JP2008030044A - Electrogas arc welding method - Google Patents

Electrogas arc welding method Download PDF

Info

Publication number
JP2008030044A
JP2008030044A JP2006202688A JP2006202688A JP2008030044A JP 2008030044 A JP2008030044 A JP 2008030044A JP 2006202688 A JP2006202688 A JP 2006202688A JP 2006202688 A JP2006202688 A JP 2006202688A JP 2008030044 A JP2008030044 A JP 2008030044A
Authority
JP
Japan
Prior art keywords
welding
wire
heat input
input per
electrogas arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006202688A
Other languages
Japanese (ja)
Inventor
Yukio Shinpo
幸雄 真保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006202688A priority Critical patent/JP2008030044A/en
Publication of JP2008030044A publication Critical patent/JP2008030044A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrogas arc welding method that reduces heat input per welding unit length below a conventional level and that makes stable welding speed possible above a conventional level. <P>SOLUTION: In a one-electrode electrogas arc welding method, two steel plates with a thickness of ≥45 mm and ≤75 mm are placed opposite to each other and welded with a single welding wire by single pass vertical position butt welding. The method is characterized in that the welding wire diameter is <2 mm, that the wire extension length is ≥70 mm, and that the heat input per groove volume satisfies 16-27 kJ/cm<SP>3</SP>. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、厚鋼板、特に板厚45mm以上の厚肉鋼板の立向エレクトロガスアーク溶接方法に係わり、健全な溶け込み形状を得ると同時に溶接入熱を低下させ、被溶接鋼板における過大な溶接熱影響による諸特性低下を防止し、良好な溶接継手性能を得、さらに高能率溶接を可能とするための方法に関する。   The present invention relates to a vertical electrogas arc welding method for a thick steel plate, particularly a thick steel plate having a thickness of 45 mm or more, and obtains a sound penetration shape and at the same time lowers the welding heat input, and excessive welding heat influence on the steel plate to be welded. The present invention relates to a method for preventing deterioration of various properties due to, obtaining good weld joint performance, and enabling high-efficiency welding.

エレクトロガスアーク溶接は図6に示すような鋼板の立向突合せ溶接方法の一つで、被溶接材1の開先片面に摺動銅板2を、片面にセラミックスや銅製の裏当材3を配置し、摺動銅板2と被溶接材1および裏当材3で囲まれる開先に上方から電極ワイヤ4を送給してガスシールドアーク溶接を行う溶接方法である。   Electrogas arc welding is one of the vertical butt welding methods of steel plates as shown in FIG. 6, in which a sliding copper plate 2 is arranged on one side of a groove of a material to be welded 1 and a backing material 3 made of ceramics or copper is arranged on one side. In this welding method, gas shield arc welding is performed by feeding the electrode wire 4 from above to a groove surrounded by the sliding copper plate 2, the workpiece 1 and the backing material 3.

エレクトロガスアーク溶接方法は、他の溶接法に比べて高能率溶接が達成されることから、船舶、石油貯蔵タンク及び橋梁等の幅広い分野で採用されている。特に船舶分野では、コンテナ船のシャーストレーキ及びハッチコーミング部等のような、板厚が45mm以上の極厚板の溶接に対してもこの溶接方法が適用されている。   The electrogas arc welding method is used in a wide range of fields such as ships, oil storage tanks, bridges and the like because high-efficiency welding is achieved compared to other welding methods. Particularly in the marine field, this welding method is also applied to welding of extremely thick plates having a plate thickness of 45 mm or more, such as a chassis rake and a hatch combing portion of a container ship.

また、被溶接材1が更に厚肉化し、単一の電極ワイヤ4では溶着量が不足する、もしくは溶接効率を更に高める必要がある、更には、融合不良等の溶接欠陥を防止する、等の必要性が生じた場合においては、特許文献1に板厚方向に複数本の電極ワイヤを配置し、これらの片方もしくは両方を板厚方向に摺動させる、多電極エレクトロガスアーク溶接方法が開示されている。   Further, the material to be welded 1 is further thickened, the welding amount is insufficient with a single electrode wire 4, or the welding efficiency needs to be further increased, and further, welding defects such as poor fusion are prevented. When the necessity arises, Patent Document 1 discloses a multi-electrode electrogas arc welding method in which a plurality of electrode wires are arranged in the thickness direction and one or both of them are slid in the thickness direction. Yes.

近年の船舶の大型化傾向は著しく、それに伴い、特に前述したような部材に適用される鋼板の板厚は増加の一途を辿っている。   In recent years, the tendency of ships to increase in size has been remarkable, and accordingly, the thickness of steel plates applied to the above-described members has been increasing.

一方、図6で概説したエレクトロガスアーク溶接法の溶接単位長さ当りの入熱(一般的に溶接入熱と呼ばれ、kJ/cmなどの単位で表される)は、電極ワイヤから投入される熱量(溶接電流×溶接電圧)を溶接速度で除することによって得られるため、投入熱量が一定である場合においては、被溶接部材の板厚が増加するとともに溶接速度が低下し、溶接単位長さ当りの入熱は増加することになる。   On the other hand, the heat input per unit length of the electrogas arc welding method outlined in FIG. 6 (generally called welding heat input and expressed in units such as kJ / cm) is input from the electrode wire. Since it is obtained by dividing the amount of heat (welding current x welding voltage) by the welding speed, when the input heat amount is constant, the plate thickness of the welded member increases and the welding speed decreases, and the welding unit length The heat input per hit will increase.

溶接単位長さ当りの入熱が大きくなると溶接熱影響部が高温にさらされている時間が長くなり、また高温からの冷却速度が低下するため溶接熱影響部の靱性が低下しやすい。また、近年ではYP390以上等の高強度材が用いられるようになったが、一般的に溶接継手の靭性は高強度材ほど低下しやすい傾向にあるため、溶接熱影響部の靱性を確保するには、溶接単位長さ当りの入熱を低下させる必要がある。   When the heat input per weld unit length increases, the time during which the weld heat affected zone is exposed to a high temperature becomes longer, and the cooling rate from the high temperature decreases, so the toughness of the weld heat affected zone tends to decrease. In recent years, high-strength materials such as YP390 and higher have been used, but generally the toughness of welded joints tends to decrease as the strength of high-strength materials increases. It is necessary to reduce the heat input per welding unit length.

特許文献2には、溶接ワイヤの突出しを長くすることによってワイヤの溶融速度が大きくなり、溶接単位長さ当りの入熱が低下することが開示されている。しかし、突出しが長くなるとワイヤの蛇行を招くため、突出しの増加には限度があり、70mm以上などの極端に長い突出し長さは試みられていない。   Patent Document 2 discloses that by increasing the length of the welding wire, the melting rate of the wire increases and the heat input per welding unit length decreases. However, if the protrusion becomes long, it causes meandering of the wire. Therefore, the increase in protrusion is limited, and an extremely long protrusion length such as 70 mm or more has not been attempted.

また、突出し長さを長くしてワイヤの溶融速度を大きくし、溶接単位長さ当りの入熱を低下させると、溶け込み不良など溶接欠陥が発生しやすくなる。突出し長さを長くして溶接単位長さ当りの入熱を低下させた場合に、どのような溶接条件とすれば安定した溶接が可能となるかは開示されていない。
特許3741402号公報 特公昭61−2480号公報
Further, if the protruding length is lengthened to increase the melting rate of the wire and the heat input per welding unit length is reduced, welding defects such as poor penetration are likely to occur. It is not disclosed what welding conditions can be used for stable welding when the protruding length is increased to reduce the heat input per welding unit length.
Japanese Patent No. 3741402 Japanese Examined Patent Publication No. 61-2480

本発明は上記従来技術の問題点を解決するためになされたものであって、45mm以上の厚鋼板を1パスでエレクトロガスアーク溶接するにおいて、溶接単位長さ当りの入熱を低減し、かつ従来以上の溶接速度を可能にし、溶け込み不良などの溶接欠陥を発生させずに安定した溶接を可能にするエレクトロガスアーク溶接方法を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems of the prior art, and reduces the heat input per unit length of welding when electrogas arc welding is performed on a thick steel plate of 45 mm or more in one pass. It is an object of the present invention to provide an electrogas arc welding method that enables the above-described welding speed and enables stable welding without causing welding defects such as poor penetration.

本願発明は、従来、試みられていなかった70mm以上と極端に長い突出し長さを採用し、突出しにおけるジュール発熱を利用してワイヤの溶融速度を増大させて溶接単位長さ当りの入熱を低減し、かかる状態でも溶け込み不良などの溶接欠陥を発生させることなく安定した溶接を可能とする溶接方法である。   The present invention adopts an extremely long protrusion length of 70 mm or more, which has not been attempted before, and uses the Joule heat generation at the protrusion to increase the melting rate of the wire to reduce the heat input per welding unit length. In such a state, the welding method enables stable welding without generating welding defects such as poor penetration.

突出しにおけるジュール発熱においては単位体積当りの発熱は電流密度の2乗に比例するので、ワイヤ径を細くして電流密度を高くすることがワイヤを加熱する上で有利である。   In the Joule heat generation at the protrusion, the heat generation per unit volume is proportional to the square of the current density. Therefore, it is advantageous in heating the wire to increase the current density by reducing the wire diameter.

エレクトロガスアーク溶接においては板厚の1/2〜1/3程度の幅のかなり広い開先が採用される。開先は溶接ワイヤを溶融した金属で埋められる。開先を埋めた溶融金属は、その保有する熱で被溶接材をも溶融し、ワイヤおよび被溶接材が溶融した金属は一体となり、さらに凝固して溶接金属を形成する。溶接における発熱(アーク発熱およびワイヤでのジュール発熱)は主に溶接ワイヤの溶融および溶融池の加熱に費やされる。   In electrogas arc welding, a considerably wide groove having a width of about 1/2 to 1/3 of the plate thickness is employed. The groove is filled with molten metal in the welding wire. The molten metal in which the groove is filled also melts the material to be welded by the heat it holds, and the metal in which the wire and the material to be welded are fused together to solidify to form a weld metal. Heat generation in welding (arc heat generation and Joule heat generation in the wire) is mainly consumed for melting the welding wire and heating the molten pool.

このため、溶接における発熱(溶接電流×溶接電圧)はまず開先を埋める溶融金属に伝えられ、この熱がさらに被溶接材を溶融する。発明者は、このことに着目し、開先を埋める溶融金属が単位体積当りにどれだけの熱を保有しているかが被溶接材をどれだけ溶かすことができるかに密接に関係していることを知見した。   For this reason, heat generated in welding (welding current × welding voltage) is first transmitted to the molten metal filling the groove, and this heat further melts the workpiece. The inventor pays attention to this and is closely related to how much heat the molten metal that fills the groove has per unit volume can melt the welded material. I found out.

すなわち、開先体積当りの入熱が大きければ、被溶接材の溶融も大きくなり、溶け残りは生じ難く、開先体積当りの入熱が小さければ被溶接材の溶融が少なくなり、溶け残りが生じやすくなる。開先体積当りの入熱を適正な範囲に管理することにより、溶接単位長さ当りの入熱を低減した状態でも安定した溶接が可能となる。   That is, if the heat input per groove volume is large, the material to be welded will also melt, and unmelted residue will hardly occur.If the heat input per groove volume is small, the material to be welded will be less melted and unmelted. It tends to occur. By managing the heat input per groove volume within an appropriate range, stable welding can be performed even when the heat input per weld unit length is reduced.

開先体積当りの入熱q(kJ/cm)は溶接電流I(A)、溶接電圧V(V)、溶接速度v(cm/s)、開先面積s(cm)から式(1)のように求められる。 The heat input q g (kJ / cm 3 ) per groove volume is calculated from the equation (from the welding current I (A), the welding voltage V (V), the welding speed v (cm / s), and the groove area s (cm 2 ). It is required as in 1).

=IV/(1000vs)・・・・・(1)
開先体積当りの入熱の最適範囲は板厚および電極数によって異なり、それぞれに最適範囲を設定する。
q g = IV / (1000 vs) (1)
The optimum range of heat input per groove volume varies depending on the plate thickness and the number of electrodes, and the optimum range is set for each.

また、ワイヤ突出しを極めて長くするとワイヤの蛇行によってワイヤを開先中央に送給することが困難となることがある。ワイヤが開先のどちらかに寄ると、溶け込みが不均一となる。また極端な場合にはワイヤが開先、あるいは当金に接触し溶接が極めて不安定になる。このような問題を解決するにはコンタクトチップの先端にコンタクトチップとは電気的に絶縁されたワイヤガイドを取り付けることが有効である。   Also, if the wire protrusion is extremely long, it may be difficult to feed the wire to the groove center due to the meandering of the wire. If the wire approaches either of the grooves, the penetration becomes uneven. In extreme cases, the wire comes into contact with the groove or the metal and welding becomes extremely unstable. In order to solve such a problem, it is effective to attach a wire guide electrically insulated from the contact tip at the tip of the contact tip.

本願発明は上記した知見に基づきなされたものであり、その要旨とするところは以下の通りである。   The present invention has been made on the basis of the above-described findings, and the gist thereof is as follows.

1.第一の発明は、板厚が45mm以上、75mm以下の2枚の鋼板を対向し、これらを1本の溶接ワイヤで1パス立向突合せ溶接する1電極エレクトロガスアーク溶接方法において、溶接ワイヤ径を2mm未満、溶接ワイヤの突出し長さを70mm以上とし、また開先体積当りの入熱が16〜27kJ/cmを満足することを特徴とするエレクトロガスアーク溶接方法である。 1. A first invention is a one-electrode electrogas arc welding method in which two steel plates having a thickness of 45 mm or more and 75 mm or less are opposed to each other and one-pass vertical butt welding is performed with one welding wire. The electrogas arc welding method is characterized in that the welding wire protrusion length is less than 2 mm, the welding wire protrusion length is 70 mm or more, and the heat input per groove volume satisfies 16 to 27 kJ / cm 3 .

2.第二の発明は、板厚が65mm以上、95mm以下の2枚の鋼板を対向し、これらを2本の溶接ワイヤで1パス立向突合せ溶接する2電極エレクトロガスアーク溶接方法において、溶接ワイヤ径を2mm未満、少なくとも1本の溶接ワイヤの突出し長さを70mm以上とし、また開先体積当りの入熱が15〜24kJ/cmを満足することを特徴とするエレクトロガスアーク溶接方法である。 2. A second invention is a two-electrode electrogas arc welding method in which two steel plates having a thickness of 65 mm or more and 95 mm or less are opposed to each other, and these are welded in one pass by butt welding with two welding wires. The electrogas arc welding method is characterized in that the protruding length of at least one welding wire is less than 2 mm, 70 mm or more, and the heat input per groove volume satisfies 15 to 24 kJ / cm 3 .

3.第三の発明は、第一の発明または第二の発明に記載の溶接方法において、コンタクトチップの先に該コンタクトチップと電気的に絶縁されたワイヤガイドを設けたことを特徴とするエレクトロガスアーク溶接方法である。   3. A third invention is the welding method according to the first invention or the second invention, wherein a wire guide electrically insulated from the contact tip is provided at the tip of the contact tip. Is the method.

本願発明によれば、エレクトロガスアーク溶接の溶接入熱を大幅に低下させることが可能となるので溶接熱影響部の靱性の低下を防止できる。また、従来のエレクトロガスアーク溶接よりも入熱を低減したにもかかわらず、溶接速度は従来よりも大きく増加できるので、溶接能率が向上する。     According to the present invention, it is possible to significantly reduce the welding heat input of electrogas arc welding, so that it is possible to prevent a decrease in the toughness of the weld heat affected zone. Moreover, although the heat input is reduced as compared with the conventional electrogas arc welding, the welding speed can be increased more than before, so that the welding efficiency is improved.

本願発明を実施するための1形態について図1を用いて説明する。ここでは1電極のエレクトロガスアーク溶接の場合について説明する。コンタクトチップ7には溶接電源13より電流が供給される。また溶接電源13のもう一方の端子は被溶接材1と電気的に接続されている。ワイヤ4はワイヤ供給装置14により供給される。突出し部11は従来の方法と比べてかなり長く設定される。コンタクトチップ7より溶接ワイヤ4に給電され、突出し部11においてワイヤはジュール加熱される。その後ワイヤはワイヤ先端より発生するアーク5の熱により溶融し、溶滴8として被溶接材に移行して溶融池9を形成する。溶融池9は被溶接材の一部を溶融した後、凝固して溶接金属10となる。   One mode for carrying out the present invention will be described with reference to FIG. Here, the case of one-electrode electrogas arc welding will be described. A current is supplied to the contact tip 7 from the welding power source 13. The other terminal of the welding power source 13 is electrically connected to the workpiece 1. The wire 4 is supplied by a wire supply device 14. The protruding portion 11 is set to be considerably longer than the conventional method. Power is supplied to the welding wire 4 from the contact tip 7, and the wire is Joule-heated at the protruding portion 11. Thereafter, the wire is melted by the heat of the arc 5 generated from the tip of the wire and is transferred as a droplet 8 to a material to be welded to form a molten pool 9. The molten pool 9 melts a part of the material to be welded and then solidifies to become the weld metal 10.

また本願発明を実施するための別の1形態について図2を用いて説明する。2電極のエレクトロガスアーク溶接の場合であり、もう一つのワイヤ18、ワイヤガイド17、コンタクトチップ16、ワイヤ供給装置21および溶接電源22が図2の構成に並列に追加される。図中の記号で図2と同じ符号のものは同じものをさす。なお19はアーク、20は溶滴、23は突出し部である。   Another embodiment for carrying out the present invention will be described with reference to FIG. In the case of two-electrode electrogas arc welding, another wire 18, a wire guide 17, a contact tip 16, a wire supply device 21, and a welding power source 22 are added in parallel to the configuration of FIG. The same reference numerals in FIG. 2 as those in FIG. Note that 19 is an arc, 20 is a droplet, and 23 is a protruding portion.

本発明において最も重要なことは突出し部11、23を従来よりも著しく長くし、ワイヤ4,18を予熱してワイヤの溶融速度を大きくし、かかる状態においても安定して溶接が行われるようにすることである。   The most important thing in the present invention is that the protruding portions 11 and 23 are made significantly longer than before, the wires 4 and 18 are preheated to increase the melting rate of the wires, and welding can be stably performed even in such a state. It is to be.

まず、本発明では溶接ワイヤ4、18の径を2mm未満としている。ワイヤ径が太いとワイヤ4,18を流れる電流密度が低下するため、溶接ワイヤの突出し部11、23における予熱効果が小さい。このため、ワイヤの溶融速度を増大する効果が少なく、また入熱の低減効果も小さい。このため、ワイヤ径は2mm未満に限定する。   First, in the present invention, the diameters of the welding wires 4 and 18 are less than 2 mm. If the wire diameter is large, the current density flowing through the wires 4 and 18 decreases, so the preheating effect at the protruding portions 11 and 23 of the welding wire is small. For this reason, the effect of increasing the melting rate of the wire is small, and the effect of reducing heat input is also small. For this reason, the wire diameter is limited to less than 2 mm.

突出し部11、23を長くすると抵抗加熱によりワイヤが予熱されるため、ワイヤの溶融速度を増大でき、溶接入熱が低減できるが、突出し部11、23が70mm未満ではその効果が少ないため、少なくとも1本のワイヤの突出し長さは70mm以上とする。但し、突出し長さを長くし過ぎると、開先体積当りの入熱が小さくなるため、好ましくは110mm以下である。   If the protrusions 11 and 23 are lengthened, the wire is preheated by resistance heating, so that the melting rate of the wire can be increased and welding heat input can be reduced. However, if the protrusions 11 and 23 are less than 70 mm, the effect is small. The protruding length of one wire is 70 mm or more. However, if the protrusion length is too long, the heat input per groove volume becomes small, and is preferably 110 mm or less.

1電極エレクトロガスアーク溶接により、板厚が45mm以上、75mm以下の鋼板を溶接する場合には、開先体積当りの入熱は27kJ/cmを超えでは単位長さ当り入熱の低下効果が少ないため、27kJ/cm3以下とする。また16kJ/cm未満では溶け残りが生ずるため16kJ/cm以上とする。 When welding steel plates with a thickness of 45 mm or more and 75 mm or less by one-electrode electrogas arc welding, the heat input per groove volume is less than 27 kJ / cm 3, and the effect of reducing the heat input per unit length is small. Therefore, it shall be 27 kJ / cm3 or less. Further, if it is less than 16 kJ / cm 3 , undissolved residue is generated, so that it is 16 kJ / cm 3 or more.

また2電極エレクトロガスアーク溶接により、板厚が65mm以上、95mm以下の鋼板を溶接する場合には、同様の理由により開先体積当りの入熱を15〜24kJ/cmとする。 Further, when welding steel plates having a thickness of 65 mm or more and 95 mm or less by two-electrode electrogas arc welding, the heat input per groove volume is set to 15 to 24 kJ / cm 3 for the same reason.

また、突出し部11、23が長くなるとワイヤの曲がりによってワイヤを狙いの位置に供給することが難しくなる。この問題を解決するためには、コンタクトチップ7、16の先にコンタクトチップ7、16とは電気的に絶縁されたワイヤガイド15、17を設けることが効果的である。ワイヤガイド15、17は耐熱性の樹脂、セラミックあるいはこれらと金属とを複合して製作する。   Moreover, if the protrusion parts 11 and 23 become long, it will become difficult to supply a wire to the target position by the bending of a wire. In order to solve this problem, it is effective to provide wire guides 15 and 17 that are electrically insulated from the contact chips 7 and 16 before the contact chips 7 and 16. The wire guides 15 and 17 are manufactured by combining a heat-resistant resin, ceramic, or these and a metal.

以下、本発明の実施例について、本発明の範囲から外れる比較例と比較して説明する。   Examples of the present invention will be described below in comparison with comparative examples that are out of the scope of the present invention.

1電極エレクトロガスアーク溶接の例である。被溶接材1として、板厚50、60、65、70mmのYP390N/mm2級鋼板を用い、開先表側に水冷銅板2、裏側にセラミックス製の固定式裏当材3を設置した。   It is an example of 1 electrode electrogas arc welding. A YP390N / mm2 grade steel plate having a thickness of 50, 60, 65, and 70 mm was used as the material to be welded 1, a water-cooled copper plate 2 on the groove front side, and a ceramic fixed backing material 3 on the back side.

溶接ワイヤ4には直径1.6mmのフラックス入りワイヤ(JIS Z3319 YFEG-22C相当)を用い、シールドガスとしては炭酸ガスを30l/min流した。溶接電源13としては、直流定電圧電源を用い、溶接ワイヤ4側をプラス(DCEP)とした。   As the welding wire 4, a flux-cored wire having a diameter of 1.6 mm (equivalent to JIS Z3319 YFEG-22C) was used, and carbon dioxide gas was allowed to flow at 30 l / min as the shielding gas. As the welding power source 13, a DC constant voltage power source was used, and the welding wire 4 side was a plus (DCEP).

図3は開先形状を示した図で開先幅は裏側でW1、表側でW2である。図4は溶接ワイヤ4の送給位置を示した図である。溶接ワイヤ4は開先中央を狙い位置とし、開先表側から6mmの位置から裏側10mmの位置までオシレートした。   FIG. 3 is a diagram showing the groove shape, and the groove width is W1 on the back side and W2 on the front side. FIG. 4 is a view showing a feeding position of the welding wire 4. The welding wire 4 oscillated from a position of 6 mm from the groove front side to a position of 10 mm on the back side with the groove center as a target position.

突出し長さが70mm以上の場合には、ワイヤ4の蛇行を防止するため、ワイヤガイド15をコンタクトチップ7の先端に取り付けた。ワイヤガイド15は管状のアルミナ製で、ワイヤの突出し長さが70〜90mmの場合は、50mm長さとし、突出し長さが90mmを超える場合は、75mm長さとした。また、何れもワイヤガイド先端の孔径は2.0mmとした。   When the protruding length was 70 mm or more, the wire guide 15 was attached to the tip of the contact chip 7 in order to prevent the wire 4 from meandering. The wire guide 15 is made of tubular alumina. When the protruding length of the wire is 70 to 90 mm, the wire guide 15 has a length of 50 mm, and when the protruding length exceeds 90 mm, the wire guide 15 has a length of 75 mm. In both cases, the hole diameter at the tip of the wire guide was 2.0 mm.

表1に示す溶接条件で約500mm長さ溶接を行った。溶接部断面サンプルおよびビード外観より溶接部の溶け残りの有無を調べた。   About 500 mm long welding was performed under the welding conditions shown in Table 1. The weld section cross section sample and the bead appearance were examined for the presence of unmelted weld sections.

Figure 2008030044
Figure 2008030044

表1中、A〜Dは厚み50mmの鋼板を溶接した例である。Aは突出し長さが40mmで、従来の溶接条件である。B、Cは突出し長さをそれぞれ73、95mmとし、開先体積当りの入熱を本願発明の範囲とした本願発明の例である。従来の溶接条件と比較し、溶接単位長さ当りの入熱が大幅に低下しているが、溶け残りは全く見られなかった。Dは突出し長さを120mmとした例であるが、突出し長さを長くしすぎているため開先体積当りの入熱が本願発明の範囲を下回り、溶け残りが生じた。   In Table 1, A to D are examples in which a steel sheet having a thickness of 50 mm is welded. A has a protruding length of 40 mm and is a conventional welding condition. B and C are examples of the present invention in which the protruding lengths are 73 and 95 mm, respectively, and the heat input per groove volume is within the scope of the present invention. Compared with conventional welding conditions, the heat input per unit length of welding was greatly reduced, but no undissolved residue was observed. D is an example in which the protruding length is 120 mm. However, since the protruding length is too long, the heat input per groove volume falls below the range of the present invention, and unmelted residue is generated.

E〜Nは厚み60mmの鋼板を溶接した例である。Hは従来の溶接条件である。Mは突出し長さを120mmとした例であり、開先体積当りの入熱が本願発明の範囲を下回るため、溶け残りが生じた。E、F、G、J、K、L、Nは本願発明例であるが、いずれも従来条件と比較し溶接単位長さ当りの入熱が大幅に低下し、かつ溶け残りは全く見られなかった。   E to N are examples in which steel plates having a thickness of 60 mm are welded. H is a conventional welding condition. M is an example in which the protruding length is 120 mm. Since the heat input per groove volume is below the range of the present invention, undissolved residue was generated. E, F, G, J, K, L, and N are examples of the present invention. However, the heat input per weld unit length is greatly reduced and no undissolved residue is seen in comparison with the conventional conditions. It was.

P〜Vは厚み65mmの鋼板を溶接した例である。P、Q、Rは従来の溶接条件である。Uは突出し長さを120mmとした例であり、開先体積当りの入熱が本願発明の範囲を下回るため、溶け残りが生じた。S、T、Vは本願発明例であるが、いずれも従来条件と比較し溶接単位長さ当りの入熱が大幅に低下し、かつ溶け残りは全く見られなかった。     P to V are examples in which a steel plate having a thickness of 65 mm is welded. P, Q, and R are conventional welding conditions. U is an example in which the protruding length is 120 mm. Since the heat input per groove volume is below the range of the present invention, undissolved residue is generated. Although S, T, and V are examples of the present invention, the heat input per unit length of welding was greatly reduced as compared with the conventional conditions, and no undissolved residue was observed.

W〜Zは厚み70mmの鋼板を溶接した例である。Wは従来の溶接条件である。Zは突出し長さを115mmとした例であり、開先体積当りの入熱が本願発明の範囲を下回るため、溶け残りが生じた。X、Yは本願発明例であるが、いずれも、従来条件と比較し溶接単位長さ当りの入熱が大幅に低下し、溶け残りは全く見られなかった     W to Z are examples in which a steel plate having a thickness of 70 mm is welded. W is a conventional welding condition. Z is an example in which the protruding length is 115 mm, and since the heat input per groove volume is below the range of the present invention, undissolved residue is generated. X and Y are examples of the present invention, but in both cases, the heat input per weld unit length was significantly reduced compared to the conventional conditions, and no undissolved residue was found.

2電極のエレクトロガスアーク溶接の例である。被溶接材1として、板厚80、70、90mmのYP390N/mm2級鋼板を用い、開先表側に水冷銅板2、裏側にセラミックス製の固定式裏当材3を設置した。   It is an example of the electrogas arc welding of 2 electrodes. As the material 1 to be welded, YP390N / mm2 grade steel plates having a thickness of 80, 70, and 90 mm were used, a water-cooled copper plate 2 was installed on the groove front side, and a ceramic fixed backing material 3 was installed on the back side.

表側の溶接ワイヤ4および裏側のワイヤ18にはいずれも直径1.6mmのフラックス入りワイヤ(JIS Z3319 YFEG-22C相当)を用い、シールドガスとしては炭酸ガスを30l/min流した。溶接電源としては、直流定電圧電源を用い、表側のワイヤ4(表2ワイヤX)はワイヤプラス(DCEP)とし裏側のワイヤ18(表2ワイヤY)はワイヤマイナス(DCEN)とした。   A flux-cored wire (corresponding to JIS Z3319 YFEG-22C) having a diameter of 1.6 mm was used for both the welding wire 4 on the front side and the wire 18 on the back side, and carbon dioxide gas was allowed to flow at 30 l / min as the shielding gas. As the welding power source, a DC constant voltage power source was used, the front side wire 4 (table 2 wire X) was wire plus (DCEP), and the back side wire 18 (table 2 wire Y) was wire minus (DCEN).

開先形状は実施例1と同様の形状である。図5は溶接ワイヤ4,18の送給位置を示した図である。溶接ワイヤ4,18は開先中央を狙い位置とし、ワイヤXは開先表側から10mmの位置から、ワイヤYから10mmの位置までオシレートした。裏側のワイヤYは開先裏側から30mmの位置に固定した。   The groove shape is the same as that of the first embodiment. FIG. 5 is a view showing a feeding position of the welding wires 4 and 18. The welding wires 4 and 18 were aimed at the groove center, and the wire X oscillated from a position 10 mm from the groove front side to a position 10 mm from the wire Y. The back side wire Y was fixed at a position 30 mm from the back side of the groove.

突出し長さが70mm以上の場合には、ワイヤの蛇行を防止するため、ワイヤガイド15、17をコンタクトチップ7,16の先端に取り付けた。ワイヤガイドは管状のアルミナ製で、ワイヤの突出し長さが70〜90mmの場合は、50mm長さとし、突出し長さが90mmを超える場合は、75mm長さとした。また、何れもワイヤガイド先端の孔径は2.0mmとした。   When the protruding length was 70 mm or more, the wire guides 15 and 17 were attached to the tips of the contact tips 7 and 16 in order to prevent the wires from meandering. The wire guide is made of tubular alumina. When the protruding length of the wire is 70 to 90 mm, the wire guide is 50 mm long. When the protruding length exceeds 90 mm, the wire guide is 75 mm long. In both cases, the hole diameter at the tip of the wire guide was 2.0 mm.

表2に示す溶接条件で約500mm長さ溶接を行った。溶接部断面サンプルおよびビード外観より溶接部の溶け残りの有無を調べた。   About 500 mm long welding was performed under the welding conditions shown in Table 2. The weld section cross section sample and the bead appearance were examined for the presence of unmelted weld sections.

Figure 2008030044
Figure 2008030044

表2中、a〜gは厚み80mmの鋼板を溶接した例である。a、b、cは従来の溶接条件である。d、e、fは本願発明例である。従来の溶接条件と比較し、溶接単位長さ当りの入熱が大幅に低下しているが、溶け残りは全く見られなかった。gは突出し長さを125mmとした例であるが、突出し長さを長くしすぎているため開先体積当りの入熱が本願発明の範囲を下回り、溶け残りが生じた。   In Table 2, a to g are examples in which a steel plate having a thickness of 80 mm is welded. a, b, and c are conventional welding conditions. d, e, and f are examples of the present invention. Compared with conventional welding conditions, the heat input per unit length of welding was greatly reduced, but no undissolved residue was observed. “g” is an example in which the protruding length is 125 mm. However, since the protruding length is too long, the heat input per groove volume falls below the range of the present invention, and undissolved residue is generated.

h〜mは厚み70mmの鋼板を溶接した例である。hは従来の溶接条件である。mは突出し長さを120mmとした例であり、開先体積当りの入熱が本願発明の範囲を下回るため、溶け残りが生じた。j、kは本願発明例であるが、いずれも従来条件と比較し溶接単位長さ当りの入熱が大幅に低下し、溶け残りは全く見られなかった。   hm is an example in which a steel plate having a thickness of 70 mm is welded. h is a conventional welding condition. m is an example in which the protruding length is 120 mm. Since the heat input per groove volume is below the range of the present invention, undissolved residue was generated. Although j and k are examples of the present invention, the heat input per unit length of welding was greatly reduced as compared with the conventional conditions, and no undissolved residue was observed.

n〜sは厚み90mmの鋼板を溶接した例である。nは従来の溶接条件である。sは突出しを120mmとした例であり、開先体積当りの入熱が本願発明の範囲を下回るため、溶け残りが生じた。p、q、rは本願発明例であるが、いずれも従来条件と比較し溶接単位長さ当りの入熱が大幅に低下し、溶け残りは全く見られなかった。   ns is an example in which a steel plate having a thickness of 90 mm is welded. n is a conventional welding condition. s is an example in which the protrusion is 120 mm, and since the heat input per groove volume is below the range of the present invention, undissolved material is generated. p, q, and r are examples of the present invention, but in all cases, compared with the conventional conditions, the heat input per unit length of welding was greatly reduced, and no undissolved residue was observed.

tは厚み70mmの鋼板を溶接した例で、ワイヤXの突出し長さを60mm、ワイヤYの突出し長さを140mmとした例である。開先体積当りの入熱が本願発明の範囲に入る本願発明例である。従来条件と比較し溶接単位長さ当りの入熱が大幅に低下し、溶け残りは全く見られなかった   t is an example in which a steel plate having a thickness of 70 mm is welded, and the protruding length of the wire X is 60 mm and the protruding length of the wire Y is 140 mm. This is an example of the present invention in which the heat input per groove volume falls within the scope of the present invention. Compared to the conventional conditions, the heat input per weld unit length was significantly reduced and no undissolved residue was found.

本願発明によれば、以下の効果が得られ、産業上極めて有用である。
1.エレクトロガスアーク溶接の溶接入熱を大幅に低下させることが可能となることで、溶接熱影響部の靱性の低下を防止でき、構造物の安全性が向上する。
2.従来のエレクトロガスアーク溶接よりも入熱を低減したにもかかわらず、溶接速度は従来よりも大きく増加でき、溶接能率が向上する。
According to the present invention, the following effects are obtained, which is extremely useful industrially.
1. Since it is possible to significantly reduce the welding heat input of electrogas arc welding, it is possible to prevent a decrease in the toughness of the weld heat affected zone and improve the safety of the structure.
2. In spite of the reduced heat input compared to the conventional electrogas arc welding, the welding speed can be greatly increased compared to the conventional one, and the welding efficiency is improved.

本願発明の1実施態様を示す図である。It is a figure which shows one embodiment of this invention. 本願発明の別の1実施態様を示す図である。It is a figure which shows another one embodiment of this invention. 開先の形状を示す図である。It is a figure which shows the shape of a groove | channel. 1電極溶接における開先内のワイヤの供給位置を示す図である。It is a figure which shows the supply position of the wire in a groove | channel in 1 electrode welding. 2電極溶接における開先内のワイヤの供給位置を示す図である。It is a figure which shows the supply position of the wire in a groove | channel in 2 electrode welding. エレクトロガスアーク溶接法を模式的に示した説明図である。It is explanatory drawing which showed the electrogas arc welding method typically.

符号の説明Explanation of symbols

1 被溶接材
2 摺動銅板
3 裏当材
4、18 ワイヤ
5、19 アーク
7、16 コンタクトチップ
8、20 溶滴
9 溶融池
10 溶接金属
11、23 突出し部
13、22 溶接電源
14、21 ワイヤ供給装置
15、17 ワイヤガイド
DESCRIPTION OF SYMBOLS 1 To-be-welded material 2 Sliding copper plate 3 Backing material 4, 18 Wire 5, 19 Arc 7, 16 Contact tip 8, 20 Droplet 9 Molten pool 10 Weld metal 11, 23 Protruding part 13, 22 Welding power source 14, 21 Wire Supply device 15, 17 Wire guide

Claims (3)

板厚が45mm以上、75mm以下の2枚の鋼板を対向し、これらを1本の溶接ワイヤで1パス立向突合せ溶接する1電極エレクトロガスアーク溶接方法において、溶接ワイヤ径を2mm未満、溶接ワイヤの突出し長さを70mm以上とし、また開先体積当りの入熱が16〜27kJ/cmを満足することを特徴とするエレクトロガスアーク溶接方法。 In a one-electrode electrogas arc welding method in which two steel plates having a thickness of 45 mm or more and 75 mm or less are opposed to each other and one-pass vertical butt welding is performed with one welding wire, the welding wire diameter is less than 2 mm, An electrogas arc welding method characterized in that the protruding length is 70 mm or more and the heat input per groove volume satisfies 16 to 27 kJ / cm 3 . 板厚が65mm以上、95mm以下の2枚の鋼板を対向し、これらを2本の溶接ワイヤで1パス立向突合せ溶接する2電極エレクトロガスアーク溶接方法において、溶接ワイヤ径を2mm未満、少なくとも1本の溶接ワイヤの突出し長さを70mm以上とし、また開先体積当りの入熱が15〜24kJ/cmを満足することを特徴とするエレクトロガスアーク溶接方法。 In a two-electrode electrogas arc welding method in which two steel plates having a thickness of 65 mm or more and 95 mm or less are opposed to each other and they are butt welded in one pass with two welding wires, the welding wire diameter is less than 2 mm, and at least one The welding length of the welding wire is 70 mm or more, and the heat input per groove volume satisfies 15 to 24 kJ / cm 3 . 請求項1または2に記載の溶接方法において、コンタクトチップの先に該コンタクトチップと電気的に絶縁されたワイヤガイドを設けたことを特徴とするエレクトロガスアーク溶接方法。   3. The welding method according to claim 1, wherein a wire guide electrically insulated from the contact tip is provided at the tip of the contact tip.
JP2006202688A 2006-07-26 2006-07-26 Electrogas arc welding method Pending JP2008030044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006202688A JP2008030044A (en) 2006-07-26 2006-07-26 Electrogas arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006202688A JP2008030044A (en) 2006-07-26 2006-07-26 Electrogas arc welding method

Publications (1)

Publication Number Publication Date
JP2008030044A true JP2008030044A (en) 2008-02-14

Family

ID=39120002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006202688A Pending JP2008030044A (en) 2006-07-26 2006-07-26 Electrogas arc welding method

Country Status (1)

Country Link
JP (1) JP2008030044A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014124688A (en) * 2012-12-27 2014-07-07 Nippon Steel & Sumitomo Metal Electrogas arc welding method
KR20170015219A (en) 2015-07-31 2017-02-08 가부시키가이샤 고베 세이코쇼 Electro gas arc welding method and electro gas arc welding apparatus
CN108213661A (en) * 2017-12-29 2018-06-29 南京理工大学 A kind of welding method of the vertical high-strength steel member of vertical position welding of robot double wire
CN112276298A (en) * 2020-09-09 2021-01-29 中船重工鹏力(南京)智能装备系统有限公司 Vertical electro-gas welding control method and system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014124688A (en) * 2012-12-27 2014-07-07 Nippon Steel & Sumitomo Metal Electrogas arc welding method
KR20170015219A (en) 2015-07-31 2017-02-08 가부시키가이샤 고베 세이코쇼 Electro gas arc welding method and electro gas arc welding apparatus
KR20180098496A (en) 2015-07-31 2018-09-04 가부시키가이샤 고베 세이코쇼 Electro gas arc welding method and electro gas arc welding apparatus
CN108213661A (en) * 2017-12-29 2018-06-29 南京理工大学 A kind of welding method of the vertical high-strength steel member of vertical position welding of robot double wire
CN112276298A (en) * 2020-09-09 2021-01-29 中船重工鹏力(南京)智能装备系统有限公司 Vertical electro-gas welding control method and system
CN112276298B (en) * 2020-09-09 2022-05-24 中船重工鹏力(南京)智能装备系统有限公司 Vertical electro-gas welding control method and system

Similar Documents

Publication Publication Date Title
KR100899056B1 (en) Multielectrode gas-shield arc welding method
JP5283306B2 (en) Submerged arc welding method for steel
JP2012254469A (en) Two-electrode welding method
JP3993150B2 (en) Flux-cored wire for two-electrode electrogas arc welding, two-electrode electrogas arc welding method, and two-electrode electrogas arc welding apparatus
JP2008087045A (en) Flux-cored wire for electrogas arc welding and two-electrode electrolgas arc welding method
JP5157006B2 (en) Welding method applied to welding wire control device
JP5260469B2 (en) Gas shield arc welding method
JP2007030019A (en) Electrogas arc welding method
JP2007301623A (en) High speed gas shielded arc welding method for horizontal lap joint of steel sheet
JP2008030044A (en) Electrogas arc welding method
KR20180098496A (en) Electro gas arc welding method and electro gas arc welding apparatus
JP2007237225A (en) High-speed hot wire multi-electrode tig welding method of thin steel plate
JP2007237263A (en) Electro-gas arc welding method
KR20180043358A (en) High current pulse arc welding method and flux cored welding wire
JP4806299B2 (en) Flux cored wire
JP6273177B2 (en) Pulse arc welding method
JP2001121265A (en) Arc welding equipment and method for arc welding
JPH11123553A (en) Welded joint structure
KR101091469B1 (en) PURE Ar GAS SHIELDED WELDING MIG FLUX-CORED WIRE AND MIG ARC WELDING METHOD
CN115279528A (en) Multi-electrode gas shielded arc single-side welding method and multi-electrode gas shielded arc single-side welding device
JP3596723B2 (en) Two-electrode vertical electrogas arc welding method
JPH10216943A (en) Gas shielded metal arc welding method of small leg length high-speed horizontal fillet type
JPH09248668A (en) Gas shielded consumable electrode arc brazing method
JP3820179B2 (en) Titanium alloy welding wire for MIG welding and welding method
JP7388969B2 (en) Tandem gas shielded arc welding method and welding equipment