JP5113215B2 - ネットワーク中継装置及びその制御方法 - Google Patents

ネットワーク中継装置及びその制御方法 Download PDF

Info

Publication number
JP5113215B2
JP5113215B2 JP2010106843A JP2010106843A JP5113215B2 JP 5113215 B2 JP5113215 B2 JP 5113215B2 JP 2010106843 A JP2010106843 A JP 2010106843A JP 2010106843 A JP2010106843 A JP 2010106843A JP 5113215 B2 JP5113215 B2 JP 5113215B2
Authority
JP
Japan
Prior art keywords
state
backup
switch
master
frame signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010106843A
Other languages
English (en)
Other versions
JP2010166629A (ja
Inventor
誠 木谷
達哉 綿貫
圭一郎 山手
淳志 木本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010106843A priority Critical patent/JP5113215B2/ja
Publication of JP2010166629A publication Critical patent/JP2010166629A/ja
Application granted granted Critical
Publication of JP5113215B2 publication Critical patent/JP5113215B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Data Exchanges In Wide-Area Networks (AREA)

Description

本発明は、ネットワーク内でのデータの中継を行うネットワーク中継装置に関するものである。
一般に、ネットワークにおいては、回線や装置での障害発生により、ネットワーク全体の機能が停止しないようにするために、冗長構成が採られている。
一方、OSI参照モデルにおける第2層(データリンク層)と第3層(ネットワーク層)には、ネットワーク特性上、次のような違いがある。すなわち、第3層として、例えば、代表的なインターネット・プロトコル(IP:Internet Protocol)の場合、装置間に物理回線を接続しても、装置にIPアドレスが設定されていないと、その装置間で通信はできないのに対し、第2層として、例えば、代表的なイーサネット(Ethernet)(登録商標)の場合、装置間を物理回線で接続すれば、その装置間で通信が可能となる。
従って、例えば、第2層(L2:Layer 2)対応のネットワーク中継装置として、L2スイッチを用いる場合、L2スイッチ間で物理回線を2本以上接続したり、冗長構成を複数のL2スイッチで構築したりすると、図7に示すように、ネットワーク内にループが発生してしまう。図7において、SWはL2スイッチを示す。
ネットワーク内に、このようなループが発生すると、次のような問題が発生し得る。例えば、イーサネット(登録商標)を用いてパケットの送受信を行う場合、パケットの宛先(MACアドレス)が不明であると、L2スイッチは、ブロードキャストアドレスを使用して、ブロードキャストパケットで送信する。具体的には、L2スイッチは、このブロードキャストパケットを受信回線以外の回線に送信し、しかも、一度送信したパケットを記憶していない。そのため、ネットワーク内に上記したようなループがあると、ブロードキャストパケットは、無限に増殖しながら、ループ内をいつまでも回り続け、L2スイッチのパケット転送処理に大きな負荷がかかると共に、他のネットワークへも波及して、回線容量を占有してしまうという問題があった。
そこで、このような問題を解決するために、ループを構成している複数の回線及び複数のL2スイッチを、運用系と待機系とに分け、待機系のL2スイッチにおいてパケット転送をブロックして、待機系の回線を不通にし、運用系のL2スイッチ及び回線だけで通信を行うことにより、結果的に、ネットワーク内にループが発生しないようにしていた。
なお、バーチャルLAN(VLAN)の場合、運用系,待機系の設定は、単一もしくは複数のバーチャルLANをまとめたグループ毎に行う。従って、或るグループでは、運用系であるL2スイッチや回線が、別のグループでは、待機系となる場合もあり、その逆の場合もあり得る。
また、従来においては、障害が発生した場合に、運用系から待機系にスムーズに切り換えるようにするために、図8に示すように、互いに連動してマスタ(Master)/バックアップ(Backup)の切り換えを行い得る1対のL2スイッチを用いる場合があった。
このような対となったL2スイッチを用いる場合、一方のL2スイッチをマスタ側スイッチに設定して、運用系として用い、他方のL2スイッチをバックアップ側スイッチに設定して、待機系として用いる。そして、マスタ側スイッチではポートをオープンにして、接続されている回線を通信可能とし、バックアップ側スイッチではポートをブロックして、接続されている回線を不通にしている。運用中は、マスタ側スイッチとバックアップ側スイッチとの間で、定期的に制御フレーム信号のやりとりを行い、互いの生存を確認している。そして、マスタ側スイッチ自体またはマスタ側スイッチに接続されている回線に、障害が発生した場合には、バックアップ側スイッチがそれを検知して、自らマスタに切り換わり、ブロックしてたポートをオープンして、接続されている回線を通信可能にする。これより、ネットワーク自体も運用系から待機系に切り換わる。
なお、以上のようなネットワーク技術に関連するものとしては、例えば、下記の特許文献1に記載のものが挙げられる。
米国特許5,473,599号
従来においては、上記したとおり、マスタ側スイッチとバックアップ側スイッチとの間で、定期的に制御フレーム信号のやりとりを行い、互いの生存を確認している。これら制御フレーム信号は、各々のL2スイッチにおける制御部によって、それぞれ管理される。しかしながら、マスタ側スイッチにおいて、その制御部がビジー状態になった場合、通信部は通常ハードウェア処理なので、正常にパケット転送を行うものの、制御部は、ビジー状態により、制御フレーム信号をバックアップ側スイッチに送信できない場合がある。この場合、バックアップ側スイッチの制御部は、マスタ側スイッチからの制御フレーム信号を受信できないため、マスタ側スイッチに障害が発生したと誤認し、自らマスタに切り換わり、上述したとおり、ブロックしてたポートをオープンして、接続されている回線を通信可能にする。この結果、対となったL2スイッチが両者ともマスタとなる、いわゆるダブルマスタ状態となり、これら対となったL2スイッチの各々を介して通信が行われるため、ネットワーク内にはループが発生してしまうという問題があった。
従って、本発明の目的は、上記した従来技術の問題点を解決し、ダブルマスタ状態を回避して、ネットワーク内にループが発生しないようにする技術を提供することにある。
上記した目的の少なくとも一部を達成するために、本発明のネットワーク中継装置は、少なくとも特定ネットワーク装置と対となって、ネットワーク内でのデータの中継を行うネットワーク中継装置であって、
前記特定ネットワーク装置との間で制御フレーム信号のやりとりを行い、前記特定ネットワーク装置からの前記制御フレーム信号に少なくとも基づいて、マスタまたはバックアップのいずれかを選択し、その選択結果に基づいて動作状態を遷移する制御部と、
前記制御部による制御に基づき、前記動作状態がマスタ状態にある場合には、ポートをオープンにして、該ポートに接続されている回線を介しての前記データの送受信を可能とすると共に、前記動作状態が、バックアップ状態など、前記マスタ状態以外の状態にある場合には、前記ポートをブロックして、該ポートに接続されている前記回線を不通にする通信部と、
を備え、
前記制御部は、前記動作状態がバックアップ状態にある場合において、マスタを選択した場合、前記動作状態を第1の中間状態に遷移し、前記特定ネットワーク装置からの前記制御フレーム信号に基づいて前記特定ネットワーク装置がバックアップ状態であるか否かを確認し、前記特定ネットワーク装置がバックアップ状態であることを確認した場合、前記動作状態を前記第1の中間状態から前記マスタ状態へ遷移することを要旨とする。
このように、本発明のネットワーク中継装置では、動作状態がバックアップ状態にある場合において、マスタを選択した場合、動作状態を直ちにマスタ状態に遷移させるのではなく、一旦、第1の中間状態に遷移させる。そして、その第1の中間状態において、特定ネットワーク装置からの制御フレーム信号に基づいて、特定ネットワーク装置がバックアップ状態であることを確認したら、動作状態をマスタ状態へ遷移させるようにしている。
従って、本発明のネットワーク中継装置によれば、動作状態をバックアップ状態からマスタ状態に切り換える場合、対となった特定ネットワーク装置がバックアップ状態にあることを確認した上で、マスタ状態に遷移させるので、対となったネットワーク中継装置の両方がマスタ状態となること(すなわち、ダブルマスタ状態)を回避することができるため、ネットワーク内にループが発生することがない。
本発明のネットワーク中継装置において、前記制御部は、前記動作状態が前記バックアップ状態または前記第1の中間状態にある場合において、前記特定ネットワーク装置からの前記制御フレーム信号を、所定時間、受信しない場合、前記動作状態を前記第2の中間状態へ遷移し、その後、前記特定ネットワーク装置からの前記制御フレーム信号を受信した場合、マスタまたはバックアップのいずれかを選択し、マスタを選択した場合には、前記動作状態を前記第2の中間状態から前記第1の中間状態へ遷移し、バックアップを選択した場合には、前記動作状態を前記第2の中間状態から前記バックアップ状態へ遷移することが好ましい。
このように構成することより、例えば、特定ネットワーク装置において、制御部がビジー状態となり、制御フレーム信号を送信できない場合、本発明のネットワーク中継装置では、所定時間、その制御フレーム信号を受信しなければ、第2の中間状態に遷移させるため、直ちにマスタ状態になることはない。そして、特定ネットワーク装置において、制御部のビジー状態が解除され、再度制御フレーム信号を送信できるようになった場合、その制御フレーム信号を受信して、マスタまたはバックアップのいずれかを選択し、マスタを選択した場合には、動作状態を第1の中間状態へ遷移させ、バックアップを選択した場合には、動作状態をバックアップ状態へ遷移させるため、この場合も、ダブルマスタ状態になることはない。
本発明のネットワーク中継装置において、前記制御部は、前記動作状態が前記第2の中間状態にある場合において、外部からマスタ状態への遷移を指示された場合、前記動作状態を前記第2の中間状態から前記マスタ状態へ遷移することが好ましい。
このように構成することにより、例えば、特定ネットワーク装置において、障害が発生し、制御フレーム信号を送信できない場合、本発明のネットワーク中継装置では、上記した所定時間経過後、第2の中間状態に遷移させるが、障害発生であれば、その後も、特定ネットワーク装置からの制御フレーム信号の受信を期待できない。そこで、外部からマスタ状態への遷移の指示があった場合に、動作状態をマスタ状態へ遷移させることにより、特定ネットワーク装置に代えて、自らマスタに切り換わることにより、ネットワークを運用系から待機系に切り換えることができ、ネットワークの冗長性が確保される。
本発明のネットワーク中継装置において、前記ネットワークにバーチャルLANが多数構築されている場合、前記多数のバーチャルLANをいくつかのグループに分割し、前記制御部は、前記グループ毎に、前記マスタ/バックアップの選択及び動作状態の管理を行うと共に、前記通信部も、前記グループ毎に、前記ポートのオープン/ブロックの制御を行うことが好ましい。
ネットワークに多数のバーチャルLANが構築されている場合には、単一もしくは複数のバーチャルLANをまとめたグループ毎に、上記した管理や制御を行うことにより、各グループにおいて、ダブルマスタ状態になることを回避することができ、各バーチャルLAN内にループが発生することがない。
なお、本発明は、上記したネットワーク中継装置などの装置発明の態様に限ることなく、ネットワーク中継装置の制御方法などの方法発明としての態様で実現することも可能である。さらには、それら方法や装置を構築するためのコンピュータプログラムとしての態様や、そのようなコンピュータプログラムを記録した記録媒体としての態様や、上記コンピュータプログラムを含み搬送波内に具現化されたデータ信号など、種々の態様で実現することも可能である。
本発明の一実施例としてのL2スイッチの構成を示すブロック図である。 図1に示すL2スイッチ100の一接続例を示す説明図である。 図1に示すL2スイッチ100における動作状態の遷移を示す状態遷移図である。 起動時におけるL2スイッチ100の動作状態の遷移と制御フレーム信号のやりとりを示す説明図である。 制御フレーム信号が受信されない場合におけるL2スイッチ100の動作状態の遷移と制御フレーム信号のやりとりを示す説明図である。 制御フレーム信号が受信されない場合におけるL2スイッチ100の動作状態の遷移と制御フレーム信号のやりとりを示す説明図である。 ネットワーク内にループが発生した様子を示す説明図である。 対となったL2スイッチを示す説明図である。
以下、本発明の実施の形態を実施例に基づいて以下の順序で説明する。
A.実施例の構成:
B.接続例:
C.実施例の動作:
D.変形例:
A.実施例の構成:
図1は本発明の一実施例としてのL2スイッチの構成を示すブロック図である。図1に示すように、本実施例のL2スイッチ100は、主として、制御部110と、通信部120と、を備えている。このうち、制御部110は、CPU112及びメモリ114などを備えており、CPU112がメモリ114内に格納されたプログラムを実行することにより、装置全体の管理や制御パケット処理などを行うと共に、制御フレーム信号の送受信なども行う。また、通信部120は、ネットワークインタフェース122などを備えており、OSI参照モデルの第2層(データリンク層)でのパケットの中継処理などを行う。各ネットワークインタフェース122は、それぞれ、ポート(図示せず)を介して、イーサネット(登録商標)などの物理回線(ツイストペアケーブル,光ファイバなど)に接続されている。
B.接続例:
図2は図1に示すL2スイッチ100の一接続例を示す説明図である。本実施例のL2スイッチ100は、図2に示すように、L2スイッチ200と対となっており、両者の間は物理回線で接続されている。なお、L2スイッチ200も、図1に示すL2スイッチ100と同様の構成を成している。
また、これら対となったL2スイッチ100及び200は、共に、他の4台のL2スイッチ300〜600とそれぞれ物理回線を介して接続されている。こうして、L2スイッチ100,200を、共に、4台のL2スイッチと接続することにより、ネットワークの冗長性を確保している。また、L2スイッチ100と200との間を2本の物理回線で接続しているのも、冗長性を確保するためである。
C.実施例の動作:
対となったL2スイッチ100及び200は、互いに連動してマスタ(Master)/バックアップ(Backup)の切り換えを行い得る。そして、一方のL2スイッチはマスタとなって、運用系として用いられ。他方のL2スイッチはバックアップとなって、待機系として用いられる。
L2スイッチ100及び200のうち、何れのL2スイッチがマスタとなり、バックアップになるかは、有効ポート数や、優先順位や、MACアドレスなどによって決定される。このうち、有効ポート数は、通信可能なポートの数である。また、優先順位は、装置毎に予め設定されている。
具体的には、有効ポート数の場合は、その数が多い方が、優先順位の場合は、その順位が高い方が、MACアドレスの場合は、そのアドレスの値が小さい方が、それぞれ、マスタとなる。通常は、有効ポート数,優先順位の何れを優先させるかを予め設定しておく。そして、例えば、有効ポート数を優先させる場合には、まず、両者の有効ポート数を比較し、その際、両者の有効ポート数が等しい場合に、さらに両者の優先順を比較し、そのとき、両者の優先順も等しい場合に、またさらに両者のMACアドレスを比較するようにする。一方、優先順位を優先させる場合には、まず、両者の優先順位を比較し、その際、両者の優先順位が等しい場合に、さらに両者の有効ポート数を比較し、そのとき、両者の有効ポート数も等しい場合に、またさらに両者のMACアドレスを比較するようにする。
本実施例のL2スイッチ100において、制御部110は、L2スイッチ200との間に接続された物理回線を介して、制御フレーム信号の送受信を行う。制御フレーム信号には、自装置の動作状態や相手装置の動作状態の他、上記した有効ポート数,優先順位,MACアドレスなどの情報が含まれている。
従って、例えば、上記したように有効ポート数を優先させる場合、制御部110は、L2スイッチ200からの制御フレーム信号を受信し、その制御フレーム信号から、まず、有効ポート数(すなわち、L2スイッチ200の有効ポート数)を取得して、自装置であるL2スイッチ100の有効ポート数と比較し、L2スイッチ200の有効ポート数の方が多ければ、バックアップを選択し、自装置の有効ポート数の方が多ければ、マスタを選択する。両者の有効ポート数が等しい場合には、制御部110は、制御フレーム信号から、次に、優先順位(すなわち、L2スイッチ200の優先順位)を取得して、自装置であるL2スイッチ100の優先順位と比較し、L2スイッチ200の優先順位の方が高ければ、バックアップを選択し、自装置の優先順位の方が高ければ、マスタを選択する。そして、両者の優先順位も等しい場合には、制御部110は、制御フレーム信号から、次に、MACアドレス(すなわち、L2スイッチ200のMACアドレス)を取得して、自装置であるL2スイッチ100のMACアドレスと比較し、L2スイッチ200のMACアドレスの方が値が小さければ、バックアップを選択し、自装置のMACアドレスの方が値が小さければ、マスタを選択する。
制御部110は、このようなマスタ/バックアップの選択などに応じて、装置の動作状態を図3に示すように遷移する。
図3は本実施例のL2スイッチ100における動作状態の遷移を示す状態遷移図である。
動作状態としては、図3に示すように、「バックアップ」,「バックアップ(隣接不明)」,「バックアップ(マスタ待ち)」,「マスタ」の4つのうち、いずれかの状態を採り、状況に応じて、その状態は遷移する。ここで、バックアップ(マスタ待ち)状態は、請求項における第1の中間状態に相当し、バックアップ状態(隣接不明)状態は、請求項における第2の中間状態に相当する。
なお、本実施例においては、L2スイッチ100の動作状態だけでなく、対となっているL2スイッチ200の動作状態についても、図3に示すごとく遷移するものとする。
それでは、まず、本実施例のL2スイッチ100が、起動した場合に、L2スイッチ200との間で制御フレーム信号のやりとりを行いながら、その動作状態が、バックアップ状態からどのように遷移してマスタ状態に切り換わるかについて説明する。
図4は起動時におけるL2スイッチ100の動作状態の遷移と制御フレーム信号のやりとりを示す説明図である。制御フレーム信号には、上述したように、自装置の動作状態と、相手装置の動作状態と、がそれぞれ含まれており、図4に示すカッコ内が、それら動作状態を示している。このうち、"S"は自装置の動作状態を表し、"O"は相手装置の動作状態を表す。また、矢印tは時間経過の方向を示す。
L2スイッチ100は、起動すると、図3に示すように、まず、バックアップ状態となる。起動時では、L2スイッチ200との間での接続状態が未だ確立されていないので、制御部110は、予め設定された一定時間T内に、L2スイッチ200からの制御フレーム信号を受信できず、制御フレーム信号タイムアウトとなって、バックアップ(隣接不明)状態に遷移する。同様のことが、L2スイッチ200においても起こり、L2スイッチ200の動作状態も、同じく、バックアップ(隣接不明)状態となっている。
その後、L2スイッチ100と200との間で接続状態が確立されると、図4に示すように、例えば、L2スイッチ100において、制御部110が、L2スイッチ200に対し制御フレーム信号を送信する。このとき、L2スイッチ100は、動作状態がバックアップ(隣接不明)状態であるので、制御部110は、自装置の動作状態をバックアップ(隣接不明)状態とするが、相手装置であるL2スイッチ200の動作状態は未知であるので、相手装置の動作状態には、値を入れないで、制御フレーム信号を送信する。
L2スイッチ200では、バックアップ(隣接不明)状態にあって、その制御部が、L2スイッチ200からの制御フレーム信号を受信すると、その制御フレーム信号などに基づいて、上述したとおりマスタ/バックアップの選択を行う。このとき、例えば、制御部が、バックアップを選択したとすると、図3に示すように動作状態をバックアップ状態に遷移する。
次に、L2スイッチ200の制御部は、L2スイッチ100に対し制御フレーム信号を送信する。このとき、その制御部は、動作状態がバックアップ状態に遷移したので、自装置の動作状態をバックアップ状態とし、相手装置であるL2スイッチ100の動作状態をバックアップ(隣接不明)状態として、制御フレーム信号を送信する。
L2スイッチ100では、バックアップ(隣接不明)状態にあって、制御部110が、L2スイッチ200からの制御フレーム信号を受信すると、その制御フレーム信号などに基づいてマスタ/バックアップの選択を行うが、上記したように、L2スイッチ200はバックアップを選択しているので、必然的に、制御部110は、マスタを選択することになる。すると、制御部110は、図3に示すように、動作状態をバックアップ(マスタ待ち)状態に遷移する。
次に、制御部110は、L2スイッチ200に対し制御フレーム信号を送信する。このとき、L2スイッチ100は、動作状態がバックアップ(マスタ待ち)状態に遷移したので、制御部110は、自装置の動作状態をバックアップ(マスタ待ち)状態とし、相手装置であるL2スイッチ200の動作状態をバックアップ状態として、制御フレーム信号を送信する。
L2スイッチ200では、バックアップ状態にあって、その制御部が、L2スイッチ100からの制御フレーム信号を受信すると、その制御フレーム信号などに基づいてマスタ/バックアップの選択を行うが、有効ポート数などに変更がない限り、引き続きバックアップを選択することになるので、図3に示すように、動作状態をバックアップ状態のまま維持する。
次に、L2スイッチ200の制御部は、L2スイッチ100に対し制御フレーム信号を送信する。このとき、その制御部は、動作状態がバックアップ状態のままであるので、自装置の動作状態をバックアップ状態とし、相手装置であるL2スイッチ100の動作状態をバックアップ(マスタ待ち)状態として、制御フレーム信号を送信する。
L2スイッチ100では、バックアップ(マスタ待ち)状態にあって、制御部110が、L2スイッチ200からの制御フレーム信号を受信すると、制御部110は、受信した制御フレーム信号から、相手装置であるL2スイッチ200の動作状態を取得する。そして、その動作状態がバックアップ状態であることを確認すると、図3に示すように、マスタ状態に遷移する。
そして、制御部110は、L2スイッチ200に対し制御フレーム信号を送信する。このとき、L2スイッチ100は、動作状態がマスタ状態に遷移したので、制御部110は、自装置の動作状態をマスタ状態とし、相手装置であるL2スイッチ200の動作状態をバックアップ状態として、制御フレーム信号を送信する。
こうして、対となったL2スイッチ100及び200のうち、L2スイッチ200は、バックアップとなり、L2スイッチ100はマスタとなる。L2スイッチ200は、バックアップとなると、その通信部が、制御部による制御に基づき、L2スイッチ300〜600に接続される各ポートをブロックして、L2スイッチ300〜600との間の物理回線を不通にする。しかしながら、L2スイッチ100との間での制御フレーム信号の送受信は引き続き行う。
一方、L2スイッチ100は、マスタになると、通信部120が、制御部110による制御に基づき、L2スイッチ300〜600に接続される各ポートをオープンにして、物理回線を介して、L2スイッチ300〜600との間でのデータの送受信を可能にする。また、制御部110は、ネットワーク内に存在する管理端末(図示せず)に対し、自装置がマスタになったことを示す切り換えメッセージを出力する。これにより、ネットワークを管理する管理者は、管理端末の表示部に表示されたその切り換えメッセージを見て、L2スイッチ100が、マスタになったことを知ることができる。
以上説明したように、本実施例によれば、L2スイッチ100において、動作状態をバックアップ状態からマスタ状態に切り換える場合、図3に示すように、バックアップ(マスタ待ち)状態を経ることにより、対となったL2スイッチ200の動作状態がバックアップ状態にあることを確認した上で、マスタ状態に遷移させるので、対となったL2スイッチ100及び200の両方がマスタ状態となること(すなわち、ダブルマスタ状態)を回避することができ、ネットワーク内にループが発生することを防ぐことができる。
次に、本実施例のL2スイッチ100が、バックアップとなっている場合であって、マスタであるL2スイッチ200から制御フレーム信号が送信されなくなった場合に、その動作状態がどのように遷移するかについて説明する。
図5は制御フレーム信号が受信されない場合におけるL2スイッチ100の動作状態の遷移と制御フレーム信号のやりとりを示す説明図である。
前述の場合と異なり、今、L2スイッチ100はバックアップとなっており、L2スイッチ200はマスタとなっているものとする。従って、正常時には、L2スイッチ100は、L2スイッチ200に対し、また、L2スイッチ200は、L2スイッチ100に対し、それぞれ、定期的に制御フレーム信号を送信して、相互に生存の確認と動作状態の確認を行っている。
その後、例えば、マスタであるL2スイッチ200の制御部において、制御パケット処理プロセスもしくはCPUがビジー状態になると、その制御部は、制御フレーム信号を、バックアップであるL2スイッチ100に対し送信できない場合がある。なお、通信部は、通常ハードウェア処理であるので、制御パケット処理プロセスもしくはCPUがビジー状態であっても、正常にパケット転送を行う。
こうして、マスタであるL2スイッチ200からの制御フレーム信号が送信されなくなると、バックアップであるL2スイッチ100では、図5に示すように、制御部110が、一定時間T内に、L2スイッチ200からの制御フレーム信号を受信できず、制御フレーム信号タイムアウトとなって、図3に示すように、動作状態を、バックアップ状態からバックアップ(隣接不明)状態に遷移する。制御部110は、バックアップ(隣接不明)状態に遷移すると、ネットワーク内に存在する管理端末(図示せず)に対し、アラームメッセージを出力する。
このようにビジー状態となったことが原因であるとすると、その後、マスタであるL2スイッチ200の制御部において、ビジー状態が解除されれば、その制御部は、直ちに、バックアップであるL2スイッチ100に対し、制御フレーム信号の送信を再開する。
すると、バックアップであるL2スイッチ100では、図5に示すように、制御部110が、再び、制御フレーム信号を受信できるようになる。そして、制御部110は、その制御フレーム信号などに基づいてマスタ/バックアップの選択を行うが、有効ポート数などに変更がない限り、引き続きバックアップを選択することになるので、図3に示すように、動作状態をバックアップ(隣接不明)状態からバックアップ状態に遷移する。こうして、図5に示すように、再び、正常時の動作に戻ることになる。
なお、仮に、有効ポート数に変更があり、制御部110がマスタを選択した場合には、動作状態をバックアップ(隣接不明)状態からバックアップ(マスタ待ち)状態に遷移する。その後は、前述したとおり、L2スイッチ200がバックアップ状態であることが確認できたら、L2スイッチ100はマスタ状態に遷移することになる。
以上説明したように、本実施例によれば、マスタであるL2スイッチ200の制御部において、制御パケット処理プロセスもしくはCPUがビジー状態になり、その制御部が制御フレーム信号を送信できない場合、バックアップであるL2スイッチ100において、制御部110が、一定時間T、その制御フレーム信号を受信しなければ、バックアップ(隣接不明)状態に遷移するため、直ちにマスタ状態になることはない。そして、L2スイッチ200において、ビジー状態が解除され、再度、制御フレーム信号を送信できるようになった場合、L2スイッチ100において、制御部110が、その制御フレーム信号を受信して、マスタ/バックアップの選択を行い、マスタを選択した場合には、動作状態をバックアップ(マスタ待ち)状態に遷移し、バックアップを選択した場合には、動作状態をバックアップ状態へ遷移するため、この場合も、ダブルマスタ状態になることはない。
図6も、図5と同様に制御フレーム信号が受信されない場合におけるL2スイッチ100の動作状態の遷移と制御フレーム信号のやりとりを示す説明図である。
この場合も、L2スイッチ100はバックアップとなっており、L2スイッチ200はマスタとなっているものとする。
そこで、例えば、マスタであるL2スイッチ200において、障害が発生したとすると、その制御部は、制御フレーム信号を、バックアップであるL2スイッチ100に対し送信できない。
こうして、マスタであるL2スイッチ200からの制御フレーム信号が送信されなくなると、バックアップであるL2スイッチ100では、図6に示すように、制御部110が、一定時間T内に、L2スイッチ200からの制御フレーム信号を受信できず、図5の場合と同様に、制御フレーム信号タイムアウトとなって、動作状態をバックアップ状態からバックアップ(隣接不明)状態に遷移する。制御部110は、バックアップ(隣接不明)状態に遷移すると、ネットワーク内に存在する管理端末(図示せず)に対し、アラームメッセージを出力する。
これにより、ネットワークを管理する管理者は、管理端末の表示部に表示されたそのアラームメッセージを見て、L2スイッチ100が、何らかの原因で、L2スイッチ200からの制御フレーム信号を受信できなかったことを知ることができる。
このとき、上記のように、L2スイッチ200での障害発生が原因であるとすると、修理や取り替えなどが行われない限り、その後、いくら待っても、マスタであるL2スイッチ200からバックアップであるL2スイッチ100へは、制御フレーム信号は送信されない。
そこで、管理者は、アラームメッセージを見て、しばらく待っても、メッセージが解除されない場合には、管理端末を用いて、L2スイッチ100に対し、ネットワークを介して、マスタ状態に切り換えるためのマスタ切り換えコマンドを入力する。これに対し、L2スイッチ100において、制御部110が、そのコマンドを受け取ると、図3に示すように、動作状態をバックアップ(隣接不明)状態から直接マスタ状態に遷移する。
これにより、L2スイッチ100は、バックアップからマスタに切り換わり、通信部120が、L2スイッチ300〜600に接続される各ポートをオープンにして、物理回線を介して、L2スイッチ300〜600との間でのデータの送受信を可能にする。
なお、上記したマスタ切り換えコマンドが、請求項におけるマスタ状態への遷移指示に相当する。
以上説明したように、本実施例によれば、マスタであるL2スイッチ200において、障害が発生し、制御フレーム信号を送信できない場合、バックアップであるL2スイッチ100において、制御部110は、一定時間T経過後、バックアップ(隣接不明)状態に遷移するが、障害発生であれば、その後も、L2スイッチ200からの制御フレーム信号の受信を期待できない。そこで、管理者によりマスタ切り換えコマンドの入力があった場合に、動作状態をマスタ状態へ遷移することにより、障害の発生しているL2スイッチ200に代えて、自らマスタに切り換わることにより、ネットワークを運用系から待機系に切り換えることができ、ネットワークの冗長性が確保される。
なお、以上の説明では、L2スイッチ100がバックアップ状態にあり、制御部110が、一定時間T、L2スイッチ200からの制御フレーム信号が受信できない場合に、動作状態をバックアップ状態からバックアップ(隣接不明)状態に遷移するものとして説明したが、L2スイッチ100がバックアップ(マスタ待ち)状態にあっても、同様である。すなわち、L2スイッチ100がバックアップ(マスタ待ち)状態にあり、制御部110が、一定時間T、L2スイッチ200からの制御フレーム信号が受信できない場合は、図3に示すように、動作状態をバックアップ(マスタ待ち)状態からバックアップ(隣接不明)状態に遷移する。その後の動作は、バックアップ状態からバックアップ(隣接不明)状態に遷移した場合と同様である。
D.変形例:
なお、本発明は上記した実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様にて実施することが可能である。
本発明は、ネットワークにバーチャルLANが構築されている場合にも適用可能である。バーチャルLANが構築されている場合、L2スイッチ100の制御部110は、対となったL2スイッチ200との間で、制御フレーム信号のやりとりを行いながら、単一もしくは複数のバーチャルLANをまとめたグループ毎に、有効ポート数,優先順位などを比較して、マスタ/バックアップの選択を行うと共に、グループ毎に、図3に示した動作状態の管理も行う。また、通信部120も、グループ毎に、ポートのオープン/ブロックの制御を行う。従って、或るグループでは、L2スイッチ100がマスタ、L2スイッチ200がバックアップとなり、別のグループでは、反対に、L2スイッチ100がバックアップ、L2スイッチ200がマスタとなることもある。
単一もしくは複数のバーチャルLANをまとめたグループ毎に、このような管理や制御を行うことにより、各グループにおいて、ダブルマスタ状態になることを回避することができ、各バーチャルLAN内にループが発生することがない。
上記した実施例においては、本発明を、ネットワーク中継装置の1つであるL2スイッチに適用した場合について説明したが、本発明はこれに限定されるものではなく、他のネットワーク中継装置に適用するようにしてもよい。
100〜600...L2スイッチ
110...制御部
112...CPU
114...メモリ
120...通信部
122...ネットワークインタフェース

Claims (6)

  1. 特定ネットワーク装置と対となって、ネットワーク内でのデータの中継を行うネットワーク中継装置であって、
    前記特定ネットワーク装置との間で制御フレーム信号のやりとりを行い、前記制御フレーム信号に基づいて動作状態を遷移する制御部と、
    前記制御部により、前記動作状態がマスタ状態にある場合はポートをオープンにし、前記動作状態がバックアップ状態にある場合はポートをブロックする通信部とを備え、
    前記制御部は、
    前記動作状態がバックアップ状態にある場合において、前記制御フレーム信号を所定時間受信しない場合、前記動作状態を第2の中間状態へ遷移し、
    その後、前記制御フレーム信号を受信した場合、マスタまたはバックアップのいずれかを選択し、マスタを選択した場合は前記動作状態を第1の中間状態へ遷移し、バックアップを選択した場合は前記動作状態をバックアップ状態へ遷移し、
    前記動作状態が前記第1の中間状態にある場合において、前記制御フレーム信号を受信し、前記制御フレーム信号に基づいて前記特定ネットワーク装置がバックアップ状態であることを確認した場合のみ、前記動作状態を前記マスタ状態へ遷移することを特徴とするネットワーク中継装置。
  2. 請求項1に記載のネットワーク中継装置において、
    前記制御部は、前記動作状態が前記第1の中間状態である場合において、前記制御フレーム信号を所定時間受信しない場合は、前記動作状態を前記第2の中間状態へ遷移することを特徴とするネットワーク中継装置。
  3. 請求項1または請求項2に記載のネットワーク中継装置において、
    前記制御部は、前記動作状態が前記第2の中間状態である場合において、マスタ切換コマンドを受け付けることにより、前記動作状態を前記マスタ状態へ遷移することを特徴とするネットワーク中継装置。
  4. 特定ネットワーク装置と対となって、ネットワーク内でのデータの中継を行うネットワーク中継装置の制御方法であって、
    前記特定ネットワーク装置との間で制御フレーム信号のやりとりを行い、前記制御フレーム信号に基づいて動作状態を遷移する第1の工程と、
    前記動作状態がマスタ状態にある場合はポートをオープンにし、前記動作状態がバックアップ状態の場合はポートをブロックする第2の工程とを備え、
    前記第2の工程は、
    前記動作状態がバックアップ状態にある場合において、前記制御フレーム信号を所定時間受信しない場合、前記動作状態を第2の中間状態へ遷移する第3の工程と、
    その後、前記制御フレーム信号を受信した場合、マスタまたはバックアップのいずれかを選択し、マスタを選択した場合は前記動作状態を第1の中間状態へ遷移し、バックアップを選択した場合は前記動作状態をバックアップ状態へ遷移する第4の工程と、
    前記動作状態が前記第1の中間状態にある場合において、前記制御フレーム信号を受信し、前記制御フレーム信号に基づいて前記特定ネットワーク装置がバックアップ状態であることを確認した場合のみ、前記動作状態を前記マスタ状態へ遷移する第5の工程とを備えることを特徴とするネットワーク中継装置の制御方法。
  5. 請求項4に記載の制御方法において、
    前記第2の工程は、前記動作状態が前記第1の中間状態である場合において、前記制御フレーム信号を所定時間受信しない場合は、前記動作状態を前記第2の中間状態へ遷移する第6の工程を備える制御方法。
  6. 請求項4または請求項5に記載の制御方法において、
    前記第2の工程は、前記動作状態が前記第2の中間状態である場合において、マスタ切換コマンドを受け付けることにより、前記動作状態を前記マスタ状態へ遷移する第7の工程を備える制御方法。
JP2010106843A 2010-05-07 2010-05-07 ネットワーク中継装置及びその制御方法 Active JP5113215B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010106843A JP5113215B2 (ja) 2010-05-07 2010-05-07 ネットワーク中継装置及びその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010106843A JP5113215B2 (ja) 2010-05-07 2010-05-07 ネットワーク中継装置及びその制御方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004172451A Division JP4527447B2 (ja) 2004-06-10 2004-06-10 ネットワーク中継装置及びその制御方法

Publications (2)

Publication Number Publication Date
JP2010166629A JP2010166629A (ja) 2010-07-29
JP5113215B2 true JP5113215B2 (ja) 2013-01-09

Family

ID=42582364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010106843A Active JP5113215B2 (ja) 2010-05-07 2010-05-07 ネットワーク中継装置及びその制御方法

Country Status (1)

Country Link
JP (1) JP5113215B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014027443A (ja) * 2012-07-26 2014-02-06 Nec Corp 制御装置、通信システム、通信方法及びプログラム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003134002A (ja) * 2001-10-29 2003-05-09 Nec Eng Ltd 光インタフェース
JP2003244192A (ja) * 2002-02-21 2003-08-29 Nec Commun Syst Ltd ネットワーク接続装置の冗長構成方法及び冗長システム
JP3784731B2 (ja) * 2002-02-27 2006-06-14 日本電信電話株式会社 Ethernet制御方法、網、装置、およびその制御方法

Also Published As

Publication number Publication date
JP2010166629A (ja) 2010-07-29

Similar Documents

Publication Publication Date Title
JP4527447B2 (ja) ネットワーク中継装置及びその制御方法
JP4437984B2 (ja) ネットワーク中継装置及びその制御方法
CN101640644B (zh) 基于灵活链路组的流量均衡方法和设备
JP4074631B2 (ja) 伝送路システム、および同システムにおけるフレーム伝送装置、ならびに伝送路切り替え方法
JP6105155B2 (ja) Drniにおける同一端内システムの間で情報を交換する方法及びシステム
JP2005347943A (ja) ネットワーク中継装置及びその制御方法
US9465417B2 (en) Cluster system, method and device for expanding cluster system
CN101594383B (zh) 一种双控制器存储系统的服务和控制器状态监控方法
EP2999168A1 (en) Collaboration method and system in distributed resilient network interconnect system
EP1803259B1 (en) Carrier class resilience solution for switched ethernet local area networks (lans)
CN103107940A (zh) 用于设备级环网的冗余网关系统
AU2011229566B2 (en) Load sharing method and apparatus
CN111343019A (zh) 一种重连方法、装置和存储介质
JP3492229B2 (ja) 通信制御装置
JP5974911B2 (ja) 通信システムおよびネットワーク中継装置
JP5113215B2 (ja) ネットワーク中継装置及びその制御方法
JP6118464B2 (ja) ポートステータス同期化方法、関連のデバイス、及びシステム
CN113709068B (zh) 交换机系统和交换机的执行处理方法
CN109194592A (zh) 一种解决multi-link网络中孤岛问题的方法和系统
CN102984490A (zh) 一种网络视频录像机
JP2008177710A (ja) メディアサービスシステム、メディアサービス装置及びそれらに用いるlan冗長化方法
CN111181766B (zh) 一种冗余fc网络系统及其实现交换机动态配置的方法
JP2014033384A (ja) ルータ機能冗長化システム、ルータ機能冗長化方法およびルータ装置
JP2011004435A (ja) 伝送路システム、フレーム伝送装置、伝送路システムにおける伝送路切り替え方法およびプログラム
JP2004015576A (ja) スパニングツリー構成再構築に伴う通信断回避方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5113215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250