JP5115687B2 - Vector control device for induction motor - Google Patents

Vector control device for induction motor Download PDF

Info

Publication number
JP5115687B2
JP5115687B2 JP2006274663A JP2006274663A JP5115687B2 JP 5115687 B2 JP5115687 B2 JP 5115687B2 JP 2006274663 A JP2006274663 A JP 2006274663A JP 2006274663 A JP2006274663 A JP 2006274663A JP 5115687 B2 JP5115687 B2 JP 5115687B2
Authority
JP
Japan
Prior art keywords
motor
speed
voltage
value
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006274663A
Other languages
Japanese (ja)
Other versions
JP2008099350A (en
Inventor
達也 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2006274663A priority Critical patent/JP5115687B2/en
Publication of JP2008099350A publication Critical patent/JP2008099350A/en
Application granted granted Critical
Publication of JP5115687B2 publication Critical patent/JP5115687B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

本発明は、速度センサレスベクトル制御により誘導電動機のトルク・速度を制御するベクトル制御装置に関するものである。   The present invention relates to a vector control apparatus that controls torque and speed of an induction motor by speed sensorless vector control.

図4は、速度検出器を持たずに速度推定値を用いて誘導電動機のトルク・速度を制御する、いわゆる速度センサレスベクトル制御装置100のブロック図である。
同図において、交流電源12の三相交流電圧はインバータ13により所定の大きさと周波数の三相交流電圧に変換されて誘導電動機17に供給される。これにより、電動機17は所望のトルクを発生して負荷18を駆動する。
FIG. 4 is a block diagram of a so-called speed sensorless vector control apparatus 100 that controls the torque / speed of the induction motor using the speed estimation value without having a speed detector.
In the figure, the three-phase AC voltage of the AC power supply 12 is converted into a three-phase AC voltage having a predetermined magnitude and frequency by an inverter 13 and supplied to the induction motor 17. Thereby, the electric motor 17 generates a desired torque to drive the load 18.

速度設定器1は、誘導電動機17を運転するべき速度ω#を設定する。速度指令演算回路2は、予め定めた加速度により変化して最終的には速度設定値ω#に一致するような速度指令値ω を演算して出力する。
速度調節器3は、速度指令値ω と後述する速度推定演算器33が出力する速度推定値ω^との偏差を零にするような調節動作により、トルク指令値τを出力する。磁束指令演算回路4は、前記速度推定値ω^から二次磁束指令値φ を演算する。
The speed setter 1 sets a speed ω r # at which the induction motor 17 should be operated. The speed command calculation circuit 2 calculates and outputs a speed command value ω r * that changes according to a predetermined acceleration and finally matches the speed set value ω r #.
The speed adjuster 3 outputs the torque command value τ * by an adjustment operation that makes the deviation between the speed command value ω r * and the speed estimated value ω r ^ output from the speed estimation calculator 33 described later zero. . The magnetic flux command calculation circuit 4 calculates a secondary magnetic flux command value φ 2 * from the estimated speed value ω r ^.

また、トルク指令値τ及び二次磁束指令値φ により、下記の数式1,2に従って、電動機一次電流の二次磁束φに平行な成分(以下、M軸という)の電流指令値i と二次磁束φに垂直な成分(以下、T軸という)の電流指令値i とを演算する。ここで、演算回路7は数式1を演算し、演算回路5は数式2を演算する。 Further, a current command value of a component parallel to the secondary magnetic flux φ 2 of the motor primary current (hereinafter referred to as M-axis) according to the following formulas 1 and 2 using the torque command value τ * and the secondary magnetic flux command value φ 2 *. i M * and a current command value i T * of a component perpendicular to the secondary magnetic flux φ 2 (hereinafter referred to as T axis) are calculated. Here, the arithmetic circuit 7 calculates Equation 1, and the arithmetic circuit 5 calculates Equation 2.

[数式1]
=(1/L)×φ
(L:電動機励磁インダクタンス)
[数式2]
=τ/φ
[Formula 1]
i M * = (1 / L m ) × φ 2 *
(L m : motor excitation inductance)
[Formula 2]
i T * = τ * / φ 2 *

座標変換器11は、電流検出器14によって検出された相電流をM軸電流検出値iとT軸電流検出値iとに変換するものであり、電動機17のU相巻線と二次磁束φとのなす角度をψとすると、数式3,4によりi,iをそれぞれ演算する。 Coordinate converter 11 is for converting the phase current detected by the current detector 14 to the M-axis current detection value i M and T-axis current detection value i T, U-phase windings of the motor 17 and the secondary Assuming that the angle formed by the magnetic flux φ 2 is ψ 2 , i T and i M are respectively calculated by Equations 3 and 4.

[数式3]
=cosψ×i+cos(ψ−120°)×i+cos(ψ+120°)×i
[数式4]
=sinψ×i+sin(ψ−120°)×i+sin(ψ+120°)×i
[Formula 3]
i T = cos φ 2 × i u + cos (φ 2 −120 °) × i v + cos (φ 2 + 120 °) × i w
[Formula 4]
i M = sinφ 2 × i u + sin (φ 2 −120 °) × i v + sin (φ 2 + 120 °) × i w

T軸電流調節器8は、T軸電流指令値i とT軸電流検出値iとの偏差を零にするような調節動作により、T軸電圧指令値v を出力する。M軸電流調節器9は、M軸電流指令値i とM軸電流検出値iとの偏差を零にするような調節動作により、M軸電圧指令値v を出力する。
座標変換器10は、前記角度ψを用いてT軸電圧指令値v 及びM軸電圧指令値v を座標変換し、数式5〜7によって三相電圧指令値V ,V ,V を演算して出力する。
The T-axis current regulator 8 outputs the T-axis voltage command value v T * by an adjustment operation that makes the deviation between the T-axis current command value i T * and the T-axis current detection value i T zero. The M-axis current regulator 9 outputs the M-axis voltage command value v M * by an adjustment operation that makes the deviation between the M-axis current command value i M * and the M-axis current detection value i M zero.
The coordinate converter 10 performs coordinate conversion of the T-axis voltage command value v T * and the M-axis voltage command value v M * using the angle ψ 2 , and the three-phase voltage command values V u * and V u according to Equations 5-7. Calculates and outputs v * and Vw * .

[数式5]
=cosψ×v +sinψ×v
[数式6]
=cos(ψ−120°)×v +sin(ψ−120°)×v
[数式7]
=cos(ψ+120°)×v +sin(ψ+120°)×v
[Formula 5]
V u * = cosψ 2 × v M * + sinψ 2 × v T *
[Formula 6]
V v * = cos (ψ 2 -120 °) × v M * + sin (ψ 2 -120 °) × v T *
[Formula 7]
V w * = cos (ψ 2 + 120 °) × v M * + sin (ψ 2 + 120 °) × v T *

インバータ13は、三相電圧指令値V ,V ,V に基づいて所定の大きさ及び周波数の三相交流電圧を出力し、電動機17に供給する。 The inverter 13 outputs a three-phase AC voltage having a predetermined magnitude and frequency based on the three-phase voltage command values V u * , V v * , and V w * and supplies the three-phase AC voltage to the electric motor 17.

一方、すべり周波数演算器6は、下記の数式8によってすべり周波数ωslを演算する。また、周波数換算器20は数式9の演算を行い、電動機一次角速度推定値ω^を電動機一次周波数推定値ω^に換算する。 On the other hand, the slip frequency calculator 6 calculates the slip frequency ω sl by the following formula 8. Further, the frequency converter 20 performs the calculation of Equation 9, and converts the motor primary angular velocity estimated value ω 1 ^ into the motor primary frequency estimated value ω ^.

[数式8]
ωsl=R×I /φ
(R:電動機二次時定数)
[数式9]
ω^=ω^×P/120
(P:電動機極数)
[Formula 8]
ω sl = R 2 × I T * / φ 2 *
(R 2: motor secondary time constant)
[Formula 9]
ω ^ = ω 1 ^ × P / 120
(P: Number of motor poles)

上記周波数推定値ω^は積分器15により積分され、前記角度ψが演算される。
ここで、前記磁束指令演算回路4は、速度推定値ω^が基底回転速度ωに達するまでは二次磁束指令値φ を100%出力し、基底回転速度ω以上では速度推定値ω^に反比例して低下するような二次磁束指令値φ を出力する。
The frequency estimated value ω ^ is integrated by the integrator 15 and the angle ψ 2 is calculated.
Here, the magnetic flux command calculation circuit 4, until the speed estimated value omega r ^ reach base speed omega b outputs a secondary magnetic flux command value φ 2 * 100%, the speed estimation at the base rotational speed omega b above A secondary magnetic flux command value φ 2 * that decreases in inverse proportion to the value ω r ^ is output.

また、座標変換器31は、電圧検出器30により検出された相電圧(電動機17の端子電圧すなわちインバータ13の出力電圧)をM軸電圧検出値vとT軸電圧検出値vとに変換するもので、数式10,11によりv,vを演算する。 Further, the coordinate converter 31 converts the phase voltage (the terminal voltage of the electric motor 17, that is, the output voltage of the inverter 13) detected by the voltage detector 30 into the M-axis voltage detection value v M and the T-axis voltage detection value v T. Therefore, v T and v M are calculated by Equations 10 and 11.

[数式10]
=cosψ×v+cos(ψ−120°)×v+cos(ψ+120°)×v
[数式11]
=sinψ×v+sin(ψ−120°)×v+sin(ψ+120°)×v
[Formula 10]
v T = cos ψ 2 × v u + cos (ψ 2 −120 °) × v v + cos (ψ 2 + 120 °) × v w
[Formula 11]
v M = sinφ 2 × v u + sin (φ 2 −120 °) × v v + sin (φ 2 + 120 °) × v w

誘起電圧演算器32は、上記i,i,v,v、及び、速度推定演算器33により演算した一次角速度推定値ω^とを用い、下記数式12,13に従って誘起電圧のM軸(磁化軸)成分e及びT軸(トルク軸)成分eを演算する。 The induced voltage calculator 32 uses the above i T , i M , v T , v M , and the primary angular velocity estimated value ω 1 ^ calculated by the velocity estimation calculator 33, and the induced voltage is calculated according to the following equations 12 and 13. An M-axis (magnetization axis) component e M and a T-axis (torque axis) component e T are calculated.

[数式12]
=v−R・i−Lσ・(d/dt)i−jω^・Lσ・i
[数式13]
=v−R・i−Lσ・(d/dt)i+jω^・Lσ・i
ただし、Rは誘導電動機17の一次抵抗、Lσはもれインダクタンス、jは虚数単位である。
[Formula 12]
e T = v T −R 1 · i T −L σ · (d / dt) i T −jω 1 ^ · L σ · i M
[Formula 13]
e M = v M −R 1 · i M −L σ · (d / dt) i M + jω 1 ^ · L σ · i T
However, the primary resistance R 1 is an induction motor 17, L sigma is leakage inductance, j is an imaginary unit.

速度推定演算器33は、上記ωsl,eを用い、下記の数式14,15に従って一次角速度推定値ω^及び電動機速度推定値ω^を演算する。 The speed estimation calculator 33 calculates the primary angular velocity estimated value ω 1 ^ and the motor speed estimated value ω r ^ according to the following formulas 14 and 15 using the ω sl and e T.

[数式14]
ω^=e/eTrate
[数式15]
ω^=ω^−ωsl
ただし、eTrateは誘導電動機17の定格速度における誘起電圧、すなわち誘起電圧係数である。
[Formula 14]
ω 1 ^ = e T / e Trate
[Formula 15]
ω r ^ = ω 1 ^ -ω sl
However, eTrate is an induced voltage at the rated speed of the induction motor 17, that is, an induced voltage coefficient.

ここで、図5は前記電圧検出器30と座標変換器31との間の回路構成を詳細に示したものであり(図4では省略してある)、電圧検出器30から出力されるアナログ信号の電圧検出値v,vはA/D変換器51,51によりディジタル信号に変換され、乗算器52,52を介して座標変換器31に取り込まれる。
なお、乗算器52,52はA/D変換器51,51の出力信号に規格化ゲインを乗じるためのものであり、この規格化ゲインは、A/D変換後の電圧検出値v,vを座標変換器31に応じた所定のデータ量にするためのゲインである。
Here, FIG. 5 shows in detail the circuit configuration between the voltage detector 30 and the coordinate converter 31 (not shown in FIG. 4), and an analog signal output from the voltage detector 30. The detected voltage values v u and v w are converted into digital signals by the A / D converters 51 u and 51 w and taken into the coordinate converter 31 via the multipliers 52 u and 52 w .
The multipliers 52 u and 52 w are for multiplying the output signals of the A / D converters 51 u and 51 w by the normalized gain, and the normalized gain is a voltage detection value after A / D conversion. These are gains for setting v u and v w to a predetermined data amount corresponding to the coordinate converter 31.

なお、図4に示したような速度センサレスベクトル制御装置は、例えば特許文献1に記載されている。   Note that a speed sensorless vector control device as shown in FIG.

特開平10−56800号公報(段落[0003]〜[0006]、図1,図17等)Japanese Patent Laid-Open No. 10-56800 (paragraphs [0003] to [0006], FIG. 1, FIG. 17, etc.)

前述した如く、速度推定演算器33はT軸誘起電圧eを用いて速度推定値ω^を演算しており、eの演算にはv,v、言い換えれば電圧検出器30による電圧検出値v,v,vが不可欠である。
しかしながら、実際の電圧検出器には検出可能なデータ幅、すなわちフルスケール(F.S)の制約がある。例えば、電圧検出器が、F.S=400V、検出分解能が0.001P.Uである場合、この電圧検出器では0.4V(=400V×0.001)未満の電圧を検出することができない。
As described above, the speed estimation calculator 33 calculates the estimated speed value ω r ^ using the T-axis induced voltage e T, and the calculation of e T is performed by v T , v M , in other words, by the voltage detector 30. The detected voltage values v u , v v and v w are indispensable.
However, an actual voltage detector has a limit of detectable data width, that is, full scale (FS). For example, if the voltage detector is F.D. S = 400V, detection resolution is 0.001P. In the case of U, this voltage detector cannot detect a voltage of less than 0.4 V (= 400 V × 0.001).

一方、電動機17の誘起電圧eに関しては、数式16に示すような関係がある。
[数式16]
=φ ×ω
但し、ωは電動機一次角速度であり、二次磁束指令値φ は一定に制御される。
On the other hand, the induced voltage e T of the electric motor 17 has a relationship as shown in Expression 16.
[Formula 16]
e T = φ 2 * × ω 1
However, ω 1 is the primary angular velocity of the motor, and the secondary magnetic flux command value φ 2 * is controlled to be constant.

このため、電動機速度が低い場合にはeも小さな値となる。
仮に、電動機17の端子電圧が0.4V未満となるように電動機が低速運転されている場合には、前述した数式14,15の演算結果は真値に対して大きく誤差を含むこととなる。これは、速度推定値ω^と実際の電動機速度ωとの間に誤差が発生することを意味する。
Thus, e T also becomes a small value when the motor speed is low.
If the electric motor is operated at a low speed so that the terminal voltage of the electric motor 17 is less than 0.4V, the calculation results of the above-described mathematical formulas 14 and 15 have a large error with respect to the true value. This means that an error occurs between the estimated speed value ω r ^ and the actual motor speed ω r .

図4に示したような速度センサレスベクトル制御装置では、数式15の演算結果である電動機速度推定値ω^を状態検出値として速度を制御しているため、上記のように電動機が低速運転されていて端子電圧検出値が正確でない場合には、実際の電動機速度ωを速度設定値ω#通りに追従制御できなくなる。
特に、電動機17の低速運転時には、速度指令値ω に対して不正確な速度推定値ω^を突き合わせることによって電動機17が逆転に至る場合もあり、電動機17の負荷18が逆転状態を緊急停止条件としている場合には、設備の運転停止に至るなどの重大事故を引き起こすおそれがある。
In the speed sensorless vector control device as shown in FIG. 4, the speed is controlled using the estimated motor speed value ω r ^ which is the calculation result of Formula 15 as the state detection value, so that the motor is operated at a low speed as described above. If the terminal voltage detection value is not accurate, the actual motor speed ω r cannot be controlled to follow the speed setting value ω r #.
In particular, when the electric motor 17 is operated at a low speed, the motor 17 may be reversely rotated by matching the inaccurate estimated speed value ω r ^ with the speed command value ω r * , and the load 18 of the electric motor 17 is in the reverse rotation state. Is an emergency stop condition, there is a risk of causing a serious accident such as the equipment being shut down.

そこで本発明の解決課題は、速度センサレスにより誘導電動機を低速側まで制御するベクトル制御装置において、電動機の逆転等の異常事態を引き起こすことなく、所望のトルク・速度制御を可能としたベクトル制御装置を提供することにある。   Therefore, the problem to be solved by the present invention is to provide a vector control device that controls the induction motor to the low speed side without a speed sensor, and that enables a desired torque / speed control without causing an abnormal situation such as reverse rotation of the motor. It is to provide.

上記課題を解決するため、請求項1に記載した発明は、誘導電動機の一次電流を二次磁束と平行な成分と垂直な成分とに分離し、これらの各成分の電流が指令値通りになるように電力変換器を制御して前記電動機のトルク・速度を制御する誘導電動機のベクトル制御装置であって、前記電動機の端子電圧検出値と電気定数とから誘起電圧を演算する手段と、演算した誘起電圧を用いて前記電動機の速度を推定する手段と、推定した速度を状態検出値として速度を制御する手段と、を備えた速度センサレスベクトル制御装置において、
前記電動機の端子電圧を検出する電圧検出器であって、通常分解能を有する第1の電圧検出器、及び、高分解能を有する第2の電圧検出器と、
前記電動機の高速運転時には第1の電圧検出器の出力をA/D変換し、かつ、前記電動機の低速運転時には第2の電圧検出器の出力をA/D変換するように切り替わるスイッチ手段と、
前記スイッチ手段に連動して通常分解能対応の規格化ゲインと高分解能対応の規格化ゲインとを切り替えるスイッチと、を備え、
前記電動機の低速運転時には、第2の電圧検出器による端子電圧検出値を前記スイッチ手段を介してA/D変換した値と、前記スイッチにより切り替えた高分解能対応の規格化ゲインと、を乗じた値を前記誘起電圧の演算に用いるものである。
In order to solve the above problems, the invention described in claim 1 divides the primary current of the induction motor into a component parallel to the secondary magnetic flux and a component perpendicular to the secondary magnetic flux, and the currents of these components are in accordance with the command values. In this way, the induction motor vector control device controls the torque and speed of the electric motor by controlling the power converter, and the means for calculating the induced voltage from the terminal voltage detection value and the electric constant of the electric motor In a speed sensorless vector control device comprising: means for estimating the speed of the electric motor using an induced voltage; and means for controlling the speed using the estimated speed as a state detection value.
A voltage detector for detecting a terminal voltage of the motor, the first voltage detector having a normal resolution and a second voltage detector with a high resolution,
Switch means for A / D converting the output of the first voltage detector during high-speed operation of the motor, and switching to A / D-convert the output of the second voltage detector during low-speed operation of the motor;
A switch that switches between a normalization gain corresponding to a normal resolution and a normalization gain corresponding to a high resolution in conjunction with the switch means ,
During low speed operation of the motor, multiplied by a value of the terminal voltage detected value and the A / D conversion through the switch means by the second voltage detector, and a normalized gain of high resolution corresponding to switching by the switches The value is used for the calculation of the induced voltage.

請求項2に記載した発明は、誘導電動機の一次電流を二次磁束と平行な成分と垂直な成分とに分離し、これらの各成分の電流が指令値通りになるように電力変換器を制御して前記電動機のトルク・速度を制御する誘導電動機のベクトル制御装置であって、前記電動機の端子電圧検出値と電気定数とから誘起電圧を演算する手段と、演算した誘起電圧を用いて前記電動機の速度を推定する手段と、推定した速度を状態検出値として速度を制御する手段と、を備えた速度センサレスベクトル制御装置において、
前記電動機の端子電圧を検出する電圧検出器と、
サンプリング周期が長い通常分解能対応の第1の積分型A/D変換器、及び、このA/D変換器よりもサンプリング周期が短い高分解能対応の第2の積分型A/D変換器と、
前記電動機の高速運転時には長いサンプリング周期を選択し、かつ、前記電動機の低速運転時には短いサンプリング周期を選択するように切り替わるスイッチ手段と、
前記スイッチ手段に連動して通常分解能対応の規格化ゲインと高分解能対応の規格化ゲインとを切り替えるスイッチと、を備え、
前記電動機の低速運転時には、前記スイッチ手段によって短いサンプリング周期が選択された第2の積分型A/D変換器により前記電圧検出器による端子電圧検出値をA/D変換した値と、前記スイッチにより切り替えた高分解能対応の規格化ゲインと、を乗じた値を前記誘起電圧の演算に用いるものである。
According to the second aspect of the present invention, the primary current of the induction motor is separated into a component parallel to the secondary magnetic flux and a component perpendicular to the secondary magnetic flux, and the power converter is controlled so that the current of each component is in accordance with the command value. An induction motor vector control device for controlling the torque and speed of the motor, wherein the motor uses the induced voltage calculated by means for calculating the induced voltage from a terminal voltage detection value and an electrical constant of the motor. In a speed sensorless vector control device comprising: means for estimating the speed of: and means for controlling the speed using the estimated speed as a state detection value;
A voltage detector for detecting a terminal voltage of the electric motor;
A first integrating A / D converter corresponding to a normal resolution having a long sampling period , and a second integrating A / D converter corresponding to a high resolution having a sampling period shorter than that of the A / D converter ;
Switch means for selecting a long sampling period during high-speed operation of the motor and switching to select a short sampling period during low-speed operation of the motor;
A switch that switches between a normalization gain corresponding to a normal resolution and a normalization gain corresponding to a high resolution in conjunction with the switch means ,
During low-speed operation of the electric motor, a value obtained by A / D converting the terminal voltage detection value by the voltage detector by the second integration type A / D converter in which a short sampling period is selected by the switch means, and the switch and the normalized gain of the high resolution corresponding to switching, the value obtained by multiplying those used for the operation of the induced voltage.

請求項3に記載した発明は、誘導電動機の一次電流を二次磁束と平行な成分と垂直な成分とに分離し、これらの各成分の電流が指令値通りになるように電力変換器を制御して前記電動機のトルク・速度を制御する誘導電動機のベクトル制御装置であって、前記電動機の端子電圧検出値と電気定数とから誘起電圧を演算する手段と、演算した誘起電圧を用いて前記電動機の速度を推定する手段と、推定した速度を状態検出値として速度を制御する手段と、を備えた速度センサレスベクトル制御装置において、
前記電動機の端子電圧を検出する電圧検出器と、
パルス密度変調に用いる基本クロック周波数が低い通常分解能対応の第1のΔΣ変調方式型A/D変換器、及び、このA/D変換器よりも基本クロック周波数が高い高分解能対応の第2のΔΣ変調方式A/D変換器と、
前記電動機の高速運転時には低いクロック周波数を選択し、かつ、前記電動機の低速運転時には高いクロック周波数を選択するように切り替わるスイッチ手段と、
前記スイッチ手段に連動して通常分解能対応の規格化ゲインと高分解能対応の規格化ゲインとを切り替えるスイッチと、を備え、
前記電動機の低速運転時には、前記スイッチ手段によって高いクロック周波数が選択された第2のΔΣ変調方式A/D変換器により前記電圧検出器による端子電圧検出値をA/D変換した値と、前記スイッチにより切り替えた高分解能対応の規格化ゲインと、を乗じた値を前記誘起電圧の演算に用いるものである。
The invention described in claim 3 divides the primary current of the induction motor into a component parallel to the secondary magnetic flux and a component perpendicular to the secondary magnetic flux, and controls the power converter so that the current of each component is in accordance with the command value. An induction motor vector control device for controlling the torque and speed of the motor, wherein the motor uses the induced voltage calculated by means for calculating the induced voltage from a terminal voltage detection value and an electrical constant of the motor. In a speed sensorless vector control device comprising: means for estimating the speed of: and means for controlling the speed using the estimated speed as a state detection value;
A voltage detector for detecting a terminal voltage of the electric motor;
A first ΔΣ modulation type A / D converter corresponding to a normal resolution having a low basic clock frequency used for pulse density modulation , and a second ΔΣ corresponding to a high resolution having a higher basic clock frequency than the A / D converter. A modulation method A / D converter ;
Switch means for selecting a low clock frequency during high-speed operation of the motor and switching to select a high clock frequency during low-speed operation of the motor;
A switch that switches between a normalization gain corresponding to a normal resolution and a normalization gain corresponding to a high resolution in conjunction with the switch means ,
Wherein at the time of low speed operation of the motor, and a value of the terminal voltage detection value by the voltage detector by the second ΔΣ modulation type A / D converter a high clock frequency by said switching means is selected and converted A / D, the switch it is to use the normalized gain of the high resolution corresponding to switching by the value obtained by multiplying the calculation of the induced voltage.

本発明によれば、電動機の低速運転時における速度推定分解能の改善が可能となり、従来の制御装置では電動機の異常な逆転動作等を起こしていた低速側の運転領域においても、これらの異常事態を未然に防止して誘導電動機のトルク・速度制御を可能にしたベクトル制御装置を提供することができる。   According to the present invention, it is possible to improve the speed estimation resolution at the time of low-speed operation of the electric motor, and these abnormal situations can be detected even in the low-speed operation region in which the conventional controller has caused an abnormal reverse operation of the electric motor. It is possible to provide a vector control device that can prevent the torque and speed of the induction motor and prevent it.

以下、図に沿って本発明の実施形態を説明する。
まず、図1は本発明の第1実施形態の主要部を示す回路構成図であり、前述した図5における電圧検出器30と座標変換器31との間の回路構成を改良したものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, FIG. 1 is a circuit configuration diagram showing a main part of the first embodiment of the present invention, which is an improvement of the circuit configuration between the voltage detector 30 and the coordinate converter 31 in FIG. 5 described above.

この実施形態では、電動機17の端子電圧を検出する電圧検出器として、通常分解能を有する第1の電圧検出器30の他に、高分解能(例えば第1の電圧検出器30の10倍)を有する第2の電圧検出器40が設けられている。これらの電圧検出器30,40によって検出した電圧検出値v,vは、スイッチ手段53を構成するスイッチ53,53の切替端子側に入力され、スイッチ53,53の出力端子はA/D変換器51,51にそれぞれ接続されている。 In this embodiment, the voltage detector for detecting the terminal voltage of the electric motor 17 has high resolution (for example, 10 times that of the first voltage detector 30) in addition to the first voltage detector 30 having normal resolution. A second voltage detector 40 is provided. The voltage detection values v u and v w detected by these voltage detectors 30 and 40 are input to the switching terminal side of the switches 53 u and 53 w constituting the switch means 53 and are output terminals of the switches 53 u and 53 w . Are connected to A / D converters 51 u and 51 w , respectively.

また、A/D変換器51,51の出力側の乗算器52,52には、規格化ゲイン1(通常分解能対応)または規格化ゲイン2(高分解能対応)がスイッチ54により切り替えて入力可能となっている。
なお、41はコンパレータであり、前記速度指令演算回路2から出力される速度指令値ω から誘導電動機17が低速運転領域であるか否かを判別し、その判別結果に応じた出力により前記スイッチ53,53,54を一括して同時に切り替えるように動作する。
In addition, a normalization gain 1 (corresponding to normal resolution) or a normalization gain 2 (corresponding to high resolution) is switched by a switch 54 in the multipliers 52 u and 52 w on the output side of the A / D converters 51 u and 51 w. Can be input.
Reference numeral 41 denotes a comparator that determines whether or not the induction motor 17 is in the low speed operation region from the speed command value ω r * output from the speed command calculation circuit 2 and outputs the output according to the determination result. The switches 53 u , 53 w and 54 operate so as to be switched simultaneously at the same time.

上記構成において、例えば速度指令値ω が定格速度の10%未満である場合にコンパレータ41が低速運転と判断し、その出力によってスイッチ53,53を高分解能の第2の電圧検出器40側に切り替えると共に、スイッチ54を規格化ゲイン2(高分解能対応)側に切り替える。
なお、分解能設定の一例としては、通常分解能の第1の電圧検出器30のフルスケールを400V、検出分解能を0.001P.Uとして電動機17の通常速度領域(電動機速度が0〜1500rpm)に対応させ、高分解能の第2の電圧検出器40のフルスケールを40V、検出分解能を同じく0.001P.Uとして電動機17の低速領域(同0〜150rpm)のみに対応させれば良い。
このように、実質的な分解能が第1の電圧検出器30の10倍である第2の電圧検出器40を併用すれば、低速運転領域では従来技術に比べて速度推定分解能相当で10倍の改善が可能となる。
In the above configuration, for example, when the speed command value ω r * is less than 10% of the rated speed, the comparator 41 determines that the operation is at a low speed, and the switch 53 u , 53 w is switched to the second voltage detector with high resolution based on the output. In addition to switching to the 40 side, the switch 54 is switched to the normalized gain 2 (corresponding to high resolution) side.
As an example of the resolution setting, the full scale of the first voltage detector 30 having the normal resolution is 400 V, and the detection resolution is 0.001 P.V. U corresponds to the normal speed range of the electric motor 17 (the electric motor speed is 0 to 1500 rpm), the full scale of the high-resolution second voltage detector 40 is 40 V, and the detection resolution is also 0.001 P.s. U only needs to correspond to the low speed region (0 to 150 rpm) of the electric motor 17.
As described above, when the second voltage detector 40 whose substantial resolution is 10 times that of the first voltage detector 30 is used in combination, in the low speed operation region, the speed estimation resolution is equivalent to 10 times that of the prior art. Improvement is possible.

この実施形態によれば、電動機17の低速運転領域では、高分解能の第2の電圧検出器40による端子電圧検出値v,vをA/D変換し、座標変換器31に取り込むようにしたので、電圧検出値v,vが小さくてもこれらを正確に検出可能である。そして、座標変換器31及び誘起電圧演算器32が前記数式10,12等によってT軸誘起電圧eを求め、速度推定演算器33では前記数式14,15によって速度推定値ω^を高精度に演算することが可能になる。
従って、速度推定値ω^は実際の電動機速度ωにほぼ一致するようになり、電動機速度ωを速度指令値ω 通りに制御可能として電動機17の予期しない逆転現象等の異常事態の発生を防止することができる。
According to this embodiment, in the low-speed operation region of the electric motor 17, the terminal voltage detection values v u and v w by the high-resolution second voltage detector 40 are A / D converted and taken into the coordinate converter 31. Therefore, even if the voltage detection values v u and v w are small, these can be detected accurately. Then, the coordinate converter 31 and the induced voltage calculator 32 obtain the T-axis induced voltage e T by the equations 10 and 12, etc., and the speed estimation calculator 33 obtains the estimated speed value ω r ^ by the equations 14 and 15 with high accuracy. It becomes possible to calculate to.
Therefore, the estimated speed value ω r ^ substantially coincides with the actual motor speed ω r , and the motor speed ω r can be controlled in accordance with the speed command value ω r * so that an abnormal situation such as an unexpected reverse phenomenon of the motor 17 occurs. Can be prevented.

ここで、図1における規格化ゲイン1,2を各分解能に応じた値に設定しておけば、電圧検出器30,40を切り替えても、電圧検出値v,vの物理量と座標変換器31に入力されるデータ量との関係を一定に保つことができる。 Here, if the normalized gains 1 and 2 in FIG. 1 are set to values corresponding to the respective resolutions, even if the voltage detectors 30 and 40 are switched, the physical quantities and coordinate conversion of the voltage detection values v u and v w are performed. The relationship with the amount of data input to the device 31 can be kept constant.

次に、図2は本発明の第2実施形態の主要部を示す回路構成図である。
同図において、56,56はいわゆる積分型のA/D変換器であり、単純な積分型または二重積分型として構成されている。これらのA/D変換器56,56には通常分解能の電圧検出器30による電圧検出値v,vがそれぞれ入力されており、A/D変換器56,56以降の構成は図1と同様になっている。
Next, FIG. 2 is a circuit configuration diagram showing the main part of the second embodiment of the present invention.
In the figure, 56 u and 56 w are so-called integral type A / D converters, which are configured as a simple integral type or a double integral type. The A / D converters 56 u and 56 w receive voltage detection values v u and v w from the voltage detector 30 having a normal resolution, respectively, and the configuration after the A / D converters 56 u and 56 w. Is similar to FIG.

また、55は、A/D変換器56,56のサンプリング周期を周期が長い高サンプリング周期(通常分解能対応)または周期が短い低サンプリング周期(高分解能対応)に切り替えるスイッチであり、このスイッチ55及びスイッチ54は、速度指令値ω に基づいて誘導電動機17が低速運転領域であるか否かを判別するコンパレータ41の出力により、一括して同時に切り替わるようになっている。 Further, 55 is a switch for switching the A / D converter 56 u, 56 w sampled periodic cycle is long high sampling cycle (normally resolution support) or cycle is shorter low sampling period (high resolution corresponding), this The switches 55 and 54 are switched simultaneously at the same time by the output of the comparator 41 that determines whether or not the induction motor 17 is in the low speed operation region based on the speed command value ω r * .

この実施形態においても、例えば、速度指令値ω が定格速度の10%未満である場合にコンパレータ41が低速運転と判断し、その出力によってスイッチ55を低サンプリング周期(高分解能対応)側に切り替えると共に、スイッチ54を規格化ゲイン2(高分解能対応)側に切り替える。
この場合、低サンプリング周期を高サンプリング周期の1/2に設定しておき、低速運転時にスイッチ55を低サンプリング周期側に切り替えれば、従来技術に比べて速度推定分解能相当で2倍の改善が可能になり、また、同時にスイッチ54を規格化ゲイン2(規格化ゲイン1の1/2の大きさを持つ)側に切り替えることにより、電圧検出値v,vの物理量と座標変換器31に入力されるデータ量との関係を一定に保つことができる。
よって、本実施形態においても、速度推定値ω^は実際の電動機速度ωにほぼ一致するようになり、電動機速度ωを速度指令値ω 通りに制御可能として電動機17の予期しない逆転現象等の発生を防止することができる。
Also in this embodiment, for example, when the speed command value ω r * is less than 10% of the rated speed, the comparator 41 determines that the operation is at a low speed, and the switch 55 is set to the low sampling period (high resolution compatible) side by the output. At the same time, the switch 54 is switched to the normalized gain 2 (corresponding to high resolution) side.
In this case, if the low sampling period is set to 1/2 of the high sampling period and the switch 55 is switched to the low sampling period side during low-speed operation, the speed estimation resolution can be doubled compared to the conventional technique. At the same time, the switch 54 is switched to the normalized gain 2 side (having 1/2 the size of the normalized gain 1), whereby the physical quantities of the voltage detection values v u and v w and the coordinate converter 31 are changed. The relationship with the amount of input data can be kept constant.
Therefore, also in the present embodiment, the estimated speed value ω r ^ substantially coincides with the actual motor speed ω r , and the motor speed ω r can be controlled according to the speed command value ω r * , so that the motor 17 is not expected. Occurrence of a reverse phenomenon or the like can be prevented.

次いで、図3は本発明の第3実施形態の主要部を示す回路構成図である。
この実施形態が図2と異なるのは、A/D変換器57,57としていわゆるΔΣ変調方式のA/D変換器を用い、これらのA/D変換器57,57に与える基本クロックとして、周波数が低い低クロック(通常分解能対応)と周波数が高い高クロック(高分解能対応)とをスイッチ55により切替可能とした点であり、その他の構成は図2と同一である。
Next, FIG. 3 is a circuit configuration diagram showing the main part of the third embodiment of the present invention.
Basics This embodiment differs from the Figure 2, that using the A / D converter of the so-called ΔΣ modulation system as the A / D converter 57 u, 57 w, give these A / D converter 57 u, 57 w As a clock, a low clock having a low frequency (corresponding to a normal resolution) and a high clock having a high frequency (corresponding to a high resolution) can be switched by a switch 55, and other configurations are the same as those in FIG.

ここで、ΔΣ変調方式のA/D変換器とは、アナログ入力信号を1bitのパルス密度信号(ディジタル信号)に変調し、これをオーバーサンプラを介してカウンタにて計測することにより、アナログ入力信号をディジタル信号に変換するものである。
このΔΣ変調方式のA/D変換器では、上記変調処理に用いられる基本クロックの周波数が高いほど入力アナログデータ量の重みが大きくなって変調後のデータの1カウントの分解能が上がり、電圧検出値v,vが小さい場合でもこれを検出可能となる。
Here, the ΔΣ modulation type A / D converter means that an analog input signal is modulated by modulating an analog input signal into a 1-bit pulse density signal (digital signal) and measuring it with a counter via an oversampler. Is converted into a digital signal.
In this ΔΣ modulation type A / D converter, the higher the frequency of the basic clock used for the modulation processing, the greater the weight of the input analog data amount and the higher the resolution of one count of the modulated data, and the voltage detection value. This can be detected even when v u and v w are small.

そこで、前記同様に、例えば速度指令値ω が定格速度の10%未満である場合にコンパレータ41が低速運転と判断し、その出力によってスイッチ55を高クロック(高分解能対応)側に切り替えると共に、スイッチ54を規格化ゲイン2(高分解能対応)側に切り替えれば、速度推定分解能の改善が可能になり、また、電圧検出値v,vの物理量と座標変換器31に入力されるデータ量との関係を一定に保つことができる。
よって、本実施形態においても、電動機速度ωを速度指令値ω 通りに制御可能として電動機17の予期しない逆転現象等の発生を防止することができる。
Therefore, as described above, for example, when the speed command value ω r * is less than 10% of the rated speed, the comparator 41 determines that the operation is at a low speed, and switches the switch 55 to the high clock (corresponding to high resolution) side based on the output. If the switch 54 is switched to the normalized gain 2 (high resolution compatible) side, the speed estimation resolution can be improved, and the physical quantities of the voltage detection values v u and v w and the data input to the coordinate converter 31 The relationship with the quantity can be kept constant.
Therefore, also in the present embodiment, the motor speed ω r can be controlled according to the speed command value ω r *, so that an unexpected reverse phenomenon or the like of the motor 17 can be prevented.

本発明の第1実施形態の主要部を示す回路構成図である。It is a circuit block diagram which shows the principal part of 1st Embodiment of this invention. 本発明の第2実施形態の主要部を示す回路構成図である。It is a circuit block diagram which shows the principal part of 2nd Embodiment of this invention. 本発明の第3実施形態の主要部を示す回路構成図である。It is a circuit block diagram which shows the principal part of 3rd Embodiment of this invention. 従来技術を示すブロック図である。It is a block diagram which shows a prior art. 図4における一部の回路構成図である。FIG. 5 is a partial circuit configuration diagram in FIG. 4.

符号の説明Explanation of symbols

1:速度設定器
2:速度指令演算回路
3:速度調節器
4:磁束指令演算回路
5,7:演算器
6:すべり周波数演算器
8:T軸電流調節器
9:M軸電流調節器
10,11,31:座標変換器
12:交流電源
13:インバータ
14:電流検出器
15:積分器
17:誘導電動機
18:負荷
20:周波数換算器
30,40:電圧検出器
32:誘起電圧演算器
33:速度推定演算器
40:電圧検出器
41:コンパレータ
51,51,56,56,57,57,:A/D変換器
52,52:乗算器
53:スイッチ手段
53,53,54,55:スイッチ
100:制御装置
1: Speed setter 2: Speed command calculation circuit 3: Speed controller 4: Magnetic flux command calculation circuit 5, 7: Calculator 6: Slip frequency calculator 8: T-axis current controller 9: M-axis current controller 10, 11, 31: Coordinate converter 12: AC power supply 13: Inverter 14: Current detector 15: Integrator 17: Induction motor 18: Load 20: Frequency converter 30, 40: Voltage detector 32: Induced voltage calculator 33: Speed estimation calculator 40: Voltage detector 41: Comparator 51u , 51w , 56u , 56w , 57u , 57w , A / D converter 52u , 52w : Multiplier 53: Switch means 53u , 53 w , 54, 55: switch 100: control device

Claims (3)

誘導電動機の一次電流を二次磁束と平行な成分と垂直な成分とに分離し、これらの各成分の電流が指令値通りになるように電力変換器を制御して前記電動機のトルク・速度を制御する誘導電動機のベクトル制御装置であって、前記電動機の端子電圧検出値と電気定数とから誘起電圧を演算する手段と、演算した誘起電圧を用いて前記電動機の速度を推定する手段と、推定した速度を状態検出値として速度を制御する手段と、を備えた速度センサレスベクトル制御装置において、
前記電動機の端子電圧を検出する電圧検出器であって、通常分解能を有する第1の電圧検出器、及び、高分解能を有する第2の電圧検出器と、
前記電動機の高速運転時には第1の電圧検出器の出力をA/D変換し、かつ、前記電動機の低速運転時には第2の電圧検出器の出力をA/D変換するように切り替わるスイッチ手段と、
前記スイッチ手段に連動して通常分解能対応の規格化ゲインと高分解能対応の規格化ゲインとを切り替えるスイッチと、を備え、
前記電動機の低速運転時には、第2の電圧検出器による端子電圧検出値を前記スイッチ手段を介してA/D変換した値と、前記スイッチにより切り替えた高分解能対応の規格化ゲインと、を乗じた値を前記誘起電圧の演算に用いることを特徴とする誘導電動機のベクトル制御装置。
The primary current of the induction motor is separated into a component parallel to the secondary magnetic flux and a component perpendicular to the secondary magnetic flux, and the power converter is controlled so that the current of each component is in accordance with the command value. A vector control device for an induction motor to be controlled, comprising: means for calculating an induced voltage from a detected terminal voltage value of the motor and an electric constant; means for estimating the speed of the motor using the calculated induced voltage; A speed sensorless vector control device comprising: means for controlling the speed using the detected speed as a state detection value;
A voltage detector for detecting a terminal voltage of the motor, the first voltage detector having a normal resolution and a second voltage detector with a high resolution,
Switch means for A / D converting the output of the first voltage detector during high-speed operation of the motor, and switching to A / D-convert the output of the second voltage detector during low-speed operation of the motor;
A switch that switches between a normalization gain corresponding to a normal resolution and a normalization gain corresponding to a high resolution in conjunction with the switch means ,
During low speed operation of the motor, multiplied by a value of the terminal voltage detected value and the A / D conversion through the switch means by the second voltage detector, and a normalized gain of high resolution corresponding to switching by the switches A vector control device for an induction motor, wherein a value is used for calculation of the induced voltage.
誘導電動機の一次電流を二次磁束と平行な成分と垂直な成分とに分離し、これらの各成分の電流が指令値通りになるように電力変換器を制御して前記電動機のトルク・速度を制御する誘導電動機のベクトル制御装置であって、前記電動機の端子電圧検出値と電気定数とから誘起電圧を演算する手段と、演算した誘起電圧を用いて前記電動機の速度を推定する手段と、推定した速度を状態検出値として速度を制御する手段と、を備えた速度センサレスベクトル制御装置において、
前記電動機の端子電圧を検出する電圧検出器と、
サンプリング周期が長い通常分解能対応の第1の積分型A/D変換器、及び、このA/D変換器よりもサンプリング周期が短い高分解能対応の第2の積分型A/D変換器と、
前記電動機の高速運転時には長いサンプリング周期を選択し、かつ、前記電動機の低速運転時には短いサンプリング周期を選択するように切り替わるスイッチ手段と、
前記スイッチ手段に連動して通常分解能対応の規格化ゲインと高分解能対応の規格化ゲインとを切り替えるスイッチと、を備え、
前記電動機の低速運転時には、前記スイッチ手段によって短いサンプリング周期が選択された第2の積分型A/D変換器により前記電圧検出器による端子電圧検出値をA/D変換した値と、前記スイッチにより切り替えた高分解能対応の規格化ゲインと、を乗じた値を前記誘起電圧の演算に用いることを特徴とする誘導電動機のベクトル制御装置。
The primary current of the induction motor is separated into a component parallel to the secondary magnetic flux and a component perpendicular to the secondary magnetic flux, and the power converter is controlled so that the current of each component is in accordance with the command value. A vector control device for an induction motor to be controlled, comprising: means for calculating an induced voltage from a detected terminal voltage value of the motor and an electric constant; means for estimating the speed of the motor using the calculated induced voltage; A speed sensorless vector control device comprising: means for controlling the speed using the detected speed as a state detection value;
A voltage detector for detecting a terminal voltage of the electric motor;
A first integrating A / D converter corresponding to a normal resolution having a long sampling period , and a second integrating A / D converter corresponding to a high resolution having a sampling period shorter than that of the A / D converter ;
Switch means for selecting a long sampling period during high-speed operation of the motor and switching to select a short sampling period during low-speed operation of the motor;
A switch that switches between a normalization gain corresponding to a normal resolution and a normalization gain corresponding to a high resolution in conjunction with the switch means ,
During low-speed operation of the electric motor, a value obtained by A / D converting the terminal voltage detection value by the voltage detector by the second integration type A / D converter in which a short sampling period is selected by the switch means, and the switch A vector control device for an induction motor, wherein a value obtained by multiplying a switched high-resolution standardized gain is used for the calculation of the induced voltage.
誘導電動機の一次電流を二次磁束と平行な成分と垂直な成分とに分離し、これらの各成分の電流が指令値通りになるように電力変換器を制御して前記電動機のトルク・速度を制御する誘導電動機のベクトル制御装置であって、前記電動機の端子電圧検出値と電気定数とから誘起電圧を演算する手段と、演算した誘起電圧を用いて前記電動機の速度を推定する手段と、推定した速度を状態検出値として速度を制御する手段と、を備えた速度センサレスベクトル制御装置において、
前記電動機の端子電圧を検出する電圧検出器と、
パルス密度変調に用いる基本クロック周波数が低い通常分解能対応の第1のΔΣ変調方式型A/D変換器、及び、このA/D変換器よりも基本クロック周波数が高い高分解能対応の第2のΔΣ変調方式A/D変換器と、
前記電動機の高速運転時には低いクロック周波数を選択し、かつ、前記電動機の低速運転時には高いクロック周波数を選択するように切り替わるスイッチ手段と、
前記スイッチ手段に連動して通常分解能対応の規格化ゲインと高分解能対応の規格化ゲインとを切り替えるスイッチと、を備え、
前記電動機の低速運転時には、前記スイッチ手段によって高いクロック周波数が選択された第2のΔΣ変調方式A/D変換器により前記電圧検出器による端子電圧検出値をA/D変換した値と、前記スイッチにより切り替えた高分解能対応の規格化ゲインと、を乗じた値を前記誘起電圧の演算に用いることを特徴とする誘導電動機のベクトル制御装置。
The primary current of the induction motor is separated into a component parallel to the secondary magnetic flux and a component perpendicular to the secondary magnetic flux, and the power converter is controlled so that the current of each component is in accordance with the command value. A vector control device for an induction motor to be controlled, comprising: means for calculating an induced voltage from a detected terminal voltage value of the motor and an electric constant; means for estimating the speed of the motor using the calculated induced voltage; A speed sensorless vector control device comprising: means for controlling the speed using the detected speed as a state detection value;
A voltage detector for detecting a terminal voltage of the electric motor;
A first ΔΣ modulation type A / D converter corresponding to a normal resolution having a low basic clock frequency used for pulse density modulation , and a second ΔΣ corresponding to a high resolution having a higher basic clock frequency than the A / D converter. A modulation method A / D converter ;
Switch means for selecting a low clock frequency during high-speed operation of the motor and switching to select a high clock frequency during low-speed operation of the motor;
A switch that switches between a normalization gain corresponding to a normal resolution and a normalization gain corresponding to a high resolution in conjunction with the switch means ,
Wherein at the time of low speed operation of the motor, and a value of the terminal voltage detection value by the voltage detector by the second ΔΣ modulation type A / D converter a high clock frequency by said switching means is selected and converted A / D, the switch vector controller for an induction motor and the normalized gain of the high resolution corresponding, a value obtained by multiplying is characterized by using the calculation of the induced voltage switched by.
JP2006274663A 2006-10-06 2006-10-06 Vector control device for induction motor Active JP5115687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006274663A JP5115687B2 (en) 2006-10-06 2006-10-06 Vector control device for induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006274663A JP5115687B2 (en) 2006-10-06 2006-10-06 Vector control device for induction motor

Publications (2)

Publication Number Publication Date
JP2008099350A JP2008099350A (en) 2008-04-24
JP5115687B2 true JP5115687B2 (en) 2013-01-09

Family

ID=39381611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006274663A Active JP5115687B2 (en) 2006-10-06 2006-10-06 Vector control device for induction motor

Country Status (1)

Country Link
JP (1) JP5115687B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5359327B2 (en) * 2009-02-02 2013-12-04 株式会社Ihi Motor control drive device
JP5515885B2 (en) * 2010-03-12 2014-06-11 富士電機株式会社 Electric vehicle control device
JP5559675B2 (en) * 2010-12-28 2014-07-23 パナソニック株式会社 Actuator drive
JP2013198229A (en) * 2012-03-16 2013-09-30 Yaskawa Electric Corp Δς modulation a/d converter and motor controller including the same
JP5351304B2 (en) * 2012-04-19 2013-11-27 ファナック株式会社 Motor control device having ΔΣ modulation type AD converter

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62178018A (en) * 1986-01-31 1987-08-05 Canon Inc Integration type analog-digital converter
JPH0773438B2 (en) * 1986-09-11 1995-08-02 富士電機株式会社 Variable speed controller for induction motor
JPH0223083A (en) * 1988-07-12 1990-01-25 Komatsu Ltd Drive controller for motor
JPH02196523A (en) * 1989-01-26 1990-08-03 Fujitsu Ltd Test circuit for delta sigma modulation type a/d converter
JPH03145927A (en) * 1989-10-31 1991-06-21 Fukushima Nippon Denki Kk Remote sensing circuit
JPH048017A (en) * 1990-04-26 1992-01-13 Seiko Epson Corp Ad converter
JPH0433109A (en) * 1990-05-30 1992-02-04 Mitsubishi Electric Corp Main shaft driving device for machine tool
JPH04340387A (en) * 1991-05-13 1992-11-26 Sankyo Seiki Mfg Co Ltd Motor control apparatus
JPH07193507A (en) * 1993-12-27 1995-07-28 Yokogawa Electric Corp A/d converter for dc signal measurement
JPH0858339A (en) * 1994-08-25 1996-03-05 Nippondenso Co Ltd Suspension control device
JPH09331699A (en) * 1996-06-10 1997-12-22 Hitachi Ltd Ac-excited generator-motor
JP3116831B2 (en) * 1996-08-08 2000-12-11 富士電機株式会社 Variable speed control device for induction motor
JP3473012B2 (en) * 1999-02-22 2003-12-02 横河電機株式会社 ΣΔ AD converter
JP2003188724A (en) * 2001-12-14 2003-07-04 Sankyo Seiki Mfg Co Ltd Method for converting analog signal to digital signal and signal detector

Also Published As

Publication number Publication date
JP2008099350A (en) 2008-04-24

Similar Documents

Publication Publication Date Title
US6909257B2 (en) Method and device for correcting estimated speed of induction motor and its device
JP5130031B2 (en) Position sensorless control device for permanent magnet motor
JP4519864B2 (en) AC rotating machine electrical constant measuring method and AC rotating machine control apparatus used for carrying out this measuring method
JPH09304489A (en) Method for measuring motor constant of induction motor
KR940004959B1 (en) Arrangement for speed regulation of induction motor
JP5115687B2 (en) Vector control device for induction motor
US6528966B2 (en) Sensorless vector control apparatus and method thereof
JP2006304478A (en) Motor drive controller and electric power steering apparatus therewith
US20120200243A1 (en) Power conversion device
JP2580101B2 (en) Method of setting control operation constants for induction motor control system
JP3797508B2 (en) Sensorless speed control method of permanent magnet type synchronous motor and step-out detection method thereof
EP1393434B1 (en) A method associated with controlling a synchronous machine
JP3707659B2 (en) Constant identification method for synchronous motor
JP2013198229A (en) Δς modulation a/d converter and motor controller including the same
JPH07170799A (en) Method and apparatus for controlling a.c. motor and correcting method for motor current
JP3684661B2 (en) AC motor control device
KR100881360B1 (en) A sensorless vector control apparatus and a sensorless vector control method for a induction motor
KR20190036667A (en) Motor Speed Estimation Apparatus and Motor Speed Estimation Method
JP6108114B2 (en) Control device for permanent magnet type synchronous motor
JP4127000B2 (en) Motor control device
JP5532693B2 (en) Induction motor control device
KR100351299B1 (en) Measuring method for mutual inductance of induction motor
JP2010252503A (en) Position and speed sensorless controller of pm motor
JP2009100600A (en) Inverter control device and control method thereof
JP2024034452A (en) motor control device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080919

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080919

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080919

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090217

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120820

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120919

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121002

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5115687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250