WO2015122047A1 - One-side submerged arc welding method for multielectrode and method for producing welded product - Google Patents

One-side submerged arc welding method for multielectrode and method for producing welded product Download PDF

Info

Publication number
WO2015122047A1
WO2015122047A1 PCT/JP2014/076587 JP2014076587W WO2015122047A1 WO 2015122047 A1 WO2015122047 A1 WO 2015122047A1 JP 2014076587 W JP2014076587 W JP 2014076587W WO 2015122047 A1 WO2015122047 A1 WO 2015122047A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
welding
wire
characteristic
speed control
Prior art date
Application number
PCT/JP2014/076587
Other languages
French (fr)
Japanese (ja)
Inventor
励一 鈴木
圭 山崎
正晴 幸村
良昌 村西
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN201480074735.7A priority Critical patent/CN105960306B/en
Priority to KR1020167021836A priority patent/KR20160105900A/en
Publication of WO2015122047A1 publication Critical patent/WO2015122047A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/18Submerged-arc welding
    • B23K9/186Submerged-arc welding making use of a consumable electrodes
    • B23K9/188Submerged-arc welding making use of a consumable electrodes making use of several electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • B23K9/091Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/10Other electric circuits therefor; Protective circuits; Remote controls
    • B23K9/1006Power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/10Other electric circuits therefor; Protective circuits; Remote controls
    • B23K9/1006Power supply
    • B23K9/1075Parallel power supply, i.e. multiple power supplies or multiple inverters supplying a single arc or welding current

Definitions

  • the present invention relates to a multi-electrode single-sided submerged arc welding method and a method of manufacturing a weldment.
  • a flux composed of powder metal, artificial oxide or mineral is dispersed on the surface of the groove provided on the steel plate, and the flux deposited on the groove of the steel plate is used.
  • a submerged arc welding method is known in which an electrode wire and a steel plate are melt mixed and integrated by supplying an electric current to the electrode wire being fed to generate an arc from the electrode wire.
  • this submerged arc welding method has the advantage of deep penetration and high efficiency because it can use a large current.
  • Patent Document 1 discloses that, in the submerged arc welding method, power is supplied to the electrode wire using a welding power source having a drooping characteristic or a constant current characteristic as an external characteristic, and the welding voltage setting signal and the welding voltage feedback signal It is described to control the electrode wire delivery rate by the magnitude of the difference signal.
  • Patent Document 2 a plurality of electrode wires are arranged from the front surface side to the back surface side of the steel plate by arranging a plurality of electrode wires along the groove and arranging a backing material on the back surface side of the steel plate.
  • a multi-electrode single-sided submerged arc welding process has been described which welds in a single pass using.
  • this multi-electrode single-sided submerged welding method the entire thickness of the steel plate can be completely penetrated in one run (this is called one run), and there is no need to reverse the steel plate. It is widely used.
  • a back wave bead is formed on the back surface side of the steel plate mainly by the electrode wire (leading electrode) to be welded first to the steel plate among the plurality of electrode wires.
  • An object of the present invention is to reduce appearance defects of a back wave bead obtained by multi-electrode single-sided submerged arc welding.
  • the present invention is a multi-electrode single-sided submerged arc welding method using a leading electrode and a trailing electrode following the leading electrode, wherein each of the leading electrode and the trailing electrode uses a wire having a diameter of 2.4 mm or more.
  • the speed control method is set to constant speed control, and in the trailing pole, (A) the feeding method is DC, the external characteristic is a constant voltage characteristic, the speed control method is constant speed control (b) the feeding method is AC, the external characteristic is constant voltage characteristic, and the speed control method is constant speed control (C) the feeding method is alternating current, the external characteristic is a constant current characteristic, the speed control method is voltage feedback control based on an arc voltage (d) the feeding method is alternating current, the external characteristic is a drooping characteristic, the speed control method is Voltage feedback control based on arc voltage (e)
  • the power supply system is set to either direct current, the external characteristic is constant current characteristics, and the speed control system is voltage feedback control based on arc voltage.
  • the trailing electrode includes a plurality of electrodes following the leading electrode, and each of the plurality of electrodes constituting the trailing electrode includes the feeding method.
  • the external characteristics and the speed control method may be set to any one of (a) to (e).
  • the power feeding method, the external characteristic, and the speed control method are either (c) or (c) It can be characterized by being set to the above (d).
  • the differential value dV / dI which is the slope of the voltage with respect to the current at the operating point, is characterized by being ⁇ 12.0 ⁇ 10 ⁇ 3 (V / A) or more. It can be done. Furthermore, when using the power supply having the constant current characteristic or the drooping characteristic, the differential value dV / dI, which is the slope of the voltage with respect to the current at the operating point, is -24.0 ⁇ 10 -3 (V / A) or less Can be characterized.
  • the present invention is a method of manufacturing a weldment formed by welding a base material by single-sided submerged arc welding using a leading electrode and a trailing electrode following the leading electrode.
  • the feeding method is set to DC
  • the external characteristic is set to constant voltage characteristics
  • the speed control method is set to constant speed control
  • the feeding method is DC
  • the external characteristic is a constant voltage characteristic
  • the speed control method is constant speed control
  • the feeding method is AC
  • the external characteristic is constant voltage characteristic
  • the speed control method is constant speed control
  • C the feeding method is alternating current
  • the external characteristic is a constant current characteristic
  • the speed control method is voltage feedback control based on an arc voltage
  • the feeding method is alternating current
  • the external characteristic is a d
  • the appearance defect of the back wave bead obtained by multiple electrode single-sided submerged arc welding can be reduced.
  • FIG. 1 It is a figure showing a schematic structure of a welding device concerning an embodiment of the invention. It is a figure for demonstrating the structure of the welding power supply in each of a 1st welding unit-a 4th welding unit, and a feeder.
  • (A)-(c) is a figure for explaining the external characteristic of welding power supply. It is a figure for demonstrating the structure of the experimental apparatus in a 1st Example and a 1st comparative example. It is a figure for demonstrating the structure of the experimental apparatus in 2nd Example and a 2nd comparative example. It is a figure for demonstrating the structure of the experimental apparatus in 3rd Example and a 3rd comparative example.
  • (A) shows the dimensions of each steel plate and groove in the first embodiment and the first comparative example
  • (b) shows the dimensions of each steel plate and groove in the second embodiment and the second comparative example
  • (c) shows it It is a figure for demonstrating each dimension of each steel plate and groove in 3rd Example and a 3rd comparative example.
  • FIG. 1 is a view showing a schematic configuration of a welding apparatus 1 according to the present embodiment.
  • the welding device 1 performs single-sided submerged arc welding (4-electrode single-sided submerged arc welding) on a work (not shown) made of steel plate using four electrodes (wires).
  • the welding apparatus 1 performs welding using a first welding unit 10 that performs welding using a first wire 110, a second welding unit 20 that performs welding using a second wire 120, and a third wire 130.
  • a third welding unit 30 and a fourth welding unit 40 for welding using the fourth wire 140 are provided.
  • welding apparatus 1 carries bogie 90 mounted on first to fourth welding units 10 to 40 and traveling along moving direction A from right to left in the figure, and bogie drive device 50 for driving bogie 90.
  • a control device 60 for controlling the operation of the first welding unit 10 to the fourth welding unit 40 and the carriage driving device 50.
  • the welding apparatus 1 further includes a first flux supply device 70 and a second flux supply device 80 that accommodate a front flux (not shown) therein and supply the front flux downward in the drawing.
  • the control device 60, the first flux supply device 70, and the second flux supply device 80 are also mounted on the carriage 90.
  • the first welding unit 10 includes a first feeding device 11 having a first feeding roller 11a for feeding the first wire 110 along a feeding direction B which is directed downward from above in the drawing, A first welding power source 12 connected to a first contact tip 12a for supplying a welding current (first welding current) in contact with the supplied first wire 110 is provided.
  • the first welding unit 10 further includes a reel (not shown) around which the first wire 110 is wound and which is a supply source of the first wire 110.
  • the second welding unit 20 is fed by a second feeding device 21 provided with a second feeding roller 21 a that feeds the second wire 120 along a feeding direction B which is directed downward from above in the drawing.
  • a second welding power source 22 connected to a second contact tip 22a for supplying a welding current (second welding current) in contact with the coming second wire 120.
  • the second welding unit 20 further includes a reel (not shown) around which the second wire 120 is wound and which is a supply source of the second wire 120.
  • the third welding unit 30 is fed with a third feeding device 31 provided with a third feeding roller 31a that feeds the third wire 130 along the feeding direction B from the upper side to the lower side in the drawing. And a third welding power source 32 connected to a third contact tip 32a for supplying a welding current (third welding current) in contact with the coming third wire 130.
  • the third welding unit 30 further includes a reel (not shown) around which the third wire 130 is wound and which is a supply source of the third wire 130.
  • the fourth welding unit 40 includes a fourth feeding device 41 having a fourth feeding roller 41a that feeds the fourth wire 140 along the feeding direction B from the upper side to the lower side in the drawing, And a fourth welding power source 42 connected to a fourth contact tip 42a for supplying a welding current (fourth welding current) in contact with the fourth wire 140.
  • the fourth welding unit 40 further includes a reel (not shown) around which the fourth wire 140 is wound and which is a supply source of the fourth wire 140.
  • the first welding power source 12, the second welding power source 22, the third welding power source 32, and the fourth welding power source 42 are mounted on the carriage 90, and the first welding together with the carriage 90.
  • the power source 12 to the fourth welding power source 42 are configured to travel, the present invention is not limited to this.
  • the first welding power source 12 to the fourth welding power source 42 are fixed to the outside of the carriage 90 and disposed, and the respective components on the first welding power source 12 to the fourth welding power source 42 and the carriage 90 using cables etc. And may be connected.
  • the first flux supply device 70 is provided with a first flux supply port 70a for supplying the front flux accommodated inside toward the lower side in the drawing. Then, the amount of front flux supplied by the first flux supply device 70 is adjusted by a valve (not shown) provided in the first flux supply device 70.
  • the second flux supply device 80 is provided with a second flux supply port 80a for supplying the front flux contained therein toward the lower side in the drawing.
  • the amount of front flux supplied by the second flux supply device 80 is adjusted by a valve (not shown) provided in the second flux supply device 80.
  • the first wire 110 which is the first electrode at the most downstream side with respect to the movement direction A is a second wire 120 whose second electrode is the second electrode at the upstream side of the first wire 110.
  • a third wire 130 serving as the third electrode is disposed upstream of 120 and a fourth wire 140 serving as the fourth electrode downstream of the third wire 130 and on the most upstream side.
  • the first flux supply device 70 is downstream of the first wire 110 in the moving direction A
  • the second flux supply device 80 is upstream of the second wire 120 in the moving direction A. And it arrange
  • the first flux supply port 70a, the first wire 110, the second wire 120, the second flux supply port 80a, the third wire 130, and the fourth wire 140 move Along the straight line along the direction A, they are arranged in this order.
  • first wire 110 to the fourth wire 140 those having a diameter of 2.4 mm or more and 6.4 mm or less are used.
  • all four of the first to fourth wires 110 to 140 may have the same diameter, or three may have the same diameter, while one may have a different diameter, or two may be the same.
  • the diameter may be two while the same may be the same diameter, or all four may be different diameters.
  • each of the first wire 110 to the fourth wire 140 used in the welding device 1 is basically composed of a solid wire having no flux. However, one or more of these may be made of flux cored wire.
  • the first welding unit 10 including the first wire 110 may be referred to as a "leading electrode”.
  • the second welding unit 20 including the second wire 120, the third welding unit 30 including the third wire 130, and the fourth welding unit 40 including the fourth wire 140 may be collectively referred to as a "following electrode”.
  • the second welding unit 20 including the second wire 120 is a “first intermediate pole”
  • the third welding unit 30 including the third wire 130 is a “second intermediate pole”
  • a fourth welding unit including a fourth wire 140 40 may be referred to as the "last pole”.
  • FIG. 2 shows welding power sources (first welding power source 12 to fourth welding power source 42) and feeding devices (first feeding device 11) in each of the first welding unit 10 to fourth welding unit 40 constituting welding apparatus 1.
  • FIG. 7 is a diagram for explaining the configuration of the fourth to fourth feeding devices 41).
  • FIG. 2 shows the relationship between each welding unit, the power supply system and external characteristics in each welding power source, and the wire speed control system in each feeder.
  • the first welding power source 12 constituting the first welding unit 10 is a DC power source adopting DC (Direct Current) as a power feeding method, and the external characteristic thereof is a constant voltage characteristic. Further, the first feeding device 11 performs constant speed control for feeding the first wire 110 at a constant speed as a wire speed control method.
  • DC Direct Current
  • the second welding unit 20 is configured by any one of the five combinations (first configuration to fifth configuration) described below.
  • the second welding power source 22 in the first configuration is a DC power source adopting DC (Direct Current) as a power feeding method, and the external characteristic thereof is a constant voltage characteristic.
  • the second feeding device 21 in the first configuration performs constant speed control for feeding the second wire 120 at a constant speed as a wire speed control method.
  • the first configuration is the same combination as the first welding unit 10.
  • the second welding power source 22 in the second configuration is an AC power source adopting AC as a power feeding method, and its external characteristic is a constant voltage characteristic. Further, the second feeding device 21 in the second configuration performs constant speed control for feeding the second wire 120 at a constant speed as a wire speed control method.
  • the second welding power source 22 in the third configuration is an AC power source adopting AC as a power feeding method, and its external characteristic is a constant current characteristic.
  • the second feeding device 21 in the third configuration performs voltage FB (Feed Back) shift control to sequentially feed the second wire 120 at an appropriate speed by feedback control based on arc voltage as a wire speed control method. .
  • the second welding power source 22 in the fourth configuration is an AC power source adopting AC as a power feeding method, and its external characteristic is a drooping characteristic.
  • the second feeding device 21 in the fourth configuration performs voltage FB shift control that feeds the second wire 120 at an appropriate speed sequentially by feedback control based on an arc voltage as a wire speed control method.
  • the second welding power source 22 in the fifth configuration is a DC power source adopting DC as a power feeding method, and the external characteristic thereof is a constant current characteristic.
  • the 2nd sending apparatus 21 in 5th structure performs voltage FB shift control which feeds the 2nd wire 120 one by one at an appropriate speed one by one by feedback control based on arc voltage as a wire speed control system.
  • the third welding unit 30 and the fourth welding unit 40 are configured by any one of the first configuration (a) to the fifth configuration (e) described above. be able to.
  • all three of the second welding unit 20, the third welding unit 30, and the fourth welding unit 40 may have the same configuration, or two may have the same configuration and one may have a different configuration. And all three may be configured differently.
  • the feed speed of the first wire 110 to the fourth wire 140 can be determined based on the moving speed (welding speed) of the carriage 90 in the moving direction A.
  • the operator determines the reference value of the feed speed based on the welding speed, and performs constant speed control so as to maintain the reference value of the feed speed.
  • the operator determines the reference value of the feed speed with reference to the welding speed, and performs the shift control by feeding back the arc voltage to the reference value of the feed speed.
  • FIG. 3 is a diagram for explaining the external characteristics of the welding power source.
  • FIG. 3 (a) illustrates a constant voltage characteristic
  • FIG. 3 (b) illustrates a constant current characteristic
  • FIG. 3 (c) illustrates a drooping characteristic.
  • the horizontal axis is the output current I (A)
  • the vertical axis is the output voltage V (V).
  • the external characteristic curve moves (changes) in accordance with the indication of the current or voltage input to the welding power source.
  • FIG. 3 (a) an external characteristic curve corresponding to four steps of indicator voltages is illustrated, and in each of FIGS.
  • an external characteristic curve corresponding to four stages of indicator currents is illustrated.
  • the output current I corresponds to the welding current
  • the output voltage V corresponds to the sum of the arc voltage plus other voltage loss factors (consumption in the cable, contact resistance, etc.).
  • the constant voltage characteristics shown in FIG. 3A will be described.
  • the fluctuation of the output voltage V is smaller than the fluctuation of the output current I.
  • the drooping characteristic shown in FIG. 3C will be described.
  • the fluctuation of the output voltage V is large relative to the fluctuation of the output current I.
  • the fluctuation of the output voltage V is gentler than that of the constant current characteristic, and changes depending on the current value.
  • FIGS. 3 (a) to 3 (c) show arc characteristics for generating an arc of arc length L, as well as the respective external characteristics.
  • an operating point P at which a point of intersection of the curve of any external characteristic and the curve of the arc characteristic generates an arc of a desired arc length L (a specific output current I and a corresponding specific output voltage V ).
  • the inclination of the voltage with respect to the current at the operating point P for generating an arc of the target arc length L is referred to as a differential value dV / dI.
  • a welding power source having a drooping characteristic and a constant current characteristic is considered to have little variation in penetration depth, and is suitable for submerged arc welding.
  • a welding power supply having a drooping characteristic and a constant current characteristic since the arc voltage is easily changed, it is generally combined with the feeding of the wire by the voltage FB shift control.
  • voltage FB shift control When combining welding power source having drooping characteristics and constant current characteristics with voltage FB shift control, if the arc length L becomes short, the arc length L is lowered by decreasing the wire feeding speed according to the decrease of the arc voltage. Is returned to the original length, and when the arc length L is increased, the arc length L is returned to the original length by increasing the wire feeding speed according to the increase of the arc voltage.
  • a welding power source having a constant voltage characteristic is considered to be suitable for mag welding or mig welding using a small diameter wire.
  • a welding power source having constant voltage characteristics may be used for submerged arc welding using a wire of 2.0 mm or less in diameter.
  • welding current is likely to change, so it is generally combined with wire feeding by constant speed control.
  • welding power source having constant voltage characteristics and constant speed control are combined, if the arc length L becomes short, the welding current automatically increases and the arc length L returns to the original length, while, If the arc length is increased, the welding current is automatically reduced, whereby the arc length L returns to the original length.
  • a thin wire having a diameter of 1.6 mm or less is used, but for single sided submerged arc welding, a wire having a diameter of 2.4 mm or more is preferable. More preferably, it is desirable to use a wire having a diameter of 3.2 mm or more, and further, a diameter of 4.8 mm or more. There is no particular technical limitation in setting the upper limit, but a diameter of 6.4 mm or less is practical from the viewpoint of wire feedability and cuttability.
  • the leading electrode has a function to melt the groove deeply to form a molten pool and a back wave bead, and since the welding conditions are specialized in this role, the thickness of the base material is thin, for example, the molten pool is the base material Even if the surface is reached, the surface bead appearance is not good with a single electrode.
  • the final pole since the final pole mainly plays a role in adjusting the appearance of the front bead, welding conditions are different from those of the leading pole. As described above, in the single-sided submerged arc welding, since it is necessary to share roles, it is essential to form a plurality of electrodes using two or more wires.
  • the number of wires increases as the thickness of the steel plate increases.
  • an upper limit is imposed on the number of electrodes, but for single-sided welding, for example, a 4-electrode system shown in FIG. 1 has been put to practical use.
  • a flux supply port (a first flux supply port 70a and a second flux supply port 80a shown in FIG. 1) may be provided.
  • the wire feeding speed is excessive, the wire easily depresses the molten pool supported mainly by the surface tension on the back surface of the steel plate to form an excess back wave. Furthermore, if the feed speed is high, the wire may break through the molten pool.
  • the leading electrode that affects the formation of the back wave welding does not affect the feeding speed even if the current or voltage changes, and controls to make the feeding speed constant (constant speed control) Revealed that it is desirable.
  • the wire feed constant control is a control method which has hitherto been unsuitable. The reason for this is that the large diameter wire is difficult to melt uniformly across the entire cross section, and as a result, the wire melting rate becomes unstable, and consequently the stabilization of the arc length L can not be expected either.
  • the feed speed stabilization has a higher shape stabilization effect than the stabilization of the arc length L.
  • the drooping characteristics are common sense in the prior art. As described above, the drooping characteristics show small variation in current value with respect to variation in voltage value.
  • a movable iron core movable welding machine that uses leakage reactance without using electronic elements as a welding machine structure that has a simple structure, is inexpensive, and easy to maintain, has been used since old times, but with this method only drooping characteristics could be made There are also historical circumstances of that.
  • the fluctuation of the current value is It is not high rank as an influence factor.
  • the arc length L also has less influence on back wave stabilization than the fluctuation of the feeding speed, an excessive sudden change of the arc length L brings an adverse effect. For example, if the arc length L is zero, that is, the arc disappears, the welding itself stops or the arc is generated explosively at the time of reignition, so that the back bead can not be formed normally by the force.
  • the arc length L becomes excessive, the arc can not be maintained, the arc disappears immediately after that, or the arc force per unit area decreases, and the back wave bead can not be formed.
  • Mw K1 ⁇ I + K2 ⁇ I 2 ⁇ ⁇ ⁇ L (1)
  • Mw wire melting rate I: welding current :: electrical resistivity
  • L wire protrusion length K1, K2: constant
  • the welding current I is effective to actively change the welding current I as a means for stabilizing the arc length L on the assumption that the feed speed is constant. For example, if the arc length L becomes short, the wire melting speed Mw decreases by rapidly raising the welding current I, and the arc length L returns to the original state. On the other hand, if the arc length L is increased, the wire melting speed Mw is increased by rapidly reducing the current, and the arc length L is also returned. This phenomenon is generally referred to as the arc length self-control function.
  • the self-control function of the arc length requires a sharp change in current, and the external characteristic to realize this is only the constant voltage characteristic. Therefore, in order to realize the constant wire feeding speed necessary to stabilize back wave welding, it is necessary as an indirect factor that the external characteristics of the welding power source corresponding to the leading electrode be constant voltage characteristics.
  • Such a combination of “wire speed control: constant speed” and “external property: constant voltage property” is used in a gas shielded arc welding method using a thin wire having a diameter of 1.6 mm or less. This is because the wire is thin and the meltability is excellent, so the self-control action of the arc length is very effective. However, in a wire with a diameter of 2.4 mm or more, the meltability is inferior to a wire thinner than this, so when used for non-single-sided welding, the self-control function of the arc length does not act quickly and arc and bead shapes It causes instability.
  • the leading electrode adopts a combination of “wire speed control: constant speed”, “external characteristic: constant voltage characteristic” and “feed method: direct current”.
  • the high current submerged arc welding machine which is most popular at present is an alternating current machine by an inexpensive iron core operation type.
  • the external characteristics inevitably become drooping characteristics.
  • a thyristor element is used to generate direct current, a large current direct current can be obtained, and the external characteristics can also be made constant voltage characteristics.
  • inverter welding machines which are weak to heat and difficult to produce large current outputs have also been developed which are characterized by large current outputs, and if this is used, very excellent DC characteristics can be obtained.
  • the molten pool formed in the surface flux deposited on the steel plate is basically a large one called “one pool” where all molten metal wires are connected Liquid metal.
  • the leading pole has the largest influence on the shape of the back wave bead
  • the degree of influence is relatively small
  • the shape of the trailing bead is also the shape of the back wave bead
  • the feeding method is direct current as in the leading electrode
  • the degree of influence of polarity in the second and subsequent electrodes is relatively small with respect to the first electrode, so that alternating current is also practical.
  • the trailing electrode needs to adjust the shape of the front bead as a role, and for this purpose it may be more effective to stabilize by giving priority to the current value and arc length L even if the feed speed changes .
  • arc mutual interference and deflection by magnetic blow are less likely to occur.
  • the backing flux may be dispersed in advance. Then, it becomes possible to prevent the dripping of the molten pool on the back side to some extent. Furthermore, there is also a method of pushing up the backing flux by spraying a thick backing flux without injecting a backing material and injecting a gas into an air hose laid under the backing material to improve adhesion.
  • the backing flux may have a powder laminated structure with a curable resin in order to prevent the molten pool from falling off.
  • the differential value dV / dI is -12.0 ⁇ 10 -3 (V / A) or more, the current largely changes according to the change of the arc length L, and the self-control function of the arc length L is effectively effective. Desirable to work. More preferably, if the differential value dV / dI is ⁇ 8.0 ⁇ 10 ⁇ 3 (V / A) or more, the back wave shape is more stabilized. It should be noted that, as the characteristic of the external characteristics in general including the constant voltage characteristic, the positive side can not be a slope, so that the differential value dV / dI has a practical upper limit of 0.
  • the constant current characteristics and the drooping characteristics are also not defined quantitatively. It can be said that the constant current characteristics and the drooping characteristics are different from whether they are generated using a rectifying element or the leakage flux due to the operation of an iron core, but in terms of aiming constant current even if the arc length L changes. It is the same.
  • the slope of the desirable voltage-current characteristics common to the constant current characteristics and the drooping characteristics is more vertical than -24.0 ⁇ 10 -3 (V / A) In other words, the desired differential value dV / dI is less than -24.0 ⁇ 10 -3 (V / A). If the characteristic of differential value dV / dI is -24.0 ⁇ 10 -3 (V / A) or less and voltage feedback control of feed speed are combined, the change of arc voltage is caught sensitively and the feed speed is changed By doing this, the arc length L can be stabilized, which contributes to the stabilization of the front bead shape. (-Infinity) is a practical lower limit, since the positive side can not have a slope as a general property of the external characteristics including the constant current characteristics and the drooping characteristics.
  • FIG. 4 is a diagram for explaining the configuration of the experimental apparatus in the first embodiment and the first comparative example.
  • the basic configuration of the experimental apparatus shown in FIG. 4 is the same as that of the welding apparatus 1 shown in FIG.
  • FIG. 4 shows a work 200 including the first steel plate 201 and the second steel plate 202, a front flux 300 supplied to the front side of the work 200, and a backing disposed on the back side of the work 200 together with the experimental apparatus.
  • a portion 400 shows a weld metal 500 formed on the work 200 along with welding.
  • FIG. 7A shows the dimensions of the steel plates and the grooves in the first embodiment and the first comparative example.
  • each of the first steel plate 201 and the second steel plate 202 was subjected to an open end surface treatment using a tensile strength 490 MPa grade carbon steel plate having a thickness of 35 mm and a width of 500 mm ⁇ length 3000 mm to form butt joints.
  • the groove shape was 45 ° V-shaped to 29 mm from the surface, and the remaining plate thickness of 6 mm was vertical as the root face.
  • the root gap was set to 0 mm where both steel plates contact at the shortest part, there was a point where a gap of up to 2 mm was inevitably generated due to distortion of the steel plate.
  • Each wire (the first wire 110 to the fourth wire 140) is a JIS Z3351 YS-S6 equivalent product, and the front flux 300 is a JIS Z3352 SACI1 equivalent product.
  • the surface flux 300 is automatically and continuously sprayed with an appropriate amount before the first electrode (leading electrode) and between the second electrode and the third electrode.
  • a grooved backing copper plate 402 to which a small amount of a backing flux 401 was dispersed, was pressed against the steel plate groove back side. Also, for each electrode, independent welding power sources were connected between the contact tips and the steel plates corresponding to each electrode. Each wire is fed to the weld by a feed roller provided immediately above each contact tip.
  • a test of the four-electrode single-sided submerged arc welding method was performed using the experimental apparatus shown in FIG. More specifically, wire diameter, power feeding method, external characteristics, wire speed control, welding current, and arc voltage were changed for each electrode using the test apparatus shown in FIG.
  • the distance between the tip of the first wire 110 and the tip of the second wire 120 is 40 mm
  • the distance between the tip of the second wire 120 and the tip of the third wire 130 is 120 mm
  • the distance between the tip of the third wire 130 and the tip of the fourth wire 140 is 30 mm.
  • the welding speed in this example was made common at 44 (cm / min).
  • the back wave bead shape, the front bead shape, and the internal defect were evaluated.
  • the back bead shape should ideally be 10 mm or more in width and 2 mm to 6 mm in back wave height, and those with small meanders and small variations in width may be regarded as very good A, and these evaluations may be inferior. Those not present were rejected as B, and those requiring repair due to the back bead shape defect were rejected as C. Also for the front bead shape, the same evaluation criteria as the back wave bead shape were used.
  • those with no defects found by the ultrasonic flaw test and the cross section macro cut test were regarded as “none”, and those with poor fusion confirmed as “present”.
  • AC means alternating current
  • DC (EP) is direct current
  • DC (EN) means “Electrode Plus” with the wire, that is, the electrode side as the positive electrode
  • DC (EN) means “Electrode Negative” which is direct current and has a wire, ie, the electrode side as a negative electrode. This notation is the same in Tables 3 to 6 described later.
  • No. 1-1 uses direct current, constant voltage characteristics, constant speed control for the first electrode, and uses the conventional alternating current, drooping characteristics, and voltage FB shift control for the second and subsequent electrodes, but good back bead The shape is obtained. On the other hand, the front bead shape is also very good because the fourth electrode, which is the final pass, is subjected to the AC / droop characteristic / voltage FB shift control.
  • No. 1-2 is no. This is the case where the differential value dV / dI of the external characteristics in the welding power source of the first electrode is smaller than that of 1-1, that is, the constant voltage characteristic is weakened, and accordingly, the arc length of the first electrode in the first layer welding Since the control action is weakened and destabilized, the back wave bead shape is No. It is slightly inferior to 1-1. However, since direct current and constant speed control are adopted, a back wave bead shape that is within an acceptable range is obtained.
  • No. No. 1-3 is No. Similar to 1-1, but the power supply polarity of the first electrode is DC positive polarity, that is, the electrode side-(minus).
  • the power supply polarity in direct current often adopts direct current reverse polarity, that is, the electrode side + (plus), there is no problem in the welding quality, and it is shown that either can be used in the present construction method.
  • No. 1-6 are typical used now. AC, droop characteristics, and voltage FB shift control are adopted for all electrodes. Fluctuations in the feed rate and periodical arc loss caused by alternating current cause instability in the backwave molten pool, and although internal defects and front bead shapes are not particularly problematic, they are not suitable for backwave welding and backwaves. Poor bead shape was remarkable.
  • No. 1-7 is no. Although constant voltage characteristics and constant speed control are applied to the fourth electrode with respect to 1-6, even if control to reduce the pressure change of the molten pool for only the fourth electrode, which is the final electrode, is added, the contribution rate was lower than that of the first electrode, so that the back bead shape did not improve.
  • No. 1-8 is No. Similar to 1-7, constant voltage characteristics and constant speed control are applied to the second electrode instead of the fourth electrode. However, in the second electrode which is the first intermediate electrode, the stabilizing contribution of the pressure applied to the molten pool forming the back wave bead is lower than that of the first electrode, and the improvement effect of the back wave bead shape is not obtained.
  • the first electrode has a direct current and a constant current characteristic, and on the other hand, the wire speed control is constant speed controlled.
  • the welding power source with direct current and constant current characteristics is generally a non-electrode type, that is, a power source system used in TIG welding and plasma welding that generates an arc from a non-consumable tungsten electrode, not from consumable wire.
  • the same control as that of the drooping characteristic is necessary for the control of the electrode.
  • the long stabilization action of the arc does not work at all. Therefore, no.
  • the arc length always fluctuated significantly, and stable welding was not possible. Both the back wave bead shape and the front bead shape were greatly roughened and unstable, and a fusion failure also occurred inside.
  • No. 1-11 is replaced with DC, constant current characteristics, and voltage FB shift control from AC, drooping characteristics, and voltage FB shift control for all the conventional electrodes, but the first electrode has constant voltage characteristics and constant speed control
  • the back wave bead shape was not stabilized because it had not been.
  • constant current characteristics and voltage FB shift control acted, and it was an allowable range of those in which instability due to arc mutual interference peculiar to direct current was observed.
  • FIG. 5 is a diagram for explaining the configuration of the experimental apparatus in the second embodiment and the second comparative example.
  • the basic configuration of the test apparatus shown in FIG. 5 is obtained by removing the fourth welding unit 40 from the welding apparatus 1 shown in FIG.
  • FIG. 5 shows a work 200 including the first steel plate 201 and the second steel plate 202, a front flux 300 supplied to the front side of the work 200, and a backing disposed on the back side of the work 200 together with the experimental apparatus.
  • a portion 400 shows a weld metal 500 formed on the work 200 along with welding.
  • FIG.7 (b) has shown the dimension of each steel plate and groove in 2nd Example and 2nd comparative example.
  • the first steel plate 201 and the second steel plate 202 were subjected to open tip surface treatment using a tensile strength 400 MPa class carbon steel plate having a thickness of 30 mm and a width of 500 mm ⁇ length 3000 mm, respectively, to form butt joints.
  • the groove shape was 45 ° V-shaped to 25 mm from the surface, and the remaining plate thickness of 5 mm was vertical as the root face.
  • the root gap was set to 0 mm where both steel plates contact at the shortest part, there was a point where a gap of up to 2 mm was inevitably generated due to distortion of the steel plate.
  • Each wire (the first wire 110 to the third wire 130) is a JIS Z3351 YS-S6 equivalent product, and the front flux 300 is a JIS Z3352 SACI1 equivalent product.
  • the surface flux 300 is automatically continuously dispersed in an appropriate amount before the first electrode (leading electrode) and between the second and third electrodes.
  • a backing flux 412 containing a curable resin component is dispersed in a small amount on the underlaying flux 411 without using a molded solid such as a copper plate or a ceramic plate as the backing portion 400 on the back side of the steel sheet groove back
  • the backing flux 412 was pressed against the back surface of the steel sheet by injecting a gas from an air hose 413 passed through the inside.
  • independent welding power sources were connected between the contact tips and the steel plates corresponding to each electrode. Each wire is fed to the weld by a feed roller provided immediately above each contact tip.
  • the test of the 3-electrode single-sided submerged arc welding method was done using the experimental apparatus shown in FIG. More specifically, wire diameter, power feeding method, external characteristics, wire speed control, welding current, welding voltage were changed for each electrode using the test apparatus shown in FIG. 5, and the influence was confirmed.
  • the distance between the tip of the first wire 110 and the tip of the second wire 120 is 40 mm
  • the distance between the tip of the second wire 120 and the tip of the third wire 130 is 120 mm.
  • the welding speed in this example was made common at 47 (cm / min).
  • the back wave bead shape, the front bead shape, and the internal defect were evaluated.
  • the back bead shape should ideally be 9 mm or more in width and 2 mm to 5 mm in back wave height, and those with small meanders and small variations in width may be regarded as very good A, although these evaluations may be inferior Those not present were rejected as B, and those requiring repair due to the back bead shape defect were rejected as C. Also for the front bead shape, the same evaluation criteria as the back wave bead shape were used.
  • internal defects those with no defects found by the ultrasonic flaw test and the cross section macro cut test were regarded as “none”, and those with poor fusion confirmed as “present”.
  • Tables 3 and 4 show the manufacturing conditions and the test results in the second example and the second comparative example.
  • no. 2-1 to No. 2-4 is a 2nd Example
  • No. 4 shown in Table 4 is. 2-5 to No. 2-10 is a second comparative example.
  • No. 2-1 uses DC, constant voltage characteristics, and constant speed control for the first electrode, and uses the conventional AC, droop characteristics, and voltage FB shift control for the second and subsequent electrodes, but good back bead
  • the shape is obtained.
  • the appearance of the front bead shape is also very good by setting the third electrode, which is the final pass, to AC / droop characteristics / voltage FB shift control.
  • No. 2-2 is no.
  • the differential value dV / dI of the external characteristic in the welding power source of the second and third electrodes is larger than that of 2-1, ie, the constant current characteristic is weakened.
  • the constant current characteristic weakens, the arc voltage also becomes difficult to change, and feedback control of the arc length also becomes difficult to be effective. Therefore, although within the allowable range, the stability of the arc length degrades the front bead shape which has a greater effect than the back wave bead shape. That is, it is suggested that the voltage FB shift control with a small differential value dV / dI is more preferable in order to make the front bead shape good.
  • No. 2-3 has all the electrodes as direct current / constant voltage characteristics / constant speed control, and by incorporating control to reduce the pressure change of the molten pool also after the second electrode, a very good back bead shape Is obtained.
  • the front bead shape is slightly disturbed by the inter-arc interference caused by the alignment of the direct current, so it is slightly inferior to the case of adopting the alternating current.
  • No. No. 2-5 is No.
  • the first electrode is not direct current but alternating current.
  • constant voltage characteristics and constant speed control are in the category of the present invention, since alternating current is used, periodical arc disappearance peculiar to alternating current causes instability of back wave molten pool and obtains stable back wave bead shape. I could not.
  • No. 2-6 is a typical used today. AC, droop characteristics, and voltage FB shift control are adopted for all electrodes. Although there is no particular problem with the internal defects and the front bead shape, both the alternating current and the shift control are unsuitable for back wave welding, and a defect occurs in the back wave bead shape.
  • No. 2-7 is a first electrode, and the third electrode is a category of the present invention, but the second electrode is a combination of AC / droop characteristics / current FB shift control. Since the drooping characteristic is that the current does not move much with the movement of the arc length, the feedback control monitoring the current is inferior to the arc voltage feedback as an arc length control means. As the control of the arc length did not work well and the wire feeding was not constant, not only the back bead shape defect but also the internal defect of the fusion defect and the defect of the front bead shape occurred.
  • No. 2-8 is a combination of constant current characteristics and current FB speed control in which constant current characteristics are further enhanced with respect to the drooping characteristics for all electrodes. Since the control of the arc length does not work well and the wire feeding is not constant, not only defects in the back wave bead shape but also internal defects in the fusion failure and defects in the front bead shape occur. The overall quality was even worse than 2-7.
  • No. 2-9 is a combination of constant voltage characteristics and voltage FB shift control as the first electrode. Since the constant voltage characteristic does not move the voltage much with respect to the movement of the arc length, the feedback control monitoring the voltage has low performance as an arc length control means, and the first electrode forming the back wave bead has a wire feeding speed Since it is most important for shape stabilization that C. is constant, a good back bead shape can not be obtained in this configuration. In addition, due to the significant instability of the first layer by the first electrode, fusion failure also occurs at the junction with the second electrode.
  • No. 2-10 combines DC, constant current characteristics, and constant speed control as the first electrode, but in this combination, the arc length stabilization control does not work, so the welding is unstable and the back bead shape is defective Not only that, but also due to the significant instability of the primary layer by the first electrode, fusion failure also occurs at the junction with the second electrode.
  • FIG. 6 is a diagram for explaining the configuration of the experimental apparatus in the third embodiment and the third comparative example.
  • the basic configuration of the experimental apparatus shown in FIG. 6 is obtained by removing the third welding unit 30, the fourth welding unit 40, and the second flux supply apparatus 80 from the welding apparatus 1 shown in FIG.
  • FIG. 6 shows a work 200 including the first steel plate 201 and the second steel plate 202, a front flux 300 supplied to the front side of the work 200, and a backing disposed on the back side of the work 200 together with the experimental apparatus.
  • a portion 400, a weld metal 500 formed on the work 200 along with welding, and a groove filling material 600 previously supplied to the groove are shown together.
  • FIG.7 (c) has shown the dimension of each steel plate and groove in 3rd Example and a 3rd comparative example.
  • each of the first steel plate 201 and the second steel plate 202 was subjected to an open end surface treatment using a plate thickness 14 mm and a width 500 mm ⁇ length 3000 mm of a 520 MPa grade carbon steel plate, to form butt joints.
  • the bevel shape was a 50 ° V-shape without a root face.
  • the root gap was set to 0 mm where both steel plates contact at the shortest part, there was a point where a gap of up to 2 mm was inevitably generated due to distortion of the steel plate.
  • Each wire (the first wire 110 and the second wire 120) is a JIS Z3351 YS-S6 equivalent product, and the front flux 300 is a JIS Z3352 SACI1 equivalent product.
  • the surface flux 300 is automatically and continuously sprayed with an appropriate amount prior to the first electrode (leading electrode).
  • a bevel filler 600 made of iron powder was manually sprayed in advance in the bevel.
  • the filling height of the groove filling material 600 was controlled at 3 mm from the surface position of the steel plate.
  • the groove filling material 600 is melted together with each wire and front flux 300 at the time of welding to form a molten pool.
  • a soft backing material 421 called glass tape made by weaving glass fibers to a few mm thickness without using a molded solid or backing flux such as a copper sheet or ceramic sheet as the backing part 400 on the back side of the steel sheet groove end.
  • a molded solid or backing flux such as a copper sheet or ceramic sheet as the backing part 400 on the back side of the steel sheet groove end.
  • the glass tape is soft, it can be adhered to the back without being affected by the corrugation of the steel plate.
  • the vicinity of the arc melts, but the non-melted part acts as a cushion to prevent excessive melting of the back wave.
  • independent welding power sources were connected between the contact tips and the steel plates corresponding to each electrode. Each wire is fed to the weld by a feed roller provided immediately above each contact tip.
  • the back wave bead shape, the front bead shape, and the internal defect were evaluated.
  • the back bead shape should ideally be 6 mm or more in width and 1 mm to 4 mm in back wave height, and those with small meanders and small variations in width may be regarded as very good A, and these evaluations may be inferior. Those not present were rejected as B, and those requiring repair due to the back bead shape defect were rejected as C. Also for the front bead shape, the same evaluation criteria as the back wave bead shape were used.
  • With regard to internal defects those with no defects found by the ultrasonic flaw test and the cross section macro cut test were regarded as “none”, and those with poor fusion confirmed as “present”.
  • Tables 5 and 6 show the manufacturing conditions and the test results in the third example and the third comparative example.
  • no. 3-1 to No. 3-4 is a 3rd Example
  • No. shown in Table 6 3-5 to No. 3-14 is a third comparative example.
  • No. 3-1 uses direct current, constant voltage characteristics, constant speed control for the first electrode, and the second electrode uses the conventional alternating current, drooping characteristics, and voltage FB shift control, but it has a good back bead shape and surface The bead shape is obtained.
  • No. 3-2 is no. Although the first electrode was a direct current on the electrode side with respect to 3-1, no. The same quality as 3-1 is obtained.
  • both electrodes are used on the electrode side: DC, constant voltage characteristics and constant speed control.
  • the second electrode which is the final pole, is a controlling electrode in the form of a front bead, and thus within the allowable range, shape stability Slightly inferior.
  • both electrodes have constant voltage characteristics and constant speed control, and the first electrode is DC and the second electrode is AC.
  • the feed control of the wire that most strongly affects the back bead shape is constant, and the first electrode is a direct current without periodic arc breakage, while the second electrode governing the front bead shape is inter-arc interference Since the alternating current was not affected by the magnetic blow or the magnetic blow, the best front and back quality in the third example was obtained.
  • No. 3-5 is a typical used today. AC, droop characteristics, and voltage FB shift control are adopted for both poles. Although internal defects and the shape of the front bead have no particular problem, both the alternating current and the shift control are unsuitable for back wave welding, and the back bead shape is notable. In addition, since the thickness of the steel plate was smaller than those in Examples 1 and 2 described above, the defect in the back wave bead shape also affected the front bead shape and slightly deteriorated.
  • the combination of the first electrode at constant voltage characteristics and constant speed control is a category of the present invention in 3-7, but the wire diameter is as thin as 2.0 mm.
  • the wire diameter is as thin as 2.0 mm.
  • a back wave bead could not be formed, and a dent was generated on the back surface side of the steel plate.
  • it is effective to reduce the current density, and the larger the wire diameter, the more advantageous. That is, it can be said that the wire diameter of 2.0 mm is insufficient.
  • No. 3-8 is a combination of constant voltage characteristics and constant speed control within the scope of the present invention, but it is a challenge to simultaneously finish back wave bead formation and front bead formation with only one electrode.
  • the role of the first electrode is specialized in forming the back wave bead, the welding conditions are limited, and the front bead shape has to be a narrow convex shape. If there are two or more electrodes, the thin and convex molten pool shape formed by the leading electrode can be arranged using welding conditions for making the front bead shape better in the trailing electrode (especially the final electrode). (1) Since this role can not be shared in electrode construction, it is unsuitable for back wave welding.
  • No. 3-9 adopts alternating current, constant current characteristics, and voltage FB shift control as the leading electrode. Although internal defects and the shape of the front bead are not particularly problematic, the AC and shift control are not suitable for back wave welding, and defects in the back wave bead shape were remarkable.
  • the backing flux 401 and the backing copper plate 402 are used as the backing part 400 in the four-electrode single-sided submerged arc welding has been described.
  • the case where the underlaying flux 411, the backing flux 412 and the air hose 413 are used as the backing portion 400 in the three-electrode single-sided submerged arc welding has been described.
  • the case of using the soft backing material 421 as the backing part 400 in the two-electrode single-sided submerged arc welding has been described.
  • the number of electrodes in multi-electrode single-sided submerged welding and the configuration of the backing portion 400 are not limited to the combinations described above, and the combinations may be changed as appropriate.
  • control device 70 first flux supply device 80 second flux supply device 90 carriage 110 first wire 120 second wire 130 third wire 140 fourth wire 200 Workpiece, 201: first steel plate, 202: second steel plate, 300: front flux, 400: backing portion, 500: weld metal, 600: groove filling material

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Abstract

A welding device (1) performs one-side submerged arc welding of a steel plate by using a first welding unit (10) which uses a first wire (110), a second welding unit (20) which uses a second wire (120), a third welding unit (30) which uses a third wire (130), and a fourth welding unit (40) which uses a fourth wire (140). When doing so, the first welding unit (10) controls the feeding speed of the first wire (110) so as to be a constant speed by using a first feeding device (11), and supplies power to the first wire (110) by using a first welding power source (12) for which the power-supply method is set to DC and the external properties are set to a constant voltage. As a result, it is possible to reduce faults in the appearance of a penetration bead obtained by the one-side submerged arc welding of a multielectrode.

Description

多電極片面サブマージアーク溶接方法、溶接物の製造方法Multi-electrode single-sided submerged arc welding method, method of manufacturing weldment
 本発明は、多電極片面サブマージアーク溶接方法、溶接物の製造方法に関する。 The present invention relates to a multi-electrode single-sided submerged arc welding method and a method of manufacturing a weldment.
 消耗電極式アーク溶接法の一種として、粉状の金属や人工酸化物あるいは鉱物などで構成されるフラックスを鋼板に設けた開先の表面に散布するとともに、鋼板の開先に堆積させたフラックスの中で、送給されてくる電極ワイヤに電流を流して電極ワイヤからアークを発生させることで、電極ワイヤと鋼板とを溶融混合して一体化するサブマージアーク溶接法が知られている。このサブマージアーク溶接法は、被覆アーク溶接法、ティグアーク溶接法、ガスシールドアーク溶接法などの他のアーク溶接法に比べて、大電流が使えることで溶込みが深く、高能率という特長がある。 As one type of consumable electrode type arc welding, a flux composed of powder metal, artificial oxide or mineral is dispersed on the surface of the groove provided on the steel plate, and the flux deposited on the groove of the steel plate is used. In particular, a submerged arc welding method is known in which an electrode wire and a steel plate are melt mixed and integrated by supplying an electric current to the electrode wire being fed to generate an arc from the electrode wire. Compared with other arc welding methods such as clad arc welding, Tig arc welding and gas shielded arc welding, this submerged arc welding method has the advantage of deep penetration and high efficiency because it can use a large current.
 ここで、特許文献1には、サブマージアーク溶接法において、外部特性として垂下特性または定電流特性を有する溶接電源を用いて電極ワイヤに給電を行うとともに、溶接電圧設定信号と溶接電圧フィードバック信号との差の信号の大きさによって電極ワイヤ送給速度を制御することが記載されている。 Here, Patent Document 1 discloses that, in the submerged arc welding method, power is supplied to the electrode wire using a welding power source having a drooping characteristic or a constant current characteristic as an external characteristic, and the welding voltage setting signal and the welding voltage feedback signal It is described to control the electrode wire delivery rate by the magnitude of the difference signal.
 また、引用文献2には、開先に沿って電極ワイヤを複数並べて配置するとともに、鋼板の裏面側に裏当材を配置することにより、鋼板の表面側から裏面側までを、複数の電極ワイヤを用いて1回の走行で溶接する多電極片面サブマージアーク溶接法が記載されている。この多電極片面サブマージ溶接法は、鋼板の全厚を1回の走行(これを1ランと呼ぶ)で完全溶込み施工でき、鋼板を反転させる必要がないことから、造船や橋梁などの分野で広く活用されている。 Further, in Patent Document 2, a plurality of electrode wires are arranged from the front surface side to the back surface side of the steel plate by arranging a plurality of electrode wires along the groove and arranging a backing material on the back surface side of the steel plate. A multi-electrode single-sided submerged arc welding process has been described which welds in a single pass using. In this multi-electrode single-sided submerged welding method, the entire thickness of the steel plate can be completely penetrated in one run (this is called one run), and there is no need to reverse the steel plate. It is widely used.
特開2000-117442号公報Japanese Patent Laid-Open No. 2000-117442 特開2007-268551号公報JP 2007-268551 A
 上述した多電極片面サブマージアーク溶接では、複数の電極ワイヤのうち、主として、鋼板に対し最初に溶接を行う電極ワイヤ(先行極)によって、鋼板の裏面側に裏波ビードが形成される。 In the multi-electrode single-sided submerged arc welding described above, a back wave bead is formed on the back surface side of the steel plate mainly by the electrode wire (leading electrode) to be welded first to the steel plate among the plurality of electrode wires.
 しかしながら、先行極の電極ワイヤに対し、垂下特性または定電流特性を有する溶接電源を用いて給電を行うとともに、アーク電圧に基づいて送給速度をフィードバック制御する構成を採用した場合に、得られる裏波ビードに外観不良が生じることがあった。 However, it is possible to supply power to the electrode wire of the leading electrode using a welding power source having a drooping characteristic or a constant current characteristic, and to obtain a back surface obtained by adopting a configuration in which the feeding speed is feedback controlled based on the arc voltage. Poor appearance may occur in the wave bead.
 本発明は、多電極片面サブマージアーク溶接で得られる裏波ビードの外観不良を低減することを目的とする。 An object of the present invention is to reduce appearance defects of a back wave bead obtained by multi-electrode single-sided submerged arc welding.
 本発明は先行極と当該先行極に続く後行極とを用いた多電極片面サブマージアーク溶接方法であって、前記先行極および前記後行極では、それぞれ、直径2.4mm以上のワイヤを用い、それぞれのワイヤに給電を行う電源の給電方式および外部特性と、それぞれのワイヤの送給速度の速度制御方式とが、前記先行極では、前記給電方式が直流、前記外部
特性が定電圧特性、前記速度制御方式が一定速度制御に設定され、前記後行極では、
(a)前記給電方式が直流、前記外部特性が定電圧特性、前記速度制御方式が一定速度制御
(b)前記給電方式が交流、前記外部特性が定電圧特性、前記速度制御方式が一定速度制御
(c)前記給電方式が交流、前記外部特性が定電流特性、前記速度制御方式がアーク電圧に基づく電圧フィードバック制御
(d)前記給電方式が交流、前記外部特性が垂下特性、前記速度制御方式がアーク電圧に基づく電圧フィードバック制御
(e)前記給電方式が直流、前記外部特性が定電流特性、前記速度制御方式がアーク電圧に基づく電圧フィードバック制御
のいずれかに設定されることを特徴とする。
 このような多電極片面サブマージアーク溶接方法において、前記後行極は、前記先行極に続く複数の電極を含んで構成され、前記後行極を構成する前記複数の電極のそれぞれでは、前記給電方式、前記外部特性および前記速度制御方式が前記(a)乃至前記(e)のいずれかに設定されることを特徴とすることができる。
 また、前記後行極を構成する前記複数の電極のうち、前記先行極から見て最も後側に位置する最終極では、前記給電方式、前記外部特性および前記速度制御方式が前記(c)または前記(d)に設定されることを特徴とすることができる。
 さらに、前記定電圧特性を有する前記電源を用いる場合に、動作点における電流に対する電圧の傾きである微分値dV/dIが-12.0×10-3(V/A)以上であることを特徴とすることができる。
 さらにまた、前記定電流特性または前記垂下特性を有する前記電源を用いる場合に、動作点における電流に対する電圧の傾きである微分値dV/dIが-24.0×10-3(V/A)以下であることを特徴とすることができる。
 また、他の観点から捉えると、本発明は、先行極と当該先行極に続く後行極とを用いた片面サブマージアーク溶接にて、母材を溶接してなる溶接物の製造方法であって、前記先行極および前記後行極では、それぞれ、直径2.4mm以上のワイヤを用い、それぞれのワイヤに給電を行う電源の給電方式および外部特性と、それぞれのワイヤの送給速度の速度制御方式とが、前記先行極では、前記給電方式が直流、前記外部特性が定電圧特性、前記速度制御方式が一定速度制御に設定され、前記後行極では、
(a)前記給電方式が直流、前記外部特性が定電圧特性、前記速度制御方式が一定速度制御
(b)前記給電方式が交流、前記外部特性が定電圧特性、前記速度制御方式が一定速度制御
(c)前記給電方式が交流、前記外部特性が定電流特性、前記速度制御方式がアーク電圧に基づく電圧フィードバック制御
(d)前記給電方式が交流、前記外部特性が垂下特性、前記速度制御方式がアーク電圧に基づく電圧フィードバック制御
(e)前記給電方式が直流、前記外部特性が定電流特性、前記速度制御方式がアーク電圧に基づく電圧フィードバック制御
のいずれかに設定されることを特徴とする。
The present invention is a multi-electrode single-sided submerged arc welding method using a leading electrode and a trailing electrode following the leading electrode, wherein each of the leading electrode and the trailing electrode uses a wire having a diameter of 2.4 mm or more. The feed method and external characteristics of the power supply for feeding each wire, and the speed control method of the feed speed of each wire; in the leading electrode, the feed method is DC, the external characteristic is constant voltage characteristics, The speed control method is set to constant speed control, and in the trailing pole,
(A) the feeding method is DC, the external characteristic is a constant voltage characteristic, the speed control method is constant speed control (b) the feeding method is AC, the external characteristic is constant voltage characteristic, and the speed control method is constant speed control (C) the feeding method is alternating current, the external characteristic is a constant current characteristic, the speed control method is voltage feedback control based on an arc voltage (d) the feeding method is alternating current, the external characteristic is a drooping characteristic, the speed control method is Voltage feedback control based on arc voltage (e) The power supply system is set to either direct current, the external characteristic is constant current characteristics, and the speed control system is voltage feedback control based on arc voltage.
In such a multi-electrode single-sided submerged arc welding method, the trailing electrode includes a plurality of electrodes following the leading electrode, and each of the plurality of electrodes constituting the trailing electrode includes the feeding method. The external characteristics and the speed control method may be set to any one of (a) to (e).
In the final pole located on the rearmost side with respect to the leading pole among the plurality of electrodes constituting the trailing pole, the power feeding method, the external characteristic, and the speed control method are either (c) or (c) It can be characterized by being set to the above (d).
Furthermore, when using the power supply having the constant voltage characteristic, the differential value dV / dI, which is the slope of the voltage with respect to the current at the operating point, is characterized by being −12.0 × 10 −3 (V / A) or more. It can be done.
Furthermore, when using the power supply having the constant current characteristic or the drooping characteristic, the differential value dV / dI, which is the slope of the voltage with respect to the current at the operating point, is -24.0 × 10 -3 (V / A) or less Can be characterized.
From another point of view, the present invention is a method of manufacturing a weldment formed by welding a base material by single-sided submerged arc welding using a leading electrode and a trailing electrode following the leading electrode. The feeding electrode and the external characteristic of the power supply for feeding each wire using the wire having a diameter of 2.4 mm or more in the leading electrode and the trailing electrode respectively, and the speed control method of the feeding speed of each wire In the leading electrode, the feeding method is set to DC, the external characteristic is set to constant voltage characteristics, and the speed control method is set to constant speed control, and in the trailing electrode,
(A) the feeding method is DC, the external characteristic is a constant voltage characteristic, the speed control method is constant speed control (b) the feeding method is AC, the external characteristic is constant voltage characteristic, and the speed control method is constant speed control (C) the feeding method is alternating current, the external characteristic is a constant current characteristic, the speed control method is voltage feedback control based on an arc voltage (d) the feeding method is alternating current, the external characteristic is a drooping characteristic, the speed control method is Voltage feedback control based on arc voltage (e) The power supply system is set to either direct current, the external characteristic is constant current characteristics, and the speed control system is voltage feedback control based on arc voltage.
 本発明によれば、多電極片面サブマージアーク溶接で得られる裏波ビードの外観不良を低減することができる。 ADVANTAGE OF THE INVENTION According to this invention, the appearance defect of the back wave bead obtained by multiple electrode single-sided submerged arc welding can be reduced.
本発明の実施の形態に係る溶接装置の概略構成を示す図である。It is a figure showing a schematic structure of a welding device concerning an embodiment of the invention. 第1溶接ユニット~第4溶接ユニットのそれぞれにおける溶接電源および送給装置の構成を説明するための図である。It is a figure for demonstrating the structure of the welding power supply in each of a 1st welding unit-a 4th welding unit, and a feeder. (a)~(c)は、溶接電源の外部特性を説明するための図である。(A)-(c) is a figure for explaining the external characteristic of welding power supply. 第1実施例および第1比較例における実験装置の構成を説明するための図である。It is a figure for demonstrating the structure of the experimental apparatus in a 1st Example and a 1st comparative example. 第2実施例および第2比較例における実験装置の構成を説明するための図である。It is a figure for demonstrating the structure of the experimental apparatus in 2nd Example and a 2nd comparative example. 第3実施例および第3比較例における実験装置の構成を説明するための図である。It is a figure for demonstrating the structure of the experimental apparatus in 3rd Example and a 3rd comparative example. (a)は第1実施例および第1比較例における各鋼板および開先の寸法を、(b)は第2実施例および第2比較例における各鋼板および開先の寸法を、(c)は第3実施例および第3比較例における各鋼板および開先の寸法を、それぞれ説明するための図である。(A) shows the dimensions of each steel plate and groove in the first embodiment and the first comparative example, (b) shows the dimensions of each steel plate and groove in the second embodiment and the second comparative example, and (c) shows it It is a figure for demonstrating each dimension of each steel plate and groove in 3rd Example and a 3rd comparative example.
 以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
 図1は、本実施の形態に係る溶接装置1の概略構成を示す図である。この溶接装置1は、4つの電極(ワイヤ)を用いて、鋼板からなるワーク(図示せず)に片面サブマージアーク溶接(4電極片面サブマージアーク溶接)を行うものである。
Hereinafter, embodiments of the present invention will be described in detail with reference to the attached drawings.
FIG. 1 is a view showing a schematic configuration of a welding apparatus 1 according to the present embodiment. The welding device 1 performs single-sided submerged arc welding (4-electrode single-sided submerged arc welding) on a work (not shown) made of steel plate using four electrodes (wires).
 溶接装置1は、第1ワイヤ110を用いて溶接を行う第1溶接ユニット10と、第2ワイヤ120を用いて溶接を行う第2溶接ユニット20と、第3ワイヤ130を用いて溶接を行う第3溶接ユニット30と、第4ワイヤ140を用いて溶接を行う第4溶接ユニット40とを備えている。また、溶接装置1は、第1溶接ユニット10~第4溶接ユニット40を搭載するとともに図中右側から左側に向かう移動方向Aに沿って走行する台車90と、台車90を駆動する台車駆動装置50と、第1溶接ユニット10~第4溶接ユニット40および台車駆動装置50の動作を制御する制御装置60とを備えている。さらに、溶接装置1は、内部に表フラックス(図示せず)を収容するとともに図中下方に向けて表フラックスを供給する第1フラックス供給装置70および第2フラックス供給装置80を備える。なお、この例では、制御装置60、第1フラックス供給装置70および第2フラックス供給装置80も、台車90に搭載されている。 The welding apparatus 1 performs welding using a first welding unit 10 that performs welding using a first wire 110, a second welding unit 20 that performs welding using a second wire 120, and a third wire 130. A third welding unit 30 and a fourth welding unit 40 for welding using the fourth wire 140 are provided. In addition, welding apparatus 1 carries bogie 90 mounted on first to fourth welding units 10 to 40 and traveling along moving direction A from right to left in the figure, and bogie drive device 50 for driving bogie 90. And a control device 60 for controlling the operation of the first welding unit 10 to the fourth welding unit 40 and the carriage driving device 50. The welding apparatus 1 further includes a first flux supply device 70 and a second flux supply device 80 that accommodate a front flux (not shown) therein and supply the front flux downward in the drawing. In this example, the control device 60, the first flux supply device 70, and the second flux supply device 80 are also mounted on the carriage 90.
 これらのうち、第1溶接ユニット10は、図中上方から下方に向かう供給方向Bに沿って第1ワイヤ110を送給する第1送給ローラ11aを備えた第1送給装置11と、送給されてくる第1ワイヤ110に接触して溶接電流(第1溶接電流)を供給する第1コンタクトチップ12aと接続された第1溶接電源12とを有する。また、第1溶接ユニット10は、第1ワイヤ110が巻き回されるとともに第1ワイヤ110の供給元となるリール(図示せず)をさらに備える。 Among them, the first welding unit 10 includes a first feeding device 11 having a first feeding roller 11a for feeding the first wire 110 along a feeding direction B which is directed downward from above in the drawing, A first welding power source 12 connected to a first contact tip 12a for supplying a welding current (first welding current) in contact with the supplied first wire 110 is provided. The first welding unit 10 further includes a reel (not shown) around which the first wire 110 is wound and which is a supply source of the first wire 110.
 また、第2溶接ユニット20は、図中上方から下方に向かう供給方向Bに沿って第2ワイヤ120を送給する第2送給ローラ21aを備えた第2送給装置21と、送給されてくる第2ワイヤ120に接触して溶接電流(第2溶接電流)を供給する第2コンタクトチップ22aと接続された第2溶接電源22とを有する。また、第2溶接ユニット20は、第2ワイヤ120が巻き回されるとともに第2ワイヤ120の供給元となるリール(図示せず)をさらに備える。 In addition, the second welding unit 20 is fed by a second feeding device 21 provided with a second feeding roller 21 a that feeds the second wire 120 along a feeding direction B which is directed downward from above in the drawing. And a second welding power source 22 connected to a second contact tip 22a for supplying a welding current (second welding current) in contact with the coming second wire 120. The second welding unit 20 further includes a reel (not shown) around which the second wire 120 is wound and which is a supply source of the second wire 120.
 さらに、第3溶接ユニット30は、図中上方から下方に向かう供給方向Bに沿って第3ワイヤ130を送給する第3送給ローラ31aを備えた第3送給装置31と、送給されてくる第3ワイヤ130に接触して溶接電流(第3溶接電流)を供給する第3コンタクトチップ32aと接続された第3溶接電源32とを有する。また、第3溶接ユニット30は、第3ワイヤ130が巻き回されるとともに第3ワイヤ130の供給元となるリール(図示せず)をさらに備える。 Furthermore, the third welding unit 30 is fed with a third feeding device 31 provided with a third feeding roller 31a that feeds the third wire 130 along the feeding direction B from the upper side to the lower side in the drawing. And a third welding power source 32 connected to a third contact tip 32a for supplying a welding current (third welding current) in contact with the coming third wire 130. The third welding unit 30 further includes a reel (not shown) around which the third wire 130 is wound and which is a supply source of the third wire 130.
 さらにまた、第4溶接ユニット40は、図中上方から下方に向かう供給方向Bに沿って第4ワイヤ140を送給する第4送給ローラ41aを備えた第4送給装置41と、送給されてくる第4ワイヤ140に接触して溶接電流(第4溶接電流)を供給する第4コンタクトチップ42aと接続された第4溶接電源42とを有する。また、第4溶接ユニット40は、第4ワイヤ140が巻き回されるとともに第4ワイヤ140の供給元となるリール(図示せず)をさらに備える。 Furthermore, the fourth welding unit 40 includes a fourth feeding device 41 having a fourth feeding roller 41a that feeds the fourth wire 140 along the feeding direction B from the upper side to the lower side in the drawing, And a fourth welding power source 42 connected to a fourth contact tip 42a for supplying a welding current (fourth welding current) in contact with the fourth wire 140. In addition, the fourth welding unit 40 further includes a reel (not shown) around which the fourth wire 140 is wound and which is a supply source of the fourth wire 140.
 なお、本実施の形態の溶接装置1においては、台車90に第1溶接電源12、第2溶接電源22、第3溶接電源32および第4溶接電源42を搭載し、台車90とともにこれら第1溶接電源12~第4溶接電源42を走行させるように構成しているが、これに限られるものではない。例えば、これら第1溶接電源12~第4溶接電源42を台車90の外部に固定して配置し、ケーブル等を用いて第1溶接電源12~第4溶接電源42と台車90上の各構成要素とを接続するようにしてもかまわない。 In the welding apparatus 1 of the present embodiment, the first welding power source 12, the second welding power source 22, the third welding power source 32, and the fourth welding power source 42 are mounted on the carriage 90, and the first welding together with the carriage 90. Although the power source 12 to the fourth welding power source 42 are configured to travel, the present invention is not limited to this. For example, the first welding power source 12 to the fourth welding power source 42 are fixed to the outside of the carriage 90 and disposed, and the respective components on the first welding power source 12 to the fourth welding power source 42 and the carriage 90 using cables etc. And may be connected.
 また、第1フラックス供給装置70は、内部に収容した表フラックスを図中下方に向けて供給する第1フラックス供給口70aを備えている。そして、第1フラックス供給装置70による表フラックスの供給量は、第1フラックス供給装置70に設けられたバルブ(図示せず)によって調整される。 Further, the first flux supply device 70 is provided with a first flux supply port 70a for supplying the front flux accommodated inside toward the lower side in the drawing. Then, the amount of front flux supplied by the first flux supply device 70 is adjusted by a valve (not shown) provided in the first flux supply device 70.
 さらに、第2フラックス供給装置80は、内部に収容した表フラックスを図中下方に向けて供給する第2フラックス供給口80aを備えている。そして、第2フラックス供給装置80による表フラックスの供給量は、第2フラックス供給装置80に設けられたバルブ(図示せず)によって調整される。 Furthermore, the second flux supply device 80 is provided with a second flux supply port 80a for supplying the front flux contained therein toward the lower side in the drawing. The amount of front flux supplied by the second flux supply device 80 is adjusted by a valve (not shown) provided in the second flux supply device 80.
 この溶接装置1では、移動方向Aからみて、最下流側に1電極目となる第1ワイヤ110が、第1ワイヤ110よりも上流側に2電極目となる第2ワイヤ120が、第2ワイヤ120よりも上流側に3電極目となる第3ワイヤ130が、第3ワイヤ130よりも下流側且つ最上流側に4電極目となる第4ワイヤ140が、それぞれ配置されている。また、この溶接装置1において、第1フラックス供給装置70は移動方向Aからみて第1ワイヤ110よりも下流側に、第2フラックス供給装置80は移動方向Aからみて第2ワイヤ120よりも上流側且つ第3ワイヤ130よりも下流側に、それぞれ配置されている。そして、溶接装置1を図中上方からみたときに、第1フラックス供給口70a、第1ワイヤ110、第2ワイヤ120、第2フラックス供給口80a、第3ワイヤ130および第4ワイヤ140は、移動方向Aに沿う直線に沿って、この順に並べられている。 In the welding device 1, the first wire 110 which is the first electrode at the most downstream side with respect to the movement direction A is a second wire 120 whose second electrode is the second electrode at the upstream side of the first wire 110. A third wire 130 serving as the third electrode is disposed upstream of 120 and a fourth wire 140 serving as the fourth electrode downstream of the third wire 130 and on the most upstream side. Further, in the welding device 1, the first flux supply device 70 is downstream of the first wire 110 in the moving direction A, and the second flux supply device 80 is upstream of the second wire 120 in the moving direction A. And it arrange | positions downstream of the 3rd wire 130, respectively. When the welding apparatus 1 is viewed from above in the drawing, the first flux supply port 70a, the first wire 110, the second wire 120, the second flux supply port 80a, the third wire 130, and the fourth wire 140 move Along the straight line along the direction A, they are arranged in this order.
 また、この溶接装置1では、第1ワイヤ110~第4ワイヤ140として、それぞれの直径が2.4mm以上且つ6.4mm以下のものを用いている。ここで、第1ワイヤ110~第4ワイヤ140は、4つすべてが同じ直径であってもよいし、3つを同じ直径とする一方で1つを異なる直径としてもよいし、2つを同じ直径とする一方で2つを別の同じ直径としてもよいし、4つすべてを異なる直径としてもよい。 Further, in the welding device 1, as the first wire 110 to the fourth wire 140, those having a diameter of 2.4 mm or more and 6.4 mm or less are used. Here, all four of the first to fourth wires 110 to 140 may have the same diameter, or three may have the same diameter, while one may have a different diameter, or two may be the same. The diameter may be two while the same may be the same diameter, or all four may be different diameters.
 さらに、この溶接装置1で用いる第1ワイヤ110~第4ワイヤ140は、それぞれ、基本的にフラックスを有しないソリッドワイヤで構成される。ただし、これらのうちの1つ以上をフラックス入りワイヤで構成してもかまわない。 Furthermore, each of the first wire 110 to the fourth wire 140 used in the welding device 1 is basically composed of a solid wire having no flux. However, one or more of these may be made of flux cored wire.
 なお、以下の説明では、第1ワイヤ110を含む第1溶接ユニット10を「先行極」、と称することがある。また、第2ワイヤ120を含む第2溶接ユニット20、第3ワイヤ130を含む第3溶接ユニット30および第4ワイヤ140を含む第4溶接ユニット40を「後行極」、と総称することがある。さらに、第2ワイヤ120を含む第2溶接ユニット20を「第1中間極」、第3ワイヤ130を含む第3溶接ユニット30を「第2中間極」、第4ワイヤ140を含む第4溶接ユニット40を「最終極」、と称することがある。 In the following description, the first welding unit 10 including the first wire 110 may be referred to as a "leading electrode". In addition, the second welding unit 20 including the second wire 120, the third welding unit 30 including the third wire 130, and the fourth welding unit 40 including the fourth wire 140 may be collectively referred to as a "following electrode". . Furthermore, the second welding unit 20 including the second wire 120 is a “first intermediate pole”, the third welding unit 30 including the third wire 130 is a “second intermediate pole”, and a fourth welding unit including a fourth wire 140 40 may be referred to as the "last pole".
 図2は、溶接装置1を構成する第1溶接ユニット10~第4溶接ユニット40のそれぞれにおける溶接電源(第1溶接電源12~第4溶接電源42)および送給装置(第1送給装置11~第4送給装置41)の構成を説明するための図である。ここで、図2は、各溶接ユニットと、各溶接電源における給電方式および外部特性と、各送給装置におけるワイヤ速度制御方式との関係を示している。 2 shows welding power sources (first welding power source 12 to fourth welding power source 42) and feeding devices (first feeding device 11) in each of the first welding unit 10 to fourth welding unit 40 constituting welding apparatus 1. FIG. 7 is a diagram for explaining the configuration of the fourth to fourth feeding devices 41). Here, FIG. 2 shows the relationship between each welding unit, the power supply system and external characteristics in each welding power source, and the wire speed control system in each feeder.
 まず、第1溶接ユニット10について説明を行う。
 第1溶接ユニット10を構成する第1溶接電源12は、給電方式としてDC(Direct Current)を採用した直流電源であり、その外部特性は定電圧特性である。また、第1送給装置11は、ワイヤ速度制御方式として、第1ワイヤ110を一定速度で送給する定速制御を行う。
First, the first welding unit 10 will be described.
The first welding power source 12 constituting the first welding unit 10 is a DC power source adopting DC (Direct Current) as a power feeding method, and the external characteristic thereof is a constant voltage characteristic. Further, the first feeding device 11 performs constant speed control for feeding the first wire 110 at a constant speed as a wire speed control method.
 次に、第2溶接ユニット20について説明を行う。本実施の形態において、第2溶接ユニット20は、以下に説明する5つの組み合わせ(第1構成~第5構成)のうちのいずれか1つによって構成される。 Next, the second welding unit 20 will be described. In the present embodiment, the second welding unit 20 is configured by any one of the five combinations (first configuration to fifth configuration) described below.
(a)第1構成
 第1構成における第2溶接電源22は、給電方式としてDC(Direct Current)を採用した直流電源であり、その外部特性は定電圧特性である。また、第1構成における第2送給装置21は、ワイヤ速度制御方式として、第2ワイヤ120を一定速度で送給する定速制御を行う。このように、第1構成は、第1溶接ユニット10と同じ組み合わせとなっている。
(A) First Configuration The second welding power source 22 in the first configuration is a DC power source adopting DC (Direct Current) as a power feeding method, and the external characteristic thereof is a constant voltage characteristic. In addition, the second feeding device 21 in the first configuration performs constant speed control for feeding the second wire 120 at a constant speed as a wire speed control method. Thus, the first configuration is the same combination as the first welding unit 10.
(b)第2構成
 第2構成における第2溶接電源22は、給電方式としてACを採用した交流電源であり、その外部特性は定電圧特性である。また、第2構成における第2送給装置21は、ワイヤ速度制御方式として、第2ワイヤ120を一定速度で送給する定速制御を行う。
(B) Second Configuration The second welding power source 22 in the second configuration is an AC power source adopting AC as a power feeding method, and its external characteristic is a constant voltage characteristic. Further, the second feeding device 21 in the second configuration performs constant speed control for feeding the second wire 120 at a constant speed as a wire speed control method.
(c)第3構成
 第3構成における第2溶接電源22は、給電方式としてACを採用した交流電源であり、その外部特性は定電流特性である。また、第3構成における第2送給装置21は、ワイヤ速度制御方式として、アーク電圧に基づくフィードバック制御によって第2ワイヤ120を逐次適切な速度で送給する電圧FB(Feed Back)変速制御を行う。
(C) Third Configuration The second welding power source 22 in the third configuration is an AC power source adopting AC as a power feeding method, and its external characteristic is a constant current characteristic. In addition, the second feeding device 21 in the third configuration performs voltage FB (Feed Back) shift control to sequentially feed the second wire 120 at an appropriate speed by feedback control based on arc voltage as a wire speed control method. .
(d)第4構成
 第4構成における第2溶接電源22は、給電方式としてACを採用した交流電源であり、その外部特性は垂下特性である。また、第4構成における第2送給装置21は、ワイヤ速度制御方式として、アーク電圧に基づくフィードバック制御によって第2ワイヤ120を逐次適切な速度で送給する電圧FB変速制御を行う。
(D) Fourth Configuration The second welding power source 22 in the fourth configuration is an AC power source adopting AC as a power feeding method, and its external characteristic is a drooping characteristic. In addition, the second feeding device 21 in the fourth configuration performs voltage FB shift control that feeds the second wire 120 at an appropriate speed sequentially by feedback control based on an arc voltage as a wire speed control method.
(e)第5構成
 第5構成における第2溶接電源22は、給電方式としてDCを採用した直流電源であり、その外部特性は定電流特性である。また、第5構成における第2送給装置21は、ワイヤ速度制御方式として、アーク電圧に基づくフィードバック制御によって第2ワイヤ120を逐次適切な速度で送給する電圧FB変速制御を行う。
(E) Fifth Configuration The second welding power source 22 in the fifth configuration is a DC power source adopting DC as a power feeding method, and the external characteristic thereof is a constant current characteristic. Moreover, the 2nd sending apparatus 21 in 5th structure performs voltage FB shift control which feeds the 2nd wire 120 one by one at an appropriate speed one by one by feedback control based on arc voltage as a wire speed control system.
 また、第3溶接ユニット30および第4溶接ユニット40については、第2溶接ユニット20と同じく、上述した第1構成(a)~第5構成(e)のうちの、いずれか1つによって構成することができる。ここで、第2溶接ユニット20、第3溶接ユニット30および第4溶接ユニット40は、3つすべてを同じ構成としてもよいし、2つを同じ構成とする一方で1つを異なる構成としてもよいし、3つすべてをそれぞれ異なる構成としてもよい。 Further, as with the second welding unit 20, the third welding unit 30 and the fourth welding unit 40 are configured by any one of the first configuration (a) to the fifth configuration (e) described above. be able to. Here, all three of the second welding unit 20, the third welding unit 30, and the fourth welding unit 40 may have the same configuration, or two may have the same configuration and one may have a different configuration. And all three may be configured differently.
 なお、第1ワイヤ110~第4ワイヤ140の送給速度は、台車90の移動方向Aへの移動速度(溶接速度)に基づいて決めることができる。例えば定速制御の場合には、溶接速度に基づいて送給速度の基準値を作業者が決め、この送給速度の基準値を維持するように定速制御を行う。また、例えば電圧FB変速制御の場合には、溶接速度を基準として送給速度の基準値を作業者が決め、送給速度の基準値に対し、アーク電圧をフィードバックさせて変速制御を行う。 The feed speed of the first wire 110 to the fourth wire 140 can be determined based on the moving speed (welding speed) of the carriage 90 in the moving direction A. For example, in the case of constant speed control, the operator determines the reference value of the feed speed based on the welding speed, and performs constant speed control so as to maintain the reference value of the feed speed. Further, for example, in the case of voltage FB shift control, the operator determines the reference value of the feed speed with reference to the welding speed, and performs the shift control by feeding back the arc voltage to the reference value of the feed speed.
 次に、上述した各溶接電源の外部特性について説明を行う。
 図3は、溶接電源の外部特性を説明するための図である。ここで、図3(a)は定電圧特性を、図3(b)は定電流特性を、図3(c)は垂下特性を、それぞれ例示している。また、図3(a)~(c)のそれぞれにおいて、横軸は出力電流I(A)であり、縦軸は出力電圧V(V)である。溶接電源に入力される電流または電圧の指示に応じて外部特性曲線は移動(変化)する。図3(a)には4段階の指示電圧に対応する外部特性曲線を、また、図3(b)~(c)には4段階の指示電流に対応する外部特性曲線を、それぞれ例示している。なお、溶接電源の場合、出力電流Iは溶接電流に対応し、出力電圧Vはアーク電圧にその他の電圧ロス要因(ケーブル内消費、接点抵抗等)を加えた合計値に対応する。
Next, the external characteristics of the above-described welding power sources will be described.
FIG. 3 is a diagram for explaining the external characteristics of the welding power source. Here, FIG. 3 (a) illustrates a constant voltage characteristic, FIG. 3 (b) illustrates a constant current characteristic, and FIG. 3 (c) illustrates a drooping characteristic. Further, in each of FIGS. 3A to 3C, the horizontal axis is the output current I (A), and the vertical axis is the output voltage V (V). The external characteristic curve moves (changes) in accordance with the indication of the current or voltage input to the welding power source. In FIG. 3 (a), an external characteristic curve corresponding to four steps of indicator voltages is illustrated, and in each of FIGS. 3 (b) to (c), an external characteristic curve corresponding to four stages of indicator currents is illustrated. There is. In the case of a welding power source, the output current I corresponds to the welding current, and the output voltage V corresponds to the sum of the arc voltage plus other voltage loss factors (consumption in the cable, contact resistance, etc.).
 まず、図3(a)に示す定電圧特性について説明を行う。
 定電圧特性の場合、出力電流Iの変動に対して出力電圧Vの変動が小さくなっている。
First, the constant voltage characteristics shown in FIG. 3A will be described.
In the case of the constant voltage characteristic, the fluctuation of the output voltage V is smaller than the fluctuation of the output current I.
 次に、図3(b)に示す定電流特性について説明を行う。
 定電流特性の場合、出力電流Iの変動に対して出力電圧Vの変動が大きくなっている。これを逆の観点からみれば、定電流特性では、出力電圧Vが大きく変動しても出力電流Iの変動は小さいということになる。
Next, the constant current characteristics shown in FIG. 3B will be described.
In the case of the constant current characteristic, the fluctuation of the output voltage V is large relative to the fluctuation of the output current I. From the opposite point of view, in the constant current characteristic, even if the output voltage V fluctuates significantly, the fluctuation of the output current I is small.
 続いて、図3(c)に示す垂下特性について説明を行う。
 垂下特性の場合、定電流特性の場合と同様に、出力電流Iの変動に対して出力電圧Vの変動が大きくなっている。ただし、垂下特性の場合は、定電流特性の場合に比べて、出力電圧Vの変動は緩やかであり、かつ電流値によって変化する。
Subsequently, the drooping characteristic shown in FIG. 3C will be described.
In the case of the drooping characteristic, as in the case of the constant current characteristic, the fluctuation of the output voltage V is large relative to the fluctuation of the output current I. However, in the case of the drooping characteristic, the fluctuation of the output voltage V is gentler than that of the constant current characteristic, and changes depending on the current value.
 ここで、図3(a)~(c)には、それぞれの外部特性とともに、アーク長Lのアークを発生させるためのアーク特性も示している。それぞれにおいて、いずれかの外部特性の曲線とアーク特性の曲線との交点が、目的とするアーク長Lのアークを発生させる動作点P(特定の出力電流Iおよびこれに対応する特定の出力電圧V)となる。なお、以下の説明では、目的とするアーク長Lのアークを発生させるための動作点Pにおける、電流に対する電圧の傾きを微分値dV/dIと呼ぶ。 Here, FIGS. 3 (a) to 3 (c) show arc characteristics for generating an arc of arc length L, as well as the respective external characteristics. In each of them, an operating point P at which a point of intersection of the curve of any external characteristic and the curve of the arc characteristic generates an arc of a desired arc length L (a specific output current I and a corresponding specific output voltage V ). In the following description, the inclination of the voltage with respect to the current at the operating point P for generating an arc of the target arc length L is referred to as a differential value dV / dI.
 ここで、垂下特性や定電流特性を有する溶接電源は、溶込み深さの変動が少ないとされており、サブマージアーク溶接には好適とされている。ただし、垂下特性や定電流特性を有する溶接電源ではアーク電圧が変化しやすいことから、電圧FB変速制御によるワイヤの送給と組み合わせることが一般的である。垂下特性や定電流特性を有する溶接電源と電圧FB変速制御とを組み合わせた場合には、アーク長Lが短くなれば、アーク電圧の低下
に応じてワイヤの送給速度を下げることでアーク長Lが元の長さに戻り、一方、アーク長Lが長くなれば、アーク電圧の上昇に応じてワイヤの送給速度を上げることでアーク長Lが元の長さに戻る、ということになる。
Here, a welding power source having a drooping characteristic and a constant current characteristic is considered to have little variation in penetration depth, and is suitable for submerged arc welding. However, in a welding power supply having a drooping characteristic and a constant current characteristic, since the arc voltage is easily changed, it is generally combined with the feeding of the wire by the voltage FB shift control. When combining welding power source having drooping characteristics and constant current characteristics with voltage FB shift control, if the arc length L becomes short, the arc length L is lowered by decreasing the wire feeding speed according to the decrease of the arc voltage. Is returned to the original length, and when the arc length L is increased, the arc length L is returned to the original length by increasing the wire feeding speed according to the increase of the arc voltage.
 一方、定電圧特性を有する溶接電源は、細径のワイヤを用いるマグ溶接やミグ溶接には好適とされている。また、定電圧特性を有する溶接電源は、直径2.0mm以下のワイヤを用いたサブマージアーク溶接に用いられることもある。ただし、定電圧特性を有する溶接電源では溶接電流が変化しやすいことから、定速制御によるワイヤの送給と組み合わせることが一般的である。定電圧特性を有する溶接電源と定速制御とを組み合わせた場合には、アーク長Lが短くなれば、溶接電流が自動的に大きくなることでアーク長Lが元の長さに戻り、一方、アーク長が長くなれば、溶接電流が自動的に小さくなることでアーク長Lが元の長さに戻る、ということになる。 On the other hand, a welding power source having a constant voltage characteristic is considered to be suitable for mag welding or mig welding using a small diameter wire. Also, a welding power source having constant voltage characteristics may be used for submerged arc welding using a wire of 2.0 mm or less in diameter. However, in welding power sources having constant voltage characteristics, welding current is likely to change, so it is generally combined with wire feeding by constant speed control. When welding power source having constant voltage characteristics and constant speed control are combined, if the arc length L becomes short, the welding current automatically increases and the arc length L returns to the original length, while, If the arc length is increased, the welding current is automatically reduced, whereby the arc length L returns to the original length.
 ではここで、本実施の形態の多電極片面サブマージアーク溶接方法における溶接条件の特徴について説明を行っておく。 Here, the features of the welding conditions in the multi-electrode single-sided submerged arc welding method of the present embodiment will be described.
<各ワイヤの直径について>
 片面サブマージアーク溶接法では、強いアーク力で開先を溶かし、裏波ビードを形成する必要がある。ただし単に溶接電流が高ければ良いというものでなく、高速送給でワイヤを沢山溶かすとアーク直下に湯溜まりが形成されてしまい、自らアーク力を緩衝させてしまい、溶込みを小さくしてしまう。したがって、溶接電流は高くするが、ワイヤ溶融量は多くしないのが望ましく、この条件を適えるのは電流密度(A/mm2)の低い条件、すなわちワイヤ径を太くするとともに、ワイヤを低速で送給することが好適である。ガスシールドアーク溶接では一般的に直径1.6mm以下となる細径のワイヤが用いられるが、片面サブマージアーク溶接用としては、直径2.4mm以上のワイヤが好適である。さらに望ましくは直径3.2mm以上、さらには直径4.8mm以上のワイヤを用いることが望ましい。上限を設ける技術的制限は特にないが、ワイヤの送給性や切断性の点から直径6.4mm以下までが実用的である。
<About the diameter of each wire>
In the single-sided submerged arc welding method, it is necessary to melt the groove with a strong arc force to form a back wave bead. However, it does not mean that the welding current is simply high, but if a lot of wires are melted by high-speed feeding, a pool will be formed directly under the arc, which will buffer the arcing force itself and reduce the penetration. Therefore, it is desirable to increase the welding current, but not to increase the wire melting amount, and it is desirable to meet this condition at low current density (A / mm 2 ), that is, increase the wire diameter and slow the wire It is preferable to feed. In the case of gas shielded arc welding, generally, a thin wire having a diameter of 1.6 mm or less is used, but for single sided submerged arc welding, a wire having a diameter of 2.4 mm or more is preferable. More preferably, it is desirable to use a wire having a diameter of 3.2 mm or more, and further, a diameter of 4.8 mm or more. There is no particular technical limitation in setting the upper limit, but a diameter of 6.4 mm or less is practical from the viewpoint of wire feedability and cuttability.
<電極の数について>
 先行極は開先を深く溶かして、溶融池および裏波ビードを形成する役目があり、溶接条件はこの役割に特化するため、例え母材の板厚が薄くて、溶融池が母材の表面に達したとしても、単電極では表ビード外観が良好とならない。これに対し、最終極は主に表ビードの外観を整えるための役割を持つため、先行極とは異なる溶接条件となる。このように片面サブマージアーク溶接では役割分担をする必要があることから、2本以上のワイヤを用いた複数電極化が必須である。一般的には、鋼板の板厚が厚くなるにつれてワイヤの数は増える。電極の数に上限を設ける技術的制限は特にないが、片面溶接用としては、例えば図1に示す4電極システムまで実用化されている。
<About the number of electrodes>
The leading electrode has a function to melt the groove deeply to form a molten pool and a back wave bead, and since the welding conditions are specialized in this role, the thickness of the base material is thin, for example, the molten pool is the base material Even if the surface is reached, the surface bead appearance is not good with a single electrode. On the other hand, since the final pole mainly plays a role in adjusting the appearance of the front bead, welding conditions are different from those of the leading pole. As described above, in the single-sided submerged arc welding, since it is necessary to share roles, it is essential to form a plurality of electrodes using two or more wires. Generally, the number of wires increases as the thickness of the steel plate increases. There is no particular technical limitation in which an upper limit is imposed on the number of electrodes, but for single-sided welding, for example, a 4-electrode system shown in FIG. 1 has been put to practical use.
 それぞれの極間には適度な間隔が設けられる。板厚や溶接速度、用いる溶接機やワイヤ送給の各種制御によって一概ではなく、適宜調整されるものである。なお、極間によってはフラックスの供給口(図1に示す第1フラックス供給口70aや第2フラックス供給口80a)が設けられる場合もある。 An appropriate distance is provided between the respective electrodes. The thickness and welding speed, and various controls of the welding machine and the wire feeding used are not uniform but are appropriately adjusted. Depending on the distance between the electrodes, a flux supply port (a first flux supply port 70a and a second flux supply port 80a shown in FIG. 1) may be provided.
<先行極におけるワイヤ速度制御方式、外部特性および給電方式について>
[先行極におけるワイヤ速度制御方式について]
 多電極片面サブマージアーク溶接において、先行極は、主として裏波ビードを形成するために用いられる。本発明者らは、裏波溶接では溶込みの駆動力が顕著に裏波品質に影響を及ぼし、裏波ビードの過剰あるいは裏波不足になりやすいことを見いだした。そして、本発明者らは溶込みの駆動力について実験を重ね、一般的な継手では電流および電圧因子
で正しいが、片面溶接ではこれらではなく、ワイヤの送給速度が最も影響度が大きいことを見いだした。
<About wire speed control method at the leading electrode, external characteristics and power supply method>
[About wire speed control method at leading electrode]
In multi-electrode single-sided submerged arc welding, the leading electrode is mainly used to form a back bead. The inventors of the present invention found that in back wave welding, the driving force of penetration significantly affects the back wave quality, and is likely to result in excess or lack of back wave beads. Then, the present inventors repeated experiments on the driving force of penetration, and it is correct in current and voltage factors in general joints, but not in single-sided welding, the wire feeding speed has the largest influence. I found it.
 すなわち、ワイヤの送給速度が過剰であれば、ワイヤは鋼板裏面に表面張力主体で支えられている溶融池を容易に押し下げ、過剰裏波を形成する。さらに送給速度が速ければワイヤが溶融池を突き破ってしまうこともある。 That is, if the wire feeding speed is excessive, the wire easily depresses the molten pool supported mainly by the surface tension on the back surface of the steel plate to form an excess back wave. Furthermore, if the feed speed is high, the wire may break through the molten pool.
 逆にワイヤの送給速度が不足すれば、溶融池は鋼板裏面から押されることなく、裏波不足になる。これらの現象は理論上、不可避的に生じるアーク長Lの変化に対し、タイムロスなしにワイヤの送給速度が反応し、アーク長Lを元に戻すことが出来れば生じないはずである。しかしながら、実際にはワイヤを送給するワイヤモータは工業製品であり、反応にはある程度の遅延が生じる。この反応時間の遅延に対し、裏波ビードの高さは堅牢な性質を有しておらず、容易にその変化の影響を受けてしまうのである。 Conversely, if the wire feeding speed is insufficient, the molten pool will not be pushed from the back surface of the steel plate, resulting in a back wave shortage. In principle, these phenomena should not occur if the wire feed speed reacts without time loss and the arc length L can be returned to the inevitable change in the arc length L. However, in practice, the wire motor that feeds the wire is an industrial product, and the reaction is delayed to some extent. With respect to the delay of the reaction time, the height of the back bead is not robust and is easily influenced by the change.
 この問題を鑑み、裏波溶接を形成するに影響を及ぼす先行極には、電流や電圧が変化しても送給速度には影響を及ぼさず、送給速度一定とする制御(定速制御)が望ましいことを明らかにした。上述したとおり、これまで太径サブマージアーク溶接ではワイヤ送給一定制御は従来不適とされている制御法である。この理由としては、太径ワイヤは全断面が一様に溶融し難く、結果としてワイヤ溶融速度が不安定化し、ひいてはアーク長Lの安定化も期待できないからである。しかしながら、片面溶接で裏波ビードを形成する場合に限っては、むしろアーク長Lの安定化よりも送給速度安定化のほうが、形状安定化効果が高い。 In view of this problem, the leading electrode that affects the formation of the back wave welding does not affect the feeding speed even if the current or voltage changes, and controls to make the feeding speed constant (constant speed control) Revealed that it is desirable. As described above, in the large diameter submerged arc welding, the wire feed constant control is a control method which has hitherto been unsuitable. The reason for this is that the large diameter wire is difficult to melt uniformly across the entire cross section, and as a result, the wire melting rate becomes unstable, and consequently the stabilization of the arc length L can not be expected either. However, only in the case of forming the back wave bead by single-sided welding, the feed speed stabilization has a higher shape stabilization effect than the stabilization of the arc length L.
[先行極における外部特性について]
 次に、先行極の外部特性であるが、従来技術としては垂下特性が常識的である。垂下特性は上述のとおり、電圧値の変動に対して電流値の変動が小さい。構造がシンプルで安価、メンテナンスが容易な溶接機構造として、エレクトロニクス素子を用いず、漏洩リアクタンスを利用した鉄芯可動式溶接機が旧来から用いられているが、この方式では垂下特性しか作れなかったという時代的な事情もある。
[On the external characteristics of the leading electrode]
Next, regarding the external characteristics of the leading electrode, the drooping characteristics are common sense in the prior art. As described above, the drooping characteristics show small variation in current value with respect to variation in voltage value. A movable iron core movable welding machine that uses leakage reactance without using electronic elements as a welding machine structure that has a simple structure, is inexpensive, and easy to maintain, has been used since old times, but with this method only drooping characteristics could be made There are also historical circumstances of that.
 電流値が溶込み深さに最も影響を及ぼす非裏波溶接への適用においては溶込み安定化に有効である一方、裏波溶接における裏波ビードの形状安定化には、電流値の変動は影響因子として上位ではない。一方、アーク長Lも送給速度の変動に比べると裏波安定化への影響は大きくないものの、過剰にアーク長Lが急変した場合は悪影響をもたらす。例えばアーク長Lがゼロ、すなわちアークが消失すると溶接自体が止まってしまう、あるいは再点弧の際に爆発的にアークが発生するので、その力で裏波ビードを正常に形成できなくなる。一方、アーク長Lが過剰になると、やはりアークが維持出来ず直後にアークが消失したり、単位面積当たりのアーク力が減ったりして裏波ビードを形成できなくなる。 In the application to non-sing wave welding where the current value most affects the penetration depth, it is effective for penetration stabilization, while for the shape stabilization of the back wave bead in the back wave welding, the fluctuation of the current value is It is not high rank as an influence factor. On the other hand, although the arc length L also has less influence on back wave stabilization than the fluctuation of the feeding speed, an excessive sudden change of the arc length L brings an adverse effect. For example, if the arc length L is zero, that is, the arc disappears, the welding itself stops or the arc is generated explosively at the time of reignition, so that the back bead can not be formed normally by the force. On the other hand, if the arc length L becomes excessive, the arc can not be maintained, the arc disappears immediately after that, or the arc force per unit area decreases, and the back wave bead can not be formed.
 さらに、溶接ビード形状の不整、磁気吹きの影響を受けた蛇行、母材をえぐってしまうアンダカットといった欠陥発生をもたらす。つまりアーク長Lの安定化制御は必要である。 In addition, defects such as irregularities in the shape of the weld bead, meandering affected by the magnetic blow, and undercuts that sweep the base material occur. That is, stabilization control of the arc length L is necessary.
 裏波安定化のために送給速度一定を前提とすると、アーク長Lを安定化させる手段として送給速度制御以外の制御対象が必要となる。消耗電極式溶接ワイヤの溶融速度は式(1)で表されることが知られており、二乗となっている電流値(溶接電流I)が最も影響度が大きいことが示唆される。 Assuming that the feed speed is constant for back wave stabilization, a control target other than feed speed control is required as a means for stabilizing the arc length L. It is known that the melting rate of the consumable electrode type welding wire is expressed by the equation (1), and it is suggested that the current value (welding current I) which is a square has the largest influence.
 Mw=K1・I+K2・I2・ρ・L …(1)
  Mw:ワイヤ溶融速度
  I:溶接電流
  ρ:電気抵抗率
  L:ワイヤ突出し長さ
  K1、K2:定数
Mw = K1 · I + K2 · I 2 · ・ · L (1)
Mw: wire melting rate I: welding current :: electrical resistivity L: wire protrusion length K1, K2: constant
 これより、送給速度一定を前提としてアーク長Lを安定化させる手段としては、溶接電流Iを積極的に変化させることが効果的となる。例えば、アーク長Lが短くなれば溶接電流Iを急上昇させることでワイヤ溶融速度Mwが低下し、アーク長Lは元に戻る。一方、アーク長Lが長くなれば電流を急低下させることでワイヤ溶融速度Mwが上昇し、やはりアーク長Lは戻るのである。この現象は一般的にアーク長の自己制御作用と呼ばれている。アーク長の自己制御作用には電流の急峻な変化が必要であり、これを実現する外部特性は定電圧特性だけである。したがって、裏波溶接を安定化するために必要なワイヤ送給速度一定を実現するため、間接的因子として、先行極に対応する溶接電源の外部特性が定電圧特性である必要がある。 From this, it is effective to actively change the welding current I as a means for stabilizing the arc length L on the assumption that the feed speed is constant. For example, if the arc length L becomes short, the wire melting speed Mw decreases by rapidly raising the welding current I, and the arc length L returns to the original state. On the other hand, if the arc length L is increased, the wire melting speed Mw is increased by rapidly reducing the current, and the arc length L is also returned. This phenomenon is generally referred to as the arc length self-control function. The self-control function of the arc length requires a sharp change in current, and the external characteristic to realize this is only the constant voltage characteristic. Therefore, in order to realize the constant wire feeding speed necessary to stabilize back wave welding, it is necessary as an indirect factor that the external characteristics of the welding power source corresponding to the leading electrode be constant voltage characteristics.
 このような『ワイヤ速度制御:定速』および『外部特性:定電圧特性』の組合せは、直径1.6mm以下の細いワイヤによるガスシールドアーク溶接法で用いられている。これは、ワイヤが細いゆえに溶融性が優れるため、アーク長の自己制御作用が非常に有効となるからである。しかしながら、直径2.4mm以上となるワイヤでは、これよりも細いワイヤに比べて溶融性が劣るため、非片面溶接に用いるとアーク長の自己制御作用は俊敏には作用せず、アークおよびビード形状不安定をもたらすのである。 Such a combination of “wire speed control: constant speed” and “external property: constant voltage property” is used in a gas shielded arc welding method using a thin wire having a diameter of 1.6 mm or less. This is because the wire is thin and the meltability is excellent, so the self-control action of the arc length is very effective. However, in a wire with a diameter of 2.4 mm or more, the meltability is inferior to a wire thinner than this, so when used for non-single-sided welding, the self-control function of the arc length does not act quickly and arc and bead shapes It causes instability.
[先行極における給電方式について]
 続いて、先行極の給電方式であるが、片面溶接の先行極には直流が必須である。交流では必ず電流ゼロ、すなわちアーク消失状態が周期的に発生する。非片面溶接、あるいは片面溶接での後行極すなわち2電極目以降であれば、短時間のアーク消失は溶接品質への影響は軽微であるが、先行極では裏波の安定化に強く影響を及ぼし、不安定化要因となる。アークが速やかに再点弧しなければ、固体のワイヤが溶融池を押し下げ、裏波過剰状態となる。
[About the feeding method at the leading electrode]
Then, although it is a feed system of a leading electrode, direct current is essential for the leading electrode of single-sided welding. In alternating current, current zero, that is, an arc extinguishing state occurs periodically. In the case of the trailing electrode in non-single-sided welding or single-sided welding, that is, after the second electrode, short-time arc disappearance has a slight effect on the welding quality, but in the leading electrode strongly influences the stabilization of the back wave. Cause destabilization. If the arc does not reignite quickly, the solid wire depresses the molten pool, resulting in a backwash excess.
 以上のような理由により、先行極は、『ワイヤ速度制御:定速』、『外部特性:定電圧特性』および『給電方式:直流』、の組み合わせを採用している。 For the above reasons, the leading electrode adopts a combination of “wire speed control: constant speed”, “external characteristic: constant voltage characteristic” and “feed method: direct current”.
 なお、現在最も普及している大電流サブマージアーク溶接機は、安価な鉄芯稼働式による交流機である。この方式では必然的に外部特性は垂下特性となる。これに対し、直流を生成するにはサイリスタ素子を用いれば、大電流の直流が得られ、また外部特性も定電圧特性とすることが可能である。さらに、最近では熱に弱く大電流出力が難しかったインバータ式溶接機も大電流出力を特長とするものが開発され、これを用いれば非常に優れた直流特性を得ることができる。 In addition, the high current submerged arc welding machine which is most popular at present is an alternating current machine by an inexpensive iron core operation type. In this method, the external characteristics inevitably become drooping characteristics. On the other hand, if a thyristor element is used to generate direct current, a large current direct current can be obtained, and the external characteristics can also be made constant voltage characteristics. Furthermore, recently, inverter welding machines which are weak to heat and difficult to produce large current outputs have also been developed which are characterized by large current outputs, and if this is used, very excellent DC characteristics can be obtained.
<後行極におけるワイヤ速度制御方式、外部特性および給電方式について>
 多電極片面サブマージアーク溶接では視認することが出来ないものの、鋼板上に堆積した表フラックスの中で形成されている溶融池は、基本的にすべてのワイヤの溶融金属が繋がったワンプールと呼ばれる長大な液体金属である。上述したとおり、先行極が裏波ビードの形状に対して最大の影響度を有するが、ワンプールであれば、影響度としては相対的に小さくなるものの、後行極もまた裏波ビードの形状に影響を及ぼすことになる。例えば、先行極となる1電極目で良好な形状の液体状態の裏波ビードを形成できたとしても、後行極となる2電極目以降で1電極目が形成した溶融池を裏面側に押し出すように作用すれば、最終的な凝固状態の裏波ビードは不整なものとなる。したがって、2電極目以降にも先行極と同じ、『ワイヤ速度制御:定速』および『外部特性:定電圧特性』を適用することができる。ここで、給電方式は先行極と同じく直流が望ましいが、2電極目以降における極性の影響度は、1電極目に対して相対的に小さくなるので、交流でも実用的となる。
<About wire speed control method, external characteristics and power supply method at trailing electrode>
Although not visible in multi-electrode single-sided submerged arc welding, the molten pool formed in the surface flux deposited on the steel plate is basically a large one called "one pool" where all molten metal wires are connected Liquid metal. As described above, although the leading pole has the largest influence on the shape of the back wave bead, in the case of one pool, although the degree of influence is relatively small, the shape of the trailing bead is also the shape of the back wave bead Will affect the For example, even if a back wave bead in a liquid state in a good shape can be formed by the first electrode that is the leading electrode, the molten pool formed by the first electrode by the second and subsequent electrodes that become the trailing electrode is pushed out to the back side. If so, the final solidified back bead will be irregular. Therefore, the same “wire speed control: constant speed” and “external characteristic: constant voltage characteristic” can be applied to the second and subsequent electrodes. Here, although it is desirable that the feeding method is direct current as in the leading electrode, the degree of influence of polarity in the second and subsequent electrodes is relatively small with respect to the first electrode, so that alternating current is also practical.
 一方、鋼板の板厚が厚くなって電極数も多くなると、1プールとはいえども後行極で形成される溶融池の圧力が多少変化しても、距離的に遠い溶融池の裏面側には大きな影響を及ぼさなくなる。このような場合には、従来から用いられている、『ワイヤ速度制御:電圧FB変速制御』および『外部特性:垂下特性』を適用することもできる。垂下特性の代わりに目標性質が同じである『外部特性:定電流特性』の溶接電源を用いても問題ないことは自明である。後行極は役割として、表ビードの形状を整える必要もあり、この目的では送給速度が変化しても電流値やアーク長Lを優先して安定化させた方が効果的な場合がある。このような要求に対しては、『ワイヤ速度制御:電圧FB変速制御』、『外部特性:垂下特性または定電流特性』、さらにアーク相互干渉や磁気吹きによる偏向が起きにくい『給電方式:交流』の組合せが好適となる。 On the other hand, when the plate thickness of the steel plate becomes thick and the number of electrodes increases, even if the pressure in the molten pool formed by the trailing electrode changes slightly even in one pool, it is on the back side of the molten pool far in distance Will have no major impact. In such a case, “wire speed control: voltage FB shift control” and “external characteristic: droop characteristic” which are conventionally used can also be applied. It is self-evident that there is no problem in using a welding power source of “external characteristics: constant current characteristics” in which the target characteristics are the same instead of the drooping characteristics. The trailing electrode needs to adjust the shape of the front bead as a role, and for this purpose it may be more effective to stabilize by giving priority to the current value and arc length L even if the feed speed changes . To meet such requirements, “Wire speed control: Voltage FB shift control”, “External characteristics: drooping characteristics or constant current characteristics”, and arc mutual interference and deflection by magnetic blow are less likely to occur. A combination of
<その他>
[裏当てについて]
 片面溶接では、一般的に裏波ビードを受け止める溝付の銅製若しくは固体酸化物製の裏当て材が用いられる。なお、固体酸化物とは具体的にはセラミック製あるいはガラスが該当する。ガラスの場合は一般的にガラス繊維を編み込んだテープ状のものが用いられる。何も裏当て材がなければ、過剰なアーク力が初層に作用した際に溶融池を落下させ、アークが消失して溶接続行不能に陥る。何らかの裏当て材を用いていれば、このような最悪の事態は防ぐことが出来る。
<Others>
[About backing]
Grooved copper or solid oxide backings are generally used in single-sided welding to receive the back bead. The solid oxide specifically corresponds to ceramic or glass. In the case of glass, generally, a tape-shaped one in which glass fibers are woven is used. If there is no backing material, the molten pool will fall when excessive arcing force acts on the primary layer, the arc will disappear and welding will not be able to continue. If you use any backing material, you can prevent such a worst case.
 母材となる鋼板底面が密着できていれば、裏波ビードの形状はアーク力が不安定でも安定化するはずだが、実際には大きな鋼板は平らではなく、多少は湾曲したり、波打ちしたりしていることが多いので、必ずしも密着はしない。そこで、不可避的に生じる鋼板底面と裏当て材との間のギャップを埋めるために、裏当てフラックスを事前に散布しておくこともある。そうすると、裏面側の溶融池の垂れ落ちを防ぐことがある程度可能となる。さらには、裏当て材を敷かず、裏当てフラックスを厚く散布し、その下に敷いたエアホースに気体を注入することで裏当てフラックスを押し上げ、密着性を向上する方法もある。この場合、裏当てフラックスには溶融池垂れ落ちを防ぐために硬化性樹脂との粉体積層構造とすることもある。 If the base of the steel plate that is the base material is in close contact, the shape of the back wave bead should stabilize even if the arc force is unstable, but in fact the large steel plate is not flat but slightly curved or wavy They are not always in close contact because they often Therefore, in order to fill the gap between the bottom of the steel plate and the backing material which inevitably occurs, the backing flux may be dispersed in advance. Then, it becomes possible to prevent the dripping of the molten pool on the back side to some extent. Furthermore, there is also a method of pushing up the backing flux by spraying a thick backing flux without injecting a backing material and injecting a gas into an air hose laid under the backing material to improve adhesion. In this case, the backing flux may have a powder laminated structure with a curable resin in order to prevent the molten pool from falling off.
[表フラックスについて]
 サブマージアーク溶接としての最低限の基本構成なので特に説明の必要は無いが、フラックスはホッパーと呼ばれる下にホースの付いた容器(図1に示す第1フラックス供給装置70や第2フラックス供給装置80)に入れられ、溶接進行に伴い、先行極の直前、あるいはさらに必要に応じて電極間に設けたホース先端のフラックス供給口から一定速で散布される。
[Table Flux]
There is no need to explain in particular because it is the minimum basic configuration as submerged arc welding, but the flux is a container with a hose under it called a hopper (the first flux feeder 70 and the second flux feeder 80 shown in FIG. 1) As the welding progresses, it is sprayed at a constant speed from the flux supply port of the hose tip provided between the electrodes immediately before the leading electrode or as required.
[開先充填材について]
 開先内に粉体状の鋼もしくは鋼合金を散布しておくと、溶接時に溶融して溶融金属の一部を形成する。高能率となる効果の他に、ルートギャップが部分的に過大となる場合に、裏波を抜けにくくする。さらに、溶接部近傍の冷却速度を大きくして母材熱影響部の品質劣化を抑制する効果もある。また、裏波溶接の際に、1電極目以降の後行極のワイヤ送給やアーク不安定を和らげる効果がある。ただし、散布量が多すぎると溶けきれずに固体のまま残ってしまい、欠陥となることがあるので、過度な散布をしてはいけない。電流、開先形状のバランスで最適量を決める。粉体の材質としては、いわゆる粒度の細かい鉄粉や、細径の溶接ワイヤを切断して粗い粒状としたものが用いられる。
[About groove filling material]
When powdery steel or steel alloy is dispersed in the groove, it melts at the time of welding to form a part of the molten metal. In addition to the effect of high efficiency, when the route gap is partially excessive, it is difficult for the back wave to escape. Furthermore, there is also an effect of suppressing the quality deterioration of the base metal heat affected zone by increasing the cooling rate in the vicinity of the weld. Moreover, in back wave welding, it is effective in reducing the wire feeding of the trailing electrode after the first electrode and arc instability. However, if the application rate is too high, it may not melt and remain solid, which may cause defects, so excessive application should not be performed. Determine the optimum amount by the balance of current and groove shape. As a material of a powder, what is called iron powder with a so-called fine particle size, and what made the grain of a welding wire small diameter and was made coarse is used.
[定電圧特性を有する溶接電圧の微分値について]
 一般的に、溶接機には定電圧特性、垂下特性、定電流特性といった名目で仕様が記載されているため、使用者側がその特性を精査することは少ない。しかしながら、これら外部特性の名称は概念的なものであり、定量的な定義がある訳ではない。最近では使用者が外部特性を調整することができる機種も登場している。動作点電流における定電圧特性として望ましい電圧-電流特性の傾き、すなわち微分値dV/dIは-12.0×10-3(V/A)よりも水平側になっている。言い換えれば、望ましい微分値dV/dIは-12.0×10-3(V/A)以上である。微分値dV/dIが-12.0×10-3(V/A)以上であれば、アーク長Lの変化に対応して電流が大きく変化し、アーク長Lの自己制御作用が効果的に働くため望ましい。より望ましくは、微分値dV/dIが-8.0×10-3(V/A)以上であれば、より裏波形状が安定化する。なお、定電圧特性を含む外部特性一般の性質として、+側の傾きとなることはあり得ないので、微分値dV/dIは0が事実上の上限となる。
[Differential value of welding voltage having constant voltage characteristics]
Generally, specifications are described under the name of a constant voltage characteristic, a drooping characteristic, a constant current characteristic, etc. in a welding machine, so the user side is less likely to scrutinize the characteristic. However, the names of these external characteristics are conceptual and do not have quantitative definitions. Recently, there are models that allow users to adjust external characteristics. The slope of the voltage-current characteristic desired as the constant voltage characteristic at the operating point current, that is, the differential value dV / dI is more horizontal than −12.0 × 10 −3 (V / A). In other words, the desirable differential value dV / dI is -12.0 × 10 -3 (V / A) or more. If the differential value dV / dI is -12.0 × 10 -3 (V / A) or more, the current largely changes according to the change of the arc length L, and the self-control function of the arc length L is effectively effective. Desirable to work. More preferably, if the differential value dV / dI is −8.0 × 10 −3 (V / A) or more, the back wave shape is more stabilized. It should be noted that, as the characteristic of the external characteristics in general including the constant voltage characteristic, the positive side can not be a slope, so that the differential value dV / dI has a practical upper limit of 0.
[定電流特性または垂下特性を有する溶接電圧の微分値について]
 定電流特性および垂下特性についても、定量的な定義があるわけではない。定電流特性と垂下特性とは、整流素子を用いて生成したか、鉄芯稼働による漏洩磁束を利用したかの違いともいえるが、アーク長Lが変化しても電流一定を指向するという点では同じである。定電流特性と垂下特性とに共通して望ましい電圧-電流特性の傾き、すなわち動作点電流における微分値dV/dIは-24.0×10-3(V/A)よりも鉛直側になっている、言い換えれば、望ましい微分値dV/dIは-24.0×10-3(V/A)以下である。微分値dV/dIが-24.0×10-3(V/A)以下の特性と送給速度の電圧フィードバック制御とを組み合わせれば、アーク電圧の変化を敏感に捉え、送給速度を変化させることでアーク長Lの安定化をはかることができ、表ビード形状の安定化に貢献する。なお、定電流特性および垂下特性を含む外部特性一般の性質として、+側の傾きとなることはあり得ないので、-∞(無限大)が事実上の下限となる。
[Differential value of welding voltage having constant current characteristic or drooping characteristic]
The constant current characteristics and the drooping characteristics are also not defined quantitatively. It can be said that the constant current characteristics and the drooping characteristics are different from whether they are generated using a rectifying element or the leakage flux due to the operation of an iron core, but in terms of aiming constant current even if the arc length L changes. It is the same. The slope of the desirable voltage-current characteristics common to the constant current characteristics and the drooping characteristics, that is, the differential value dV / dI at the operating point current is more vertical than -24.0 × 10 -3 (V / A) In other words, the desired differential value dV / dI is less than -24.0 × 10 -3 (V / A). If the characteristic of differential value dV / dI is -24.0 × 10 -3 (V / A) or less and voltage feedback control of feed speed are combined, the change of arc voltage is caught sensitively and the feed speed is changed By doing this, the arc length L can be stabilized, which contributes to the stabilization of the front bead shape. (-Infinity) is a practical lower limit, since the positive side can not have a slope as a general property of the external characteristics including the constant current characteristics and the drooping characteristics.
 以下、実施例に基づいて本発明をさらに詳細に説明する。ただし、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited to the following examples unless the gist is exceeded.
(第1実施例および第1比較例)
 図4は、第1実施例および第1比較例における実験装置の構成を説明するための図である。なお、図4に示す実験装置の基本構成は、図1に示した溶接装置1と共通である。ここで、図4には、実験装置とともに、第1鋼板201および第2鋼板202を含むワーク200、ワーク200の表面側に供給される表フラックス300、ワーク200の裏面側に配置される裏当て部400、溶接に伴ってワーク200に形成される溶接金属500を、併せて示している。
First Example and First Comparative Example
FIG. 4 is a diagram for explaining the configuration of the experimental apparatus in the first embodiment and the first comparative example. The basic configuration of the experimental apparatus shown in FIG. 4 is the same as that of the welding apparatus 1 shown in FIG. Here, FIG. 4 shows a work 200 including the first steel plate 201 and the second steel plate 202, a front flux 300 supplied to the front side of the work 200, and a backing disposed on the back side of the work 200 together with the experimental apparatus. A portion 400 shows a weld metal 500 formed on the work 200 along with welding.
 また、図7(a)は、第1実施例および第1比較例における各鋼板および開先の寸法を示している。この例において、第1鋼板201および第2鋼板202は、引張強度490MPa級炭素鋼板の板厚35mm、幅500mm×長さ3000mmを用いて、それぞれに開先端面処理を行い、突合せ継手とした。開先形状は表面から29mmまで45°V型とし、残り板厚6mmはルートフェースとして垂直とした。ルートギャップは最短部で両側鋼板が接触する0mmとしたが、鋼板の歪みによって不可避的に最大2mmのギャップが生じている箇所があった。各ワイヤ(第1ワイヤ110~第4ワイヤ140)はJIS Z3351 YS-S6該当品、表フラックス300はJIS Z3352 SACI1該当品を用いた。表フラックス300は1電極目(先行極)より前と、2電極目と3電極目との間に自動的に適量を連続散布される。 FIG. 7A shows the dimensions of the steel plates and the grooves in the first embodiment and the first comparative example. In this example, each of the first steel plate 201 and the second steel plate 202 was subjected to an open end surface treatment using a tensile strength 490 MPa grade carbon steel plate having a thickness of 35 mm and a width of 500 mm × length 3000 mm to form butt joints. The groove shape was 45 ° V-shaped to 29 mm from the surface, and the remaining plate thickness of 6 mm was vertical as the root face. Although the root gap was set to 0 mm where both steel plates contact at the shortest part, there was a point where a gap of up to 2 mm was inevitably generated due to distortion of the steel plate. Each wire (the first wire 110 to the fourth wire 140) is a JIS Z3351 YS-S6 equivalent product, and the front flux 300 is a JIS Z3352 SACI1 equivalent product. The surface flux 300 is automatically and continuously sprayed with an appropriate amount before the first electrode (leading electrode) and between the second electrode and the third electrode.
 鋼板開先裏側には、裏当て部400として、裏当てフラックス401を少量散布した溝付の裏当て銅板402を押し当てた。また、各電極について、それぞれに対応するコンタクトチップと鋼板との間に、独立した溶接電源を結線した。なお、各ワイヤは各コンタクトチップの直上に設けた送給ローラによって溶接部に送られる。 As a backing portion 400, a grooved backing copper plate 402, to which a small amount of a backing flux 401 was dispersed, was pressed against the steel plate groove back side. Also, for each electrode, independent welding power sources were connected between the contact tips and the steel plates corresponding to each electrode. Each wire is fed to the weld by a feed roller provided immediately above each contact tip.
 そして、図4に示す実験装置を用いて、4電極片面サブマージアーク溶接方法のテストを行った。より具体的には、図4に示す試験装置を用いて、ワイヤ直径、給電方式、外部特性、ワイヤ速度制御、溶接電流、アーク電圧を電極毎に変化させ、その影響を確認した。図4に示す実験装置において、第1ワイヤ110の先端と第2ワイヤ120の先端との極間距離は40mm、第2ワイヤ120の先端と第3ワイヤ130の先端との極間距離は120mm、第3ワイヤ130の先端と第4ワイヤ140の先端との極間距離は30mmとした。そして、この例における溶接速度は44(cm/min)で共通とした。 Then, a test of the four-electrode single-sided submerged arc welding method was performed using the experimental apparatus shown in FIG. More specifically, wire diameter, power feeding method, external characteristics, wire speed control, welding current, and arc voltage were changed for each electrode using the test apparatus shown in FIG. In the experimental apparatus shown in FIG. 4, the distance between the tip of the first wire 110 and the tip of the second wire 120 is 40 mm, the distance between the tip of the second wire 120 and the tip of the third wire 130 is 120 mm, The distance between the tip of the third wire 130 and the tip of the fourth wire 140 is 30 mm. And the welding speed in this example was made common at 44 (cm / min).
 また、試験結果として、裏波ビード形状、表ビード形状、内部欠陥を評価した。裏波ビード形状は幅10mm以上、裏波高さ2mm以上6mm以下を理想とし、さらに蛇行が小さく、幅のばらつきが少ないものを非常に良好としてA、若干これらの評価が劣るが手直しを要するほどではないものをB、裏波ビード形状の不良による手直しが必要なものをCとして不合格扱いした。表ビード形状についても、裏波ビード形状と同様の評価基準とした。内部欠陥については、超音波探傷試験や断面マクロカット試験を行っても欠陥が見られなかったものを「無し」、融合不良が確認されたものを「有り」とした。 Moreover, as a test result, the back wave bead shape, the front bead shape, and the internal defect were evaluated. The back bead shape should ideally be 10 mm or more in width and 2 mm to 6 mm in back wave height, and those with small meanders and small variations in width may be regarded as very good A, and these evaluations may be inferior. Those not present were rejected as B, and those requiring repair due to the back bead shape defect were rejected as C. Also for the front bead shape, the same evaluation criteria as the back wave bead shape were used. With regard to internal defects, those with no defects found by the ultrasonic flaw test and the cross section macro cut test were regarded as “none”, and those with poor fusion confirmed as “present”.
 第1実施例および第1比較例における製造条件および試験結果を表1および表2に示す。ここで、表1に示すNo.1-1~No.1-5は第1実施例であり、表2に示すNo.1-6~No.1-11は第1比較例である。 The manufacturing conditions and the test results in the first example and the first comparative example are shown in Table 1 and Table 2. Here, no. 1-1 to No. 1-5 is a 1st Example, and No. 1 shown in Table 2 is. 1-6 to No. 1-11 is a first comparative example.
 なお、表1および表2に示す給電方式において、「AC」は交流を意味し、「DC(EP)」は直流であってワイヤすなわち電極側を正極とした「Electrode Plus」を意味し、「DC(EN)」は直流であってワイヤすなわち電極側を負極とした「Electrode Negative」を意味する。この表記については、後述する表3~表6においても同じである。 In the feeding methods shown in Tables 1 and 2, "AC" means alternating current, "DC (EP)" is direct current, and means "Electrode Plus" with the wire, that is, the electrode side as the positive electrode, "DC (EN)" means "Electrode Negative" which is direct current and has a wire, ie, the electrode side as a negative electrode. This notation is the same in Tables 3 to 6 described later.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 まず、第1実施例について説明を行う。
 No.1-1は1電極目に直流・定電圧特性・定速制御を用いており、2電極目以降は従来からの交流・垂下特性・電圧FB変速制御を用いているが、良好な裏波ビード形状が得られている。一方、最終パスとなる4電極目を交流・垂下特性・電圧FB変速制御としていることで、表ビード形状も非常に良好となっている。
First, the first embodiment will be described.
No. 1-1 uses direct current, constant voltage characteristics, constant speed control for the first electrode, and uses the conventional alternating current, drooping characteristics, and voltage FB shift control for the second and subsequent electrodes, but good back bead The shape is obtained. On the other hand, the front bead shape is also very good because the fourth electrode, which is the final pass, is subjected to the AC / droop characteristic / voltage FB shift control.
 No.1-2はNo.1-1に対して1電極目の溶接電源における外部特性の微分値dV/dIが小さく、すなわち定電圧特性を弱めた場合であり、それに伴い1電極目の初層溶接でのアーク長の自己制御作用が弱まって不安定化することから、裏波ビード形状がNo.1-1に比べて若干劣っている。とはいえ、直流・定速制御を採用しているので、許容範囲となる裏波ビード形状が得られている。 No. 1-2 is no. This is the case where the differential value dV / dI of the external characteristics in the welding power source of the first electrode is smaller than that of 1-1, that is, the constant voltage characteristic is weakened, and accordingly, the arc length of the first electrode in the first layer welding Since the control action is weakened and destabilized, the back wave bead shape is No. It is slightly inferior to 1-1. However, since direct current and constant speed control are adopted, a back wave bead shape that is within an acceptable range is obtained.
 No.1-3はNo.1-1と類似しているが、1電極目の電源極性を直流正極性、すなわち電極側-(マイナス)としている。一般的には直流における電源極性は直流逆極性、すなわち電極側+(プラス)を採用することが多いが、溶接品質には問題が無く、本施工法ではどちらでも使用できることを示している。 No. No. 1-3 is No. Similar to 1-1, but the power supply polarity of the first electrode is DC positive polarity, that is, the electrode side-(minus). In general, although the power supply polarity in direct current often adopts direct current reverse polarity, that is, the electrode side + (plus), there is no problem in the welding quality, and it is shown that either can be used in the present construction method.
 No.1-4は全電極を直流・定電圧特性・定速制御としており、2電極目以降にも溶融池の圧力変化を小さくする制御を取り入れることで、非常に良好な裏波ビード形状が得られている。であるが一方、許容範囲ではあるが、表ビード形状はアーク間干渉や磁気吹きの影響を受けやすい直流を採用した場合、交流を採用した場合よりもやや劣る。 No. In 1-4, all electrodes have DC / constant voltage characteristics / constant speed control, and by incorporating control to reduce the pressure change of the molten pool also after the second electrode, a very good back bead shape is obtained. ing. However, although it is within the allowable range, the shape of the front bead is slightly inferior to the case of adopting alternating current when adopting direct current that is susceptible to inter-arc interference and magnetic blow.
 No.1-5は全電極を定電圧特性・定速制御としており、1電極目だけは直流としたが、他については交流としている。後行極側に交流を採用することでアークが磁気吹き影響を受けにくくなり、その結果、裏波ビード形状のみならず、表ビード形状も非常に良好となった。 No. In 1-5, all the electrodes have constant voltage characteristics and constant speed control, and only the first electrode is direct current, while the others are alternating current. By adopting the alternating current on the trailing electrode side, the arc is less susceptible to the magnetic blow effect, and as a result, not only the back wave bead shape but also the front bead shape becomes very good.
 続いて、第1比較例について説明を行う。
 No.1-6は現在使用されている典型である。全電極について交流・垂下特性・電圧FB変速制御を採用している。送給速度の変動と交流特有の周期的なアーク消失が裏波溶融池の不安定をもたらせ、内部欠陥や表ビード形状こそ特段問題ないものの、裏波溶接には不適であり、裏波ビード形状の不良が著しかった。
Subsequently, the first comparative example will be described.
No. 1-6 are typical used now. AC, droop characteristics, and voltage FB shift control are adopted for all electrodes. Fluctuations in the feed rate and periodical arc loss caused by alternating current cause instability in the backwave molten pool, and although internal defects and front bead shapes are not particularly problematic, they are not suitable for backwave welding and backwaves. Poor bead shape was remarkable.
 No.1-7はNo.1-6に対して、4電極目に定電圧特性・定速制御を適用したものであるが、最終極となる4電極目だけ溶融池の圧力変化を小さくする制御を加えても、寄与率は1電極目よりも低いため、裏波ビード形状の改善には至らなかった。 No. 1-7 is no. Although constant voltage characteristics and constant speed control are applied to the fourth electrode with respect to 1-6, even if control to reduce the pressure change of the molten pool for only the fourth electrode, which is the final electrode, is added, the contribution rate Was lower than that of the first electrode, so that the back bead shape did not improve.
 No.1-8はNo.1-7と似ているが、4電極目ではなく2電極目に定電圧特性・定速制御を適用している。しかし、第1中間極となる2電極目では1電極目に比べて裏波ビードを形成する溶融池へかかる圧力の安定化寄与率が低く、裏波ビード形状の改善効果は得られなかった。 No. 1-8 is No. Similar to 1-7, constant voltage characteristics and constant speed control are applied to the second electrode instead of the fourth electrode. However, in the second electrode which is the first intermediate electrode, the stabilizing contribution of the pressure applied to the molten pool forming the back wave bead is lower than that of the first electrode, and the improvement effect of the back wave bead shape is not obtained.
 No.1-9は1電極目、2電極目共に従来の交流・垂下特性の溶接電源はそのままに、ワイヤ送給を定速制御としたものである。垂下特性では原理的にアーク長安定化はワイヤ送給制御によって図られなければならないが、定速化しているため、アーク長安定化作用は全く働いていない。ゆえに、アーク長が常に大きく変動し、安定な溶接はできなかった。その結果、裏波ビード形状および表ビード形状共に大きく荒れて不安定であり、内部にも融合不良が発生した。 No. In 1-9, wire feeding is controlled at constant speed while the welding power source of the conventional alternating current and drooping characteristics is kept as it is for both the first electrode and the second electrode. In the drooping characteristics, in principle, the arc length stabilization must be achieved by wire feed control, but since the speed is constant, the arc length stabilization function does not work at all. Therefore, the arc length always fluctuated significantly and stable welding could not be performed. As a result, both the back wave bead shape and the front bead shape were greatly roughened and unstable, and a fusion failure also occurred inside.
 No.1-10は1電極目を直流・定電流特性とし、一方でワイヤ速度制御を定速制御化した構成である。直流・定電流特性の溶接電源は一般的に非溶極式、つまり消耗ワイヤからでなく、非消耗タングステン電極からアークを発生するティグ溶接やプラズマ溶接法で用いられる電源方式であるが、アーク長の制御に関しては垂下特性と同じであり、電極側の上下が必要である。本電源を溶極式として用いてもワイヤを定速制御とした場合には全くアークの長安定化作用は働いていない。したがって、No.1-9と同じく、アーク長が常に大きく変動し、安定な溶接はできなかった。裏波ビード形状および表ビード形状共に大きく荒れて不安定であり、内部にも融合不良が発生した。 No. In the configuration 1-10, the first electrode has a direct current and a constant current characteristic, and on the other hand, the wire speed control is constant speed controlled. The welding power source with direct current and constant current characteristics is generally a non-electrode type, that is, a power source system used in TIG welding and plasma welding that generates an arc from a non-consumable tungsten electrode, not from consumable wire. The same control as that of the drooping characteristic is necessary for the control of the electrode. Even if this power source is used as the electrode type, in the case of constant speed control of the wire, the long stabilization action of the arc does not work at all. Therefore, no. As in 1-9, the arc length always fluctuated significantly, and stable welding was not possible. Both the back wave bead shape and the front bead shape were greatly roughened and unstable, and a fusion failure also occurred inside.
 No.1-11は従来の全電極について交流・垂下特性・電圧FB変速制御から、直流・定電流特性・電圧FB変速制御に替えたものであるが、1電極目が定電圧特性・定速制御となっていないことから、裏波ビード形状は安定化しなかった。表ビード形状については、定電流特性・電圧FB変速制御が作用しており、直流特有のアーク相互干渉による不安定性が見られたものの許容範囲であった。 No. 1-11 is replaced with DC, constant current characteristics, and voltage FB shift control from AC, drooping characteristics, and voltage FB shift control for all the conventional electrodes, but the first electrode has constant voltage characteristics and constant speed control The back wave bead shape was not stabilized because it had not been. With regard to the front bead shape, constant current characteristics and voltage FB shift control acted, and it was an allowable range of those in which instability due to arc mutual interference peculiar to direct current was observed.
(第2実施例および第2比較例)
 図5は、第2実施例および第2比較例における実験装置の構成を説明するための図である。なお、図5に示す実験装置の基本構成は、図1に示した溶接装置1から第4溶接ユニット40を取り除いたものとなっている。ここで、図5には、実験装置とともに、第1鋼板201および第2鋼板202を含むワーク200、ワーク200の表面側に供給される表フラックス300、ワーク200の裏面側に配置される裏当て部400、溶接に伴ってワーク200に形成される溶接金属500を、併せて示している。
Second Example and Second Comparative Example
FIG. 5 is a diagram for explaining the configuration of the experimental apparatus in the second embodiment and the second comparative example. The basic configuration of the test apparatus shown in FIG. 5 is obtained by removing the fourth welding unit 40 from the welding apparatus 1 shown in FIG. Here, FIG. 5 shows a work 200 including the first steel plate 201 and the second steel plate 202, a front flux 300 supplied to the front side of the work 200, and a backing disposed on the back side of the work 200 together with the experimental apparatus. A portion 400 shows a weld metal 500 formed on the work 200 along with welding.
 また、図7(b)は、第2実施例および第2比較例における各鋼板および開先の寸法を示している。この例において、第1鋼板201および第2鋼板202は、引張強度400MPa級炭素鋼板の板厚30mm、幅500mm×長さ3000mmを用いて、それぞれに開先端面処理を行い、突合せ継手とした。開先形状は表面から25mmまで45°V型とし、残り板厚5mmはルートフェースとして垂直とした。ルートギャップは最短部で両側鋼板が接触する0mmとしたが、鋼板の歪みによって不可避的に最大2mmのギャップが生じている箇所があった。各ワイヤ(第1ワイヤ110~第3ワイヤ130)は
JIS Z3351 YS-S6該当品、表フラックス300はJIS Z3352 SACI1該当品を用いた。表フラックス300は1電極目(先行極)より前と、2電極目と3電極目の間に自動的に適量を連続散布される。
Moreover, FIG.7 (b) has shown the dimension of each steel plate and groove in 2nd Example and 2nd comparative example. In this example, the first steel plate 201 and the second steel plate 202 were subjected to open tip surface treatment using a tensile strength 400 MPa class carbon steel plate having a thickness of 30 mm and a width of 500 mm × length 3000 mm, respectively, to form butt joints. The groove shape was 45 ° V-shaped to 25 mm from the surface, and the remaining plate thickness of 5 mm was vertical as the root face. Although the root gap was set to 0 mm where both steel plates contact at the shortest part, there was a point where a gap of up to 2 mm was inevitably generated due to distortion of the steel plate. Each wire (the first wire 110 to the third wire 130) is a JIS Z3351 YS-S6 equivalent product, and the front flux 300 is a JIS Z3352 SACI1 equivalent product. The surface flux 300 is automatically continuously dispersed in an appropriate amount before the first electrode (leading electrode) and between the second and third electrodes.
 鋼板開先裏側には、裏当て部400として、銅板やセラミック板といった成型固体を用いず、下敷フラックス411の上に硬化性樹脂成分が入った裏当てフラックス412を少量散布し、下敷フラックス411の内部に通したエアホース413から気体を注入することで、裏当てフラックス412を鋼板裏面に押し当てた。また、各電極について、それぞれに対応するコンタクトチップと鋼板との間に、独立した溶接電源を結線した。なお、各ワイヤは各コンタクトチップの直上に設けた送給ローラによって溶接部に送られる。 A backing flux 412 containing a curable resin component is dispersed in a small amount on the underlaying flux 411 without using a molded solid such as a copper plate or a ceramic plate as the backing portion 400 on the back side of the steel sheet groove back The backing flux 412 was pressed against the back surface of the steel sheet by injecting a gas from an air hose 413 passed through the inside. Also, for each electrode, independent welding power sources were connected between the contact tips and the steel plates corresponding to each electrode. Each wire is fed to the weld by a feed roller provided immediately above each contact tip.
 そして、図5に示す実験装置を用いて、3電極片面サブマージアーク溶接方法のテストを行った。より具体的には、図5に示す試験装置を用いて、ワイヤ直径、給電方式、外部特性、ワイヤ速度制御、溶接電流、溶接電圧を電極毎に変化させ、その影響を確認した。図5に示す実験装置において、第1ワイヤ110の先端と第2ワイヤ120の先端との極間距離は40mm、第2ワイヤ120の先端と第3ワイヤ130の先端との距離は120mmとした。そして、この例における溶接速度は、47(cm/min)で共通とした。 And the test of the 3-electrode single-sided submerged arc welding method was done using the experimental apparatus shown in FIG. More specifically, wire diameter, power feeding method, external characteristics, wire speed control, welding current, welding voltage were changed for each electrode using the test apparatus shown in FIG. 5, and the influence was confirmed. In the experimental apparatus shown in FIG. 5, the distance between the tip of the first wire 110 and the tip of the second wire 120 is 40 mm, and the distance between the tip of the second wire 120 and the tip of the third wire 130 is 120 mm. And the welding speed in this example was made common at 47 (cm / min).
 試験結果として裏波ビード形状、表ビード形状、内部欠陥を評価した。裏波ビード形状は幅9mm以上、裏波高さ2mm以上5mm以下を理想とし、さらに蛇行が小さく、幅のばらつきが少ないものを非常に良好としてA、若干これらの評価が劣るが手直しを要するほどではないものをB、裏波ビード形状の不良による手直しが必要なものをCとして不合格扱いした。表ビード形状についても、裏波ビード形状と同様の評価基準とした。内部欠陥については、超音波探傷試験や断面マクロカット試験を行っても欠陥が見られなかったものを「無し」、融合不良が確認されたものを「有り」とした。 As a test result, the back wave bead shape, the front bead shape, and the internal defect were evaluated. The back bead shape should ideally be 9 mm or more in width and 2 mm to 5 mm in back wave height, and those with small meanders and small variations in width may be regarded as very good A, although these evaluations may be inferior Those not present were rejected as B, and those requiring repair due to the back bead shape defect were rejected as C. Also for the front bead shape, the same evaluation criteria as the back wave bead shape were used. With regard to internal defects, those with no defects found by the ultrasonic flaw test and the cross section macro cut test were regarded as “none”, and those with poor fusion confirmed as “present”.
 第2実施例および第2比較例における製造条件および試験結果を表3および表4に示す。ここで、表3に示すNo.2-1~No.2-4は第2実施例であり、表4に示すNo.2-5~No.2-10は第2比較例である。 Tables 3 and 4 show the manufacturing conditions and the test results in the second example and the second comparative example. Here, no. 2-1 to No. 2-4 is a 2nd Example, and No. 4 shown in Table 4 is. 2-5 to No. 2-10 is a second comparative example.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 まず、第2実施例について説明を行う。
 No.2-1は1電極目に直流・定電圧特性・定速制御を用いており、2電極目以降は従来からの交流・垂下特性・電圧FB変速制御を用いているが、良好な裏波ビード形状が得られている。また、最終パスとなる3電極目を交流・垂下特性・電圧FB変速制御としていることで、表ビード形状の外観も非常に良好となっている。
First, the second embodiment will be described.
No. 2-1 uses DC, constant voltage characteristics, and constant speed control for the first electrode, and uses the conventional AC, droop characteristics, and voltage FB shift control for the second and subsequent electrodes, but good back bead The shape is obtained. In addition, the appearance of the front bead shape is also very good by setting the third electrode, which is the final pass, to AC / droop characteristics / voltage FB shift control.
 No.2-2はNo.2-1に対して2、3電極目の溶接電源における外部特性の微分値dV/dIが大きい、すなわち定電流特性を弱めた場合である。定電流性が弱まると、アーク電圧も変化しにくくなり、アーク長のフィードバック制御もまた効きにくくなる。したがって許容範囲ではあるものの、アーク長の安定性が裏波ビード形状よりも大きく影響を及ぼす表ビード形状を劣化させる。つまり、表ビード形状を良好なものとするためには、微分値dV/dIが小さい電圧FB変速制御のほうが、より好ましいことが示唆される。 No. 2-2 is no. This is the case where the differential value dV / dI of the external characteristic in the welding power source of the second and third electrodes is larger than that of 2-1, ie, the constant current characteristic is weakened. When the constant current characteristic weakens, the arc voltage also becomes difficult to change, and feedback control of the arc length also becomes difficult to be effective. Therefore, although within the allowable range, the stability of the arc length degrades the front bead shape which has a greater effect than the back wave bead shape. That is, it is suggested that the voltage FB shift control with a small differential value dV / dI is more preferable in order to make the front bead shape good.
 No.2-3は全電極を直流・定電圧特性・定速制御としたものであり、2電極目以降にも溶融池の圧力変化を小さくする制御を取り入れることで、非常に良好な裏波ビード形状が得られている。一方、許容範囲ではあるが、表ビード形状は直流が並ぶことによって生じるアーク間干渉によってやや乱れるため、交流を採用した場合よりもやや劣る。 No. 2-3 has all the electrodes as direct current / constant voltage characteristics / constant speed control, and by incorporating control to reduce the pressure change of the molten pool also after the second electrode, a very good back bead shape Is obtained. On the other hand, although within the allowable range, the front bead shape is slightly disturbed by the inter-arc interference caused by the alignment of the direct current, so it is slightly inferior to the case of adopting the alternating current.
 No.2-4は1電極目には直流・定電圧特性・定速制御を採用する一方、2電極目は直流・定電流特性・電圧FB変速制御、3電極目は交流・定電流特性・電圧FB変速制御としたものである。1、2電極目に直流が並ぶことによるアーク間干渉が発生することから、許容範囲ではあるものの裏波ビード形状が若干劣る。一方、表層側を形成する後行極に対して、垂下特性よりもさらに定電流性が優れる定電流特性を採用することで、アーク長がより安定し、優れた表ビード形状が得られている。 No. For 2-4, DC, constant voltage characteristics and constant speed control are adopted for the 1st electrode, while 2nd electrode is DC, constant current characteristics and voltage FB shift control, and 3rd electrode is AC, constant current characteristics and voltage FB It is gearshift control. Since inter-arc interference occurs due to the direct current being lined up between the first and second electrodes, the back bead shape is slightly inferior although it is within the allowable range. On the other hand, by adopting a constant current characteristic which is further excellent in constant current characteristic than the drooping characteristic to the trailing electrode forming the surface layer side, the arc length is more stabilized and an excellent surface bead shape is obtained. .
 続いて、第2比較例について説明を行う。
 No.2-5はNo.2-1に対して、1電極目を直流ではなく交流としたものである。定電圧特性・定速制御は本発明の範疇であるが、交流としているため、交流特有の周期的なアーク消失が裏波溶融池の不安定をもたらせ、安定した裏波ビード形状を得ることができなかった。
Subsequently, a second comparative example will be described.
No. No. 2-5 is No. In contrast to 2-1, the first electrode is not direct current but alternating current. Although constant voltage characteristics and constant speed control are in the category of the present invention, since alternating current is used, periodical arc disappearance peculiar to alternating current causes instability of back wave molten pool and obtains stable back wave bead shape. I could not.
 No.2-6は現在使用されている典型である。全電極について交流・垂下特性・電圧FB変速制御を採用している。内部欠陥や表ビード形状こそ特段問題ないものの、交流であることおよび変速制御であることの両者が裏波溶接には不適であり、裏波ビード形状に不良が発生した。 No. 2-6 is a typical used today. AC, droop characteristics, and voltage FB shift control are adopted for all electrodes. Although there is no particular problem with the internal defects and the front bead shape, both the alternating current and the shift control are unsuitable for back wave welding, and a defect occurs in the back wave bead shape.
 No.2-7は1電極目、3電極目は本発明の範疇であるが、2電極目には交流・垂下特性・電流FB変速制御を組み合わせている。垂下特性はアーク長の動きに対して電流があまり動かないので、電流をモニターしたフィードバック制御はアーク電圧フィードバックよりもアーク長制御手段として劣っている。アーク長の制御が上手く働かず、かつワイヤ送給も一定ではないので、裏波ビード形状の不良だけでなく、融合不良の内部欠陥、表ビード形状の不良も発生した。 No. 2-7 is a first electrode, and the third electrode is a category of the present invention, but the second electrode is a combination of AC / droop characteristics / current FB shift control. Since the drooping characteristic is that the current does not move much with the movement of the arc length, the feedback control monitoring the current is inferior to the arc voltage feedback as an arc length control means. As the control of the arc length did not work well and the wire feeding was not constant, not only the back bead shape defect but also the internal defect of the fusion defect and the defect of the front bead shape occurred.
 No.2-8は全電極について、垂下特性に対しさらに定電流性を強めた定電流特性・電流FB速度制御を組み合わせたものである。アーク長の制御が上手く働かず、かつワイヤ送給も一定ではないので、裏波ビード形状の不良だけでなく、融合不良の内部欠陥、表ビード形状の不良も発生し、No.2-7よりもさらに全体品質が劣った。 No. 2-8 is a combination of constant current characteristics and current FB speed control in which constant current characteristics are further enhanced with respect to the drooping characteristics for all electrodes. Since the control of the arc length does not work well and the wire feeding is not constant, not only defects in the back wave bead shape but also internal defects in the fusion failure and defects in the front bead shape occur. The overall quality was even worse than 2-7.
 No.2-9は1電極目として定電圧特性・電圧FB変速制御を組み合わせている。定電圧特性はアーク長の動きに対して電圧があまり動かないので、電圧をモニターしたフィードバック制御はアーク長制御手段として性能が低く、また裏波ビードを形成する1電極目はワイヤの送給速度が一定であることが最も形状安定化に重要であることから、本構成では良好な裏波ビード形状が得られなかった。また、1電極目による初層の著しい不安定が原因で、2電極目との会合部に融合不良も発生した。 No. 2-9 is a combination of constant voltage characteristics and voltage FB shift control as the first electrode. Since the constant voltage characteristic does not move the voltage much with respect to the movement of the arc length, the feedback control monitoring the voltage has low performance as an arc length control means, and the first electrode forming the back wave bead has a wire feeding speed Since it is most important for shape stabilization that C. is constant, a good back bead shape can not be obtained in this configuration. In addition, due to the significant instability of the first layer by the first electrode, fusion failure also occurs at the junction with the second electrode.
 No.2-10は1電極目として直流・定電流特性・定速制御を組み合わせているが、この組合せではアーク長の安定化制御が働かないので、溶接が不安定であり、裏波ビード形状の不良だけでなく、1電極目による初層の著しい不安定が原因で、2電極目との会合
部に融合不良も発生した。
No. 2-10 combines DC, constant current characteristics, and constant speed control as the first electrode, but in this combination, the arc length stabilization control does not work, so the welding is unstable and the back bead shape is defective Not only that, but also due to the significant instability of the primary layer by the first electrode, fusion failure also occurs at the junction with the second electrode.
(第3実施例および第3比較例)
 図6は、第3実施例および第3比較例における実験装置の構成を説明するための図である。なお、図6に示す実験装置の基本構成は、図1に示した溶接装置1から第3溶接ユニット30、第4溶接ユニット40および第2フラックス供給装置80を取り除いたものとなっている。ここで、図6には、実験装置とともに、第1鋼板201および第2鋼板202を含むワーク200、ワーク200の表面側に供給される表フラックス300、ワーク200の裏面側に配置される裏当て部400、溶接に伴ってワーク200に形成される溶接金属500、開先に予め供給される開先充填材600を併せて示している。
Third Example and Third Comparative Example
FIG. 6 is a diagram for explaining the configuration of the experimental apparatus in the third embodiment and the third comparative example. The basic configuration of the experimental apparatus shown in FIG. 6 is obtained by removing the third welding unit 30, the fourth welding unit 40, and the second flux supply apparatus 80 from the welding apparatus 1 shown in FIG. Here, FIG. 6 shows a work 200 including the first steel plate 201 and the second steel plate 202, a front flux 300 supplied to the front side of the work 200, and a backing disposed on the back side of the work 200 together with the experimental apparatus. A portion 400, a weld metal 500 formed on the work 200 along with welding, and a groove filling material 600 previously supplied to the groove are shown together.
 また、図7(c)は、第3実施例および第3比較例における各鋼板および開先の寸法を示している。この例において、第1鋼板201および第2鋼板202は引張強度520MPa級炭素鋼板の板厚14mm、幅500mm×長さ3000mmを用いて、それぞれに開先端面処理を行い、突合せ継手とした。開先形状はルートフェース無しの50°V型とした。ルートギャップは最短部で両側鋼板が接触する0mmとしたが、鋼板の歪みによって不可避的に最大2mmのギャップが生じている箇所があった。各ワイヤ(第1ワイヤ110および第2ワイヤ120)はJIS Z3351 YS-S6該当品、表フラックス300はJIS Z3352 SACI1該当品を用いた。表フラックス300は1電極目(先行極)より前に自動的に適量を連続散布される。また、表フラックス300とは別に、鉄粉からなる開先充填材600を、手動で事前に開先内に散布しておいた。開先充填材600の充填高さは鋼板表面位置から3mmで管理した。この開先充填材600は溶接時に各ワイヤや表フラックス300と共に溶融し、溶融池を形成する。 Moreover, FIG.7 (c) has shown the dimension of each steel plate and groove in 3rd Example and a 3rd comparative example. In this example, each of the first steel plate 201 and the second steel plate 202 was subjected to an open end surface treatment using a plate thickness 14 mm and a width 500 mm × length 3000 mm of a 520 MPa grade carbon steel plate, to form butt joints. The bevel shape was a 50 ° V-shape without a root face. Although the root gap was set to 0 mm where both steel plates contact at the shortest part, there was a point where a gap of up to 2 mm was inevitably generated due to distortion of the steel plate. Each wire (the first wire 110 and the second wire 120) is a JIS Z3351 YS-S6 equivalent product, and the front flux 300 is a JIS Z3352 SACI1 equivalent product. The surface flux 300 is automatically and continuously sprayed with an appropriate amount prior to the first electrode (leading electrode). Further, separately from the front flux 300, a bevel filler 600 made of iron powder was manually sprayed in advance in the bevel. The filling height of the groove filling material 600 was controlled at 3 mm from the surface position of the steel plate. The groove filling material 600 is melted together with each wire and front flux 300 at the time of welding to form a molten pool.
 鋼板開先裏側には、裏当て部400として、銅板やセラミック板といった成型固体あるいは裏当てフラックスを用いず、ガラス繊維を織って数mm厚にしたガラステープと呼ばれる軟質裏当て材421を貼り付けた。ガラステープは軟らかいので鋼板の波打などに影響を受けず、裏面に密着させることが出来る。溶接時にはアーク近傍が溶融するが、非溶融部がクッションの役割として裏波の過度の溶落を防ぐ役割がある。また、各電極について、それぞれに対応するコンタクトチップと鋼板との間に、独立した溶接電源を結線した。なお、各ワイヤは各コンタクトチップの直上に設けた送給ローラによって溶接部に送られる。 Attach a soft backing material 421 called glass tape made by weaving glass fibers to a few mm thickness without using a molded solid or backing flux such as a copper sheet or ceramic sheet as the backing part 400 on the back side of the steel sheet groove end The Because the glass tape is soft, it can be adhered to the back without being affected by the corrugation of the steel plate. At the time of welding, the vicinity of the arc melts, but the non-melted part acts as a cushion to prevent excessive melting of the back wave. Also, for each electrode, independent welding power sources were connected between the contact tips and the steel plates corresponding to each electrode. Each wire is fed to the weld by a feed roller provided immediately above each contact tip.
 そして、図6に示す実験装置を用いて、一部(後述するNo.3-8)を除き、2電極片面サブマージアーク溶接方法のテストを行った。より具体的には、図6に示す試験装置を用いて、ワイヤ直径、給電方式、外部特性、ワイヤ速度制御、溶接電流、アーク電圧を電極毎に変化させ、その影響を確認した。図6に示す実験装置において、第1ワイヤ110の先端と第2ワイヤ120の先端との極間距離は70mmとした。そして、この例における溶接速度はそれぞれの製造条件において一定ではあるものの、製造条件に応じて異ならせた。なお、No.3-8は、第1ワイヤ110のみを用いた単電極片面サブマージアーク溶接方法によるテストとなっている。 Then, using the experimental apparatus shown in FIG. 6, a test of the two-electrode single-sided submerged arc welding method was conducted except for a part (No. 3-8 described later). More specifically, wire diameter, feeding method, external characteristics, wire speed control, welding current, and arc voltage were changed for each electrode using the test apparatus shown in FIG. 6, and the influence was confirmed. In the experimental apparatus shown in FIG. 6, the distance between the poles of the tip of the first wire 110 and the tip of the second wire 120 was 70 mm. And although the welding speed in this example was constant in each manufacturing condition, it was made to differ according to manufacturing conditions. No. 3-8 is a test by the single electrode single-sided submerged arc welding method using only the first wire 110.
 試験結果として裏波ビード形状、表ビード形状、内部欠陥を評価した。裏波ビード形状は幅6mm以上、裏波高さ1mm以上4mm以下を理想とし、さらに蛇行が小さく、幅のばらつきが少ないものを非常に良好としてA、若干これらの評価が劣るが手直しを要するほどではないものをB、裏波ビード形状の不良による手直しが必要なものをCとして不合格扱いした。表ビード形状についても、裏波ビード形状と同様の評価基準とした。内部欠陥については、超音波探傷試験や断面マクロカット試験を行っても欠陥が見られなかったものを「無し」、融合不良が確認されたものを「有り」とした。 As a test result, the back wave bead shape, the front bead shape, and the internal defect were evaluated. The back bead shape should ideally be 6 mm or more in width and 1 mm to 4 mm in back wave height, and those with small meanders and small variations in width may be regarded as very good A, and these evaluations may be inferior. Those not present were rejected as B, and those requiring repair due to the back bead shape defect were rejected as C. Also for the front bead shape, the same evaluation criteria as the back wave bead shape were used. With regard to internal defects, those with no defects found by the ultrasonic flaw test and the cross section macro cut test were regarded as “none”, and those with poor fusion confirmed as “present”.
 第3実施例および第3比較例における製造条件および試験結果を表5および表6に示す。ここで、表5に示すNo.3-1~No.3-4は第3実施例であり、表6に示すNo.3-5~No.3-14は第3比較例である。 Tables 5 and 6 show the manufacturing conditions and the test results in the third example and the third comparative example. Here, no. 3-1 to No. 3-4 is a 3rd Example, No. shown in Table 6 3-5 to No. 3-14 is a third comparative example.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 まず、第3実施例について説明を行う。
 No.3-1は1電極目に直流・定電圧特性・定速制御を用いており、2電極目は従来からの交流・垂下特性・電圧FB変速制御としているが、良好な裏波ビード形状および表ビード形状が得られている。
First, the third embodiment will be described.
No. 3-1 uses direct current, constant voltage characteristics, constant speed control for the first electrode, and the second electrode uses the conventional alternating current, drooping characteristics, and voltage FB shift control, but it has a good back bead shape and surface The bead shape is obtained.
 No.3-2はNo.3-1に対して1電極目を電極側-の直流としたが、電圧の調整などによって、No.3-1と同等の品質が得られている。 No. 3-2 is no. Although the first electrode was a direct current on the electrode side with respect to 3-1, no. The same quality as 3-1 is obtained.
 No.3-3は両電極を電極側-の直流・定電圧特性・定速制御を用いている。No.3-1およびNo.3-2のように、2極目を変速制御とするよりも、定速制御とするほうが、本来は裏波ビード形状の安定性が優れるが、開先充填材600を用いていることで、さほど裏波ビード形状への影響はみられなかった。一方、2電極法の場合、最終極となる2電極目は表ビード形状の支配電極となるため、許容範囲内ではあるものの、直流が並ぶことによるアーク間干渉の影響を受けて形状安定性はやや劣った。 No. In 3-3, both electrodes are used on the electrode side: DC, constant voltage characteristics and constant speed control. No. 3-1 and No. As in 3-2, the constant speed control is better than the second pole shift control, although the stability of the back bead shape is originally excellent. However, by using the groove filling material 600, so much There was no influence on back wave bead shape. On the other hand, in the case of the two-electrode method, the second electrode, which is the final pole, is a controlling electrode in the form of a front bead, and thus within the allowable range, shape stability Slightly inferior.
 No.3-4は両電極共に定電圧特性・定速制御とし、1電極目は直流、2電極目は交流としている。裏波ビード形状に最も強く影響を及ぼすワイヤの送給制御は共に定速化し、かつ1電極目は周期的なアーク切れの無い直流、一方、表ビード形状を支配する2電極目はアーク間干渉や磁気吹きの影響を受けない交流としたため、第3実施例の中で最も優れた表・裏品質が得られた。 No. In 3-4, both electrodes have constant voltage characteristics and constant speed control, and the first electrode is DC and the second electrode is AC. The feed control of the wire that most strongly affects the back bead shape is constant, and the first electrode is a direct current without periodic arc breakage, while the second electrode governing the front bead shape is inter-arc interference Since the alternating current was not affected by the magnetic blow or the magnetic blow, the best front and back quality in the third example was obtained.
 続いて、第3比較例について説明を行う。
 No.3-5は現在使用されている典型である。両極共に交流・垂下特性・電圧FB変速制御を採用している。内部欠陥や表ビード形状こそ特段問題ないものの、交流であることおよび変速制御であることの両方が裏波溶接には不適であり、裏波ビード形状の不良が著しかった。また、上述した実施例1、2に対して鋼板の板厚が小さいため、裏波ビード形状の不良が表ビード形状にも影響を及ぼしやや劣化させた。
Subsequently, a third comparative example will be described.
No. 3-5 is a typical used today. AC, droop characteristics, and voltage FB shift control are adopted for both poles. Although internal defects and the shape of the front bead have no particular problem, both the alternating current and the shift control are unsuitable for back wave welding, and the back bead shape is notable. In addition, since the thickness of the steel plate was smaller than those in Examples 1 and 2 described above, the defect in the back wave bead shape also affected the front bead shape and slightly deteriorated.
 No.3-6は1電極目として交流・定電流特性・定速制御を組み合わせているが、この組合せでは交流特有の周期的なアーク切れが裏波ビード形状に悪影響を及ぼすだけでなく、アーク長の安定化制御が働かないので、溶接不安定であり、裏波ビード形状の不良だけでなく、1電極目による初層の著しい不安定が原因で、2電極目との会合部に融合不良も発生した。第1実施例や第2実施例のように電極数が多ければ、1電極目による裏波ビード形状の不良が表ビード形状に影響はあまり及ぼさないが、この例は2電極施工であるため、裏波ビード形状の不安定が表ビード形状に影響を及ぼし劣化を招いた。 No. Although the combination of alternating current, constant current characteristics, and constant speed control is used as the first electrode 3-6 in this combination, in this combination, not only the periodic arc breakage peculiar to the alternating current adversely affects the back wave bead shape, but also the arc length Since stabilization control does not work, welding is unstable, and not only defects in back bead shape, but also significant instability of the first layer by the first electrode causes fusion failure at the junction with the second electrode. did. If the number of electrodes is large as in the first embodiment and the second embodiment, a defect in the back bead shape due to the first electrode has little effect on the front bead shape, but since this example has two electrodes, Instability of the back wave bead shape affected the front bead shape and caused deterioration.
 No.3-7は1電極目が定電圧特性、定速制御という組合せは本発明の範疇であるが、ワイヤ径が2.0mmと細い。結果は、裏波ビードを形成することが出来ず、鋼板の裏面側に凹みが生じていた。裏波ビードを形成するには、強いアーク力とそれを邪魔しない溶融池の厚み低減との両立が必要である。この組合せを適えるには電流密度を小さくすることが有効であり、ワイヤ直径が大きいほど有利である。つまり、ワイヤ直径が2.0mmでは不足であるといえる。 No. The combination of the first electrode at constant voltage characteristics and constant speed control is a category of the present invention in 3-7, but the wire diameter is as thin as 2.0 mm. As a result, a back wave bead could not be formed, and a dent was generated on the back surface side of the steel plate. In order to form the back wave bead, it is necessary to have both the strong arc force and the thickness reduction of the molten pool which does not disturb it. In order to fit this combination, it is effective to reduce the current density, and the larger the wire diameter, the more advantageous. That is, it can be said that the wire diameter of 2.0 mm is insufficient.
 No.3-8は定電圧特性・定速制御という組合せは本発明の範疇であるが、1電極のみで裏波ビード形成と表ビード形成とを同時に仕上げるべく、挑戦したものである。しかし、裏波ビードについては良好な形状を得ることが出来たものの、表ビード形状を良好にすることはできなかった。1電極目の役割は裏波ビードを形成することに特化するため、溶接条件に制限があり、表ビード形状は、幅の狭い凸状にならざるを得ない。2電極以上あれば、後行極(特に最終極)で表ビード形状を良好にするための溶接条件を用いて、先行極で形成された細くて凸の溶融池形状を整えることができるが、1電極施工ではこの役割分担が出来ないので、裏波溶接には不適である。 No. 3-8 is a combination of constant voltage characteristics and constant speed control within the scope of the present invention, but it is a challenge to simultaneously finish back wave bead formation and front bead formation with only one electrode. However, although a good shape could be obtained for the back wave bead, it was not possible to make the front bead shape good. Since the role of the first electrode is specialized in forming the back wave bead, the welding conditions are limited, and the front bead shape has to be a narrow convex shape. If there are two or more electrodes, the thin and convex molten pool shape formed by the leading electrode can be arranged using welding conditions for making the front bead shape better in the trailing electrode (especially the final electrode). (1) Since this role can not be shared in electrode construction, it is unsuitable for back wave welding.
 No.3-9は先行極に交流・定電流特性・電圧FB変速制御を採用している。内部欠陥や表ビード形状こそ特段問題ないものの、交流および変速制御であることが裏波溶接には不適であり、裏波ビード形状の不良が著しかった。 No. 3-9 adopts alternating current, constant current characteristics, and voltage FB shift control as the leading electrode. Although internal defects and the shape of the front bead are not particularly problematic, the AC and shift control are not suitable for back wave welding, and defects in the back wave bead shape were remarkable.
 No.3-10の先行極、No.3-11、No.3-12の後行極は定電圧特性・電圧FB変速制御としているが、直流・交流にかかわらず、定電圧特性はアーク長の動きに対して電圧があまり動かないので、電圧をモニターしたフィードバック制御はアーク長制御手段として性能が低いため、溶接不安定であり、裏波ビード形状、表ビード形状共に外観不良が生じ、会合部に融合不良も発生した。 No. No. 3-10 leading electrode; 3-11, no. Although the trailing electrode of 3-12 is constant voltage characteristics / voltage FB shift control, the constant voltage characteristics do not move much with respect to the movement of the arc length regardless of direct current or alternating current, so the voltage monitored feedback Since the control has low performance as an arc length control means, welding is unstable, and appearance defects occur in both the back wave bead shape and the front bead shape, and a fusion failure also occurs in the meeting portion.
 No.3-13、No.3-14の後行極は定電流特性・定速制御としているが、直流、交流にかかわらず、この組合せではアーク長の安定化制御が働かないので、溶接不安定であり、裏波ビード形状、表ビード形状共に外観不良が生じ、会合部に融合不良も発生した。 No. 3-13, no. Although the trailing electrode of 3-14 has constant current characteristics and constant speed control, regardless of direct current and alternating current, welding stabilization is not possible because arc length stabilization control does not work in this combination, so back bead shape In addition, appearance defects occurred in both the front bead shape, and fusion defects also occurred in the meeting portion.
 なお、第1実施例では、4電極片面サブマージアーク溶接において、裏当て部400として裏当てフラックス401および裏当て銅板402を用いる場合について説明を行った。また、第2実施例では、3電極片面サブマージアーク溶接において、裏当て部400として下敷フラックス411、裏当てフラックス412およびエアホース413を用いる場合について説明を行った。さらに、第3実施例では、2電極片面サブマージアーク溶接において、裏当て部400として軟質裏当て材421を用いる場合について説明を行った。ただし、多電極片面サブマージ溶接における電極の数と裏当て部400の構成とについては、上述した組み合わせに限定されるものではなく、その組み合わせを適宜変更して差し支えない。 In the first embodiment, the case where the backing flux 401 and the backing copper plate 402 are used as the backing part 400 in the four-electrode single-sided submerged arc welding has been described. In the second embodiment, the case where the underlaying flux 411, the backing flux 412 and the air hose 413 are used as the backing portion 400 in the three-electrode single-sided submerged arc welding has been described. Furthermore, in the third embodiment, the case of using the soft backing material 421 as the backing part 400 in the two-electrode single-sided submerged arc welding has been described. However, the number of electrodes in multi-electrode single-sided submerged welding and the configuration of the backing portion 400 are not limited to the combinations described above, and the combinations may be changed as appropriate.
1…溶接装置、10…第1溶接ユニット、11…第1送給装置、12…第1溶接電源、20…第2溶接ユニット、21…第2送給装置、22…第2溶接電源、30…第3溶接ユニット、31…第3送給装置、32…第3溶接電源、40…第4溶接ユニット、41…第4送給装置、42…第4溶接電源、50…台車駆動装置、60…制御装置、70…第1フラックス供給装置、80…第2フラックス供給装置、90…台車、110…第1ワイヤ、120…第2ワイヤ、130…第3ワイヤ、140…第4ワイヤ、200…ワーク、201…第1鋼板、202…第2鋼板、300…表フラックス、400…裏当て部、500…溶接金属、600…開先充填材 DESCRIPTION OF SYMBOLS 1 ... Welding apparatus, 10 ... 1st welding unit, 11 ... 1st feeding apparatus, 12 ... 1st welding power supply, 20 ... 2nd welding unit, 21 ... 2nd feeding apparatus, 22 ... 2nd welding power supply, 30 ... third welding unit, 31 ... third feeding device, 32 ... third welding power source, 40 ... fourth welding unit, 41 ... fourth feeding device, 42 ... fourth welding power source, 50 ... truck driving device, 60 ... control device 70 first flux supply device 80 second flux supply device 90 carriage 110 first wire 120 second wire 130 third wire 140 fourth wire 200 Workpiece, 201: first steel plate, 202: second steel plate, 300: front flux, 400: backing portion, 500: weld metal, 600: groove filling material

Claims (6)

  1.  先行極と当該先行極に続く後行極とを用いた多電極片面サブマージアーク溶接方法であって、
     前記先行極および前記後行極では、それぞれ、直径2.4mm以上のワイヤを用い、
     それぞれのワイヤに給電を行う電源の給電方式および外部特性と、それぞれのワイヤの送給速度の速度制御方式とが、
     前記先行極では、前記給電方式が直流、前記外部特性が定電圧特性、前記速度制御方式が一定速度制御に設定され、
     前記後行極では、
    (a)前記給電方式が直流、前記外部特性が定電圧特性、前記速度制御方式が一定速度制御
    (b)前記給電方式が交流、前記外部特性が定電圧特性、前記速度制御方式が一定速度制御
    (c)前記給電方式が交流、前記外部特性が定電流特性、前記速度制御方式がアーク電圧に基づく電圧フィードバック制御
    (d)前記給電方式が交流、前記外部特性が垂下特性、前記速度制御方式がアーク電圧に基づく電圧フィードバック制御
    (e)前記給電方式が直流、前記外部特性が定電流特性、前記速度制御方式がアーク電圧に基づく電圧フィードバック制御
    のいずれかに設定されること
    を特徴とする多電極片面サブマージアーク溶接方法。
    A multi-electrode single-sided submerged arc welding method using a leading electrode and a trailing electrode following the leading electrode,
    In each of the leading electrode and the trailing electrode, a wire having a diameter of 2.4 mm or more is used,
    The power supply method and external characteristics of the power supply that supplies power to each wire, and the speed control method of each wire supply speed,
    In the leading electrode, the power feeding method is set to DC, the external characteristic is constant voltage characteristics, and the speed control method is set to constant speed control.
    At the trailing pole,
    (A) the feeding method is DC, the external characteristic is a constant voltage characteristic, the speed control method is constant speed control (b) the feeding method is AC, the external characteristic is constant voltage characteristic, and the speed control method is constant speed control (C) the feeding method is alternating current, the external characteristic is a constant current characteristic, the speed control method is voltage feedback control based on an arc voltage (d) the feeding method is alternating current, the external characteristic is a drooping characteristic, the speed control method is Voltage feedback control based on arc voltage (e) Multi-electrode characterized in that the feeding method is set to DC, the external characteristics are constant current characteristics, and the speed control method is set to voltage feedback control based on arc voltage. Single-sided submerged arc welding method.
  2.  前記後行極は、前記先行極に続く複数の電極を含んで構成され、
     前記後行極を構成する前記複数の電極のそれぞれでは、前記給電方式、前記外部特性および前記速度制御方式が前記(a)乃至前記(e)のいずれかに設定されること
    を特徴とする請求項1記載の多電極片面サブマージアーク溶接方法。
    The trailing electrode includes a plurality of electrodes following the leading electrode,
    The feeding method, the external characteristic, and the speed control method are set to any one of (a) to (e) in each of the plurality of electrodes constituting the trailing electrode. The multi-electrode single-sided submerged arc welding method according to Item 1.
  3.  前記後行極を構成する前記複数の電極のうち、前記先行極から見て最も後側に位置する最終極では、前記給電方式、前記外部特性および前記速度制御方式が前記(c)または前記(d)に設定されること
    を特徴とする請求項2記載の多電極片面サブマージアーク溶接方法。
    Among the plurality of electrodes constituting the trailing electrode, the last method of the feeding method, the external characteristic, and the speed control method is the (c) or the (c) at the last electrode located on the rearmost side with respect to the leading electrode. A method according to claim 2, characterized in that it is set to d).
  4.  前記定電圧特性を有する前記電源を用いる場合に、動作点における電流に対する電圧の傾きである微分値dV/dIが-12.0×10-3(V/A)以上であること
    を特徴とする請求項1乃至3のいずれか1項記載の多電極片面サブマージアーク溶接方法。
    When using the power supply having the constant voltage characteristic, a differential value dV / dI which is a slope of a voltage with respect to a current at an operating point is −12.0 × 10 −3 (V / A) or more. The multi-electrode single-sided submerged arc welding method according to any one of claims 1 to 3.
  5.  前記定電流特性または前記垂下特性を有する前記電源を用いる場合に、動作点における電流に対する電圧の傾きである微分値dV/dIが-24.0×10-3(V/A)以下であること
    を特徴とする請求項1記載の多電極片面サブマージアーク溶接方法。
    When using the power supply having the constant current characteristic or the drooping characteristic, the differential value dV / dI, which is the slope of the voltage relative to the current at the operating point, is -24.0 × 10 -3 (V / A) or less The multi-electrode single-sided submerged arc welding method according to claim 1, characterized in that
  6.  先行極と当該先行極に続く後行極とを用いた片面サブマージアーク溶接にて、母材を溶接してなる溶接物の製造方法であって、
     前記先行極および前記後行極では、それぞれ、直径2.4mm以上のワイヤを用い、
     それぞれのワイヤに給電を行う電源の給電方式および外部特性と、それぞれのワイヤの送給速度の速度制御方式とが、
     前記先行極では、前記給電方式が直流、前記外部特性が定電圧特性、前記速度制御方式が一定速度制御に設定され、
     前記後行極では、
    (a)前記給電方式が直流、前記外部特性が定電圧特性、前記速度制御方式が一定速度制御
    (b)前記給電方式が交流、前記外部特性が定電圧特性、前記速度制御方式が一定速度制御
    (c)前記給電方式が交流、前記外部特性が定電流特性、前記速度制御方式がアーク電圧に基づく電圧フィードバック制御
    (d)前記給電方式が交流、前記外部特性が垂下特性、前記速度制御方式がアーク電圧に基づく電圧フィードバック制御
    (e)前記給電方式が直流、前記外部特性が定電流特性、前記速度制御方式がアーク電圧に基づく電圧フィードバック制御
    のいずれかに設定されること
    を特徴とする溶接物の製造方法。
    A method for producing a weldment comprising welding a base material by single-sided submerged arc welding using a leading electrode and a trailing electrode following the leading electrode,
    In each of the leading electrode and the trailing electrode, a wire having a diameter of 2.4 mm or more is used,
    The power supply method and external characteristics of the power supply that supplies power to each wire, and the speed control method of each wire supply speed,
    In the leading electrode, the power feeding method is set to DC, the external characteristic is constant voltage characteristics, and the speed control method is set to constant speed control.
    At the trailing pole,
    (A) the feeding method is DC, the external characteristic is a constant voltage characteristic, the speed control method is constant speed control (b) the feeding method is AC, the external characteristic is constant voltage characteristic, and the speed control method is constant speed control (C) the feeding method is alternating current, the external characteristic is a constant current characteristic, the speed control method is voltage feedback control based on an arc voltage (d) the feeding method is alternating current, the external characteristic is a drooping characteristic, the speed control method is Arc-voltage-based voltage feedback control (e) A weldment characterized in that the feeding method is DC, the external characteristics are constant-current characteristics, and the speed control method is arc-voltage-based voltage feedback control. Manufacturing method.
PCT/JP2014/076587 2014-02-12 2014-10-03 One-side submerged arc welding method for multielectrode and method for producing welded product WO2015122047A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480074735.7A CN105960306B (en) 2014-02-12 2014-10-03 Multi-electrode single side buried arc welding method, the manufacturing method for welding object
KR1020167021836A KR20160105900A (en) 2014-02-12 2014-10-03 One-side submerged arc welding method for multielectrode and method for producing welded product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014024776A JP2015150572A (en) 2014-02-12 2014-02-12 Method of welding multi-electrode single-sided submerged arc, method of manufacturing weldment
JP2014-024776 2014-02-12

Publications (1)

Publication Number Publication Date
WO2015122047A1 true WO2015122047A1 (en) 2015-08-20

Family

ID=53799803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076587 WO2015122047A1 (en) 2014-02-12 2014-10-03 One-side submerged arc welding method for multielectrode and method for producing welded product

Country Status (4)

Country Link
JP (1) JP2015150572A (en)
KR (1) KR20160105900A (en)
CN (1) CN105960306B (en)
WO (1) WO2015122047A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200368842A1 (en) * 2018-01-31 2020-11-26 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) One-side submerged arc welding method and one-side submerged arc welding device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6715682B2 (en) * 2016-05-30 2020-07-01 株式会社神戸製鋼所 Submerged arc welding method
JP7341783B2 (en) * 2019-08-09 2023-09-11 株式会社神戸製鋼所 Laminate-molded product manufacturing system, laminate-molded product manufacturing method
CN112846447B (en) * 2021-02-07 2022-08-12 哈尔滨焊接研究院有限公司 Arc stabilizing method suitable for thick plate multi-arc common molten pool welding

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630817B2 (en) * 1985-03-19 1994-04-27 新日本製鐵株式会社 Multi-electrode submerged arc welding method
JP2007268564A (en) * 2006-03-31 2007-10-18 Jfe Steel Kk Multi-electrode submerged arc welding method
JP2009195957A (en) * 2008-02-22 2009-09-03 Jfe Steel Corp Multi-electrode submerged arc welding method of steel material

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS477138Y1 (en) * 1967-12-19 1972-03-15
JPH0852573A (en) * 1994-08-12 1996-02-27 Nippon Steel Weld Prod & Eng Co Ltd Method for starting multi-electrode, one side submerged arc welding
JP2860060B2 (en) * 1994-09-30 1999-02-24 株式会社神戸製鋼所 Single-sided submerged arc welding method
JP2000117442A (en) 1998-10-19 2000-04-25 Nippon Steel Hardfacing Co Ltd Method and device for submerged arc welding
JP2005319507A (en) * 2004-05-11 2005-11-17 Oshima Shipbuilding Co Ltd Multiple electrodes one side submerged arc welding method
JP2007268551A (en) 2006-03-30 2007-10-18 Kobe Steel Ltd Multi-electrode one side submerged arc welding method
JP5895423B2 (en) * 2011-09-27 2016-03-30 Jfeスチール株式会社 Multi-electrode submerged arc welding method for steel sheet
KR20160060779A (en) * 2011-11-29 2016-05-30 제이에프이 스틸 가부시키가이샤 Submerged arc welding method for steel plate
CN103958109A (en) * 2011-11-29 2014-07-30 杰富意钢铁株式会社 Submerged arc welding method for steel sheets
JP6094352B2 (en) * 2012-04-17 2017-03-15 Jfeスチール株式会社 Multi-electrode submerged arc welding method for steel sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630817B2 (en) * 1985-03-19 1994-04-27 新日本製鐵株式会社 Multi-electrode submerged arc welding method
JP2007268564A (en) * 2006-03-31 2007-10-18 Jfe Steel Kk Multi-electrode submerged arc welding method
JP2009195957A (en) * 2008-02-22 2009-09-03 Jfe Steel Corp Multi-electrode submerged arc welding method of steel material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200368842A1 (en) * 2018-01-31 2020-11-26 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) One-side submerged arc welding method and one-side submerged arc welding device

Also Published As

Publication number Publication date
KR20160105900A (en) 2016-09-07
CN105960306B (en) 2018-11-30
CN105960306A (en) 2016-09-21
JP2015150572A (en) 2015-08-24

Similar Documents

Publication Publication Date Title
US9457420B2 (en) Gas tungsten arc welding with cross AC arcing twin wires
US8809740B2 (en) Two-electrode welding method
CN113369643B (en) Dual wire welding or additive manufacturing system and method
JP6137053B2 (en) Narrow groove gas shielded arc welding method
CN109382566B (en) Dual wire welding or additive manufacturing system and method
JP6190774B2 (en) Electrogas arc welding method and electrogas arc welding apparatus
JP6119940B1 (en) Vertical narrow groove gas shielded arc welding method
WO2015122047A1 (en) One-side submerged arc welding method for multielectrode and method for producing welded product
JP2017144480A (en) Arc-welding method and arc-welding device
KR102034475B1 (en) One-side submerged arc welding method for multielectrode and method for producing welded product
JP6609493B2 (en) Electrogas arc welding method and electrogas arc welding apparatus
JP5987737B2 (en) Narrow groove welding method for steel
KR101695103B1 (en) Pulsed arc welding method
WO2017033978A1 (en) Welding method and arc welding device
CN115703163A (en) Multi-electrode single-side submerged arc welding method
JP6258161B2 (en) Tandem arc welding method, tandem arc welding apparatus, and tandem arc welding system
JP2018083234A (en) Method of multi-electrode single-sided submerged arc welding, and method of manufacturing weldment
JP2005246469A (en) Consumable electrode type arc welding process
JP6637272B2 (en) Welding method
JP2021181102A (en) Arc welder and arc welding method
KR101482310B1 (en) Multilayer Electro Gas Arc Welding and Welded material thereof
JP2020066059A (en) System and method for double wire welding or lamination shaping

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882491

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016016369

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20167021836

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14882491

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112016016369

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160714