JP5113430B2 - Metal plating composite substrate - Google Patents

Metal plating composite substrate Download PDF

Info

Publication number
JP5113430B2
JP5113430B2 JP2007149276A JP2007149276A JP5113430B2 JP 5113430 B2 JP5113430 B2 JP 5113430B2 JP 2007149276 A JP2007149276 A JP 2007149276A JP 2007149276 A JP2007149276 A JP 2007149276A JP 5113430 B2 JP5113430 B2 JP 5113430B2
Authority
JP
Japan
Prior art keywords
resistant
metal
heat
oxidation
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007149276A
Other languages
Japanese (ja)
Other versions
JP2008303404A (en
Inventor
昌志 向田
隼人 久保
悟 大上
秀美 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Original Assignee
Kyushu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc filed Critical Kyushu Electric Power Co Inc
Priority to JP2007149276A priority Critical patent/JP5113430B2/en
Publication of JP2008303404A publication Critical patent/JP2008303404A/en
Application granted granted Critical
Publication of JP5113430B2 publication Critical patent/JP5113430B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

本発明は、酸化物超伝導テープ、薄膜超伝導体、バルク超伝導体などのテープ形成用配向基板に用いる金属めっき複合基材に関する。   The present invention relates to a metal-plated composite base material used for an orientation substrate for forming a tape such as an oxide superconducting tape, a thin film superconductor, or a bulk superconductor.

REBaCu7−δ系線材の基本的な構造を図7に示す。REBaCu7−δ系線材は大きく金属基板テープ線材5、バッファ層6、超電導層7、安定化金属層8よりなる。酸化物超電導体においては、cooper pairの対称性がd−波的であり、90°毎にノードがあるために、面内配向揺らぎを低く抑えないと、臨界電流密度が高くならないという問題がある。超電導体膜の面内配向揺らぎを低く抑えるためには、超電導層の下地バッファ層の面内方位揺らぎが小さくなければならない。 FIG. 7 shows the basic structure of the REBa 2 Cu 3 O 7-δ- based wire. The REBa 2 Cu 3 O 7-δ- based wire is largely composed of a metal substrate tape wire 5, a buffer layer 6, a superconducting layer 7, and a stabilizing metal layer 8. In an oxide superconductor, the symmetry of the cooper pair is d-wave-like and there is a node every 90 °, so that there is a problem that the critical current density cannot be increased unless the in-plane orientation fluctuation is suppressed low. . In order to keep the in-plane orientation fluctuation of the superconductor film low, the in-plane orientation fluctuation of the underlying buffer layer of the superconducting layer must be small.

金属テープ線材上の下地バッファ層の面内配向制御技術こそがREBaCu7−δ系線材実現の鍵となっている。面内配向制御技術として、無配向基板テープ上に下地バッファ層材料で面内配向を構築するIBAD法、ISD法などが知られている。 The in-plane orientation control technology of the underlying buffer layer on the metal tape wire is the key to realizing the REBa 2 Cu 3 O 7-δ type wire. As an in-plane orientation control technique, there are known an IBAD method, an ISD method, and the like for constructing an in-plane orientation with a base buffer layer material on a non-oriented substrate tape.

IBAD法は、特異な角度からイオンを照射しながらYSZ(Yttrium Stabilized Zirconia)膜蒸着を行うことにより無配向基板上に配向膜を成長させる技術である。ここで、イオンの入射角はちょうど<111>方向に対応している。
ISD法は、基板面にある角度を持って構成元素を入射することにより、面内配向を実現しようとする技術である。レーザー蒸着(PLD:Pulsed laser deposition)法によりISD−YSZ膜を作製し、その上にREBaCu7−δ膜を成長させている。
The IBAD method is a technique for growing an alignment film on a non-aligned substrate by performing YSZ (Yttrium Stabilized Zirconia) film deposition while irradiating ions from a specific angle. Here, the incident angle of ions corresponds exactly to the <111> direction.
The ISD method is a technique for achieving in-plane orientation by making a constituent element incident at a certain angle on a substrate surface. An ISD-YSZ film is formed by a laser deposition (PLD) method, and a REBa 2 Cu 3 O 7-δ film is grown thereon.

IBAD法やISD法に用いられる基材としては、強度の点からハステロイを用いることが多い。   As the base material used in the IBAD method and ISD method, Hastelloy is often used from the viewpoint of strength.

RABiTS法は強圧延により二軸配向基材を得ようとするもので、RABiTS法に用いられる基材はNi−ベースにWやCrを数%含ませたものである。このCrやWの不純物により結晶粒径を小さく押さえるとともに、テープ線材の強度を稼いでいる。   The RABiTS method is intended to obtain a biaxially oriented base material by strong rolling, and the base material used in the RABiTS method is a Ni-base containing several percent of W or Cr. The crystal grain size is kept small by the Cr and W impurities, and the strength of the tape wire is gained.

しかし、不純物を多量に入れると圧延による二軸配向性は失われてくる。また、RABiTS法による純Ni基材では実用に際して強度と磁性に対して問題があり、その解決策として、Ni合金材をクラッド材に用い、その上にNiを蒸着、圧延し配向基板を得ている。しかし、この系では上述したようにNi合金に添加物を多量に入れると、圧延ではNi合金が配向しなくなり、その上のNiの配向が下地のNi合金の配向に引きずられ、強い二軸配向にならないという問題点がある。そのため、添加物を15at%以下に制限している。   However, when a large amount of impurities is added, the biaxial orientation by rolling is lost. Moreover, the pure Ni base material by the RABiTS method has a problem with respect to strength and magnetism in practical use. As a solution, Ni alloy material is used as a clad material, and Ni is vapor-deposited and rolled thereon to obtain an alignment substrate. Yes. However, in this system, as described above, when a large amount of additive is added to the Ni alloy, the Ni alloy is not oriented by rolling, and the orientation of Ni on the top is dragged by the orientation of the underlying Ni alloy, thereby providing strong biaxial orientation. There is a problem of not becoming. Therefore, the additive is limited to 15 at% or less.

また、特許文献1には、酸化物超電導薄膜を形成してなる酸化物超電導体に用いられる基材として、高強度を有するハステロイなどの耐熱Ni合金の表面にめっき法などの公知の手段により貴金属の被覆層を形成し、その合金を強圧延とそれに続く熱処理により被覆層の外面において、少なくとも酸化物超電導薄膜を形成する部分が(100)面の方向に配向させた基材が開示されている。   Patent Document 1 discloses a noble metal as a base material used for an oxide superconductor formed with an oxide superconducting thin film by a known means such as a plating method on the surface of a heat-resistant Ni alloy such as hastelloy having high strength. A base material is disclosed in which at least a portion on which an oxide superconducting thin film is formed is oriented in the direction of the (100) plane on the outer surface of the coating layer by strong rolling and subsequent heat treatment. .

また、特許文献2には、酸化物超電導薄膜を形成してなる酸化物超電導体に用いられる基材として、高強度を有するハステロイなどの耐熱Ni合金に、該高強度を有するハステロイなどの耐熱Ni合金とは別に、Ni合金を強圧延とそれに続く熱処理により形成したNi表面と垂直な方向にほぼ[100]方向に配向した合金を張り合わせてなる基材が開示されている。
特開平4−21597号公報 特開2006−127847号公報
Patent Document 2 discloses a heat-resistant Ni alloy such as Hastelloy having high strength as a base material used for an oxide superconductor formed by forming an oxide superconducting thin film, and heat-resistant Ni such as Hastelloy having high strength. Apart from the alloy, a base material is disclosed in which a Ni alloy is bonded to an alloy oriented in the [100] direction in a direction perpendicular to the Ni surface formed by strong rolling and subsequent heat treatment.
Japanese Patent Laid-Open No. 4-21597 JP 2006-127847 A

前記特許文献1の方式では、めっき後に配向のための強圧延とそれに続く形成熱処理が必要であり、工程が複雑となる。また、表面方向からの強圧延であるため、めっき金属結晶粒が一方向に長く伸びることがない。   The method of Patent Document 1 requires strong rolling for orientation and subsequent heat treatment for forming after plating, which complicates the process. Moreover, since it is strong rolling from the surface direction, the plated metal crystal grains do not extend long in one direction.

前記特許文献2の方式では、強圧延とそれに続く形成熱処理により作製した、表面と垂直な方向にほぼ[100]方向に配向した合金を張り合わせているため、工程が複雑となる。また、表面方向からの強圧延であるため、めっき金属結晶粒が一方向に長く伸びることがない。   In the method of the above-mentioned patent document 2, the process is complicated because an alloy oriented in the [100] direction is bonded to a direction perpendicular to the surface, which is produced by strong rolling and subsequent heat treatment. Moreover, since it is strong rolling from the surface direction, the plated metal crystal grains do not extend long in one direction.

そこで、本発明は、金属めっきにより、該めっき金属結晶粒が一方向に長く伸び、かつ耐熱耐酸化性金属基材表面と垂直な方向にほぼ(100)面の方向に配向させた耐熱耐酸化性金属−金属めっき複合基材及びその製造法を提供するものである。   Therefore, the present invention provides a heat-resistant and oxidation-resistant material in which the plated metal crystal grains are elongated in one direction and are oriented in the direction of the (100) plane in a direction perpendicular to the surface of the heat-resistant and oxidation-resistant metal substrate. The metal-metal plating composite base material and its manufacturing method are provided.

本発明の金属めっき複合基材は、耐熱耐酸化性金属基材の表面に金属めっき層が設けられ、該金属めっき層の結晶粒が、前記耐熱耐酸化性金属基材の長手方向に、かつ一方向に長く伸び、かつ耐熱耐酸化性金属基材表面と垂直な方向に[100]方向に配向していることを特徴とする(請求項1)。 The metal plating composite substrate of the present invention is provided with a metal plating layer on the surface of the heat and oxidation resistant metal substrate, and the crystal grains of the metal plating layer are in the longitudinal direction of the heat and oxidation resistant metal substrate, and It extends in one direction and is oriented in the [ 100] direction in a direction perpendicular to the surface of the heat-resistant and oxidation-resistant metal substrate (claim 1).

前記耐熱耐酸化性金属基材は、Ni、Co、Fe、Cu、Ag、W、Cr、Mo、Mn、Vのいずれをベースとする合金からなり、Mo、W、Cr、V、MnまたはALのいずれかの1種または2種以上が添加されていることを特徴とする(請求項2)。   The heat-resistant and oxidation-resistant metal substrate is made of an alloy based on any of Ni, Co, Fe, Cu, Ag, W, Cr, Mo, Mn, and V, and includes Mo, W, Cr, V, Mn, and AL. Any one or two or more of these are added (Claim 2).

金属めっき層がNiからなることを特徴とする(請求項3)。 The metal plating layer is made of Ni (claim 3).

金属めっき層の下地の耐熱耐酸化性金属に該耐熱耐酸化性金属の長手方向に対して長いパターンの窪み及び/または膨らみが形成されていることを特徴とする(請求項)。 The heat-resistant and oxidation-resistant metal underlying the metal plating layer is formed with depressions and / or bulges that are long in the longitudinal direction of the heat-resistant and oxidation-resistant metal (claim 4 ).

金属めっき層の金属とは異なる、Ni、Co、Fe、Cu、Ag、W、Cr、Mo、Mn、V、Taのいずれかの1種または2種以上の元素が耐熱耐酸化性金属基材と金属めっき層の間に存在することを特徴とする(請求項)。 One or more elements of Ni, Co, Fe, Cu, Ag, W, Cr, Mo, Mn, V, and Ta, which are different from the metal of the metal plating layer, are a heat-resistant and oxidation-resistant metal substrate. And a metal plating layer (Claim 5 ).

本発明の金属めっき複合基材の製造方法は、耐熱耐酸化性金属基材の表面に金属ストライクめっき層を設け、さらに金属ストライクめっき層の上に、硫酸ニッケル、塩化ニッケル及びホウ酸を主成分とするニッケルめっき浴により、結晶粒が、前記耐熱耐酸化性金属基材の長手方向に、かつ一方向に長く伸び、かつ耐熱耐酸化性金属基材表面と垂直な方向に(100)面配向した金属めっき層を形成することを特徴とする(請求項6)。 The method for producing a metal-plated composite base material of the present invention comprises providing a metal strike plating layer on the surface of a heat-resistant and oxidation-resistant metal base material, and further comprising nickel sulfate, nickel chloride and boric acid as main components on the metal strike plating layer. With the nickel plating bath, the crystal grains are elongated in the longitudinal direction and in one direction of the heat-resistant and oxidation-resistant metal substrate, and the (100) plane orientation is perpendicular to the surface of the heat-resistant and oxidation-resistant metal substrate. A metal plating layer formed is formed (claim 6).

耐熱耐酸化性金属基材の表面に導体の長手方向に沿って複数の凹凸からなるストライプを形成することを特徴とする(請求項)。 A stripe composed of a plurality of irregularities is formed on the surface of the heat-resistant and oxidation-resistant metal substrate along the longitudinal direction of the conductor (claim 7 ).

本発明は、耐熱耐酸化性金属基材としては、ハステロイB {Ni−28Mo−5Fe−1.5Co}、ハステロイC {Ni−16Mo−15.5Cr−5Fe−3W−1Co}、ハステロイX {Ni−9Mo−22Cr−18.5Fe−1.5Co}、ハステロイG {Ni−6.5Mo−22Cr−19.5Fe−2Cu−1W−1Co}などの合金を使用することができる。   In the present invention, as the heat-resistant oxidation-resistant metal base material, Hastelloy B {Ni-28Mo-5Fe-1.5Co}, Hastelloy C {Ni-16Mo-15.5Cr-5Fe-3W-1Co}, Hastelloy X {Ni Alloys such as -9Mo-22Cr-18.5Fe-1.5Co} and Hastelloy G {Ni-6.5Mo-22Cr-19.5Fe-2Cu-1W-1Co} can be used.

本発明は、例えば、高濃度添加物含有Ni合金である無配向のハステロイc−276上に耐酸性のある有機物質を塗布し、その一部をハステロイc−276の長手方向に沿って複数のストライプとなるように有機物質を除去する。このストライプ状にパターンのついたハステロイc−276をエッチングすることにより、ハステロイc−276の長手方向に沿って複数の凹凸からなるストライプを形成する。このストライプを持つハステロイc−276の表面に電気化学析出法により、pHが、例えば4.5のワット浴中で純ニッケル膜を電析する。ここで、パターン付基材とニッケル膜との間にNiと格子定数が異なる耐熱耐酸化性材料を挿入してもよい。このパターンにより、成長する[100]配向ニッケル膜は、一方向に結晶粒が伸びたものとなる。これにより面内配向ニッケル膜が達成される。本発明においては、耐熱耐酸化性金属基材、例えば、少なくとも15%未満ではない添加物を含んだハステロイ基材上に少なくともニッケル膜を付着させたように設計されたものである。   In the present invention, for example, an organic material having acid resistance is applied onto non-oriented Hastelloy c-276, which is a Ni alloy containing a high concentration additive, and a part of the organic material is coated with a plurality of parts along the longitudinal direction of Hastelloy c-276. The organic material is removed so as to form a stripe. By etching Hastelloy c-276 patterned in this stripe shape, a stripe composed of a plurality of irregularities is formed along the longitudinal direction of Hastelloy c-276. A pure nickel film is electrodeposited on the surface of Hastelloy c-276 having stripes by electrochemical deposition in a watt bath having a pH of, for example, 4.5. Here, a heat-resistant oxidation-resistant material having a lattice constant different from that of Ni may be inserted between the patterned substrate and the nickel film. With this pattern, the grown [100] oriented nickel film has crystal grains extending in one direction. Thereby, an in-plane oriented nickel film is achieved. In the present invention, it is designed such that at least a nickel film is deposited on a heat and oxidation resistant metal substrate, for example, a Hastelloy substrate containing an additive not less than 15%.

本発明において、耐熱耐酸化性金属基材とニッケルめっきの密着性を向上させるストライクニッケルめっきは、例えば、塩化ニッケルに塩化水素を添加し浴の水素イオン濃度を高くすることでめっき中に陰極から大量の水素ガスを発生させ、陰極表面を還元雰囲気にすることにより、被めっき物表面の酸化物を金属に還元しながらめっきを実施する。   In the present invention, the strike nickel plating that improves the adhesion between the heat-resistant and oxidation-resistant metal substrate and the nickel plating is performed, for example, by adding hydrogen chloride to nickel chloride to increase the hydrogen ion concentration of the bath from the cathode during plating. Plating is performed while generating a large amount of hydrogen gas and reducing the oxide on the surface of the object to be metal by reducing the cathode surface to a reducing atmosphere.

また、ワット浴によるニッケルめっきは、硫酸ニッケル、塩化ニッケル及びホウ酸を主成分とするもっとも実用的で一般的なニッケルめっき浴で実施する。 The nickel plating using the Watt bath is performed with the most practical and general nickel plating bath mainly composed of nickel sulfate, nickel chloride and boric acid.

また、本発明において、導体の長手方向に沿って複数の凹凸からなるストライプの形成は、ハステロイなどの金属基材の表面に界面活性剤を塗布し、次いでフォトレジスト膜をスピンコーティングしたのち、マスクをし、露光し、現像し、それをエッチングすることにより凹凸のストライプを形成する。   Further, in the present invention, a stripe composed of a plurality of projections and depressions along the longitudinal direction of the conductor is formed by applying a surfactant to the surface of a metal substrate such as Hastelloy and then spin-coating a photoresist film, , Exposure, development, and etching to form uneven stripes.

形成したストライプ付き金属基材を洗浄後、スパッタリングによりバッファ層を蒸着した後、ストライクめっき、硫酸ニッケル、塩化ニッケル及びホウ酸を主成分とするニッケルめっき浴でニッケルめっきする。 After cleaning the formed metal substrate with stripes, a buffer layer is deposited by sputtering, and then subjected to nickel plating in a nickel plating bath mainly composed of strike plating, nickel sulfate, nickel chloride and boric acid .

本発明は、ニッケルめっき層により、結晶粒が一方向に長く伸び、かつ金属基材表面と垂直な方向にほぼ[100]方向に配向させることができる。また、めっき条件を変えることにより配向を制御することが可能となり、配向のための強圧延とそれに引き続く熱処理を省略することができる。   In the present invention, the nickel plating layer allows the crystal grains to extend long in one direction and be oriented in the [100] direction in a direction perpendicular to the surface of the metal substrate. In addition, the orientation can be controlled by changing the plating conditions, and the strong rolling for the orientation and the subsequent heat treatment can be omitted.

凹凸のストライプを形成することにより、ストライプの方向に結晶粒が長くなった(100)面配向したニッケルめっき膜が得られる。   By forming uneven stripes, a (100) -oriented nickel plating film with crystal grains elongated in the direction of the stripes can be obtained.

本発明の実施例について説明する。   Examples of the present invention will be described.

図1は本発明の第1の実施例を説明する図であって、1は耐熱耐酸化性金属基材、2はほぼ[100]方向に強く配向したニッケルである。この実施例による金属めっき複合基材の製造方法は、以下のような手順による。   FIG. 1 is a diagram for explaining a first embodiment of the present invention, wherein 1 is a heat-resistant and oxidation-resistant metal substrate, and 2 is nickel that is strongly oriented in the [100] direction. The manufacturing method of the metal plating composite base material by this Example is based on the following procedures.

(1)表面が平坦である耐熱耐酸化性金属基材(ハステロイc−276)の表面酸化物層除去かつ洗浄を行う。具体的に、NaOH80g/Lを90度以上にバーナーで加熱し、その中で5分間油脂の洗浄を行い、油脂洗浄後すぐに流水で洗浄する。その後、Ni溶液(NiCl 240g/L HCl 80g/L)中で逆電解(+50mA/cm 40度で30秒)をし、残留した汚れを落とす。 (1) The surface oxide layer is removed and washed on a heat-resistant and oxidation-resistant metal substrate (Hastelloy c-276) having a flat surface. Specifically, NaOH 80 g / L is heated to 90 ° C. or more with a burner, in which oil and fat are washed for 5 minutes, and washed with running water immediately after oil and fat washing. Thereafter, reverse electrolysis (+50 mA / cm 2 at 40 ° C. for 30 seconds) in Ni solution (NiCl 2 240 g / L HCl 80 g / L) is performed to remove the remaining dirt.

(2)すぐに、(NiCl240g/L HCl 80g/L)中でストライクメッキ(溶液の温度を40度で3分)を行う。ストライクメッキ後すぐに流水で洗浄する。 (2) Immediately, strike plating is performed in (NiCl 2 240 g / L HCl 80 g / L) (solution temperature is 40 ° C. for 3 minutes). Wash with running water immediately after strike plating.

(3)pHを例えば4.5とした硫酸ニッケル、塩化ニッケル及びホウ酸を主成分とするニッケルめっき浴(例えば、NiSO・6HO 250g/L、NiCl・6HO 50g/L、ホウ酸30g/L、 NaOHを適量添加し、溶液の温度を40度、pH4.5とする)を作製する。 (3) Nickel plating bath whose main components are nickel sulfate, nickel chloride and boric acid with a pH of 4.5, for example, NiSO 4 .6H 2 O 250 g / L, NiCl 2 .6H 2 O 50 g / L, Boric acid 30 g / L, an appropriate amount of NaOH is added, and the temperature of the solution is adjusted to 40 degrees and pH 4.5).

(4)作製したニッケルめっき浴の中で耐熱耐酸化性金属基材の端部からめっきを行う。めっき後は流水で洗浄する。 (4) Plating is performed from the end portion of the heat-resistant and oxidation-resistant metal substrate in the produced nickel plating bath. Wash with running water after plating.

(5)めっきしたニッケル膜の表面が荒れている場合は、表面を研磨する(化学物理的研磨)。 (5) When the surface of the plated nickel film is rough, the surface is polished (chemical physical polishing).

以上により、図1に示した耐熱耐酸化性金属−金属めっき複合基材が完成する。   Thus, the heat-resistant and oxidation-resistant metal-metal plating composite base material shown in FIG. 1 is completed.

図1では、耐熱耐酸化性金属1上に、ニッケルめっき膜が端部からめっきが始まっているために、端部から徐々にニッケルめっき浴中に入った部分の方向に結晶粒が成長する。そのため、めっきニッケル結晶粒が一方向に長く伸び、かつニッケルめっき浴のpHを2〜7(実施例1では4.5)としたために、耐熱耐酸化性金属基材表面と垂直な方向にほぼ(100)面配向した耐熱耐酸化性金属−金属めっき複合基材となった。 In FIG. 1, since the nickel plating film starts plating from the end on the heat-resistant oxidation-resistant metal 1, crystal grains gradually grow from the end toward the portion that enters the nickel plating bath. Therefore, since the plated nickel crystal grains are elongated in one direction and the pH of the nickel plating bath is 2 to 7 (4.5 in Example 1), it is almost in the direction perpendicular to the surface of the heat-resistant and oxidation-resistant metal substrate. A (100) face-oriented heat-resistant oxidation-resistant metal-metal plating composite base material was obtained.

ここで、ストライクメッキは耐熱耐酸化性金属基材の表面酸化物層の除去に用いているが、酸素のない雰囲気中での耐熱耐酸化性金属基材作製により、該金属基材表面に酸化物層が無い場合は、ストライクメッキの工程が不要であることは、言うまでもない。   Here, strike plating is used to remove the surface oxide layer of the heat-resistant and oxidation-resistant metal substrate. However, the surface of the metal substrate is oxidized by preparing the heat-resistant and oxidation-resistant metal substrate in an oxygen-free atmosphere. Needless to say, when there is no physical layer, the strike plating step is unnecessary.

図2は本発明の第2の実施例を説明する図であって、実施例1において、ニッケル膜2と耐熱耐酸化性金属基材1との間にバッファ層3を基板全面に蒸着した点のみ異なる構造である。その効果は、耐熱耐酸化性金属基材とニッケル膜の格子定数が近い場合、耐熱耐酸化性金属基材の方位に引きずられて、ニッケル膜の方位がランダムになると言う問題に対して、それを阻止するバッファ層3を追加し、その課題を解決することができる点である。次に、実際の作成方法を示す。   FIG. 2 is a diagram for explaining a second embodiment of the present invention. In the first embodiment, a buffer layer 3 is deposited on the entire surface of the substrate between the nickel film 2 and the heat-resistant oxidation-resistant metal substrate 1. Only a different structure. The effect is that when the lattice constants of the heat-resistant and oxidation-resistant metal substrate and the nickel film are close to each other, the orientation of the nickel film becomes random due to being dragged by the orientation of the heat-resistant and oxidation-resistant metal substrate. The buffer layer 3 for preventing the problem can be added to solve the problem. Next, the actual creation method is shown.

(1)表面が平坦である耐熱耐酸化性金属基材(ハステロイc−276)の表面酸化物層除去かつ洗浄を行う(NaOH80g/Lを90度以上にバーナーで加熱し、その中で5分間油脂の洗浄を行い、油脂洗浄後すぐにビーカーに入れた水で洗浄し流水で洗浄する。その後、Ni溶液(NiCl 240g/L HCl 80g/L)中で逆電解(+50mA/cm 40度で30秒)をし、残留した汚れを落とす。)。 (1) The surface oxide layer of the heat-resistant oxidation-resistant metal substrate (Hastelloy c-276) having a flat surface is removed and washed (NaOH 80 g / L is heated to 90 ° C. or more with a burner for 5 minutes) The oil and fat is washed, washed with water in a beaker immediately after the oil and fat washing, and washed with running water, and then reverse electrolysis (+50 mA / cm 2 40 ° C.) in a Ni solution (NiCl 2 240 g / L HCl 80 g / L). For 30 seconds) to remove residual dirt.)

(2)耐熱耐酸化性金属基材に該金属めっき層の金属(ここではニッケル)とは異なる格子定数を持つCo、Fe、Cu、Ag、W、Cr、Mo、Mn、V、Taのいずれかの一元素、または複数の元素よりなるバッファ層3を蒸着する。 (2) Any of Co, Fe, Cu, Ag, W, Cr, Mo, Mn, V, and Ta having a lattice constant different from that of the metal of the metal plating layer (here, nickel) on the heat-resistant oxidation-resistant metal substrate A buffer layer 3 made of one element or a plurality of elements is deposited.

(3)NiCl240g/L HCl 80g/L)中でストライクメッキ(溶液の温度を40度で3分)を行う。ストライクメッキ後すぐに流水で洗浄する。 (3) Strike plating (solution temperature at 40 ° C. for 3 minutes) in NiCl 2 240 g / L HCl 80 g / L). Wash with running water immediately after strike plating.

(4)次にpHを例えば4.5とした硫酸ニッケル、塩化ニッケル及びホウ酸を主成分とするニッケルめっき浴(例えば、NiSO・6HO 250g/L、NiCl・6HO 50g/L、ホウ酸30g/L、 NaOHを適量添加し、溶液の温度を40度、pH4.5とする)中で耐熱耐酸化性金属基材の端部からめっきを行う。 (4) Next , a nickel plating bath mainly composed of nickel sulfate, nickel chloride and boric acid having a pH of, for example, 4.5 (for example, NiSO 4 .6H 2 O 250 g / L, NiCl 2 .6H 2 O 50 g / L L, boric acid 30 g / L, and a suitable amount of NaOH are added, and the temperature of the solution is adjusted to 40 ° C. and pH 4.5), and plating is performed from the end of the heat and oxidation resistant metal substrate.

(5)めっきしたニッケル膜の表面が荒れている場合は、表面を研磨する(化学物理的研磨)。 (5) When the surface of the plated nickel film is rough, the surface is polished (chemical physical polishing).

以上により、図2に示した耐熱耐酸化性金属−金属めっき複合基材が完成する。   Thus, the heat-resistant and oxidation-resistant metal-metal plating composite substrate shown in FIG. 2 is completed.

図2は、図1の実施例と耐熱耐酸化性金属1とニッケルめっき膜2の間に格子不整合金属バッファ膜がある以外全く同じである。格子不整合金属バッファ膜が有ることによって、下地金属基材の配向に、ニッケル結晶が引きずられなくなり、ニッケル結晶粒が金属基材の幅方向に比べて長手方向に長く伸び、かつ耐熱耐酸化性金属基材表面と垂直な方向にほぼ(100)面配向した耐熱耐酸化性金属−金属めっき複合基材となるまでのニッケル膜厚が少なくてすむという効果がある。   FIG. 2 is the same as the embodiment of FIG. 1 except that there is a lattice mismatch metal buffer film between the heat-resistant oxidation-resistant metal 1 and the nickel plating film 2. The presence of the lattice-mismatched metal buffer film prevents nickel crystals from being dragged in the orientation of the underlying metal substrate, and the nickel crystal grains extend longer in the longitudinal direction than in the width direction of the metal substrate, and are resistant to heat and oxidation. There is an effect that the nickel film thickness required to become a heat-resistant and oxidation-resistant metal-metal plating composite base material oriented substantially (100) in the direction perpendicular to the surface of the metal base material can be reduced.

図3は本発明の第3の実施例を説明する図であって、1は耐熱耐酸化性金属基材、2はほぼ(100)方向に強く配向したニッケル、4は耐熱耐酸化性金属基材1ストライプ状の窪みまたは膨らみ、およびそれら両方のパターンである。この実施例による装置の製造方法は、以下のような手順による。   FIG. 3 is a diagram for explaining a third embodiment of the present invention, wherein 1 is a heat-resistant and oxidation-resistant metal substrate, 2 is nickel strongly oriented in the (100) direction, and 4 is a heat-resistant and oxidation-resistant metal substrate. Material 1 Striped depressions or bulges, and patterns of both. The manufacturing method of the device according to this embodiment is as follows.

(1)表面が平坦である耐熱耐酸化性金属基材(ハステロイc−276)の表面酸化物層除去かつ洗浄を行う。具体的にはNaOH80g/Lを90度以上にバーナーで加熱し、その中で5分間油脂の洗浄を行い、油脂洗浄後すぐに流水で洗浄する。その後、Ni溶液(NiCl 240g/L HCl 80g/L)中で逆電解(+50mA/cm 40度で30秒)をし、残留した汚れを落とす。 (1) The surface oxide layer is removed and washed on a heat-resistant and oxidation-resistant metal substrate (Hastelloy c-276) having a flat surface. Specifically, NaOH 80 g / L is heated to 90 ° C. or more with a burner, in which oil and fat are washed for 5 minutes, and washed with running water immediately after fat and oil washing. Thereafter, reverse electrolysis (+50 mA / cm 2 at 40 ° C. for 30 seconds) in Ni solution (NiCl 2 240 g / L HCl 80 g / L) is performed to remove the remaining dirt.

(2)ハステロイなどの金属基材の表面に界面活性剤(HMDS)をコーティングし、次いでフォトレジスト膜をコーティングしたのち、マスクをし、露光し、現像して凹凸のストライプを形成する。 (2) The surface of a metal substrate such as Hastelloy is coated with a surfactant (HMDS) and then coated with a photoresist film, then masked, exposed and developed to form uneven stripes.

(3)硝酸セリウムアンモニウム溶液内で2分エッチングを行い、エッチング後、流水で洗浄する。 (3) Etching is performed for 2 minutes in a cerium ammonium nitrate solution. After etching, the substrate is washed with running water.

(4)レジストをアセトン等で洗浄した後、NaOH80g/Lを90度以上にバーナーで加熱し、その中で5分間油脂の洗浄を行い、油脂洗浄後すぐに流水で洗浄する。その後、Ni溶液(NiCl 240g/L HCl 80g/L)中で逆電解(+50mA/cm 40度で30秒)をし、残留した汚れを落とす。 (4) After washing the resist with acetone or the like, NaOH 80 g / L is heated to 90 ° C. or more with a burner, in which oil and fat are washed for 5 minutes, and washed with running water immediately after oil and fat washing. Thereafter, reverse electrolysis (+50 mA / cm 2 at 40 ° C. for 30 seconds) in Ni solution (NiCl 2 240 g / L HCl 80 g / L) is performed to remove the remaining dirt.

(5)すぐに、(NiCl240g/L HCl 80g/L)中でストライクメッキ(溶液の温度を40度で3分)を行う。ストライクメッキ後すぐに流水で洗浄する。 (5) Immediately, strike plating (solution temperature at 40 ° C. for 3 minutes) in (NiCl 2 240 g / L HCl 80 g / L) is performed. Wash with running water immediately after strike plating.

(6)次にpHを例えば4.5とした硫酸ニッケル、塩化ニッケル及びホウ酸を主成分とするニッケルめっき浴(例えば、NiSO・6HO 250g/L、NiCl・6HO 50g/L、ホウ酸30g/L、 NaOHを適量添加し、溶液の温度を40度、pH4.5とする)中で耐熱耐酸化性金属基材の端部からめっきを行う。 (6) Next , a nickel plating bath mainly composed of nickel sulfate, nickel chloride and boric acid having a pH of 4.5, for example, NiSO 4 .6H 2 O 250 g / L, NiCl 2 .6H 2 O 50 g / L L, boric acid 30 g / L, and a suitable amount of NaOH are added, and the temperature of the solution is adjusted to 40 ° C. and pH 4.5), and plating is performed from the end of the heat and oxidation resistant metal substrate.

(7)めっきしたニッケル膜の表面が荒れている場合は、表面を研磨する(化学物理的研磨)。 (7) When the surface of the plated nickel film is rough, the surface is polished (chemical physical polishing).

以上により、図3に示した耐熱耐酸化性金属−金属めっき複合基材が完成する。   Thus, the heat-resistant and oxidation-resistant metal-metal plating composite substrate shown in FIG. 3 is completed.

図3は、図1の実施例と耐熱耐酸化性金属1表面にストライプ状の窪みまたは膨らみ、およびそれら両方のパターンがある以外全く同じである。ストライプ状の窪みまたは膨らみ、およびそれら両方のパターンがあることによって、ニッケルめっき膜の一方向の配向が非常に強調され、幅方向と長手方向とのアスペクト比が非常に大きくなるという効果がある。   FIG. 3 is exactly the same as the embodiment of FIG. 1 except that the surface of the heat-resistant oxidation-resistant metal 1 has stripe-shaped depressions or bulges, and patterns of both. The stripe-shaped depressions or bulges and the pattern of both have the effect that the unidirectional orientation of the nickel plating film is greatly emphasized and the aspect ratio between the width direction and the longitudinal direction becomes very large.

また、ここでは、フォトレジストとフォトリソグラフィによりストライプパターンを作成する方法を述べたが、エッチング液を防御する塗料を塗り、乾燥したその塗料を剣山のようなとがった針を多数持つもので一方向に引っ掻き、金属面を出しても、同じ効果が得られることは言うまでもない。   In addition, here, the method of creating a stripe pattern by photoresist and photolithography was described, but a paint that protects the etching solution was applied, and the dried paint was one-way with many sharpened needles such as Kenzan. It goes without saying that the same effect can be obtained even if the metal surface is scratched.

図4は本発明の第4の実施例を説明する図であって、実施例3において、ニッケル膜2と耐熱耐酸化性金属基材1との間にバッファ層3を基板全面に蒸着した点のみ異なる構造である。その効果は、耐熱耐酸化性金属基材とニッケル膜の格子定数が近い場合、耐熱耐酸化性金属基材の方位に引きずられて、ニッケル膜の方位がランダムになると言う問題に対して、それを阻止するバッファ層3を追加し、その課題を解決することができる点である。実施例2と同じように、ニッケルめっき膜と耐熱耐酸化性金属基材との間に該金属めっき層の金属(ここではニッケル)とは異なる格子定数を持つCo、Fe、Cu、Ag、W、Cr、Mo、Mn、V、Taのいずれかの一元素または複数の元素よりなるバッファ層3を蒸着すれば、さらに配向性が良くなることは言うまでもない。   FIG. 4 is a diagram for explaining a fourth embodiment of the present invention. In the third embodiment, a buffer layer 3 is deposited on the entire surface of the substrate between the nickel film 2 and the heat-resistant oxidation-resistant metal base material 1. Only a different structure. The effect is that when the lattice constants of the heat-resistant and oxidation-resistant metal substrate and the nickel film are close to each other, the orientation of the nickel film becomes random due to being dragged by the orientation of the heat-resistant and oxidation-resistant metal substrate. The buffer layer 3 for preventing the problem can be added to solve the problem. As in Example 2, Co, Fe, Cu, Ag, W having a lattice constant different from that of the metal of the metal plating layer (here, nickel) between the nickel plating film and the heat-resistant oxidation-resistant metal substrate. Needless to say, when the buffer layer 3 made of one element or a plurality of elements of any one of Cr, Mo, Mn, V, and Ta is deposited, the orientation is further improved.

図5は本発明の実施例3により作製されたニッケルめっき膜の配向性を説明するX線回折パターン図であって、非常に強い200ピークが観察されている。   FIG. 5 is an X-ray diffraction pattern diagram for explaining the orientation of the nickel plating film produced according to Example 3 of the present invention, and a very strong 200 peak is observed.

図6は本発明の実施例3により作製されたニッケルめっき膜の面内方位を説明する電子ビーム回折パターン図であって、作製したストライプに沿って方位が揃った結晶粒が観察されている。   FIG. 6 is an electron beam diffraction pattern diagram for explaining the in-plane orientation of the nickel plating film produced according to Example 3 of the present invention, in which crystal grains having a uniform orientation along the produced stripe are observed.

本発明の第1の実施例を説明する図である。It is a figure explaining the 1st Example of this invention. 本発明の第2の実施例を説明する図である。It is a figure explaining the 2nd Example of this invention. 本発明の第3の実施例を説明する図である。It is a figure explaining the 3rd Example of the present invention. 本発明の第4の実施例を説明する図である。It is a figure explaining the 4th Example of this invention. 本発明の第3の実施例により作製されたニッケルめっき膜の配向を説明する図である。It is a figure explaining orientation of the nickel plating film produced by the 3rd example of the present invention. 本発明の第3の実施例により作製されたニッケルめっき膜のニッケル結晶粒を説明する図である。It is a figure explaining the nickel crystal grain of the nickel plating film produced by the 3rd example of the present invention. REBaCu7−δ系線材の基本的な構造を説明する図である。It is a diagram illustrating the basic structure of REBa 2 Cu 3 O 7-δ type wire.

符号の説明Explanation of symbols

1:耐熱耐酸化性金属基材
2:ニッケルめっき層
3:バッファ層
4:窪みまたは膨らみ
5:金属基板テープ線材
6:バッファ層
7:超電導層
8:安定化金属層
1: Heat-resistant and oxidation-resistant metal substrate 2: Nickel plating layer 3: Buffer layer 4: Indentation or swelling
5: Metal substrate tape wire 6: Buffer layer 7: Superconducting layer 8: Stabilized metal layer

Claims (7)

耐熱耐酸化性金属基材の表面に金属めっき層が設けられ、該金属めっき層の結晶粒が、前記耐熱耐酸化性金属基材の長手方向に、かつ一方向に長く伸び、かつ耐熱耐酸化性金属基材表面と垂直な方向に[100]方向に配向していることを特徴とする金属めっき複合基材。   A metal plating layer is provided on the surface of the heat-resistant and oxidation-resistant metal substrate, and the crystal grains of the metal plating layer extend in the longitudinal direction and in one direction of the heat-resistant and oxidation-resistant metal substrate and are heat-resistant and oxidation-resistant. A metal-plated composite substrate characterized by being oriented in the [100] direction in a direction perpendicular to the surface of the conductive metal substrate. 前記耐熱耐酸化性金属基材が、Ni、Co、Fe、Cu、Ag、W、Cr、Mo、Mn、Vのいずれをベースとする合金からなり、Mo、W、Cr、V、MnまたはALのいずれかの1種または2種以上が添加されていることを特徴とする請求項1記載の金属めっき複合基材。   The heat-resistant and oxidation-resistant metal substrate is made of an alloy based on any of Ni, Co, Fe, Cu, Ag, W, Cr, Mo, Mn, and V, and Mo, W, Cr, V, Mn, or AL The metal plating composite base material according to claim 1, wherein one or more of any of the above are added. 前記金属めっき層がNiからなることを特徴とする請求項1または2記載の金属めっき複合基材。   The metal plating composite substrate according to claim 1, wherein the metal plating layer is made of Ni. 前記金属めっき層の下地の耐熱耐酸化性金属基材の表面に該耐熱耐酸化性金属基材の長手方向に対して長いパターンの窪み及び/または膨らみが形成されていることを特徴とする請求項1〜3のいずれかに記載の金属めっき複合基材。   A recess and / or a bulge having a long pattern with respect to the longitudinal direction of the heat-resistant and oxidation-resistant metal substrate is formed on the surface of the heat-resistant and oxidation-resistant metal substrate underlying the metal plating layer. Item 4. The metal-plated composite substrate according to any one of Items 1 to 3. 前記金属めっき層の金属とは異なる、Ni、Co、Fe、Cu、Ag、W、Cr、Mo、Mn、V、Taのいずれかの1種または2種以上の元素が耐熱耐酸化性基材と金属めっき層の間に存在することを特徴とする請求項1〜4のいずれかに記載の金属めっき複合基材。   One or more elements of Ni, Co, Fe, Cu, Ag, W, Cr, Mo, Mn, V, and Ta, which are different from the metal of the metal plating layer, are a heat-resistant and oxidation-resistant substrate. The metal-plated composite base material according to claim 1, wherein the metal-plated composite base material exists between the metal-plated layer and the metal-plated layer. 耐熱耐酸化性金属基材の表面に金属ストライクめっき層の上に、硫酸ニッケル、塩化ニッケル及びホウ酸を主成分とするニッケルめっき浴により、結晶粒が、前記耐熱耐酸化性金属基材の長手方向に、かつ一方向に長く伸び、かつ耐熱耐酸化性金属基材表面と垂直な方向に(100)面配向した金属めっき層を形成することを特徴とする金属めっき複合基材の製造方法。 On the surface of the heat-resistant and oxidation-resistant metal base material, on the metal strike plating layer, a nickel plating bath mainly composed of nickel sulfate, nickel chloride and boric acid makes the crystal grains longer than the heat-resistant and oxidation-resistant metal base material. A method for producing a metal-plated composite base material, comprising: forming a metal plating layer extending in one direction and extending in one direction and having a (100) orientation in a direction perpendicular to the surface of the heat-resistant and oxidation-resistant metal base material. 前記耐熱耐酸化性金属基材の表面に耐熱耐酸化性金属基材の長手方向に沿って複数の凹凸からなるストライプを形成することを特徴とする請求項6に記載の金属めっき複合基材の製造方法。   The metal-plated composite base material according to claim 6, wherein a stripe composed of a plurality of irregularities is formed on the surface of the heat-resistant and oxidation-resistant metal base material along a longitudinal direction of the heat-resistant and oxidation-resistant metal base material. Production method.
JP2007149276A 2007-06-05 2007-06-05 Metal plating composite substrate Expired - Fee Related JP5113430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007149276A JP5113430B2 (en) 2007-06-05 2007-06-05 Metal plating composite substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007149276A JP5113430B2 (en) 2007-06-05 2007-06-05 Metal plating composite substrate

Publications (2)

Publication Number Publication Date
JP2008303404A JP2008303404A (en) 2008-12-18
JP5113430B2 true JP5113430B2 (en) 2013-01-09

Family

ID=40232388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007149276A Expired - Fee Related JP5113430B2 (en) 2007-06-05 2007-06-05 Metal plating composite substrate

Country Status (1)

Country Link
JP (1) JP5113430B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5435448B2 (en) * 2008-12-24 2014-03-05 古河電気工業株式会社 Tape-like substrate for superconducting wire, method for producing the same, and superconducting wire

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6460913A (en) * 1987-09-01 1989-03-08 Furukawa Electric Co Ltd Ceramic superconductive base board
JP2968557B2 (en) * 1990-05-14 1999-10-25 株式会社フジクラ Substrate for oxide superconducting conductor
JPH04273500A (en) * 1991-02-28 1992-09-29 Ngk Insulators Ltd Oxide superconductive magnetic shield body and its manufacture
JPH05205543A (en) * 1992-01-24 1993-08-13 Asahi Glass Co Ltd Oxide superconductor tape wire rod and manufacture of the same
JP2813287B2 (en) * 1993-10-08 1998-10-22 株式会社東芝 Superconducting wire
DE10200445B4 (en) * 2002-01-02 2005-12-08 Leibniz-Institut für Festkörper- und Werkstoffforschung e.V. Metal strip for epitaxial coatings and process for its production
KR100516126B1 (en) * 2003-04-03 2005-09-23 한국기계연구원 Method of manufacturing metal plated layer having biaxial texture
JP2005056754A (en) * 2003-08-06 2005-03-03 Sumitomo Electric Ind Ltd Superconductive wire and its manufacturing method
JP5123462B2 (en) * 2004-10-27 2013-01-23 住友電気工業株式会社 Film-forming alignment substrate, superconducting wire, and method for manufacturing film-forming alignment substrate
EP1912785B1 (en) * 2005-08-01 2011-02-16 Alliance for Sustainable Energy, LLC Electrodeposition of biaxially textured layers on a substrate

Also Published As

Publication number Publication date
JP2008303404A (en) 2008-12-18

Similar Documents

Publication Publication Date Title
JP5324763B2 (en) Alignment substrate for epitaxial film formation and surface modification method for alignment substrate for epitaxial film formation
KR101110936B1 (en) Superconducting thin film material and method of manufacturing the same
JP4143073B2 (en) Biaxially oriented metal tape with low magnetic hysteresis loss and manufacturing method thereof
JP2009503269A (en) Electrodeposition of biaxially textured layers on substrates
JP4411265B2 (en) Rare earth tape-shaped oxide superconductor and method for producing the same
US20150024942A1 (en) Superconducting wire
US7431868B2 (en) Method of manufacturing a metal substrate for an oxide superconducting wire
KR20120120119A (en) Low ac-loss multi-filament type superconductive wire material, and manufacturing method thereof
JP2007188756A (en) Rare earth based tape shape oxide superconductor
JP4741326B2 (en) Oxide superconducting conductor and manufacturing method thereof
Moffat Electrochemical Production of Single‐Crystal Cu‐Ni Strained‐Layer Superlattices on Cu (100)
JP2008311222A (en) Superconductive wire and its manufacturing method
WO2007094146A1 (en) Process for producing superconducting thin-film material, superconducting equipment and superconducting thin-film material
JP5113430B2 (en) Metal plating composite substrate
JP2011159455A (en) Thin-film superconducting wire rod and method for manufacturing the same
JP5400416B2 (en) Superconducting wire
Kakuno et al. Giant magnetoresistance in electrodeposited Co87Fe13/Cu compositionally modulated alloys
US8912126B2 (en) Substrate, method of producing substrate, superconducting wire, and method of producing superconducting wire
KR101621642B1 (en) Textured substrate for epitaxial film formation, and method for manufacturing the same
Liu et al. Development of long REBCO coated conductors by PLD-REBCO/Sputter-CeO 2/IBAD-MgO at SJTU and SSTC
JP5306723B2 (en) Method for forming oxide thin film
JP5763718B2 (en) Alignment substrate for epitaxial film formation and manufacturing method thereof
US20220045260A1 (en) Electro-Formed Metal Foils
Miyata et al. Long and high rate production of IBAD templates for YBCO coated conductors
JP6136073B2 (en) Oxide superconducting thin film and manufacturing method thereof, and oxide superconducting thin film wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees