溶接部を大気から遮断するため、フラックス輸送管と溶接電極に取り付けられるシールドカバーであって、前記シールドカバーは、下面の全面と外周面の一部が開放された、内部が空洞の立体部材で、上面にはフラックス輸送管と溶接電極がそれぞれ挿入可能な複数の開口部を有し、前記外周面は、前記複数の開口部の中心を結ぶ線の溶接電極側の延長線上に、少なくとも溶接ビード幅より広幅の開口部を前記延長線を挟んで左右対称に有し、前記立体部材は、前記フラックス輸送管のフラックス散布口の高さより高い高さを、前記延長線方向の、全長に亘って有していることを特徴とするシールドカバー。
4.多電極サブマージアーク溶接機の溶接部を大気から遮断するため、フラックス輸送管と溶接電極に取り付けられるシールドカバーであって、前記シールドカバーは、内部が空洞で、上下面のいずれかと四周面のうちの一面が開放された直方体で、前記直方体は、上下面における非開放面を上面、四周面のうちの開放面が後面で、前記上面はその幅方向中心線上にフラックス輸送管と溶接電極がそれぞれ挿入可能な複数の開口部を有し、前記後面は、少なくとも溶接ビード幅より広幅であり、前記直方体の上面は、前記フラックス輸送管を前記開口部に挿入した際、フラックス散布口より上方にあることを特徴とするシールドカバー。
L ≧ 2 + 0.04 × v (1)
v: Welding speed [cm / min]
3. A shield cover attached to the flux transport pipe and the welding electrode in order to shield the welded portion of the multi-electrode submerged arc welder from the atmosphere, and the shield cover has the entire lower surface and a part of the outer peripheral surface opened. The interior is a hollow three-dimensional member, and the upper surface has a plurality of openings into which the flux transport pipe and the welding electrode can be inserted, respectively, and the outer peripheral surface is on the welding electrode side of the line connecting the centers of the plurality of openings. On the extension line, at least an opening having a width wider than the weld bead width is provided symmetrically across the extension line, and the three-dimensional member has a height higher than the height of the flux spraying port of the flux transport pipe. A shield cover characterized by having a full length in the direction.
4). A shield cover that is attached to the flux transport pipe and the welding electrode in order to shield the welded portion of the multi-electrode submerged arc welder from the atmosphere, the shield cover being hollow inside, and one of the upper and lower surfaces and the four circumferential surfaces. The rectangular parallelepiped has one surface open, and the rectangular parallelepiped has a non-open surface on the upper surface as an upper surface, an open surface of the four peripheral surfaces as a rear surface, and the upper surface has a flux transport pipe and a welding electrode on its width center line, respectively. It has a plurality of insertable openings, the rear surface is wider than at least the weld bead width, and the upper surface of the rectangular parallelepiped is above the flux spraying port when the flux transport pipe is inserted into the opening. Shield cover characterized by that.

本発明によれば、細径ワイヤの高速送給を特徴とする高能率サブマージアーク溶接方法の特性を堅持しつつ、同法適用に際して懸念となる溶接金属中の窒素量増大を、溶接ワイヤの炭素量を上げることなく解決することができ、低温靱性が要求される天然ガス、原油輸送用ラインパイプ、構造用パイプ等を高能率で、且つ、炭素含有量の低い溶接ワイヤを使用して製造することが可能となり、産業上極めて有用である。   According to the present invention, while maintaining the characteristics of a high-efficiency submerged arc welding method characterized by high-speed feeding of a thin wire, an increase in the amount of nitrogen in the weld metal, which is a concern when the method is applied, is reduced. Can produce natural gas, crude oil transportation line pipes, structural pipes, etc., which can be solved without increasing the amount and require low temperature toughness, using welding wires with high efficiency and low carbon content This is extremely useful in industry.

本発明は、フラックスへのNガスの吹き込みに加えて、細径ワイヤを用いた多電極サブマージアーク溶接の溶融池形状に即して適正化した形状のシールドボックスを用いることを特徴とする。以下、図面を用いて本発明を詳細に説明する。 The present invention is characterized by using a shield box having a shape optimized in accordance with the molten pool shape of multi-electrode submerged arc welding using a thin wire in addition to blowing N 2 gas into the flux. Hereinafter, the present invention will be described in detail with reference to the drawings.

図1は4電極の多電極サブマージアーク溶接方法において、溶接フラックス、溶接部のガスシールドを実施する場合の装置構成を模式的に説明する図で、図において、1はフラックスホッパ、2はフラックス輸送管、3はフラックス散布口、4、4aはガス供給管、5はシールドボックス、5aはシールドボックス5の前面、5bはシールドボックス5の後面、6は電極で先頭部の第1電極、6aは第2電極、6bは第3電極、6cは第4電極、
、7はワイヤ、8はアーク空間、9は溶融池、10は溶接金属、11は凝固スラグ、61はシールドボックス5の上面に設けられた第1電極6を挿入する開口部、62はシールドボックス5の上面に設けられた第2電極6aを挿入する開口部、63はシールドボックス5の上面に設けられた第3電極6bを挿入する開口部、64はシールドボックス5の上面に設けられた第4電極6cを挿入する開口部,aはフラックスを示す。
FIG. 1 is a diagram schematically illustrating an apparatus configuration in the case of carrying out welding flux and gas shielding of a welded part in a four-electrode multi-electrode submerged arc welding method. In the figure, 1 is a flux hopper, 2 is flux transport Tubes, 3 are flux distribution ports, 4 and 4a are gas supply pipes, 5 is a shield box, 5a is the front surface of the shield box 5, 5b is the rear surface of the shield box 5, 6 is an electrode, and the first electrode at the top, 6a is The second electrode, 6b is the third electrode, 6c is the fourth electrode,
7 is a wire, 8 is an arc space, 9 is a molten pool, 10 is a weld metal, 11 is a solidified slag, 61 is an opening for inserting the first electrode 6 provided on the upper surface of the shield box 5, and 62 is a shield box 5 is an opening for inserting the second electrode 6 a provided on the upper surface of the shield 5, 63 is an opening for inserting the third electrode 6 b provided on the upper surface of the shield box 5, and 64 is a second opening provided on the upper surface of the shield box 5. An opening for inserting the four electrodes 6c, a indicates flux.

溶接フラックスaはフラックスホッパ1に貯留され、フラックス輸送管2を介してフラックス散布口3から第一電極61の前方に供給される。フラックスホッパ1ならびにフラックス散布口3にはそれぞれ、ガス供給管4、4aが取り付けられ、これらの先端近傍からフラックス粒子間の大気成分を排除するガスが注入される。   The welding flux a is stored in the flux hopper 1 and supplied to the front of the first electrode 61 from the flux spraying port 3 via the flux transport pipe 2. Gas supply pipes 4 and 4a are attached to the flux hopper 1 and the flux spraying port 3, respectively, and a gas that excludes atmospheric components between the flux particles is injected from the vicinity of these tips.

さらに、フラックス散布位置の前縁から、最終電極、本図では第四電極6c、の溶接ワイヤ突出部の先端から後方側の一定の距離となる位置までの間に、シールドボックス5を設けて、溶接部を上方から覆って、フラックス散布位置の前縁から溶融池9の後方までの間における大気混入を防止する。フラックス散布口3から散布されるフラックスは通常、フラックス散布口3から溶接進行方向に一部が回り込む。   Furthermore, a shield box 5 is provided from the leading edge of the flux distribution position to the position where the final electrode, the fourth electrode 6c in this figure, is a certain distance on the rear side from the tip of the welding wire protrusion, The welded portion is covered from above, and air mixing between the front edge of the flux distribution position and the rear of the molten pool 9 is prevented. A part of the flux sprayed from the flux spraying port 3 usually circulates in the welding progress direction from the flux spraying port 3.

図3はシールドボックス5の構成を説明する模式図で、シールドボックス5は溶接部側となる下面と溶接進行方向の後ろ側となる後面5bを開口部とする直方体で、上面の溶接線直角方向の幅Wの中心線12上に、フラックス輸送管2と第1電極6(第2電極6a,第3電極6b、第4電極6cは図面では省略)の軸中心が位置するように、フラックス輸送管2が挿入される開口部と第1電極6の開口部61、第2電極6aの開口部62,第3電極6bの開口部63、第4電極6cの開口部64を設ける。図はフラックス輸送管2と第1電極6が開口部に挿入されている状態を示す。   FIG. 3 is a schematic diagram for explaining the configuration of the shield box 5. The shield box 5 is a rectangular parallelepiped having an opening on the bottom surface on the welded portion side and the rear surface 5b on the rear side in the welding progress direction. Flux transport so that the axial center of the flux transport tube 2 and the first electrode 6 (the second electrode 6a, the third electrode 6b, and the fourth electrode 6c are omitted in the drawing) is positioned on the center line 12 of the width W An opening into which the tube 2 is inserted, an opening 61 of the first electrode 6, an opening 62 of the second electrode 6a, an opening 63 of the third electrode 6b, and an opening 64 of the fourth electrode 6c are provided. The figure shows a state where the flux transport tube 2 and the first electrode 6 are inserted into the opening.

シールドボックス5の上面におけるフラックス輸送管2と第1電極6との間隔L1は散布されたフラックスの高さが略一定となった後、第1電極6による溶接が可能な寸法とする。   The distance L1 between the flux transport pipe 2 and the first electrode 6 on the upper surface of the shield box 5 is set to a dimension that enables welding with the first electrode 6 after the height of the dispersed flux becomes substantially constant.

シールドボックス5は、フラックス輸送管2と第1電極6、第2電極6a,第3電極6b、第4電極6cに固定、またはフラックス輸送管2のみに固定しても良い。   The shield box 5 may be fixed to the flux transport pipe 2 and the first electrode 6, the second electrode 6 a, the third electrode 6 b and the fourth electrode 6 c, or may be fixed only to the flux transport pipe 2.

シールドボックス5の高さhは、フラックス輸送管2の散布口に設けられた開口部の高さh以上としてフラックスとの接触を回避し、図示したシールドボックス5は、開口部の高さhに高さdを加算した寸法としている。
尚、シールドボックス5の前面5aは、大気を巻き込まないように、耐熱性、可撓性のある素材、例えば皮革で構成する。溶接進行方向の後ろ側となる後面5bはスラグを逃がすため開放する。
The height h 1 of the shield box 5 is equal to or higher than the height h 0 of the opening provided in the spray port of the flux transport pipe 2 to avoid contact with the flux, and the shield box 5 shown in the figure has a height of the opening. It is an addition to the dimensions of the height d to h 0.
The front surface 5a of the shield box 5 is made of a heat-resistant and flexible material such as leather so as not to involve air. The rear surface 5b on the rear side in the welding progress direction is opened to release the slag.

図2は、シールドボックス5の長さ方向の寸法を説明する模式的側断面図で、最終電極6cから後方側を示す。シールドボックス5は、フラックス散布口3(図示しない)と、最終電極6cの溶接ワイヤ突出部の先端から後方側の一定の距離Lとなる位置までの長さとする。距離L最終電極の溶接ワイヤ突出部の先端から後方側へ少なくともL=2+0.04×vを満たす距離とする。但し、v:溶接速度 [cm/min]とする。 FIG. 2 is a schematic side cross-sectional view for explaining the lengthwise dimension of the shield box 5 and shows the rear side from the final electrode 6c. Shield box 5 includes a flux distribution opening 3 (not shown), to the distal end of the welding wire protruding portion of the final electrode 6c and the length of the position to which a constant distance L 2 on the rear side. The distance L 2 is a distance satisfying at least L 2 = 2 + 0.04 × v from the tip of the protruding portion of the welding wire of the final electrode to the rear side. However, v: welding speed [cm / min].

距離L<2+0.04×vの場合、シールド効果が不十分となるため、L≧2+0.04×vとする。Lは少なくとも2+0.04×vであれば良く、上限は特に規定せず、操作性などを考慮して適宜決定すればよい。 When the distance L 2 <2 + 0.04 × v, the shielding effect is insufficient, and therefore L 2 ≧ 2 + 0.04 × v. L 2 may be at least 2 + 0.04 × v, the upper limit is not particularly defined, and may be appropriately determined in consideration of operability and the like.

シールドボックス5の上面には電極6が装入される開口部が設けられ、電極6を介して溶接ワイヤ7が溶接部に供される。シールドボックス5の開口部は電極6を装入した場合、間隙が生じない寸法、または構造を設ける。   An opening into which the electrode 6 is inserted is provided on the upper surface of the shield box 5, and the welding wire 7 is provided to the welded portion through the electrode 6. The opening of the shield box 5 is provided with a size or structure that does not cause a gap when the electrode 6 is inserted.

溶接ワイヤ7は電極6を介して溶接部に導入されてアークを発生、アーク空間8を形成する。アーク空間8には溶融したフラックスならびに溶融した溶接ワイヤ7、母材溶融部により溶融池9が形成される。溶融池9は溶接終了に伴って溶接金属10と凝固スラグ11を形成する。   The welding wire 7 is introduced into the weld through the electrode 6 to generate an arc and form an arc space 8. In the arc space 8, a molten pool 9 is formed by the molten flux, the molten welding wire 7, and the base metal melting portion. The weld pool 9 forms a weld metal 10 and a solidified slag 11 with the end of welding.

尚、フラックス3の粒子間の大気成分は、ガス供給管4、4aから供給されるガスにより置換され、フラックス散布口3に至るまでの間に大気成分は排除される。但し、フラックス散布口3に近いガス供給管4aに、多量のガスを流すと、散布後のフラックスを周囲に飛散させる可能性があることから、ガス供給管4により予め、多くの大気成分を排除しておくことが望まれる。ガス供給管4、4aは単独での使用によっても大気成分は排除可能である。前述したようにフラックス散布口3に近いガス供給管4aのみを使用する場合、多量のガスを流すと、散布後のフラックスを周囲に飛散させる可能性があることから、10リットル/min以下の流量に抑えることが望ましい。   The atmospheric components between the particles of the flux 3 are replaced by the gas supplied from the gas supply pipes 4, 4 a, and the atmospheric components are eliminated until the flux 3 is reached. However, if a large amount of gas is allowed to flow through the gas supply pipe 4a close to the flux spraying port 3, the sprayed flux may be scattered to the surroundings. It is desirable to keep it. The atmospheric components can be eliminated by using the gas supply pipes 4 and 4a alone. As described above, when only the gas supply pipe 4a close to the flux spraying port 3 is used, if a large amount of gas is flowed, the flux after spraying may be scattered to the surroundings, so that the flow rate is 10 liters / min or less. It is desirable to keep it at a minimum.

尚、本発明が対象とする多電極サブマージアーク溶接法は、細径ワイヤを使用した高能率・高速溶接を達成するため、主に溶け込み深さの確保に寄与し、溶接ワイヤの送給速度が最大となる第一電極に直流低電圧電源を使用して安定した深溶け込みを確保し、第2電極以降には製管のサブマージアーク溶接に一般的に適用される交流電源を用いることが望ましい
本発明によれば、溶融金属が完全に凝固するまでの間、フラックス粒子間の大気混入をシールドすることにより、炭素量の低い溶接ワイヤを使用した場合においても溶接金属中の窒素量増加分を極小化させることを達成することが可能である。以下、本発明の効果を実施例を用いて具体的に説明する。
The multi-electrode submerged arc welding method targeted by the present invention achieves high-efficiency and high-speed welding using small-diameter wires, and thus contributes mainly to ensuring the penetration depth, and the welding wire feed speed is high. It is desirable to use a DC low-voltage power supply for the first electrode, which is the largest, to ensure stable deep penetration, and to use an AC power supply generally applied to submerged arc welding of pipes after the second electrode. According to the invention, until the molten metal is completely solidified, the increase in the amount of nitrogen in the weld metal is minimized even when a welding wire having a low carbon content is used by shielding air contamination between the flux particles. Can be achieved. Hereinafter, the effects of the present invention will be specifically described with reference to examples.

表1、2にそれぞれ示す低炭素含有型の鋼板ならびに溶接ワイヤ、及び、溶接フラックスとしてSiO−CaO−CaFを主成分とする溶融型フラックスを使用し、4電極の電極配置にて表3に示す溶接条件にてビードオンプレート溶接を行った。溶接法は図1に準じて構成し、装置の説明は図1と同じ符号を用いて説明する。 A low carbon content steel plate and welding wire shown in Tables 1 and 2 are used, and a fusion type flux mainly composed of SiO 2 —CaO—CaF 2 is used as a welding flux. Bead-on-plate welding was performed under the welding conditions shown in FIG. The welding method is configured according to FIG. 1, and the apparatus will be described using the same reference numerals as those in FIG.

なお、溶接電源は第一電極には直流低電圧または交流電源を、第二から第四電極には交流電源を使用した。また、溶接速度は0.5〜2.5m/minの間で適宜変化させ、溶接速度と溶接金属中炭素量の関係を明らかにした。   As the welding power source, a DC low voltage or AC power source was used for the first electrode, and an AC power source was used for the second to fourth electrodes. Further, the welding speed was appropriately changed between 0.5 and 2.5 m / min, and the relationship between the welding speed and the carbon content in the weld metal was clarified.

ガス供給管4からのガス流量を10リットル/min、ガス供給管4aからのガス流量を5リットル/minに設定した。さらに、使用するガスは基本的にNを含有せず、且つ不燃性の工業用ガス(Ar、CO等)を適用した。 The gas flow rate from the gas supply pipe 4 was set to 10 liter / min, and the gas flow rate from the gas supply pipe 4a was set to 5 liter / min. Further, the gas used contains no basic N 2, it was and applying the non-combustible industrial gas (Ar, CO 2, etc.).

シールドボックス6は図3に模式的に示すように、溶接線直角方向の幅Wが10cm、溶接線方向の長さは最終電極(本例では第4電極目)の溶接ワイヤ先端位置後方の距離Lを請求項2記載の計算式によって算出された値であることを基本としている。また、母材面からの距離は、フラックス散布口3に設けられた開口部の高さh以上、本例の場合には散布口の高さは40mm、シールドボックスの母材面からの距離は50mmにとした。 As schematically shown in FIG. 3, the shield box 6 has a width W in the direction perpendicular to the welding line of 10 cm, and the length in the direction of the welding line is the distance behind the welding wire tip position of the final electrode (fourth electrode in this example). L 2 is basically a value calculated by the calculation formula of claim 2. The distance from the base material surface, the opening provided in the flux distribution opening 3 height h 0 or more, the height of the distribution opening in the case of this example 40 mm, the distance from the base material surface of the shield box Was 50 mm.

溶接金属部窒素量の評価は、得られた溶接金属部の中央より採取した分析サンプルの定量値NWより母材ならびに溶接ワイヤより導入される窒素量NBを差し引いた値、ΔN(=NW−NB)により評価した。ΔNがゼロに近いほど、大気成分からの窒素混入が抑制されたことになる。NWの測定に際しては、溶接金属中央部から3mmφドリルを使用して分析用切粉を採取し、ガス燃焼法により測定を行っている。   Evaluation of the weld metal part nitrogen amount is a value obtained by subtracting the nitrogen amount NB introduced from the base metal and the welding wire from the quantitative value NW of the analysis sample collected from the center of the obtained weld metal part, ΔN (= NW−NB ). As ΔN is closer to zero, nitrogen contamination from atmospheric components is suppressed. When measuring the NW, analysis chips are collected from the center of the weld metal using a 3 mmφ drill and measured by a gas combustion method.

表4にΔNを指標として取りまとめた結果を示す。比較例No.10〜12はシールドガスを流さず、また、シールドボックスも使用しない場合を示している。溶接速度50cm/min条件ではΔNはわずかであるが、溶接速度の増加に伴い、ΔNが増大していることが明らかである。   Table 4 shows the results of compilation using ΔN as an index. Comparative Example No. 10-12 show the case where no shield gas is flowed and the shield box is not used. Although ΔN is slight under the condition of a welding speed of 50 cm / min, it is apparent that ΔN increases as the welding speed increases.

比較例No.13〜21はガス供給管4ならびに4aのいずれかもしくは両方からガスを供給した場合の結果である。この場合においては比較例No.10〜12と比較するとΔNの低減は確認されるが、依然として高い値を呈している。   Comparative Example No. 13 to 21 are results when gas is supplied from either or both of the gas supply pipes 4 and 4a. In this case, Comparative Example No. Although a decrease in ΔN is confirmed as compared with 10 to 12, it still exhibits a high value.

これらに対して、フラックス散布口から最終電極後方距離L間にシールドボックスを設置した本発明例No.1〜9に関しては、250cm/minまでの高速溶接条件下においてもΔNは低く抑えられており、溶融池のシールド効果が顕著に得られていることがわかる。   On the other hand, the present invention example No. in which a shield box is installed between the flux spraying port and the distance L behind the last electrode is provided. Regarding 1 to 9, ΔN is kept low even under high-speed welding conditions up to 250 cm / min, and it can be seen that the shielding effect of the molten pool is remarkably obtained.

一方で、距離Lが規定値よりも短い比較例No.22〜27においては、特に高速溶接条件下では溶融池の一部がシールドボックス外まで到達してしまうことにより、実施例で得られる値ほどのシールド効果はないことが明らかである。本例の場合には散布口の高さは40mm、シールドボックスの母材面からの高さhは50mmにとしている。 On the other hand, in Comparative Example No. In Nos. 22 to 27, it is clear that a part of the molten pool reaches the outside of the shield box, particularly under high-speed welding conditions, so that the shielding effect is not as high as that obtained in the examples. In the case of this example, the height of the spray port is 40 mm, and the height h 1 from the base material surface of the shield box is 50 mm.

溶接金属部窒素量の評価は、得られた溶接金属部の中央より採取した分析サンプルの定量値NWより母材ならびに溶接ワイヤより導入される窒素量NBを差し引いた値、ΔN(=NW−NB)により評価した。   Evaluation of the weld metal part nitrogen amount is a value obtained by subtracting the nitrogen amount NB introduced from the base metal and the welding wire from the quantitative value NW of the analysis sample collected from the center of the obtained weld metal part, ΔN (= NW−NB ).

ΔNがゼロに近いほど、大気成分からの窒素混入が抑制されたことになる。NWの測定に際しては、溶接金属中央部から3mmφドリルを使用して分析用切粉を採取し、ガス燃焼法により測定を行っている。   As ΔN is closer to zero, nitrogen contamination from atmospheric components is suppressed. When measuring the NW, analysis chips are collected from the center of the weld metal using a 3 mmφ drill and measured by a gas combustion method.

表4にΔNを指標として取りまとめた結果を示す。比較例No.10〜12はシールドガスを流さず、また、シールドボックスも使用しない場合のΔNを示している。溶接速度50cm/min条件ではΔNはわずかであるが、溶接速度の増加に伴い、ΔNが増大していることが明らかである。   Table 4 shows the results of compilation using ΔN as an index. Comparative Example No. Reference numerals 10 to 12 indicate ΔN when no shielding gas is supplied and no shield box is used. Although ΔN is slight under the condition of a welding speed of 50 cm / min, it is apparent that ΔN increases as the welding speed increases.

比較例No.13〜21はガス供給管4ならびに4aのいずれかもしくは両方からガスを供給した場合の結果である。この場合においては比較例No.10〜12と比較するとΔNの低減は確認されるが、依然として高い値を呈している。   Comparative Example No. 13 to 21 are results when gas is supplied from either or both of the gas supply pipes 4 and 4a. In this case, Comparative Example No. Although a decrease in ΔN is confirmed as compared with 10 to 12, it still exhibits a high value.

これらに対して、フラックス散布口から最終電極後方距離L間にシールドボックスを設置した本発明例No.1〜9に関しては、2.5m/minまでの高速溶接条件下においてもΔNは低く抑えられており、溶融池のシールド効果が顕著に得られていることがわかる。   On the other hand, the present invention example No. in which a shield box is installed between the flux spraying port and the distance L behind the last electrode is provided. Regarding 1 to 9, ΔN is kept low even under high-speed welding conditions up to 2.5 m / min, and it can be seen that the shielding effect of the molten pool is remarkably obtained.

一方で、距離Lが規定値よりも短い比較例No.22〜27においては、特に高速溶接条件下では溶融池の一部がシールドボックス外まで到達してしまうことにより、実施例で得られる値ほどのシールド効果はないことが明らかである。   On the other hand, the comparative example No. whose distance L is shorter than a regulation value. In Nos. 22 to 27, it is clear that a part of the molten pool reaches the outside of the shield box, particularly under high-speed welding conditions, so that the shielding effect is not as high as that obtained in the examples.

Figure 0005120131
Figure 0005120131

Figure 0005120131
Figure 0005120131

Figure 0005120131
Figure 0005120131

Figure 0005120131
Figure 0005120131

4電極の多電極サブマージアーク溶接方法において、溶接フラックス、溶接部のガスシールドを実施する場合の装置構成を模式的に説明する図。The figure which illustrates typically the apparatus structure in the case of implementing a welding flux and the gas shield of a welding part in the multi-electrode submerged arc welding method of 4 electrodes. 最終電極の溶接ワイヤ先端位置後方の距離Lを説明する図。Diagram for explaining a welding wire tip position behind the distance L 2 final electrode. 本発明に用いるシールドボックスの構造の一例を示す図。The figure which shows an example of the structure of the shield box used for this invention.

符号の説明Explanation of symbols

1 フラックスホッパ
2 フラックス輸送管
3 フラックス散布口
4、4a ガス供給管
5 シールドボックス
5a 前面
5b 後面
6 先頭電極(第1電極)
6a 第2電極
6b 第3電極
6c 第4電極
7 ワイヤ
8 アーク空間
9 溶融池
10 溶接金属
11 凝固スラグ
61,62,63,64 開口部
a フラックス
DESCRIPTION OF SYMBOLS 1 Flux hopper 2 Flux transport pipe 3 Flux distribution port 4, 4a Gas supply pipe 5 Shield box 5a Front surface 5b Rear surface 6 Leading electrode (first electrode)
6a 2nd electrode 6b 3rd electrode 6c 4th electrode 7 Wire 8 Arc space 9 Weld pool 10 Weld metal 11 Solidification slag 61, 62, 63, 64 Opening part a Flux

Claims (4)

第1、第2電極の溶接ワイヤをワイヤ径3.2mm以下、溶接速度80cm/min以上とする3電極以上の多電極サブマージアーク溶接方法であって、散布前のフラックス粒子間の大気成分をNを含まないガスで置換し、且つ、フラックス散布位置の前縁から、溶融池後方までを大気混入防止のためのシールドカバーで覆うことを特徴とする多電極サブマージアーク溶接方法。 A multi-electrode submerged arc welding method with three or more electrodes in which the welding wire of the first and second electrodes has a wire diameter of 3.2 mm or less and a welding speed of 80 cm / min or more. A multi-electrode submerged arc welding method characterized in that the gas is replaced with a gas not containing 2 and the shield from the front edge of the flux distribution position to the rear of the molten pool is covered with a shield cover for preventing air contamination. フラックス散布位置の前縁から、溶融池後方までを大気混入防止のためのシールドカバーで覆う際、最終電極の溶接ワイヤ突出部の先端から後方側へ少なくとも式(1)を満たす距離Lであることを特徴とする請求項1記載の多電極サブマージアーク溶接方法。
L≧2+0.04×v (1)
v:溶接速度 [cm/min]
When covering from the leading edge of the flux distribution position to the back of the molten pool with a shield cover for preventing air contamination, the distance L satisfies at least the formula (1) from the tip of the welding wire protrusion of the final electrode to the rear side. The multi-electrode submerged arc welding method according to claim 1.
L ≧ 2 + 0.04 × v (1)
v: Welding speed [cm / min]
多電極サブマージアーク溶接機の溶接部を大気から遮断するため、フラックス輸送管と溶接電極に取り付けられるシールドカバーであって、前記シールドカバーは、下面の全面と外周面の一部が開放された、内部が空洞の立体部材で、上面にはフラックス輸送管と溶接電極がそれぞれ挿入可能な複数の開口部を有し、前記外周面は、前記複数の開口部の中心を結ぶ線の溶接電極側の延長線上に、少なくとも溶接ビード幅より広幅の開口部を前記延長線を挟んで左右対称に有し、前記立体部材は、前記フラックス輸送管のフラックス散布口の高さより高い高さを、前記延長線方向の、全長に亘って有していることを特徴とするシールドカバー。   A shield cover attached to the flux transport pipe and the welding electrode in order to shield the welded portion of the multi-electrode submerged arc welder from the atmosphere, and the shield cover has the entire lower surface and a part of the outer peripheral surface opened. The interior is a hollow three-dimensional member, and the upper surface has a plurality of openings into which the flux transport pipe and the welding electrode can be inserted, respectively, and the outer peripheral surface is on the welding electrode side of the line connecting the centers of the plurality of openings. On the extension line, at least an opening having a width wider than the weld bead width is provided symmetrically across the extension line, and the three-dimensional member has a height higher than the height of the flux spraying port of the flux transport pipe. A shield cover characterized by having a full length in the direction. 多電極サブマージアーク溶接機の溶接部を大気から遮断するため、フラックス輸送管と溶接電極に取り付けられるシールドカバーであって、前記シールドカバーは、内部が空洞で、上下面のいずれかと四周面のうちの一面が開放された直方体で、前記直方体は、上下面における非開放面を上面、四周面のうちの開放面が後面で、前記上面はその幅方向中心線上にフラックス輸送管と溶接電極がそれぞれ挿入可能な複数の開口部を有し、前記後面は、少なくとも溶接ビード幅より広幅であり、前記直方体の上面は、前記フラックス輸送管を前記開口部に挿入した際、フラックス散布口より上方にあることを特徴とするシールドカバー。   A shield cover that is attached to the flux transport pipe and the welding electrode in order to shield the welded portion of the multi-electrode submerged arc welder from the atmosphere, the shield cover being hollow inside, and one of the upper and lower surfaces and the four circumferential surfaces. The rectangular parallelepiped has one surface open, and the rectangular parallelepiped has a non-open surface on the upper surface as an upper surface, an open surface of the four peripheral surfaces as a rear surface, and the upper surface has a flux transport pipe and a welding electrode on its width center line, respectively. It has a plurality of insertable openings, the rear surface is wider than at least the weld bead width, and the upper surface of the rectangular parallelepiped is above the flux spraying port when the flux transport pipe is inserted into the opening. Shield cover characterized by that.
JP2008197278A 2008-07-31 2008-07-31 Multi-electrode submerged arc welding method Expired - Fee Related JP5120131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008197278A JP5120131B2 (en) 2008-07-31 2008-07-31 Multi-electrode submerged arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008197278A JP5120131B2 (en) 2008-07-31 2008-07-31 Multi-electrode submerged arc welding method

Publications (2)

Publication Number Publication Date
JP2010029931A JP2010029931A (en) 2010-02-12
JP5120131B2 true JP5120131B2 (en) 2013-01-16

Family

ID=41735060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008197278A Expired - Fee Related JP5120131B2 (en) 2008-07-31 2008-07-31 Multi-electrode submerged arc welding method

Country Status (1)

Country Link
JP (1) JP5120131B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104526134A (en) * 2014-11-11 2015-04-22 中国石油天然气集团公司 Method for removing surplus height of seam of submerge-arc welded steel pipe
CN110116256A (en) * 2019-05-24 2019-08-13 江苏格兰环境科技有限公司 A kind of welding procedure of centrifugally cast pipe

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5239900B2 (en) * 2009-01-27 2013-07-17 Jfeスチール株式会社 Multi-electrode submerged arc welding method for steel
CN103831510A (en) * 2014-03-15 2014-06-04 宝鸡石油钢管有限责任公司 Straight joint submerged arc steel pipe welding procedure qualification method
CN105414727B (en) * 2015-12-31 2018-02-16 沈阳东管电力科技集团股份有限公司 A kind of method and frock of the radiating of tubing welding process
JP6400043B2 (en) * 2016-05-18 2018-10-03 川田工業株式会社 Welding apparatus and method for manufacturing welded structure
JP7020592B2 (en) 2020-01-29 2022-02-16 Jfeスチール株式会社 Welded steel pipe and its manufacturing method
CN112536518A (en) * 2020-12-07 2021-03-23 郑州宝冶钢结构有限公司 Automatic submerged arc welding process method for single-wire straight angle
CN112705826B (en) * 2020-12-18 2023-06-30 温州大学 Welding cooling protection cover
WO2023032813A1 (en) 2021-08-31 2023-03-09 Jfeスチール株式会社 Submerged arc-welded joint, method for producing same, and flux dispersal device for multi-electrode submerged arc welding

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5033956A (en) * 1973-07-31 1975-04-02
JPS598475B2 (en) * 1976-06-04 1984-02-24 新日本製鐵株式会社 High current MIG welding method
JPS6343773A (en) * 1986-08-06 1988-02-24 Sumitomo Metal Ind Ltd Submerged arc welding for high carbon steel
JPH03238173A (en) * 1990-02-13 1991-10-23 Nippon Steel Corp One-side submerged arc welding method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104526134A (en) * 2014-11-11 2015-04-22 中国石油天然气集团公司 Method for removing surplus height of seam of submerge-arc welded steel pipe
CN110116256A (en) * 2019-05-24 2019-08-13 江苏格兰环境科技有限公司 A kind of welding procedure of centrifugally cast pipe

Also Published As

Publication number Publication date
JP2010029931A (en) 2010-02-12

Similar Documents

Publication Publication Date Title
JP5120131B2 (en) Multi-electrode submerged arc welding method
KR100899056B1 (en) Multielectrode gas-shield arc welding method
JP5205115B2 (en) MIG flux-cored wire for pure Ar shield gas welding and MIG arc welding method
EP2532466B1 (en) Two-electrode welding method
JP4786402B2 (en) UOE steel pipe manufacturing method
WO2009119561A1 (en) Plasma welding process and outer gas for use in the plasma welding process
KR101707324B1 (en) Multielectrode gas-shielded arc welding method
Sproesser et al. Increasing performance and energy efficiency of gas metal arc welding by a high power tandem process
JP6137053B2 (en) Narrow groove gas shielded arc welding method
JPWO2008016084A1 (en) Tandem gas metal arc welding method, welding torch and welding apparatus used therefor
JP3993150B2 (en) Flux-cored wire for two-electrode electrogas arc welding, two-electrode electrogas arc welding method, and two-electrode electrogas arc welding apparatus
KR100221790B1 (en) Shielding gas for arc- welding
CN108367393A (en) Low manganese flux cored wire and the method for forming weld deposit
KR100590351B1 (en) Multielectrode gas-shield arc welding method
JPH039897Y2 (en)
CN108698156B (en) Welding method using special welding torch
CN106808060A (en) A kind of process for ensureing vacuum coating cavity weld joint air-tight and intensity
JP2011088199A (en) Gas shielded arc welding method
JP6091974B2 (en) Welding manufacturing method, welding method, welding apparatus
Liu et al. Influence of interwire distance and arc length on welding process and defect formation mechanism in double-wire pulsed narrow-gap gas metal arc welding
WO2015122047A1 (en) One-side submerged arc welding method for multielectrode and method for producing welded product
JP2015139784A (en) Two-electrode horizontal fillet gas shielded arc welding method
CN105939812B (en) Multi-electrode single side submerged arc soldering method, the manufacturing method for welding object
JP6273177B2 (en) Pulse arc welding method
JP2008030044A (en) Electrogas arc welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120312

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121008

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5120131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees