JP5115683B2 - Fuel cell and manufacturing method thereof - Google Patents

Fuel cell and manufacturing method thereof Download PDF

Info

Publication number
JP5115683B2
JP5115683B2 JP2005337698A JP2005337698A JP5115683B2 JP 5115683 B2 JP5115683 B2 JP 5115683B2 JP 2005337698 A JP2005337698 A JP 2005337698A JP 2005337698 A JP2005337698 A JP 2005337698A JP 5115683 B2 JP5115683 B2 JP 5115683B2
Authority
JP
Japan
Prior art keywords
membrane
fuel cell
mold
electrolyte membrane
seal member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005337698A
Other languages
Japanese (ja)
Other versions
JP2007141792A (en
Inventor
友陽 笹岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005337698A priority Critical patent/JP5115683B2/en
Publication of JP2007141792A publication Critical patent/JP2007141792A/en
Application granted granted Critical
Publication of JP5115683B2 publication Critical patent/JP5115683B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Fuel Cell (AREA)

Description

本発明は、燃料電池およびその製造方法に関し、特に、燃料電池の基本単位であるセルを構成する膜−電極アッセンブリの製造過程において当該膜−電極アッセンブリの変形を抑制する技術に関する。   The present invention relates to a fuel cell and a method for manufacturing the same, and more particularly to a technique for suppressing deformation of the membrane-electrode assembly in the manufacturing process of the membrane-electrode assembly that constitutes a cell that is a basic unit of the fuel cell.

燃料電池が備える膜−電極アッセンブリ(以下MEA;Membrane Electrode Assemblyとも呼ぶ。)は、電解質膜を一対の電極、すなわちアノードおよびカソードで挟んだものである。膜−電極アッセンブリの周囲には、シール部材が配設されている。シール部材は、例えばシリコーンゴム等からなり、反応ガスのセル外部への漏洩を抑制するとともに、アノードとカソードとの間での反応ガスの混合を抑制する働きをする。シール部材は、膜−電極アッセンブリを挟んだ型の内側に、溶解させた液状のシリコーンゴムを射出して型成形する、いわゆる射出成形によって形成される。   A membrane-electrode assembly (hereinafter also referred to as MEA; Membrane Electrode Assembly) included in a fuel cell is obtained by sandwiching an electrolyte membrane between a pair of electrodes, that is, an anode and a cathode. A seal member is disposed around the membrane-electrode assembly. The seal member is made of, for example, silicone rubber or the like, and functions to suppress leakage of the reaction gas to the outside of the cell and to suppress mixing of the reaction gas between the anode and the cathode. The seal member is formed by so-called injection molding, in which a molten liquid silicone rubber is injected and molded into the inside of a mold sandwiching the membrane-electrode assembly.

従来、MEAとガスケット(シール部材)とを一体化した構造物においては、その構成物の剛性を付与するために例えばフィルム等からなる芯材(本明細書ではこれを形状保持部材と呼ぶ)を挿入してから成形を行う場合がある。挿入された形状保持部材は、例えばセルスタックの積層時であれば位置決めに用いられるなどの利点がある。一例として、下記の特許文献1には、膜−電極アッセンブリの製造過程において、電解質膜の周縁部に樹脂製の形状保持層および弾性層からなるガスケット(シール部材)を膜−電極アッセンブリの周囲に型成形して両者を一体化し、その後、ガスケットを加硫する技術が記載されている。
特開2002−260693号公報
Conventionally, in a structure in which an MEA and a gasket (seal member) are integrated, a core material made of, for example, a film or the like (referred to as a shape-retaining member in this specification) is used in order to impart rigidity to the structure. Molding may be performed after insertion. The inserted shape holding member has an advantage that it is used for positioning, for example, when the cell stack is stacked. As an example, in the following Patent Document 1, in the process of manufacturing a membrane-electrode assembly, a gasket (seal member) made of a resin shape-retaining layer and an elastic layer is formed around the membrane-electrode assembly at the periphery of the electrolyte membrane. A technique is described in which both are integrated to form a mold, and then the gasket is vulcanized.
JP 2002260693 A

しかしながら、従来の膜−電極アッセンブリの製造過程においては、液状のシリコーンゴムが成形型の内側に射出されるときに、形状保持部材がシリコーンゴムの流れの勢いに押されて変形し、併せて電解質膜が変形し、形状保持部材および電解質膜が元の形状に戻らないままシリコーンゴムが固まってしまう可能性がある。このように形状保持部材および電解質膜が変形したままシリコーンゴムが固まってしまうと、シール部材の圧縮率が変わるためにシール性能が十分とならないなど、シール部材が所望の特性を発揮しなくなるおそれがある。   However, in the manufacturing process of the conventional membrane-electrode assembly, when the liquid silicone rubber is injected into the inside of the mold, the shape holding member is pushed and deformed by the momentum of the flow of the silicone rubber. The film may be deformed, and the silicone rubber may be hardened without the shape holding member and the electrolyte film returning to their original shapes. If the shape retention member and the electrolyte membrane are deformed in this manner and the silicone rubber is hardened, the sealing member may not exhibit the desired characteristics, such as insufficient sealing performance due to a change in the compression rate of the sealing member. is there.

本発明の目的は、燃料電池の膜−電極アッセンブリにシール部材が一体成形される製造過程において、シール部材が一体成形される膜−電極アッセンブリの領域(電解質膜の周縁部)の変形を抑制することができる燃料電池、およびその製造方法を提供することである。   An object of the present invention is to suppress deformation of a region of a membrane-electrode assembly in which a seal member is integrally formed (periphery of an electrolyte membrane) in a manufacturing process in which the seal member is integrally formed with a membrane-electrode assembly of a fuel cell. And a method for manufacturing the same.

上記の課題を解決するための手段として、次のような構造の燃料電池、およびその製造方法を採用する。すなわち、まず請求項1に記載の発明は、膜−電極アッセンブリの周縁部にシール部材が一体成形されている燃料電池において、前記膜−電極アッセンブリの電解質膜と前記シール部材との間に、当該膜−電極アッセンブリが変形するのを抑制する形状保持部材が配置されているとともに、該形状保持部材のうち当該膜−電極アッセンブリの外周に位置する部分の少なくとも一部が前記シール部材の端部よりも外周側へと突出した構造となっていることを特徴としている。   As means for solving the above-described problems, a fuel cell having the following structure and a manufacturing method thereof are employed. That is, first, the invention described in claim 1 is a fuel cell in which a sealing member is integrally formed on a peripheral portion of a membrane-electrode assembly, and the membrane-electrode assembly is disposed between the electrolyte membrane of the membrane-electrode assembly and the sealing member. A shape holding member that suppresses deformation of the membrane-electrode assembly is disposed, and at least a part of a portion of the shape holding member located on the outer periphery of the membrane-electrode assembly is from an end portion of the seal member. Is also characterized by a structure protruding to the outer peripheral side.

形状保持部材において外周側へ突出している部分(以下、突出部ともいう)は、前述のように、シール部材の端部からはみ出るようにして外周側へと突出するように形成されている部分である。したがって、膜−電極アッセンブリ等を成形型で挟み込んでシール部材を射出成形する際、当該突出部は、上型と下型との間に挟み込まれた状態となる。つまり、射出成形時における形状保持部材は、従来ならば全く成形型に挟み込まれていなかったのに対し、本発明においては少なくともその一部が成形型に挟み込まれるようになっているため、射出成形時、周囲から引っ張られるようにして保持された状態となる。このため、射出成形時において、膜−電極アッセンブリ(電解質膜の周縁部)の変形が抑制されることになる。   As described above, the portion of the shape holding member that protrudes to the outer peripheral side (hereinafter also referred to as a protruding portion) is a portion that protrudes from the end of the seal member and protrudes to the outer peripheral side. is there. Therefore, when the sealing member is injection-molded with the membrane-electrode assembly or the like sandwiched between the molding dies, the projecting portion is sandwiched between the upper mold and the lower mold. In other words, the shape holding member at the time of injection molding is conventionally not sandwiched between molds at all, but in the present invention, at least a part thereof is sandwiched between molds. At this time, it is held as if pulled from the surroundings. For this reason, deformation of the membrane-electrode assembly (peripheral portion of the electrolyte membrane) is suppressed during injection molding.

また、請求項2に記載の発明は、膜−電極アッセンブリの周縁部にシール部材を成形型内にて射出成形して一体化する燃料電池の製造方法において、前記膜−電極アッセンブリの電解質と前記シール部材との間に、当該膜−電極アッセンブリが変形するのを抑制する形状保持部材を配置し、当該配置された形状保持部材のうち、前記膜−電極アッセンブリの外周に位置する部分の一部を前記シール部材の端部よりも外周側へと突出させ、該突出部の少なくとも一部を、前記成形型を構成する上型と下型の少なくとも一方に固定した状態で前記シール部材を射出成形することを特徴とするものである。   The invention described in claim 2 is a method of manufacturing a fuel cell in which a sealing member is injection-molded in a peripheral part of a membrane-electrode assembly in a molding die and integrated, and the electrolyte of the membrane-electrode assembly and the A shape holding member that suppresses deformation of the membrane-electrode assembly is disposed between the sealing member, and a part of the arranged shape holding member that is located on the outer periphery of the membrane-electrode assembly. Is projected to the outer peripheral side from the end portion of the seal member, and the seal member is injection molded in a state where at least a part of the projecting portion is fixed to at least one of the upper mold and the lower mold constituting the mold. It is characterized by doing.

つまり、本発明においては、形状保持部材に、シール部材を射出成形するための成形型に保持される突出部を設けておくこととしている。そして、電解質膜および形状保持部材を成形型の内部(キャビティ)に配置し、この突出部を成形型に保持させたうえで型内部(キャビティ)にシール部材の材料を射出するようにしている。このように、本発明においては、形状保持部材に設けられた突出部が成形型に保持されているので、シール部材の材料が成形型内に射出されるとき、形状保持部材および電解質膜がシール部材の材料の流れの勢いに押されても変形せず、電解質膜が当初の形状を留めた状態でシール部材が固化する。   That is, in the present invention, the shape holding member is provided with a protruding portion that is held by a molding die for injection molding the seal member. Then, the electrolyte membrane and the shape holding member are arranged in the inside (cavity) of the molding die, and after the protruding portion is held in the molding die, the material of the seal member is injected into the inside of the die (cavity). As described above, in the present invention, since the protrusion provided on the shape holding member is held by the mold, when the material of the seal member is injected into the mold, the shape holding member and the electrolyte membrane are sealed. Even when pushed by the momentum of the material flow of the member, it does not deform and the seal member solidifies in a state where the electrolyte membrane retains its original shape.

上記のごとき燃料電池の製造方法においては、請求項3に記載のごとく、前記膜−電極アッセンブリをその表面と交差する方向から外部支持部材によって支持した状態で前記シール部材を射出成形することが好ましい。   In the fuel cell manufacturing method as described above, it is preferable that the sealing member is injection-molded in a state where the membrane-electrode assembly is supported by an external support member from a direction intersecting the surface thereof. .

あるいは、請求項4に記載のごとく、前記成形型に、当該成形型内に配置された前記電解質膜および前記形状保持部材に向けて突出する突起を設けておき、前記シール部材を射出成形する際、前記成形型の内部における前記電解質膜および前記形状保持部材の変位を、前記突起によって規制することも好ましい。本発明においては、突起によって電解質膜および形状保持部材の変位が規制されるので、シール部材の材料が成形型内のキャビティに射出されるとき、形状保持部材および電解質膜がシール部材の材料の流れの勢いに押されても変形せず、電解質膜が当初の形状を留めた状態でシール部材が固化する。   Alternatively, as described in claim 4, when the molding die is provided with a protrusion protruding toward the electrolyte membrane and the shape holding member disposed in the molding die, and the seal member is injection molded It is also preferable that the displacement of the electrolyte membrane and the shape holding member inside the mold is restricted by the protrusion. In the present invention, since the displacement of the electrolyte membrane and the shape holding member is regulated by the protrusion, when the material of the seal member is injected into the cavity in the mold, the shape holding member and the electrolyte membrane flow of the material of the seal member. The seal member is solidified in a state in which the electrolyte membrane retains its original shape even if pushed by the momentum.

また、請求項5に記載の発明は、膜−電極アッセンブリの周縁部にシール部材を成形型内にて射出成形して一体化する燃料電池の製造方法において、前記膜−電極アッセンブリの電解質と前記シール部材との間に、当該膜−電極アッセンブリが変形するのを抑制する形状保持部材を配置し、前記シール部材を、前記成形型内にて、当該燃料電池のマニホールドに対応する部位から射出することを特徴とするものである。   Further, the invention according to claim 5 is a method of manufacturing a fuel cell in which a sealing member is injection-molded and integrated in a peripheral portion of a membrane-electrode assembly in a mold, and the electrolyte of the membrane-electrode assembly and the A shape-retaining member that suppresses deformation of the membrane-electrode assembly is disposed between the seal member and the seal member is injected from a portion corresponding to the manifold of the fuel cell in the mold. It is characterized by this.

また、上記のような燃料電池の製造方法においては、請求項6に記載のごとく、前記シール部材を、前記膜−電極アッセンブリの表面に沿う方向に射出することが好ましい。本発明においては、シール部材の材料が、電解質膜に沿う方向に射出されるので、電解質膜がシール部材の材料の流れの抵抗になり難い。したがって、電解質膜が変形せずに当初の形状を留めた状態でシール部材が固化する。   In the fuel cell manufacturing method as described above, it is preferable to inject the seal member in a direction along the surface of the membrane-electrode assembly. In the present invention, since the material of the seal member is injected in a direction along the electrolyte membrane, the electrolyte membrane is unlikely to become a resistance of the material flow of the seal member. Therefore, the sealing member is solidified in a state where the electrolyte membrane is not deformed and the original shape is retained.

あるいは、請求項7に記載のごとく、前記成形型の内部における前記シール部材の材料の流れを調整しながら射出することも好ましい。本発明においては、シール部材の材料の流れ性を、電解質膜が抵抗にならないように調整するので、電解質膜が変形せずに当初の形状を留めた状態でシール部材が固化する。   Alternatively, as described in claim 7, it is also preferable to inject while adjusting the material flow of the seal member inside the mold. In the present invention, since the flowability of the material of the seal member is adjusted so that the electrolyte membrane does not become a resistance, the seal member is solidified in a state in which the original shape is maintained without being deformed.

本発明によれば、燃料電池の製造過程において膜−電極アッセンブリの電解質膜等が変形しないので、電解質膜に一体成形されるシール部材に所望の特性を発揮させることができる。   According to the present invention, since the electrolyte membrane or the like of the membrane-electrode assembly is not deformed in the manufacturing process of the fuel cell, the sealing member integrally formed with the electrolyte membrane can exhibit desired characteristics.

以下、本発明の構成を図面に示す実施の形態の一例に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on an example of an embodiment shown in the drawings.

本発明は燃料電池およびその製造方法にかかるものである。本発明にかかる燃料電池は、膜−電極アッセンブリ(MEA)の周縁部にシール部材4が一体成形された構造となっている。本実施形態では、この燃料電池に関し、MEAの電解質膜1とシール部材4との間に、当該MEAが変形するのを抑制する形状保持部材5を配置するとともに、該形状保持部材5のうち当該膜−電極アッセンブリの外周、例えば最外周に位置する部分の少なくとも一部がシール部材4の端部よりも外周側へと突出するようにしている。以下、本発明の好適な実施形態について順次説明する。   The present invention relates to a fuel cell and a method for manufacturing the same. The fuel cell according to the present invention has a structure in which a seal member 4 is integrally formed at the peripheral edge of a membrane-electrode assembly (MEA). In the present embodiment, regarding this fuel cell, a shape holding member 5 that suppresses deformation of the MEA is disposed between the electrolyte membrane 1 of the MEA and the seal member 4. At least a part of the outer peripheral portion of the membrane-electrode assembly, for example, the outermost peripheral portion protrudes to the outer peripheral side from the end portion of the seal member 4. Hereinafter, preferred embodiments of the present invention will be sequentially described.

本発明の第1の実施形態を、図1から図7に示して説明する。燃料電池は、基本単位となるセルが複数積層されて構成されているものである。セルは、例えば平面状の膜−電極アッセンブリすなわちMEA(Membrane Electrode Assembly)と、MEAを挟む一対のセパレータとからなる。セルを構成するMEAは、図1および図2に示すように、イオン交換膜からなる電解質膜1と、電解質膜1を両側から挟む一対の電極(アノード、カソード)2,3とからなる。電解質膜1の周縁には、射出成形されてこの電解質膜1と一体化するシール部材4が設けられている。シール部材4は、各セパレータに接してセルの外部に反応ガスが漏洩するのを抑制するとともに、一対の電極2,3の間で反応ガスが混合するのを抑制するものであって、電解質膜1の周縁に射出成形によって形成される。シール部材4の内部には、MEAの電解質膜1等の形状を保持し、電解質膜1等が変形するのを抑制するための補強フィルム(形状保持部材)5がこの電解質膜1の表面に沿うようにして設けられている。例えば本実施形態の補強フィルム5は電解質膜1の両面に貼り付けられるように設けられ、後から射出成形されるシール部材4と一体化する。   A first embodiment of the present invention will be described with reference to FIGS. A fuel cell is configured by stacking a plurality of cells serving as basic units. The cell includes, for example, a planar membrane-electrode assembly, that is, MEA (Membrane Electrode Assembly), and a pair of separators sandwiching the MEA. As shown in FIGS. 1 and 2, the MEA constituting the cell includes an electrolyte membrane 1 made of an ion exchange membrane and a pair of electrodes (anode and cathode) 2 and 3 sandwiching the electrolyte membrane 1 from both sides. A sealing member 4 that is injection-molded and integrated with the electrolyte membrane 1 is provided on the periphery of the electrolyte membrane 1. The seal member 4 is in contact with each separator and suppresses the reaction gas from leaking to the outside of the cell and suppresses the reaction gas from being mixed between the pair of electrodes 2 and 3. 1 is formed by injection molding around the periphery. Inside the seal member 4, there is a reinforcing film (shape holding member) 5 that keeps the shape of the MEA electrolyte membrane 1 and the like and suppresses deformation of the electrolyte membrane 1 and the like along the surface of the electrolyte membrane 1. It is provided as such. For example, the reinforcing film 5 of the present embodiment is provided so as to be attached to both surfaces of the electrolyte membrane 1 and is integrated with a seal member 4 which is later injection-molded.

このような補強フィルム5の材料としては、耐薬品性や耐熱性に優れたポリイミドやポリエチレンナフタレート等を使用するのが好ましい。また、補強フィルム5の厚さは、25〜250μm程度であることが好ましい。さらに、補強フィルム5は180℃以上の耐熱性を備えることが好ましく、その熱膨張係数は40×10-6/K以下であることが好ましい。 As a material for such a reinforcing film 5, it is preferable to use polyimide, polyethylene naphthalate, or the like excellent in chemical resistance and heat resistance. Moreover, it is preferable that the thickness of the reinforcing film 5 is about 25-250 micrometers. Further, the reinforcing film 5 preferably has a heat resistance of 180 ° C. or higher, and the thermal expansion coefficient thereof is preferably 40 × 10 −6 / K or less.

また、シール部材4の材料としては、液状のシリコーンゴムやフッ素系ゴム、エチレンプロピレンゴム、熱可塑性エラストマー(TPV)等を使用するのが好ましい。そして、これらの粘度は室温で300Pa・s以下であることが好ましく、収縮率は4%以下であることが好ましい。また、シール部材4の引っ張り強さは、3MPa以上であることが好ましく、5MPa以上であることがより好ましい。さらに、シール部材4の破断伸びは250%以上であることが好ましい。シール部材4が射出成形される際の最適な条件は、成形温度が120〜150℃、成形サイクルが0.5〜2.0分である。   Further, as the material of the seal member 4, it is preferable to use liquid silicone rubber, fluorine rubber, ethylene propylene rubber, thermoplastic elastomer (TPV), or the like. These viscosities are preferably 300 Pa · s or less at room temperature, and the shrinkage is preferably 4% or less. Further, the tensile strength of the seal member 4 is preferably 3 MPa or more, and more preferably 5 MPa or more. Further, the breaking elongation of the seal member 4 is preferably 250% or more. The optimum conditions when the seal member 4 is injection-molded are a molding temperature of 120 to 150 ° C. and a molding cycle of 0.5 to 2.0 minutes.

電解質膜1の周縁には、全周にわたって突出部6が設けられている(図7等参照)。突出部6は、上述のようにして電解質膜1の表面に設けられる補強フィルム5のうちMEAの外周、例えば最外周に位置する部分であって、シール部材4の端部よりも意図的に外周側へと突出するように形成された部分である。このような突出部6は、シール部材4を射出成形する過程において、電解質膜1を成形型のキャビティ内部に配置する際、複数(例えば上型10と下型11)に分割された成形型の分割面間に挟まれる(図6等参照)。補強フィルム5が例えば接着、熱圧着、粘着等によって貼り付けられている電解質膜1は、突出部6を成形型に挟まれることにより、定位置に固定される。このような突出部6は、最終的に打ち抜き加工されて電解質膜1から切除される。なお、突出部6は、ここで説明したように電解質1の全周にわたって連続して形成されていることが好ましいが、このように連続していることが常に必要というわけではなく、不連続で部分的に形成されていても足りる。すなわち、この突出部6は、成形型に挟み込まれた状態となり、シール部材の射出成形時、補強フィルム(形状保持部材)5が変形するのを抑制するというものだから、変形を十分に抑制することのできる形態である限りは連続して形成されていなくても構わない。また、本明細書でいう外周には、上述のような最外周に位置する部分のみならず、例えば反応ガスや冷媒を流通させるための開口(マニホールド)部の内側周囲なども含まれる。   On the periphery of the electrolyte membrane 1, a protrusion 6 is provided over the entire circumference (see FIG. 7 and the like). The protrusion 6 is a portion located on the outer periphery of the MEA, for example, the outermost periphery, of the reinforcing film 5 provided on the surface of the electrolyte membrane 1 as described above, and is intentionally outer than the end of the seal member 4. It is the part formed so that it may protrude to the side. In the process of injection molding of the seal member 4, such a protrusion 6 is formed in a mold divided into a plurality of parts (for example, an upper mold 10 and a lower mold 11) when the electrolyte membrane 1 is disposed inside the cavity of the mold. It is sandwiched between the split surfaces (see FIG. 6 etc.). The electrolyte membrane 1 to which the reinforcing film 5 is bonded by, for example, adhesion, thermocompression bonding, adhesion, or the like is fixed in place by sandwiching the protruding portion 6 between the molding dies. Such protrusions 6 are finally punched and cut from the electrolyte membrane 1. The protrusion 6 is preferably formed continuously over the entire circumference of the electrolyte 1 as described herein, but it is not always necessary to be continuous in this manner, and the protrusion 6 is discontinuous. Partially formed is sufficient. That is, since the protrusion 6 is sandwiched between the molds and suppresses the deformation of the reinforcing film (shape holding member) 5 during the injection molding of the seal member, the deformation is sufficiently suppressed. As long as it can be formed, it may not be formed continuously. Further, the outer periphery referred to in this specification includes not only the portion located at the outermost periphery as described above, but also the inner periphery of an opening (manifold) portion for allowing a reaction gas or a refrigerant to flow therethrough.

また、電解質膜1には、酸化ガスマニホールド、水素ガスマニホールドおよび冷媒マニホールドの一部を構成する貫通孔7が設けられている(図1等参照)。貫通孔7は、電解質膜1と、電解質膜1の両側に配設された補強フィルム5およびシール部材4を貫くようにして形成されている。   Further, the electrolyte membrane 1 is provided with a through-hole 7 that constitutes a part of the oxidizing gas manifold, the hydrogen gas manifold, and the refrigerant manifold (see FIG. 1 and the like). The through hole 7 is formed so as to penetrate the electrolyte membrane 1 and the reinforcing film 5 and the seal member 4 disposed on both sides of the electrolyte membrane 1.

続いて、MEAを製造する各工程について説明する。なお、以下ではシール部材4としてシリコーンゴムを使用しているが、シール部材4の材料はあらゆる要求に応じて上述した各材料その他に適宜変更されることを厭わない。   Then, each process which manufactures MEA is demonstrated. In the following, silicone rubber is used as the seal member 4, but the material of the seal member 4 may be appropriately changed to the above-described materials and the like according to every requirement.

[補強フィルムの貼り付け]
図3に示すように、平面視すると長方形の電解質膜1の両面に、周縁の形状および寸法が電解質膜1にほぼ一致する補強フィルム5をラミネート加工する。電解質膜1は、上記の突出部6として機能する部分を見込んで、長さ、幅とも燃料電池に実装される際の寸法よりも大きく形成されている。補強フィルム5の中央には、長方形の開口5aが形成されており、電解質膜1は、補強フィルム5が貼り付けられても、この開口5aからその一部が露出するようになっている
[Affixing the reinforcing film]
As shown in FIG. 3, a reinforcing film 5 having a peripheral shape and a dimension substantially matching those of the electrolyte membrane 1 is laminated on both surfaces of the rectangular electrolyte membrane 1 in plan view. The electrolyte membrane 1 is formed with a length and a width that are larger than the dimensions when mounted on the fuel cell in anticipation of the portion that functions as the protruding portion 6. A rectangular opening 5 a is formed at the center of the reinforcing film 5, and the electrolyte membrane 1 is partially exposed from the opening 5 a even when the reinforcing film 5 is attached.

[電極の形成]
図4に示すように、補強フィルム5の開口5aから露出している電解質膜1の両面に、ガス拡散層および触媒層からなる電極2,3をそれぞれ形成する。電極2,3は、長方形の開口5aの内側に、長辺、短辺の方向をそれぞれ一致させるようにして、長方形状に形成される。また、電極2,3は、補強フィルム5に触れないように、開口5aの縁との間に隙間を空けて形成される。
[Electrode formation]
As shown in FIG. 4, electrodes 2 and 3 made of a gas diffusion layer and a catalyst layer are formed on both surfaces of the electrolyte membrane 1 exposed from the opening 5 a of the reinforcing film 5. The electrodes 2 and 3 are formed in a rectangular shape inside the rectangular opening 5a so that the directions of the long side and the short side coincide with each other. The electrodes 2 and 3 are formed with a gap between the edges of the opening 5 a so as not to touch the reinforcing film 5.

[貫通孔の打ち抜き]
図5に示すように、電極2,3が形成された電解質膜1に、各マニホールドを構成する貫通孔7を打ち抜き加工する。貫通孔7は、補強フィルム5の開口5aの周囲に、電解質膜1および補強フィルム5を貫通して形成される。
[Punching through holes]
As shown in FIG. 5, through-holes 7 constituting each manifold are punched into the electrolyte membrane 1 on which the electrodes 2 and 3 are formed. The through hole 7 is formed through the electrolyte membrane 1 and the reinforcing film 5 around the opening 5 a of the reinforcing film 5.

[シール部材の形成]
貫通孔7が形成された電解質膜1にプライマーを塗布した後、この電解質膜1を、図6に示すように、シール部材4を型取るキャビティCを画成する上下2つの成形型の内側に配置する。このとき、上型10と下型11との間に突出部6を挟み、電解質膜1を、上型10と下型11とを組み合わせた成形型のキャビティCの内部で定位置に固定する。そして、シール部材4の材料である液状のシリコーンゴムを、キャビティCの内部に射出する。射出後しばらくしてシリコーンゴムが硬化し、電解質膜1および補強フィルム5にシール部材4が一体成形されたら、上型10と下型11とを分割して電解質膜1等をキャビティCから取り出す。電解質膜1には、両面にシール部材4が形成されている(図1等参照)。
[Formation of seal member]
After applying a primer to the electrolyte membrane 1 in which the through-hole 7 is formed, the electrolyte membrane 1 is placed inside two upper and lower molds that define a cavity C for molding the seal member 4 as shown in FIG. Deploy. At this time, the protruding portion 6 is sandwiched between the upper mold 10 and the lower mold 11, and the electrolyte membrane 1 is fixed in place inside the cavity C of the molding mold in which the upper mold 10 and the lower mold 11 are combined. Then, liquid silicone rubber that is a material of the seal member 4 is injected into the cavity C. When the silicone rubber is cured for a while after the injection and the sealing member 4 is integrally formed with the electrolyte membrane 1 and the reinforcing film 5, the upper die 10 and the lower die 11 are divided and the electrolyte membrane 1 and the like are taken out from the cavity C. Seal members 4 are formed on both surfaces of the electrolyte membrane 1 (see FIG. 1 and the like).

[突出部の切除]
図7に示すように、成形型から取り出した電解質膜1を打ち抜き加工し、電解質膜1の周囲に設けていた突出部6を切除する。例えば本実施形態の場合であれば、平面視略矩形に成形されたシール部材4よりも外側にはみ出している部分を切除することとしている(図7参照)。これで、燃料電池に実装可能なMEAが完成する。
[Excision of protrusion]
As shown in FIG. 7, the electrolyte membrane 1 taken out from the mold is punched, and the protrusion 6 provided around the electrolyte membrane 1 is cut off. For example, in the case of the present embodiment, a portion protruding outward from the seal member 4 formed in a substantially rectangular shape in plan view is cut out (see FIG. 7). Thus, the MEA that can be mounted on the fuel cell is completed.

以上説明した実施形態においては、シール部材4を成形型内で射出成形する際、突出部6を成形型で挟み込み、引っ張るようにして保持することができるので、成形後におけるシール部材4の変形が抑制されることになる。つまり、射出成形時における補強フィルム(形状保持部材)5は、従来ならば全く成形型に挟み込まれていなかったのに対し、本実施形態においては少なくともその一部が成形型に挟み込まれるようになっているため、射出成形時、周囲から引っ張られるようにして保持された状態となる。このため、射出成形時において、当該形状保持部材5や電解質膜1が変形するのを抑制することができる。すなわち、シリコーンゴム等のシール部材4がキャビティCの内部に射出したとき、電解質膜1は、当該シール部材(シリコーンゴム)4の流れの勢いに押されても変形せず、当初の形状を留めたままであり、この状態のままでシリコーンゴムが固化する。したがって、電解質膜1に一体成形されるシール部材4に所望の特性を発揮させることができる。   In the embodiment described above, when the seal member 4 is injection-molded in the mold, the protruding portion 6 can be sandwiched and held by the mold so that the seal member 4 can be deformed after molding. Will be suppressed. That is, the reinforcing film (shape holding member) 5 at the time of injection molding is not sandwiched between molds at all in the past, but at least a part thereof is sandwiched between molds in this embodiment. Therefore, it will be in the state hold | maintained so that it might be pulled from the circumference | surroundings at the time of injection molding. For this reason, it can suppress that the said shape holding member 5 and the electrolyte membrane 1 deform | transform at the time of injection molding. That is, when the sealing member 4 such as silicone rubber is injected into the cavity C, the electrolyte membrane 1 does not deform even when pressed by the flow force of the sealing member (silicone rubber) 4 and retains its original shape. In this state, the silicone rubber is solidified. Therefore, the sealing member 4 integrally formed with the electrolyte membrane 1 can exhibit desired characteristics.

次に、本発明の第2の実施形態を、図8および図9に示して説明する。本実施形態においては、前述の成形型の内部に突起12を設けておき、シール部材4を射出成形する際、成形型の内部での電解質膜1および補強フィルム(形状保持部材)5の変位(成形型の内部にて電解質膜1や補強フィルム5が動いてしまったり変形してしまったりすること)を当該突起12によって規制するようにしている。なお、上記第1の実施形態において既に説明した構成要素には同一の符号を付し、それらの説明は省略する。   Next, a second embodiment of the present invention will be described with reference to FIGS. In this embodiment, the protrusion 12 is provided inside the above-described mold, and when the seal member 4 is injection-molded, the displacement of the electrolyte membrane 1 and the reinforcing film (shape holding member) 5 inside the mold ( The protrusion 12 restricts the electrolyte membrane 1 and the reinforcing film 5 from moving or deforming inside the mold. In addition, the same code | symbol is attached | subjected to the component already demonstrated in the said 1st Embodiment, and those description is abbreviate | omitted.

まず、本実施形態においては、図8に示すように、上型10、下型11の両方に、キャビティCの内部に配置される電解質膜1に向けて突出するピン形状の突起12をそれぞれ形成している。各突起12は、いずれも、突起先端が補強フィルム5が貼り付けられた電解質膜1に近接するように形成されている(図8参照)。このような突起12は、例えば電極2,3を取り囲むように、複数ができる限り均等となるように配置されていることが好ましい。例えば本実施形態における突起12は、図9に示すように、マニホールドを構成する貫通孔7を取り囲むようにして複数設けられている。   First, in the present embodiment, as shown in FIG. 8, pin-shaped protrusions 12 protruding toward the electrolyte membrane 1 disposed inside the cavity C are formed on both the upper mold 10 and the lower mold 11, respectively. is doing. Each of the protrusions 12 is formed such that the protrusion tip is close to the electrolyte membrane 1 to which the reinforcing film 5 is attached (see FIG. 8). Such protrusions 12 are preferably arranged so as to be as uniform as possible so as to surround the electrodes 2 and 3, for example. For example, as shown in FIG. 9, a plurality of protrusions 12 in the present embodiment are provided so as to surround the through-holes 7 constituting the manifold.

上述したように突起12が形成された本実施形態の成形型によると、以下のような利点がある。すなわち、液状のシリコーンゴムをキャビティCの内部に射出した際、電解質膜1がこのシリコーンゴムの流れの勢いに押されるが、そのときこれら突起12が電解質膜1を押さえ、あるいは接触することによって、電解質膜1等が変位するのを規制する。つまり、上記のごとき成形型を用いて燃料電池のMEAを製造する場合には、電解質膜1が、シリコーンゴムの流れの勢いに押されても変形せずに当初の形状を留めた状態を維持し、この状態のままでシリコーンゴムが固化する。したがって、電解質膜1に一体成形されるシール部材4に所望の特性を発揮させることができる。   According to the mold of this embodiment in which the protrusions 12 are formed as described above, there are the following advantages. That is, when the liquid silicone rubber is injected into the cavity C, the electrolyte membrane 1 is pushed by the momentum of the flow of the silicone rubber. At this time, the protrusions 12 hold the electrolyte membrane 1 or come into contact with each other. The displacement of the electrolyte membrane 1 and the like is restricted. That is, when the fuel cell MEA is manufactured using the mold as described above, the electrolyte membrane 1 remains in its original shape without being deformed even when pressed by the flow of silicone rubber. In this state, the silicone rubber is solidified. Therefore, the sealing member 4 integrally formed with the electrolyte membrane 1 can exhibit desired characteristics.

ところで、本実施形態においては、先端が電解質膜1および補強フィルム5から僅かに離れた程度まで突出した形状の突起12を説明したが(図8参照)、当該突起12の形状ないし大きさは特にこのようなものに限定されることはない。すなわち、突起12は電解質膜1を型締めするときから電解質膜1に接する程度に突出していてもよいし、本実施形態にて示したように電解質膜1から少し離間していてもよい。ただし、電解質膜1や補強フィルム5の寸法誤差(ばらつき)が大きいような場合には少し離間させている程度のほうが有効なことがある。   By the way, in the present embodiment, the protrusion 12 having a shape in which the tip protrudes to a slight distance from the electrolyte membrane 1 and the reinforcing film 5 has been described (see FIG. 8). The shape or size of the protrusion 12 is particularly It is not limited to such a thing. That is, the protrusion 12 may protrude to the extent that it contacts the electrolyte membrane 1 from when the electrolyte membrane 1 is clamped, or may be slightly separated from the electrolyte membrane 1 as shown in the present embodiment. However, when the dimensional error (variation) of the electrolyte membrane 1 or the reinforcing film 5 is large, it may be more effective that the distance is slightly separated.

また、本実施形態において、突起12は上型10、下型11の両方にそれぞれ一体的に形成されているが、これに限られることはなく、例えば、成形型に形成された貫通孔にピン状の突起を突没可能に挿通し、その先端をキャビティCの内部の電解質膜1に向けて突出させるようにしてもよい。   In the present embodiment, the protrusions 12 are integrally formed on both the upper mold 10 and the lower mold 11. However, the present invention is not limited to this. It is also possible to insert a protrusion in a slidable manner so that its tip protrudes toward the electrolyte membrane 1 inside the cavity C.

次に、本発明の第3の実施形態を、図10および図11に示して説明する。ここでは、シール部材4を、MEAの表面ないしは電解質膜1の表面に沿った方向に拡散するように射出するようにしている。なお、上記の各実施形態において既に説明した構成要素には同一の符号を付し、それらの説明は省略する。   Next, a third embodiment of the present invention will be described with reference to FIGS. Here, the seal member 4 is injected so as to diffuse in the direction along the surface of the MEA or the surface of the electrolyte membrane 1. In addition, the same code | symbol is attached | subjected to the component already demonstrated in said each embodiment, and those description is abbreviate | omitted.

本実施形態においては、図10に示すように、上型10および下型11のうち、マニホールドを構成する貫通孔7を型取る部位は、上型10から下型11に向けて突き出した直方体形状の分割体13と、下型11から上型10に向けて突き出した直方体形状の分割体14とが、お互いの頭頂部13a,14aを向かい合わせて配置されることによって形成されている。分割体13は上型10の一部を形成し、分割体14は下型11の一部を形成している。分割体13の頭頂部13a、および分割体14の頭頂部14aは、いずれも平面状に形成され、かつ互いに当接してはおらず、ほぼ均等な隙間を空けて向かい合っている。さらに、上型10には、液状のシール部材(シリコーンゴム)4をキャビティCの内部に導入するためのゲート15が、頭頂部13a,14a間の隙間に連通するように設けられている。ゲート15は、図11に示すように、貫通孔7を型取る部位のすべてに、ひとつずつ設けられている。   In the present embodiment, as shown in FIG. 10, of the upper mold 10 and the lower mold 11, the part that molds the through hole 7 constituting the manifold is a rectangular parallelepiped shape protruding from the upper mold 10 toward the lower mold 11. The divided body 13 and the rectangular parallelepiped-shaped divided body 14 protruding from the lower mold 11 toward the upper mold 10 are formed by arranging the top portions 13a and 14a facing each other. The divided body 13 forms a part of the upper mold 10, and the divided body 14 forms a part of the lower mold 11. The top portion 13a of the divided body 13 and the top portion 14a of the divided body 14 are both formed in a planar shape, are not in contact with each other, and face each other with a substantially uniform gap. Further, the upper mold 10 is provided with a gate 15 for introducing a liquid seal member (silicone rubber) 4 into the cavity C so as to communicate with the gap between the top portions 13a and 14a. As shown in FIG. 11, one gate 15 is provided at every part where the through hole 7 is formed.

このような構造の成形型において、液状のシリコーンゴムは、ゲート15を通じて頭頂部13a,14a間の隙間に供給され、下型11側の分割体14の頭頂部14aに当たり、頭頂部14aの面に平行な全方位に偏りなく拡散してキャビティCに射出される。また、頭頂部13a,14aは、その面がキャビティCの内部に配置された電解質膜1の両面とほぼ平行となるように形成されているので、この結果、シリコーンゴムは電解質膜1の両面に沿う方向に射出されることになる。   In the mold having such a structure, the liquid silicone rubber is supplied to the gap between the top parts 13a and 14a through the gate 15, hits the top part 14a of the divided body 14 on the lower mold 11 side, and reaches the surface of the top part 14a. Diffusion without deviation in all parallel directions is injected into the cavity C. Further, since the top portions 13 a and 14 a are formed so that the surfaces thereof are substantially parallel to both surfaces of the electrolyte membrane 1 disposed inside the cavity C, as a result, the silicone rubber is applied to both surfaces of the electrolyte membrane 1. It will be injected in the direction along.

上述した構造の成形型を使って燃料電池(ないしはMEA)を製造することとした場合、シリコーンゴムが、電解質膜1の平滑な両面(表面および裏面)に沿う方向に射出されるので、電解質膜1がシリコーンゴムの流れの抵抗になるようなことがない。このため、電解質膜1が変形せずに当初の形状を留めた状態のままシリコーンゴムを固化させることができる。したがって、電解質膜1に一体成形されるシール部材4に所望の特性を発揮させることができる。   When a fuel cell (or MEA) is manufactured using the mold having the above-described structure, the silicone rubber is injected in a direction along both smooth surfaces (the front surface and the back surface) of the electrolyte membrane 1. 1 does not become the resistance of the flow of silicone rubber. For this reason, the silicone rubber can be solidified with the electrolyte membrane 1 kept in its original shape without being deformed. Therefore, the sealing member 4 integrally formed with the electrolyte membrane 1 can exhibit desired characteristics.

ところで、本実施形態のように頭頂部13a,14a間に隙間を形成している場合には、当該隙間にもシリコーンゴムが充填される結果、貫通孔7が筒抜けに型取りされることはないが、この場合には、突出部6を打ち抜き加工する際等に、頭頂部13a,14a間の隙間に充填されて固化したシリコーンゴムを打ち抜き、除去することとすればよい。   By the way, when a gap is formed between the tops 13a and 14a as in the present embodiment, the gap is filled with silicone rubber, and as a result, the through-hole 7 is not die-cut. However, in this case, when punching the projecting portion 6 or the like, the silicone rubber filled in the gap between the top portions 13a and 14a and solidified may be punched and removed.

なお、ここでは、マニホールドを構成する貫通孔7を型取る部位にゲート15を設けるようにした形態を例示して説明したが、このゲート15の配置は特にこれに限られることはない。要は、従来のように電解質膜1や補強フィルム(形状保持部材)5の真上(ないしは真下)からシート部材4を射出すると、この射出時の圧力でこれら電解質1や補強フィルム5に変形が生じることがあったのに対し、本実施形態のようにゲート15を適切な位置に配置すればこのように変形が生じるのを極力回避することが可能となるから、このような作用効果が得られれば配置は特に限定されないということである。しかも、本実施形態においては射出されたシート部材4の材料が電解質膜1の表面(ないしは裏面)の沿ってあらゆる方向に拡散するようにし、材料が適度に分配されることによって余計な圧力が作用するのをさらに回避できるようにしているから、このような構造と組み合わせれば更なる効果が得られることとなる。   Here, the embodiment in which the gate 15 is provided at the site where the through-hole 7 constituting the manifold is formed is described as an example, but the arrangement of the gate 15 is not particularly limited to this. In short, when the sheet member 4 is injected from directly above (or directly below) the electrolyte membrane 1 or the reinforcing film (shape holding member) 5 as in the prior art, the electrolyte 1 and the reinforcing film 5 are deformed by the pressure at the time of injection. On the other hand, if the gate 15 is arranged at an appropriate position as in the present embodiment, it is possible to avoid such deformation as much as possible. This means that the arrangement is not particularly limited. Moreover, in this embodiment, the injected material of the sheet member 4 is diffused in all directions along the surface (or the back surface) of the electrolyte membrane 1, and extra pressure is applied by appropriately distributing the material. Therefore, further effects can be obtained by combining with such a structure.

次に、本発明の第4の実施形態を、図12に示して説明する。なお、上記の各実施形態において既に説明した構成要素には同一の符号を付し、それらの説明は省略する。   Next, a fourth embodiment of the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the component already demonstrated in said each embodiment, and those description is abbreviate | omitted.

本実施形態においては、図12に示すように、上型10の分割体13の頭頂部13aに、突条16が形成されるとともに、下型11の分割体14の頭頂部14aに、上型10側の突条16と先端を向き合わせるようにして同様の突条17が形成されている。2つの突条16,17は、液状のシリコーンゴムを上下方向に拡散させる絞りの役割を担う。なお、ここで具体的数値の一例を挙げておくとすれば、例えば上下に離間する頭頂部13a,14a間の間隔は0.5〜5mm程度が好ましく、2つの突条16,17の先端どうしの間隔は0.02〜0.2mm程度が好ましい。   In the present embodiment, as shown in FIG. 12, the ridge 16 is formed on the top 13 a of the divided body 13 of the upper mold 10, and the upper mold is formed on the top 14 a of the divided body 14 of the lower mold 11. A similar ridge 17 is formed so that the ridge 16 on the 10 side faces the tip. The two protrusions 16 and 17 play a role of a diaphragm for diffusing liquid silicone rubber in the vertical direction. In addition, if an example of a specific numerical value is given here, for example, the interval between the top and bottom head portions 13a and 14a that are spaced apart from each other is preferably about 0.5 to 5 mm, and the tips of the two ridges 16 and 17 are mutually spaced. Is preferably about 0.02 to 0.2 mm.

このような突状16,17を備えた成形型を使用した場合、ゲート15から射出された液状のシリコーンゴムは、頭頂部13a,14a間の隙間に供給され、下型11側の分割体14の頭頂部14aに当たり、頭頂部14aの面に平行な全方位に偏りなく拡散する。さらに、2つの突条16,17間を通過する際に上下方向にも拡散してキャビティCの内部に射出される。すなわち、頭頂部13a,14aの隙間を抜けてキャビティCへと流れ込む際のシリコーンゴムは、重力の影響を受けて片側(より具体的には下側)のキャビティCへと多く偏って流れ込んでしまい、ひいては電解質膜1等を上側へと移動させて変形させてしまうといったおそれがあるが、上述のような突状(絞り)16,17を備えた成形型によれば、上下の流動量のバランスを整え、重力の作用にかかわらず上下のキャビティCへほぼ均等に材料が流れ込むことのできる状況を形成することが可能となる。   When a mold having such protrusions 16 and 17 is used, the liquid silicone rubber injected from the gate 15 is supplied to the gap between the top portions 13a and 14a, and the divided body 14 on the lower mold 11 side. It spreads in all directions parallel to the surface of the top 14a without any bias. Furthermore, when passing between the two protrusions 16 and 17, it diffuses also in the up-down direction and is injected into the cavity C. That is, the silicone rubber that flows into the cavity C through the gaps between the tops 13a and 14a flows largely biased into the cavity C on one side (more specifically, on the lower side) due to the influence of gravity. In addition, there is a risk that the electrolyte membrane 1 or the like may be moved upward and deformed. However, according to the molding die provided with the protrusions (squeezes) 16 and 17 as described above, the balance of the upper and lower flow amounts is balanced. It is possible to form a situation in which the material can flow into the upper and lower cavities C almost uniformly regardless of the action of gravity.

つまり、上述した構造の成形型を使って燃料電池(ないしはMEA)を製造することとした場合、液状のシリコーンゴムを拡散させる絞りの役割を担う突条16,17の働きにより流量を均等化し、シリコーンゴムのいわば流れ性を改善することができる。また、電解質膜1がシリコーンゴムの抵抗にならないように調整するので、電解質膜1が変形せずに当初の形状を留めた状態でシリコーンゴムが固化する。したがって、電解質膜1に一体成形されるシール部材4に所望の特性を発揮させることができる。   In other words, when a fuel cell (or MEA) is manufactured using a mold having the above-described structure, the flow rate is equalized by the action of the ridges 16 and 17 that serve as a throttle for diffusing liquid silicone rubber, In other words, the flowability of silicone rubber can be improved. Further, since the electrolyte membrane 1 is adjusted so as not to have the resistance of the silicone rubber, the silicone rubber is solidified in a state where the electrolyte membrane 1 is not deformed and the original shape is retained. Therefore, the sealing member 4 integrally formed with the electrolyte membrane 1 can exhibit desired characteristics.

ところで、本実施形態では、電解質膜1をほぼ水平に配置した状態でキャビティCの内部にシリコーンゴムを射出しているが、電解質膜1をほぼ垂直に配置した状態でキャビティCの内部にシリコーンゴムを射出することも可能である。電解質膜1をほぼ水平に配置した状態では、重力の影響を受けて電解質膜1の上面側よりも下面側に多くのシリコーンゴムが流入する傾向が強いが、電解質膜1をほぼ垂直にした状態では、電解質膜1を挟んで左右両側のキャビティCにほぼ均等にシリコーンゴムが流入するのでこの観点からすれば好ましいといえる。   By the way, in this embodiment, silicone rubber is injected into the cavity C with the electrolyte membrane 1 disposed substantially horizontally. However, silicone rubber is injected into the cavity C with the electrolyte membrane 1 disposed substantially vertically. Can also be injected. In a state where the electrolyte membrane 1 is arranged almost horizontally, a large amount of silicone rubber tends to flow into the lower surface side than the upper surface side of the electrolyte membrane 1 due to the influence of gravity, but the electrolyte membrane 1 is almost vertical. Then, it can be said that it is preferable from this point of view since silicone rubber flows into the cavities C on both the left and right sides of the electrolyte membrane 1 almost evenly.

なお、上述の実施形態は本発明の好適な実施の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、上述した実施形態においては、突出部6、すなわち電解質膜1の表面に設けられる補強フィルム5のうちシール部材4の端部よりも意図的に外周側へと突出するように形成された部分を、成形型を構成する上型10と下型11との間に挟み込んで固定した状態とする場合について説明したがこれは好適な一例に過ぎず、要は、何らかの形で成形型に固定された状態となっていれば足りる。したがって、例えば上型10と下型11の少なくとも一方の型に引っ掛ける等して固定するといった形でもよい。   The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the scope of the present invention. For example, in the above-described embodiment, the protruding portion 6, that is, the portion formed so as to intentionally protrude to the outer peripheral side from the end portion of the sealing member 4 in the reinforcing film 5 provided on the surface of the electrolyte membrane 1. However, this is only a preferred example, and in short, it is fixed to the molding die in some form. It is enough if it is in the state. Therefore, for example, the shape may be fixed by being hooked on at least one of the upper mold 10 and the lower mold 11.

また、上記の実施形態では、形状保持部材5は膜−電極アッセンブリに別体で配置されたものを例示したが、電解質膜1、またはその表面に形成された電極や拡散層の外周(シール部材を配置予定の部位)において部分的に剛性を大きくするように材料を選定したり、化学的な処理を行ったりしてもよい。この場合には、形状保持部材5は別体ではなく、膜−電極アッセンブリと一体化した状態と解釈できる。   Further, in the above embodiment, the shape maintaining member 5 is exemplified as a member separately disposed in the membrane-electrode assembly. However, the outer periphery of the electrolyte membrane 1 or the electrode or diffusion layer formed on the surface thereof (seal member) The material may be selected or chemically treated so as to partially increase the rigidity at the site where the material is to be disposed. In this case, the shape-retaining member 5 is not a separate body but can be interpreted as a state integrated with the membrane-electrode assembly.

本発明の第1の実施形態を示す図であって、膜−電極アッセンブリを示す平面図である。It is a figure which shows the 1st Embodiment of this invention, Comprising: It is a top view which shows a membrane-electrode assembly. 図1のII−II線に沿う断面図である。It is sectional drawing which follows the II-II line of FIG. 本発明の膜−電極アッセンブリの製造方法のうち、電解質膜に補強フィルムを貼り付ける工程を示す斜視図である。It is a perspective view which shows the process of affixing a reinforcement film on an electrolyte membrane among the manufacturing methods of the membrane-electrode assembly of this invention. 補強フィルムを貼り付けられた電解質膜に電極を形成する工程を示す斜視図である。It is a perspective view which shows the process of forming an electrode in the electrolyte membrane which affixed the reinforcement film. 補強フィルムを貼り付けられた電解質膜に貫通孔を打ち抜く工程を示す平面図である。It is a top view which shows the process of punching a through-hole in the electrolyte membrane on which the reinforcement film was affixed. 補強フィルムを貼り付けられた電解質膜にシール部材を形成する工程を示す要部断面図である。It is principal part sectional drawing which shows the process of forming a sealing member in the electrolyte membrane on which the reinforcement film was affixed. 補強フィルムを貼り付けられた電解質膜に貫通孔を打ち抜く工程を示す平面図である。It is a top view which shows the process of punching a through-hole in the electrolyte membrane on which the reinforcement film was affixed. 本発明の第2の実施形態を示す図であって、膜−電極アッセンブリを成形型の内部に配置した状態を示す断面図である。It is a figure which shows the 2nd Embodiment of this invention, Comprising: It is sectional drawing which shows the state which has arrange | positioned the membrane-electrode assembly inside the shaping | molding die. 成形型に設けられる突起の位置を示す平面図である。It is a top view which shows the position of the processus | protrusion provided in a shaping | molding die. 本発明の第3の実施形態を示す図であって、膜−電極アッセンブリを成形型の内部に配置した状態を示す断面図である。It is a figure which shows the 3rd Embodiment of this invention, Comprising: It is sectional drawing which shows the state which has arrange | positioned the membrane-electrode assembly inside the shaping | molding die. 成形型に設けられるゲートの位置を示す平面図である。It is a top view which shows the position of the gate provided in a shaping | molding die. 本発明の第4の実施形態を示す図であって、膜−電極アッセンブリを成形型の内部に配置した状態を示す断面図である。It is a figure which shows the 4th Embodiment of this invention, Comprising: It is sectional drawing which shows the state which has arrange | positioned the membrane-electrode assembly inside the shaping | molding die.

符号の説明Explanation of symbols

1…電解質膜、2,3…電極、4…シール部材、5…補強フィルム(形状保持部材)、6…突出部、7…貫通孔、12…突起 DESCRIPTION OF SYMBOLS 1 ... Electrolyte membrane, 2, 3 ... Electrode, 4 ... Seal member, 5 ... Reinforcement film (shape holding member), 6 ... Projection part, 7 ... Through-hole, 12 ... Projection

Claims (8)

膜−電極アッセンブリの周縁部にシール部材を成形型内にて射出成形して一体化する燃料電池部品の製造方法において、
前記膜−電極アッセンブリの電解質と前記シール部材との間に、当該膜−電極アッセンブリが変形するのを抑制する形状保持部材を配置し、
当該配置された形状保持部材のうち、前記膜−電極アッセンブリの外周に位置する部分の一部を前記シール部材の端部よりも外周側へと突出させて突出部とし
前記成形型として、当該成形型内に配置された前記電解質膜および前記形状保持部材に向けて突出する突起が設けられたものを用い、
前記突出部の少なくとも一部を前記成形型を構成する上型と下型の少なくとも一方に固定した状態で前記シール部材を射出成形する際、前記成形型の内部における前記電解質膜および前記形状保持部材の変位を、前記突起によって規制した状態とし、
前記成形型を構成する上型と下型の少なくとも一方に、当該上型または下型の頭頂部間の隙間を連通するように設けられたゲートを利用し、当該ゲートを通じて前記シール部材を前記頭頂部間の隙間に供給する
ことを特徴とする燃料電池部品の製造方法。
In a method of manufacturing a fuel cell component in which a seal member is injection-molded and integrated in a peripheral portion of a membrane-electrode assembly in a mold,
A shape holding member that suppresses deformation of the membrane-electrode assembly is disposed between the electrolyte of the membrane-electrode assembly and the seal member,
Of the arranged shape-retaining member, a part of the portion located on the outer periphery of the membrane-electrode assembly is protruded to the outer peripheral side from the end of the seal member to form a protruding portion ,
As the mold, the one provided with a projection protruding toward the electrolyte membrane and the shape holding member disposed in the mold,
When the sealing member is injection-molded in a state where at least a part of the projecting portion is fixed to at least one of an upper mold and a lower mold constituting the molding die, the electrolyte membrane and the shape holding member inside the molding die The state of the displacement is regulated by the protrusion ,
Using at least one of the upper mold and the lower mold constituting the molding mold, a gate provided so as to communicate a gap between the tops of the upper mold and the lower mold, and the seal member is inserted into the head through the gate. A method for producing a fuel cell component , characterized in that the fuel cell component is supplied into a gap between top portions .
前記突起として、前記形状保持部材が貼り付けられた前記電解質膜に突起先端が近接した状態で形成されているものを用いる、請求項1に記載の燃料電池部品の製造方法。 2. The method of manufacturing a fuel cell component according to claim 1, wherein the protrusion is formed such that a protrusion tip is close to the electrolyte membrane to which the shape holding member is attached. 前記突起として、前記膜−電極アッセンブリの電極を取り囲むように複数が均等に配置されたものを用いる、請求項1に記載の燃料電池部品の製造方法。 2. The method of manufacturing a fuel cell component according to claim 1, wherein a plurality of protrusions are uniformly arranged so as to surround the electrode of the membrane-electrode assembly. 前記突起として、当該燃料電池のマニホールドを構成する貫通孔を取り囲むように複数設けられたものを用いる、請求項1に記載の燃料電池部品の製造方法。 2. The method of manufacturing a fuel cell component according to claim 1, wherein a plurality of protrusions are provided so as to surround a through-hole constituting a manifold of the fuel cell. 前記膜−電極アッセンブリをその表面と交差する方向から外部支持部材によって支持した状態で前記シール部材を射出成形することを特徴とする請求項1から4のいずれか一項に記載の燃料電池部品の製造方法。 5. The fuel cell component according to claim 1, wherein the seal member is injection-molded in a state where the membrane-electrode assembly is supported by an external support member from a direction intersecting the surface thereof . 6. Production method. 前記シール部材を、前記成形型内にて、当該燃料電池のマニホールドに対応する部位から射出することを特徴とする請求項1から4のいずれか一項に記載の燃料電池部品の製造方法。 5. The method of manufacturing a fuel cell component according to claim 1, wherein the seal member is injected from a portion corresponding to a manifold of the fuel cell in the mold. 前記シール部材を、前記膜−電極アッセンブリの表面に沿う方向に射出することを特徴とする請求項6に記載の燃料電池部品の製造方法。 The method of manufacturing a fuel cell component according to claim 6, wherein the seal member is injected in a direction along a surface of the membrane-electrode assembly. 前記成形型の内部における前記シール部材の材料の流れを調整しながら射出することを特徴とする請求項6に記載の燃料電池部品の製造方法。 The method of manufacturing a fuel cell component according to claim 6, wherein the injection is performed while adjusting a material flow of the seal member inside the mold.
JP2005337698A 2005-11-22 2005-11-22 Fuel cell and manufacturing method thereof Expired - Fee Related JP5115683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005337698A JP5115683B2 (en) 2005-11-22 2005-11-22 Fuel cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005337698A JP5115683B2 (en) 2005-11-22 2005-11-22 Fuel cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007141792A JP2007141792A (en) 2007-06-07
JP5115683B2 true JP5115683B2 (en) 2013-01-09

Family

ID=38204395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005337698A Expired - Fee Related JP5115683B2 (en) 2005-11-22 2005-11-22 Fuel cell and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5115683B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2071656B1 (en) 2007-10-12 2011-02-16 Panasonic Corporation Electrode-membrane-frame assembly for polyelectrolyte fuel cell, manufacturing method therefor, and polyelectrolyte fuel cell
JP2011144852A (en) * 2010-01-13 2011-07-28 Uchiyama Manufacturing Corp Method for manufacturing gasket, and gasket
JP5666396B2 (en) * 2011-07-14 2015-02-12 本田技研工業株式会社 Manufacturing method of metal separator for fuel cell
JP6151065B2 (en) * 2013-04-02 2017-06-21 Nok株式会社 Manufacturing method of plate-integrated gasket
JP5680702B2 (en) * 2013-05-07 2015-03-04 本田技研工業株式会社 Manufacturing method of metal separator for fuel cell

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845517A (en) * 1994-07-28 1996-02-16 Tanaka Kikinzoku Kogyo Kk Seal structure for high polymer electrolyte type fuel cell and its manufacture
JP2002042838A (en) * 2000-07-31 2002-02-08 Honda Motor Co Ltd Fuel cell and manufacturing method for porous conductor, seal structural body, and electrode film structural body
WO2002061869A1 (en) * 2001-01-31 2002-08-08 Matsushita Electric Industrial Co., Ltd. High polymer electrolyte fuel cell and electrolyte film-gasket assembly for the fuel cell
JP2002231274A (en) * 2001-02-01 2002-08-16 Fuji Electric Co Ltd Solid high polymer fuel cell
JP2002260693A (en) * 2001-03-02 2002-09-13 Matsushita Electric Ind Co Ltd High polymer electrolyte fuel cell
JP2002289223A (en) * 2001-03-27 2002-10-04 Aisin Seiki Co Ltd Solid polymer electrolyte film fuel cell
JP4600632B2 (en) * 2001-08-24 2010-12-15 Nok株式会社 Fuel cell components
JP3964781B2 (en) * 2002-12-25 2007-08-22 本田技研工業株式会社 Injection molding method and apparatus

Also Published As

Publication number Publication date
JP2007141792A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
EP1906476B1 (en) Seal structure for fuel cell and method for producing same
CN101617426B (en) Membrane electrode assembly
JP5344786B2 (en) Fuel cell separator and manufacturing method thereof
JP2012104475A (en) Metallic porous body for fuel cell
US10363694B2 (en) Method of manufacturing plate-integrated gasket
JP5115683B2 (en) Fuel cell and manufacturing method thereof
JP6250837B2 (en) Fuel cell separator and method for producing the same
JP4457153B2 (en) Fuel cell separator and method for resin molding of fuel cell separator
CN109417177A (en) The manufacturing method of separator for fuel battery one grommet type seal
JP5310991B2 (en) Manufacturing method of seal structure for fuel cell
JP5275070B2 (en) Fuel cell and manufacturing method thereof
KR20160008155A (en) Method for manufacturing carbon plate-integrated gasket
JP6151065B2 (en) Manufacturing method of plate-integrated gasket
KR101655509B1 (en) Separator assembly for fuel cell and manufacturing method of the same
JP6013261B2 (en) Manufacturing method of plate-integrated gasket
JP6642535B2 (en) Manufacturing method of fuel cell separator
JP6150060B2 (en) Membrane electrode assembly with frame, single cell for fuel cell and fuel cell stack
JP2010212001A (en) Method of manufacturing fuel battery cell, device of manufacturing fuel battery cell, and fuel battery
KR101171932B1 (en) Mold for Manufacturing Fuel Cell Gasket and Fuel Cell Gasket Including Metal Pin Manufactured Using the Mold
JP2005267912A (en) Separator for fuel cell and manufacturing method of the same
JP2023135354A (en) Insert molding die
JP5082322B2 (en) Mold for molding
JP6329799B2 (en) Manufacturing method of laminate
JP2006172816A (en) Fuel cell, and manufacturing method of fuel cell
JP6147867B2 (en) Isolation of water transport plates from elastomer seals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120919

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121002

R151 Written notification of patent or utility model registration

Ref document number: 5115683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees