JP5108433B2 - Wiring board for electronic component inspection equipment - Google Patents

Wiring board for electronic component inspection equipment Download PDF

Info

Publication number
JP5108433B2
JP5108433B2 JP2007246386A JP2007246386A JP5108433B2 JP 5108433 B2 JP5108433 B2 JP 5108433B2 JP 2007246386 A JP2007246386 A JP 2007246386A JP 2007246386 A JP2007246386 A JP 2007246386A JP 5108433 B2 JP5108433 B2 JP 5108433B2
Authority
JP
Japan
Prior art keywords
layer
layers
wiring board
wiring
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007246386A
Other languages
Japanese (ja)
Other versions
JP2009075027A (en
Inventor
孝有 奈須
正典 鬼頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2007246386A priority Critical patent/JP5108433B2/en
Publication of JP2009075027A publication Critical patent/JP2009075027A/en
Application granted granted Critical
Publication of JP5108433B2 publication Critical patent/JP5108433B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Leads Or Probes (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

本発明は、例えば、プローブカードなどの電子部品検査装置に用いられる配線基板に関し、特に大径のSiウェハなどに多数形成された電子部品ごとの電気的特性を正確に検査できる電子部品検査装置に用いられる配線基板に関する。   The present invention relates to, for example, a wiring board used in an electronic component inspection apparatus such as a probe card, and more particularly to an electronic component inspection apparatus capable of accurately inspecting electrical characteristics of each electronic component formed on a large diameter Si wafer or the like. The present invention relates to a wiring board to be used.

電子部品検査装置の一種であるプローブカードは、多数の微細なプローブをその表面に有し、かかるプローブをSiウェハに多数形成された半導体チップなどの電子部品ごとの電極に接触させることで、個々の電子部品の電気的特性を検査することに使用されている。
ところで、Siウェハは、直径が300mmあるいはそれ以上に大径化する傾向にある。これに応じて、Siウェハとプローブカードとの熱膨張率の差に起因して、一部の電子部品において、その電極とプローブとの電気的接続が不十分になるため、かかる電子部品の電気的特性を正確に検査できなくるおそれがある。
A probe card, which is a kind of electronic component inspection device, has a large number of fine probes on its surface, and by bringing such probes into contact with electrodes for each electronic component such as a semiconductor chip formed on a Si wafer. It is used to inspect the electrical characteristics of electronic parts.
By the way, the Si wafer tends to increase in diameter to 300 mm or more. Accordingly, due to the difference in thermal expansion coefficient between the Si wafer and the probe card, the electrical connection between the electrode and the probe becomes insufficient in some electronic components. There is a risk that the physical characteristics cannot be accurately inspected.

このため、例えば、複数の絶縁基板およびこれらの間に配設した配線層を有する測定用配線基板と、その表面に形成した複数のパッドごとの上に設けた複数の測定端子(プローブ)とを備え、上記配線基板の−40〜+400℃における平均熱膨張係数を2×10−5/℃〜5×10−6/℃とし、且つ上記温度範囲において、上記配線基板と半導体ウェハとの伸びの差を0.02%以下としたプローブカードなどが提案されている(例えば、特許文献1参照)。
特開2006−284541号公報(第1〜13頁、図1〜4)
For this reason, for example, a measurement wiring substrate having a plurality of insulating substrates and a wiring layer disposed between them, and a plurality of measurement terminals (probes) provided on each of a plurality of pads formed on the surface thereof An average thermal expansion coefficient of the wiring board at −40 to + 400 ° C. is 2 × 10 −5 / ° C. to 5 × 10 −6 / ° C., and the elongation of the wiring board and the semiconductor wafer is increased in the temperature range. A probe card having a difference of 0.02% or less has been proposed (see, for example, Patent Document 1).
JP 2006-284541 A (pages 1 to 13 and FIGS. 1 to 4)

前記特許文献1のプローブカードに用いられる測定用配線基板は、その絶縁基板に少なくともZnO、CaO、SrO、BaO、およびZrOの一種を含み、その含有量が15質量%以下とし、且つコーディエライト結晶相を含む焼結体を用いている。しかしながら、かかる絶縁基板に焼成する際に生じる焼成収縮に伴って、これらの絶縁基板の間に形成した前記配線層も焼成収縮の影響を受けてしまうため、高密度で且つファィンピッチな配線を形成し難くなる。
その結果、複数の前記測定端子を介して、検査すべき電子部品から検出した多数の信号を、正確に処理できなくなり、検査精度および検査効率が低下してしまう、というおそれがあった。
The wiring board for measurement used in the probe card of Patent Document 1 includes at least one kind of ZnO, CaO, SrO, BaO, and ZrO 2 in the insulating substrate, the content is 15% by mass or less, and the cordier A sintered body containing a light crystal phase is used. However, since the wiring layer formed between these insulating substrates is affected by the firing shrinkage due to the firing shrinkage that occurs when firing on such an insulating substrate, a high-density and fine-pitch wiring is formed. It becomes difficult.
As a result, a large number of signals detected from the electronic component to be inspected cannot be accurately processed via the plurality of measurement terminals, and there is a concern that the inspection accuracy and the inspection efficiency are lowered.

本発明は、背景技術において説明した問題点を解決し、プローブカードなどの電子部品検査装置に用いられ、例えば、大径のSiウェハなどに多数形成された電子部品であっても、その電気的特性を正確且つ効率良く検査できる電子部品検査装置用配線基板を提供する、ことを課題とする。   The present invention solves the problems described in the background art, and is used in an electronic component inspection apparatus such as a probe card. For example, even an electronic component formed on a large diameter Si wafer or the like is electrically It is an object to provide a wiring board for an electronic component inspection apparatus capable of accurately and efficiently inspecting characteristics.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

本発明は、前記課題を解決するため、低い熱膨張率のセラミック材料で構成されるコア基板の両面に複数の樹脂絶縁層および配線層を含むビルドアップ層を形成する、ことに着想して成されたものである。
即ち、本発明の電子部品検査装置用配線基板(請求項1)は、単層で且つ−40〜+150℃における熱膨張係数が3.0〜4.5×10−6/℃のセラミック層、および該セラミック層の表面と裏面との間を貫通する複数の貫通導体を有するコア基板と、かかるコア基板の表面および裏面の上方に形成され、複数の樹脂絶縁層およびこれらの間に形成した配線層を含む表面側および裏面側ビルトアップ層と、を含上記コア基板のセラミック層は、マシナブルセラミックからなり、且つ該マシナブルセラミックは、SiO とAl との混合物、あるいは、AlNとBNとの混合物であり上記コア基板を形成するセラミック層の厚みは、上記樹脂絶縁層の厚みよりも厚い、ことを特徴とする。
In order to solve the above problems, the present invention is conceived by forming a build-up layer including a plurality of resin insulation layers and wiring layers on both surfaces of a core substrate made of a ceramic material having a low coefficient of thermal expansion. It has been done.
That is, the wiring board for an electronic component inspection apparatus according to the present invention (Claim 1) is a single layer and a ceramic layer having a thermal expansion coefficient of 3.0 to 4.5 × 10 −6 / ° C. at −40 to + 150 ° C., And a core substrate having a plurality of through conductors penetrating between the front surface and the back surface of the ceramic layer, a plurality of resin insulation layers formed above the front surface and the back surface of the core substrate, and a wiring formed therebetween seen including a front and back side buildup layer comprising a layer, a ceramic layer of the core substrate is made of machinable Bull ceramic, and the machinable Bull ceramics, a mixture of SiO 2 and Al 2 O 3, or The ceramic layer forming the core substrate is a mixture of AlN and BN, and is thicker than the resin insulating layer .

これによれば、複数の貫通導体を有する前記コア基板を形成する単層の前記セラミック層は、多数の電子部品を有するSiウェハの−40〜+150℃における熱膨張係数の約3×10−6/℃と近似している。このため、上記温度範囲における熱的変化を受けても、コア基板の表面側に形成されたビルドアップ層の表面に取り付けられる複数のプローブと、Siウェハに形成された多数の電子部品ごとの電極との電気的接続を確保することが容易となる。更に、前記表面側ビルドアップ層および裏面側ビルドアップ層の樹脂絶縁層間に形成された配線層は、高密度で且つファィンピッチにして配線されているので、各プローブから検出された多数の信号に対し、正確な電気的処理を施しつつ、裏面側ビルドアップ層の裏面側パッドから外部回路基板などに出力可能となっている。従って、直径が300mmあるいはそれ以上の大径であるSiウェハなどに多数形成された電子部品であっても、その電気的特性を正確且つ効率良くに検査することが可能となる。
しかも、前記コア基板のセラミック層は、マシナブルセラミックからなり、且つ該マシナブルセラミックは、SiO とAl との混合物、あるいは、AlNとBNとの混合物であるので、当該コア基板は、前記温度範囲における熱膨張係数が約4.5×10 −6 /℃のマシナブルセラミック、約4.3×10 −6 /℃のAlN、または約4.2×10 −6 /℃のムライトからなるセラミック層によって形成されているそのため、前記温度範囲における熱膨張係数が約3.0×10 −6 /℃のSiウェハとも、熱膨張係数がほぼ近似しているので、かかるSiウェハに形成された多数の電子部品の検査を正確且つ確実に行うことが可能となる
加えて、前記コア基板を形成するセラミック層の厚みは、前記樹脂絶縁層の厚みよりも厚いため、本検査装置用配線基板全体の熱膨張係数をSiウェハの熱膨張係数に近似させ得ると共に、本検査装置用配線基板全体の強度および形状も容易に保つことが可能となる
According to this, the single-layer ceramic layer forming the core substrate having a plurality of through conductors has a thermal expansion coefficient of about 3 × 10 −6 at −40 to + 150 ° C. of a Si wafer having a large number of electronic components. Approx. For this reason, a plurality of probes attached to the surface of the buildup layer formed on the surface side of the core substrate and electrodes for each of a large number of electronic components formed on the Si wafer even when subjected to a thermal change in the above temperature range It is easy to ensure the electrical connection with. Furthermore , since the wiring layer formed between the resin insulation layers of the front surface side buildup layer and the rear surface side buildup layer is wired with a high density and a fine pitch, a large number of signals detected from each probe are detected. In addition, it is possible to output from the back side pad of the back side buildup layer to an external circuit board or the like while performing an accurate electrical process. Therefore, even if a large number of electronic parts are formed on a Si wafer having a large diameter of 300 mm or more, the electrical characteristics can be inspected accurately and efficiently.
Moreover, the ceramic layer of the core substrate is made of a machinable ceramic, and the machinable ceramic is a mixture of SiO 2 and Al 2 O 3 or a mixture of AlN and BN. A machinable ceramic having a thermal expansion coefficient in the temperature range of about 4.5 × 10 −6 / ° C., AlN of about 4.3 × 10 −6 / ° C., or mullite of about 4.2 × 10 −6 / ° C. It is formed by the ceramic layer which consists of . For this reason, since the thermal expansion coefficient of the Si wafer having a thermal expansion coefficient in the temperature range of about 3.0 × 10 −6 / ° C. is approximately similar, many electronic components formed on the Si wafer can be inspected. It becomes possible to carry out accurately and reliably .
In addition, since the thickness of the ceramic layer forming the core substrate is thicker than the thickness of the resin insulating layer, the thermal expansion coefficient of the entire inspection apparatus wiring board can be approximated to the thermal expansion coefficient of the Si wafer, It is also possible to easily maintain the strength and shape of the entire inspection apparatus wiring board .

尚、前記コア基板に形成される貫通導体には、かかるコア基板の表面と裏面との間を貫通する貫通孔の全体がほぼ円柱形にして形成されるビア導体の形態、あるいは、上記貫通孔の内壁に沿って形成された全体がほぼ円筒形を呈し且つ内部に樹脂や金属などを充填するスルーホール導体の形態が含まれる。
また、前記コア基板のセラミック層は、次述する材料からなるグリーンシート予め焼成した後、孔明け加工による貫通孔の形成、かかる貫通孔内への導電性ペーストの充填、および該ペーストを硬化させるための加熱(キュア)が施されるため、複数の貫通導体が位置精度良く形成されている。あるいは、複数のグリーンシートに貫通孔を形成し、その内部に導電性ペーストを充填した後、積層および焼成することでも、同様にして形成し得る。
Note that the through conductor formed in the core substrate includes a via conductor formed so that the entire through hole penetrating between the front surface and the back surface of the core substrate has a substantially cylindrical shape, or the through hole. The shape of the through-hole conductor formed in a generally cylindrical shape along the inner wall is filled with resin, metal, or the like.
Further, the ceramic layer of the core substrate is pre-fired with a green sheet made of the material described below, and then a through hole is formed by drilling, a conductive paste is filled in the through hole, and the paste is cured. Therefore, a plurality of through conductors are formed with high positional accuracy. Alternatively, a plurality of green sheets can be formed in the same manner by forming through-holes and filling the inside with a conductive paste, followed by lamination and firing.

尚、前記マシナブルセラミックとは、機械加工、特に切削加工が容易に施せるセラミックを指し、例えば、セラミック材料に含有される結晶の著しいへき開を利用したマイカセラミック、あるいは、粒界の選択的破壊を利用したチタン酸アルミニウムセラミックなども含まれる。 Note that the pre-Symbol machinable Bull ceramic, machining, especially cutting points to ceramic easily Hodokoseru, for example, mica utilizing significant cleavage of crystals contained in the ceramic material a ceramic, or selective destruction of the grain boundary Also included are aluminum titanate ceramics using

に、本発明には、前記表面側および裏面側ビルトアップ層を形成する前記樹脂絶縁層は、耐熱性の樹脂からなる、電子部品検査装置用配線基板(請求項)も含まれる。これによれば、前記表面側ビルドアップ層の表面に形成した複数の表面側パッドごとに、プローブを取り付ける(プロービング)際に必要な熱を加えても、かかる表面側ビルドアップ層および裏面側ビルドアップ層へのダメージを防ぐか、抑制することができる。
尚、上記耐熱性の樹脂は、例えば、ポリイミド(PI)が挙げられる。
In a further, the present invention, the resin insulating layer forming the back and front sides built-up layer is made of a heat-resistant resin, the electronic component inspection apparatus for circuit board (claim 2) is also included. According to this, even if the heat necessary for attaching the probe (probing) is applied to each of the plurality of front surface side pads formed on the surface of the front surface side buildup layer, the front surface side buildup layer and the rear surface side build are applied. It can prevent or suppress damage to the up layer.
An example of the heat-resistant resin is polyimide (PI).

また、本発明には、前記表面側および裏面側ビルトアップ層は、複数の前記樹脂絶縁層の間に位置する前記配線層を接続するビア導体と、表面側ビルトアップ層の表面側および裏面側ビルトアップ層の裏面に形成され、且つ上記配線層およびビア導体と導通する複数の表面側または裏面側パッドを有する、電子部品検査装置用配線基板(請求項)も含まれる。
これによれば、ポリイミドなどからなる複数の樹脂絶縁層の間ごとに、ファィンピッチな配線層が所定パターンで形成され、これらの間、および表面側または裏面側パッドとの間をビア導体を介して導通可能とされている。従って、Siウェハにおける多数の電子部品ごとから検出した信号に対し、電圧の増幅や波形の整流などの電気的処理を確実且つ効率良く施し得るので、正確且つ効率の良い検査が可能となる。
尚、前記表面側パッドには、表面側ビルトアップ層の表面に形成される配線の一部である形態も含まれる。また、前記ビルドアップ層は、セミトラクティブ法、アデティブ法、セミアデティブ法などによって、製作される。
Further, in the present invention, the front surface side and the back surface side built-up layer include a via conductor connecting the wiring layers located between the plurality of resin insulation layers, and the front surface side and the back surface side of the front surface side build-up layer. formed on the back surface of the built-up layer, and having a plurality of surface side or the back side pad electrically connected to the wiring layer and via conductors, electronic component testing apparatus for printed circuit board (claim 3) are also included.
According to this, a fine pitch wiring layer is formed in a predetermined pattern between a plurality of resin insulation layers made of polyimide or the like, and between these and between the front side or back side pads via via conductors. It is possible to conduct. Therefore, since electrical processing such as voltage amplification and waveform rectification can be reliably and efficiently performed on signals detected from a large number of electronic components on the Si wafer, accurate and efficient inspection can be performed.
In addition, the form which is a part of wiring formed in the surface of a surface side built-up layer is also contained in the said surface side pad. The build-up layer is manufactured by a semitractive method, an additive method, a semi-additive method, or the like.

加えて、本発明には、前記表面側ビルトアップ層の表面に形成された複数の表面側パッドには、それぞれプローブが取り付けられる、電子部品検査装置用配線基板(請求項)も含まれる。
これによれば、プローブが表面側ビルトアップ層の各表面側パッドごとに取り付けられるため、例えば、Siウェハに形成された多数の電子部品ごとの電極との確実な電気的接続が可能となり、正確且つ確実な検査が可能となる。
In addition, the present invention includes an electronic component inspection device wiring board (Claim 4 ) in which probes are respectively attached to the plurality of front surface side pads formed on the surface of the front surface side built-up layer.
According to this, since the probe is attached to each front surface side pad of the front surface side built-up layer, for example, it is possible to perform reliable electrical connection with the electrode for each of a large number of electronic components formed on the Si wafer. In addition, reliable inspection is possible.

以下において、本発明を実施するための最良の形態について説明する。
図1は、本発明による一形態の電子部品検査装置用配線基板(以下、単に検査装置用配線基板と称する)1の断面およびその使用状態を示す概略図である。
検査装置用配線基板1は、図1に示すように、表面3および裏面4を有する単層のセラミック層S、および該セラミック層Sの表面3と裏面4との間を貫通する複数の貫通導体5を有するコア基板2と、該コア基板2の表面3および裏面4の上方に形成され、複数の樹脂絶縁層j1〜j3,j4〜j6、およびこれらの間に形成した配線層11,12,14,15を含む表面側および裏面側ビルドアップ層BU1,BU2と、を備えている。尚、樹脂絶縁層j1〜j3,j4〜j6の厚みは、それぞれ本検査装置用配線基板1の厚みの約20〜30%であり、上記セラミック層Sが該配線基板1全体の厚み約40〜60%を占めている。
In the following, the best mode for carrying out the present invention will be described.
FIG. 1 is a schematic view showing a cross section of a wiring board for an electronic component inspection apparatus (hereinafter simply referred to as a wiring board for inspection apparatus) 1 according to an embodiment of the present invention and a usage state thereof.
As shown in FIG. 1, the inspection apparatus wiring board 1 includes a single-layer ceramic layer S having a front surface 3 and a back surface 4, and a plurality of through conductors penetrating between the front surface 3 and the back surface 4 of the ceramic layer S. 5 and a plurality of resin insulation layers j1 to j3 and j4 to j6 formed between the core substrate 2 and the front surface 3 and the back surface 4 of the core substrate 2, and wiring layers 11, 12, 14 and 15, and front and back side build-up layers BU 1 and BU 2. The thicknesses of the resin insulation layers j1 to j3 and j4 to j6 are about 20 to 30% of the thickness of the wiring board 1 for the inspection apparatus, respectively, and the ceramic layer S is about 40 to 40% in total thickness. It accounts for 60%.

前記コア基板2のセラミック層Sは、厚みが約4〜5mmのマシナブルセラミックからなり、−40〜+150℃における熱膨張係数(以下、単にCTEと称する)が3.0〜4.5×10−6/℃である。尚、上記マシナブルセラミックは、SiOとAlとの混合物、あるいは、AlNとBNとの混合物からなり、これらのCTEは、約4.5×10−6/℃である。
図1に示すように、コア基板2のセラミック層Sには、その表面3と裏面4との間を貫通する複数の貫通孔hが形成され、かかる貫通孔hの内壁面に沿ってほぼ円筒形を呈する貫通導体5が形成され、その内側には、充填樹脂7が充填されている。各貫通導体5の表面3および裏面4には、上記充填樹脂7を封止する配線層8,9が形成されている。尚、貫通導体5および配線層8,9は、AgまたはCu、あるいはこれらの何れかをベースとする合金からなる。
Ceramic layer S of the core substrate 2, machinable Brucella mission click a thickness of about 4~5mm or Rannahli, thermal expansion coefficient of -40 to + 0.99 ° C. (hereinafter, simply referred to as CTE) is 3.0 to 4.5 × 10 −6 / ° C. Incidentally, the upper Symbol machinable Bull ceramic, a mixture of SiO 2 and Al 2 O 3, or consist of a mixture of AlN and BN, these CTE is about 4.5 × 10 -6 / ℃.
As shown in FIG. 1, the ceramic layer S of the core substrate 2 is formed with a plurality of through holes h penetrating between the front surface 3 and the back surface 4, and substantially cylindrical along the inner wall surface of the through hole h. A through conductor 5 having a shape is formed, and a filling resin 7 is filled inside. Wiring layers 8 and 9 for sealing the filling resin 7 are formed on the front surface 3 and the back surface 4 of each through conductor 5. The through conductor 5 and the wiring layers 8 and 9 are made of Ag or Cu, or an alloy based on any of these.

また、図1に示すように、表面側ビルドアップ層BU1は、例えばポリイミド(以下、単にPIと記する)などの耐熱性の樹脂からなる樹脂絶縁層j1〜j3、これらの間に所定のパターンで形成された配線層10,11、および最上層の樹脂絶縁層j3が形成する当該ビルドアップ層BU1の表面12に形成された複数の表面側パッド13を備えている。上記配線層10,11、表面側パッド13、および前記配線層8間は、ほぼ逆円錐形のビア導体Vまたはそれよりも小型のビア導体vを介して導通可能とされている。尚、表面側パッド13は、表面側ビルドアップ層BU1の表面12に形成された配線の一部であっても良い。
更に、図1に示すように、裏面側ビルドアップ層BU2も、PIなどの耐熱性の樹脂からなる樹脂絶縁層j4〜j6、これらの間に所定のパターンで形成された配線層14,15、および最下層の樹脂絶縁層j6に設けた開口部kの底面に露出し、且つ上記配線層15から当該ビルドアップ層BU2の裏面16側に露出する複数の裏面側パッド17を備えている。配線層14,15、および前記配線層9間は、ほぼ円錐形のビア導体Vを介して導通可能とされている。
Further, as shown in FIG. 1, the surface side buildup layer BU1 includes resin insulating layers j1 to j3 made of a heat resistant resin such as polyimide (hereinafter simply referred to as PI), and a predetermined pattern between them. And the plurality of front surface side pads 13 formed on the surface 12 of the buildup layer BU1 formed by the uppermost resin insulation layer j3. The wiring layers 10, 11, the surface-side pad 13, and the wiring layer 8 can be electrically connected via a substantially inverted conical via conductor V or a smaller via conductor v. The surface-side pad 13 may be a part of the wiring formed on the surface 12 of the surface-side buildup layer BU1.
Further, as shown in FIG. 1, the back-side buildup layer BU2 is also composed of resin insulation layers j4 to j6 made of heat-resistant resin such as PI, and wiring layers 14, 15 formed in a predetermined pattern therebetween. And a plurality of back surface side pads 17 exposed from the bottom surface of the opening k provided in the lowermost resin insulating layer j6 and exposed from the wiring layer 15 to the back surface 16 side of the buildup layer BU2. The wiring layers 14 and 15 and the wiring layer 9 can be electrically connected via a substantially conical via conductor V.

尚、表・裏面側パッド13,19を含む前記配線層10,11,14,15、およびビア導体V,vは、CuまたはAg、あるいはこれらの何れかをベースとする合金からなる。また、前記裏面側パッド17は、図示しない外部回路基板などに導通され、電源電流の入力および検査信号の出力に活用される。
図1に示すように、表面側ビルドアップ層BU1の表面12に位置する複数の表面側パッド13には、検査すべきSiウェハ20に形成された多数の電子部品(図示せず)ごとの電極dと接触し、これと電気的接続が可能なプローブ19が個別に追って取り付けられる。
The wiring layers 10, 11, 14, 15 and the via conductors V and v including the front and back pads 13 and 19 are made of Cu or Ag, or an alloy based on any of these. The back-side pad 17 is electrically connected to an external circuit board (not shown) and the like, and is used for input of a power supply current and output of a test signal.
As shown in FIG. 1, a plurality of surface-side pads 13 located on the surface 12 of the surface-side buildup layer BU1 have electrodes for a large number of electronic components (not shown) formed on the Si wafer 20 to be inspected. Probes 19 that come into contact with and can be electrically connected to d are attached individually.

図2は、前記配線基板1の変形形態である検査装置用配線基板1aの断面およびその使用状態を示す概略図である。
図2に示すように、検査装置用配線基板1aも、前記同様のセラミック層Sを有するコア基板2aと、前記同様の樹脂絶縁層j1〜j3,j4〜j6を有する表面側および裏面側ビルドアップ層BU1,BU2と、を備えている。
本配線基板1aが前記配線基板1と相違するのは、コア基板2aのセラミック層Sを貫通する複数の貫通孔h内ごとに全体がほぼ円柱形の貫通導体6を有していることである。かかるコア基板Sは、図2中の一点鎖線で示すように、複数のグリーンシートを積層してから、単一層に焼成したものである。
FIG. 2 is a schematic view showing a cross section of a wiring board 1a for an inspection apparatus, which is a modified form of the wiring board 1, and a usage state thereof.
As shown in FIG. 2, the wiring board 1a for an inspection apparatus also includes a core substrate 2a having the same ceramic layer S and a front side and back side buildup having the same resin insulating layers j1 to j3 and j4 to j6. Layers BU1 and BU2.
The present wiring board 1a is different from the wiring board 1 in that the entire wiring board 1a has a substantially cylindrical through conductor 6 in each of a plurality of through holes h that penetrate the ceramic layer S of the core board 2a. . The core substrate S is obtained by laminating a plurality of green sheets and firing them into a single layer, as indicated by a one-dot chain line in FIG.

以上のような検査装置用配線基板1,1aによれば、複数の貫通導体5,6を有する前記コア基板2,2aを形成する単層の前記セラミック層Sが、多数の電子部品を有するSiウェハ20の−40〜+150℃における熱膨張係数の約3×10−6/℃と近似している。このため、上記温度範囲における熱的変化を受けても、コア基板2の表面3上に形成されたビルドアップ層BU1の表面12側に取り付けられる複数のプローブ19と、Siウェハ20に形成された多数の電子部品ごとの電極dとの電気的接続を確保することが容易となる。 According to the inspection apparatus wiring boards 1 and 1a as described above, the single ceramic layer S forming the core board 2 and 2a having the plurality of through conductors 5 and 6 is formed of Si having a large number of electronic components. The thermal expansion coefficient of the wafer 20 at −40 to + 150 ° C. is approximately 3 × 10 −6 / ° C. For this reason, even when subjected to a thermal change in the above temperature range, a plurality of probes 19 attached to the surface 12 side of the buildup layer BU1 formed on the surface 3 of the core substrate 2 and the Si wafer 20 are formed. It is easy to ensure electrical connection with the electrode d for each of a large number of electronic components.

更に、前記表面側および裏面側ビルドアップ層BU1,BU2の樹脂絶縁層j1〜j6間に形成された配線層10,11,14,15は、高密度で且つファィンピッチにして配線されているので、各プローブ19から検出された多数の信号に対し、正確な電気的処理を施しつつ、裏面側ビルドアップ層BU2,4の裏面側パッド17から外部回路基板などに出力可能となっている。
しかも、前記配線基板1,1aによれば、コア基板2,2aの厚みが配線基板1,1a全体の厚みの約40〜60%を占めるため、高強度で且つ変形し難いと共に、樹脂絶縁層j1〜j6がPIなどの耐熱性の樹脂からなるため、プローブ19を取り付ける際のプロービングに対しても確実に耐えられる。従って、直径が300mmあるいはそれ以上の大径であるSiウェハなどに多数形成された電子部品であっても、それらの電気的特性を正確且つ効率良くに検査することが可能となる。
Furthermore, since the wiring layers 10, 11, 14, and 15 formed between the resin insulating layers j1 to j6 of the front surface side and back surface side buildup layers BU1 and BU2 are wired with high density and fin pitch, A large number of signals detected from each probe 19 can be output from the back surface side pads 17 of the back surface side buildup layers BU2 and BU4 to an external circuit board or the like while performing accurate electrical processing.
In addition, according to the wiring boards 1 and 1a, the thickness of the core boards 2 and 2a occupies about 40 to 60% of the total thickness of the wiring boards 1 and 1a. Since j1 to j6 are made of a heat-resistant resin such as PI, it is possible to reliably withstand probing when the probe 19 is attached. Therefore, even if electronic parts are formed in large numbers on a Si wafer having a large diameter of 300 mm or more, their electrical characteristics can be inspected accurately and efficiently.

前記検査装置用配線基板1は、次のようにして製造した。
予め、マシナブルセラミック(SiOとAlとの混合物、または、AlNとBNとの混合物)と、樹脂バインダと、溶剤などを所要量ずつ瓶量・混合してセラミックスラリを作成し、かかるセラミックスラリをドクターブレード法によって、厚みが約5mmのグリーンシートを形成した。
次に、かかるグリーンシートを所定の温度で焼成して、図3の概略断面図で示すように、表面3および裏面4を有し、厚みが約5mmで、且つ−40〜+150℃におけるCTEが3.0〜4.5×10−6/℃のセラミック層Sを得た。
The inspection apparatus wiring board 1 was manufactured as follows.
In advance, a ceramic slurry is prepared by mixing a required amount of a machinable ceramic (a mixture of SiO 2 and Al 2 O 3 or a mixture of AlN and BN ), a resin binder, a solvent, and the like. A green sheet having a thickness of about 5 mm was formed from the ceramic slurry by a doctor blade method.
Next, the green sheet is fired at a predetermined temperature, and as shown in the schematic cross-sectional view of FIG. 3, it has a front surface 3 and a back surface 4, a thickness of about 5 mm, and a CTE at −40 to + 150 ° C. A ceramic layer S of 3.0 to 4.5 × 10 −6 / ° C. was obtained.

次いで、上記セラミック層Sに対し、細径のドリルによる孔明け加工を行って、図4に示すように、その表面3と裏面4との間を貫通する複数の貫通孔hを形成した。
更に、上記セラミック層Sの各貫通孔h付近ごとに、無電解Agメッキおよび電解Agメッキ、あるいは無電解Cuメッキおよび電解Cuメッキを施して、図5に示すように、両端にリング片5aを有し、全体がほぼ円筒形で且つ軸方向に沿った中空部を有する貫通導体5を複数個形成した。
次に、図6に示すように、各貫通導体5の中空部内ごとに、例えば、エポキシ樹脂などからなる充填樹脂7を印刷・充填した。
次いで、かかるセラミック層Sの表面3および裏面4を砥石またはベルトサンダーなどにより研磨して、図7に示すように、両端面が表・裏面3,4と面一の貫通導体5を各貫通孔hごとに形成した。
Next, the ceramic layer S was drilled with a small-diameter drill to form a plurality of through holes h penetrating between the front surface 3 and the back surface 4 as shown in FIG.
Further, electroless Ag plating and electrolytic Ag plating, or electroless Cu plating and electrolytic Cu plating are applied to the vicinity of each through hole h of the ceramic layer S, and ring pieces 5a are formed at both ends as shown in FIG. A plurality of through conductors 5 having a substantially cylindrical shape and a hollow portion along the axial direction are formed.
Next, as shown in FIG. 6, for example, a filling resin 7 made of an epoxy resin or the like is printed and filled in each hollow portion of each through conductor 5.
Next, the front surface 3 and the back surface 4 of the ceramic layer S are polished with a grindstone or a belt sander, and as shown in FIG. Formed every h.

尚、前記貫通孔h内に、Ag粉末またはCu粉末を含む導電性ペーストを直に印刷・充填して、前記貫通導体6を形成した後 、 上記同様の研磨を行っても良い。
更に、図8に示すように、セラミック層Sの表・裏面3,4で各貫通導体5の両端面が露出する位置ごとに対し、Ag粉末またはCu粉末を含む導電性ペーストをスクリーン印刷して、配線層8,9を形成した。
そして、貫通導体5、配線層8,9、および充填樹脂7を所定の温度(約200℃)で加熱(キュア)して、それぞれ硬化させた。
その結果、図8に示すように、前記図1で示したコア基板2が得られた。
In addition, after the conductive paste containing Ag powder or Cu powder is directly printed and filled in the through hole h to form the through conductor 6, the same polishing may be performed.
Further, as shown in FIG. 8, a conductive paste containing Ag powder or Cu powder is screen-printed for each position where both end faces of each through conductor 5 are exposed on the front and back surfaces 3 and 4 of the ceramic layer S. Then, the wiring layers 8 and 9 were formed.
The through conductor 5, the wiring layers 8 and 9, and the filling resin 7 were heated (cured) at a predetermined temperature (about 200 ° C.) to be cured.
As a result, as shown in FIG. 8, the core substrate 2 shown in FIG. 1 was obtained.

一方、前記ビルドアップ層BU1,BU2を得るため、図9に示すように、外側面に銅箔cが貼り付けられたPIのフイルムからなる感光性の樹脂絶縁層j1,j4を用意した。尚、樹脂絶縁層j2,j3,j5,j6についても同様である。
次いで、銅箔cおよび樹脂絶縁層j1,j4における所定の位置に対し、レーザの照射を銅箔c側から行って、図10に示すように、ほぼ円錐台形のビアホールHを複数個形成した。
更に、各ビアホールH内に対し、Ag粉末またはCu粉末を含む導電性ペーストを、スキージ(図示せず)を用いて個別に充填し、図11に示すように、表面が銅箔cとほぼ面一であるほぼ円錐台形の充填体gを形成した。かかる状態で、充填体gを硬化させるべく、該充填体gを含む樹脂絶縁層j1,j4を加熱した。
On the other hand, in order to obtain the build-up layers BU1 and BU2, as shown in FIG. 9, photosensitive resin insulating layers j1 and j4 made of PI film having a copper foil c attached to the outer surface were prepared. The same applies to the resin insulating layers j2, j3, j5, and j6.
Next, a predetermined number of positions in the copper foil c and the resin insulating layers j1 and j4 were irradiated with laser from the copper foil c side to form a plurality of substantially frustoconical via holes H as shown in FIG.
Further, each via hole H is individually filled with a conductive paste containing Ag powder or Cu powder using a squeegee (not shown). As shown in FIG. A substantially frustoconical packing body g was formed. In this state, the resin insulating layers j1 and j4 including the filler g were heated to cure the filler g.

次いで、硬化された前記充填体gおよび銅箔cの上に、所定パターンのメッキレジスト(図示せず)を形成した状態で、かかるに覆われていない部分をエッチング液に接触させて除去した後、上記メッキレジストを剥離液で剥離した。
その結果、図12に示すように、各ビアホールH内ごとにほぼ円錐台形のビア導体Vが形成された。同時に、樹脂絶縁層j1,j4の表面には、何れかのビア導体Vと接続された所定パターンの配線層10,14が形成された。
尚、樹脂絶縁層j2,j3,j5についても前記同様の工程を施して、ビア導体V、配線層11,15、裏面側パッド13を形成した。また、樹脂絶縁層j6には、所定の位置に対して孔明け加工を行った。
Next, after a predetermined pattern of plating resist (not shown) is formed on the cured filler g and copper foil c, the uncovered portion is removed by contact with an etching solution. The plating resist was stripped with a stripping solution.
As a result, a substantially frustoconical via conductor V was formed in each via hole H as shown in FIG. At the same time, wiring layers 10 and 14 having a predetermined pattern connected to any via conductor V were formed on the surfaces of the resin insulating layers j1 and j4.
The resin insulating layers j2, j3, and j5 were subjected to the same process as described above to form the via conductor V, the wiring layers 11 and 15, and the back surface side pad 13. Further, the resin insulating layer j6 was drilled at a predetermined position.

更に、前記樹脂絶縁層j1〜j3を積層・圧着して、図13の上方に示すように、表面側ビルドアップ層BU1を形成すると共に、前記樹脂絶縁層j4〜j6を積層・圧着して、図13の下方に示すように、裏面側ビルドアップ層BU2を形成した。この際、裏面側ビルドアップ層BU2には、その裏面16に露出するする裏面側パッド17が形成された。
次いで、図13中の矢印で示すように、コア基板2の表面3上にビルドアップ層BU1を、かかるコア基板2の裏面4上(図示で下)にビルドアップ層BU2を、積層および圧着した。この際、コア基板2の配線層8,9と表・裏面側ビルドアップ層BU1,BU2の隣接するビア導体Vとが接続された。
その結果、コア基板2の両面にビルトアップ層BU1,BU2が積層された前記図1で示した検査装置用配線基板1を得ることができた。
そして、ビルトアップ層BU1の各パッド13ごとの上に、プローブ19を取り付けることで、電子部品検査装置の要部を形成することができた。
更に、裏面側ビルトアップ層BU2の各パッド17に対し、更に外部回路基板(図示せず)を接続することで、プローブカードなどの電子部品検査装置を形成することも可能である。
Further, the resin insulation layers j1 to j3 are laminated and pressure-bonded to form a surface side buildup layer BU1 as shown in the upper part of FIG. 13, and the resin insulation layers j4 to j6 are laminated and pressure-bonded. As shown in the lower part of FIG. 13, the back side buildup layer BU2 was formed. At this time, the back side pad 17 exposed on the back side 16 was formed on the back side buildup layer BU2.
Next, as shown by the arrows in FIG. 13, the buildup layer BU1 is laminated on the front surface 3 of the core substrate 2, and the buildup layer BU2 is laminated and pressure-bonded on the back surface 4 (lower in the drawing) of the core substrate 2. . At this time, the wiring layers 8 and 9 of the core substrate 2 and the via conductors V adjacent to the front and back side buildup layers BU1 and BU2 were connected.
As a result, the inspection apparatus wiring substrate 1 shown in FIG. 1 in which the built-up layers BU1 and BU2 were laminated on both surfaces of the core substrate 2 could be obtained.
And the principal part of the electronic component inspection apparatus was able to be formed by attaching the probe 19 on each pad 13 of the built-up layer BU1.
Furthermore, an electronic circuit inspection device such as a probe card can be formed by connecting an external circuit board (not shown) to each pad 17 of the back side built-up layer BU2.

以上のような検査装置用配線基板1の製造方法によれば、コア基板2を形成する単一のセラミック層Sは、前記低熱膨張係数のグリーンシートを予め焼成した後、孔明け加工されて、複数の貫通孔hを位置精度良く形成され、かかる貫通孔hごとに、ビア導体またはスルーホール導体の形態である貫通導体5が形成される。かかる低熱膨張のコア基板2の表面3および裏面4の上方に配線層10,11,14,15を有するビルドアップ層BU1,BU2を形成するため、表面12側の各パッド13を高い位置精度にて形成できる。そのため、かかるバッド13ごとに取り付けられるプローブ19と、Siウェハ20に多数形成された電子部品ごとの電極dとの電気的接続を、温度変化による影響を最少にして確保できる検査装置用配線基板1を確実に製造することが可能となる。
しかも、各プローブ19から検出された信号は、ビルドアップ層BU1,BU2内の配線層10,11,14,15、ビア導体v,Vやコア基板2の貫通導体5などを介して、裏面16側パッド19から外部回路基板などに出力可能とした検査装置用配線基板1を確実に提供することが可能となる。
According to the manufacturing method of the inspection apparatus wiring board 1 as described above, the single ceramic layer S forming the core substrate 2 is pre-fired after the low thermal expansion coefficient green sheet is fired, A plurality of through holes h are formed with high positional accuracy, and a through conductor 5 in the form of a via conductor or a through hole conductor is formed for each through hole h. Since the build-up layers BU1 and BU2 having the wiring layers 10, 11, 14, and 15 are formed above the front surface 3 and the back surface 4 of the low thermal expansion core substrate 2, each pad 13 on the front surface 12 side is made highly accurate. Can be formed. Therefore, the wiring board 1 for an inspection apparatus that can secure the electrical connection between the probe 19 attached to each pad 13 and the electrode d for each electronic component formed on the Si wafer 20 with the least influence of temperature change. Can be reliably manufactured.
In addition, the signals detected from the probes 19 are transmitted to the back surface 16 via the wiring layers 10, 11, 14, 15 in the buildup layers BU 1, BU 2, the via conductors v, V, the through conductor 5 of the core substrate 2, and the like. It is possible to reliably provide the inspection apparatus wiring board 1 that can output from the side pad 19 to an external circuit board or the like.

図14,15は、前記コア基板2aを製造する工程を示す概略断面図である。
図14に示すように、前記同様の材料および方法によって、複数のグリーンシートs1〜s3を形成し、これらに複数の貫通孔hを形成した後、Ag粉末またはCu粉末を含む導電性ペースト6aを、スキージ(図示せず)を用いて、各貫通孔h内に個別に充填した。
次いで、上記グリーンシートs1〜s3を積層・圧着した後に焼成することで、前記図2で示したコア基板2aが得られる。尚、かかる焼成時の収縮量を予め見込んだ上で、前記の各貫通孔hを形成すべき位置が設定されている。
そして、コア基板2aの表面3および裏面4の上方に、前記同様の各工程を施して、表面側および裏面側ビルドアップ層BU1,BU2を形成することで、前記図2で示した検査装置用配線基板1aを得ることも可能である。
14 and 15 are schematic cross-sectional views showing a process for manufacturing the core substrate 2a.
As shown in FIG. 14, a plurality of green sheets s1 to s3 are formed by the same material and method as described above, a plurality of through holes h are formed in these, and then a conductive paste 6a containing Ag powder or Cu powder is formed. Each through hole h was filled individually using a squeegee (not shown).
Next, the green sheets s1 to s3 are laminated and pressure-bonded and then fired to obtain the core substrate 2a shown in FIG. In addition, the position where each of the through holes h is to be formed is set in consideration of the shrinkage amount at the time of firing.
Then, the same steps as described above are performed above the front surface 3 and the back surface 4 of the core substrate 2a to form the front surface side and the back surface side buildup layers BU1 and BU2, so that the inspection apparatus shown in FIG. It is also possible to obtain the wiring board 1a.

本発明は、前記各形態に限られるでものはない。
例えば、表面側パッドは、前記ビルドアップ層BU1の表面12上に位置する前記パッド13に替えて、最上層の樹脂絶縁層j3に設けた開口部から上記表面12側に露出する前記配線層11の一部とした形態のものとしても良い。
また、前記樹脂絶縁層j1〜j6は、前記PIに限らず、プロービングに耐えられる耐熱性を有する樹脂であれば良い。
更に、前記裏面側ビルドアップ層BU2は、その裏面16側に開口するキャビティを形成し、かかるキャビティ内に各種の電子部品を実装することも可能である。
The present invention is not limited to the above embodiments.
For example, instead of the pad 13 positioned on the surface 12 of the build-up layer BU1, the surface-side pad is exposed to the surface 12 side from the opening provided in the uppermost resin insulating layer j3. It is good also as a thing made into a part of.
The resin insulation layers j1 to j6 are not limited to the PI, and may be any resin having heat resistance that can withstand probing.
Further, the back side buildup layer BU2 can be formed with a cavity opened on the back side 16 side, and various electronic components can be mounted in the cavity.

本発明の検査装置用配線基板の断面などを示す概略図。Schematic which shows the cross section etc. of the wiring board for test | inspection apparatuses of this invention. 上記配線基板の変形形態の検査装置用配線基板を示す概略図。Schematic which shows the wiring board for inspection apparatuses of the deformation | transformation form of the said wiring board. 図1の検査装置用配線基板を得るための一製造工程を示す概略図。Schematic which shows one manufacturing process for obtaining the wiring board for test | inspection apparatuses of FIG. 図3に続く製造工程を示す概略図。Schematic which shows the manufacturing process following FIG. 図4に続く製造工程を示す概略図。Schematic which shows the manufacturing process following FIG. 図5に続く製造工程を示す概略図。Schematic which shows the manufacturing process following FIG. 図6に続く製造工程を示す概略図。Schematic which shows the manufacturing process following FIG. 図7に続く製造工程を示す概略図。Schematic which shows the manufacturing process following FIG. 図8に続く製造工程を示す概略図。Schematic which shows the manufacturing process following FIG. 図9に続く製造工程を示す概略図。Schematic which shows the manufacturing process following FIG. 図10に続く製造工程を示す概略図。Schematic which shows the manufacturing process following FIG. 図11に続く製造工程を示す概略図。Schematic which shows the manufacturing process following FIG. 図12に続く製造工程を示す概略図。Schematic which shows the manufacturing process following FIG. 図2の検査装置用配線基板を得るための一製造工程を示す概略図。Schematic which shows one manufacturing process for obtaining the wiring board for test | inspection apparatuses of FIG. 図14に続く製造工程を示す概略図。Schematic which shows the manufacturing process following FIG.

符号の説明Explanation of symbols

1,1a…………………検査装置用配線基板
2,2a…………………コア基板
3,12…………………表面
4,16…………………裏面
5,6……………………貫通導体
10,11,14,15…配線層
13,17………………パッド
19………………………プローブ
20………………………Siウェハ(電子部品)
S…………………………セラミック層
BU1,BU2…………ビルドアップ層
j1〜j6………………樹脂絶縁層
v,V……………………ビア導体
1, 1a …………………… Wiring board for inspection equipment 2, 2a ………………… Core board 3, 12 ………………… Front surface 4, 16 ………………… Back surface 5 , 6 …………………… Penetration conductor 10,11,14,15… Wiring layer 13,17 ……………… Pad 19 ……………………… Probe 20 ……………… ……… Si wafer (electronic parts)
S ………………………… Ceramic layer BU1, BU2 ………… Build-up layer j1 to j6 ……………… Resin insulation layer v, V …………………… Via conductor

Claims (4)

単層で且つ−40〜+150℃における熱膨張係数が3.0〜4.5×10−6/℃のセラミック層、および該セラミック層の表面と裏面との間を貫通する複数の貫通導体を有するコア基板と、
上記コア基板の表面および裏面の上方に形成され、複数の樹脂絶縁層およびこれらの間に形成した配線層を含む表面側および裏面側ビルトアップ層と、を含
上記コア基板のセラミック層は、マシナブルセラミックからなり、且つ該マシナブルセラミックは、SiO とAl との混合物、あるいは、AlNとBNとの混合物であり
上記コア基板を形成するセラミック層の厚みは、上記樹脂絶縁層の厚みよりも厚い
ことを特徴とする電子部品検査装置用配線基板。
A ceramic layer having a single layer and a thermal expansion coefficient of 3.0 to 4.5 × 10 −6 / ° C. at −40 to + 150 ° C., and a plurality of through conductors penetrating between the front surface and the back surface of the ceramic layer A core substrate having,
It is formed above the front and back surfaces of the core substrate, viewed including the back and front sides built-up layer, the including a plurality of resin insulation layers and wiring layers formed between them,
The ceramic layer of the core substrate is made of a machinable ceramic, and the machinable ceramic is a mixture of SiO 2 and Al 2 O 3 or a mixture of AlN and BN .
The thickness of the ceramic layer forming the core substrate is thicker than the thickness of the resin insulation layer .
A wiring board for an electronic component inspection apparatus.
前記表面側および裏面側ビルトアップ層を形成する前記樹脂絶縁層は、耐熱性の樹脂からなる、
ことを特徴とする請求項1に記載の電子部品検査装置用配線基板。
The resin insulation layer forming the front surface side and the back surface side built-up layer is made of a heat resistant resin.
The wiring board for an electronic component inspection apparatus according to claim 1.
前記表面側および裏面側ビルトアップ層は、複数の前記樹脂絶縁層の間に位置する前記配線層を接続するビア導体と、表面側ビルトアップ層の表面および裏面側ビルトアップ層の裏面に形成され、且つ上記配線層およびビア導体と導通する複数の表面側または裏面側パッドを有する、
ことを特徴とする請求項1または2に記載の電子部品検査装置用配線基板。
The front-side and back-side built-up layers are formed on via conductors connecting the wiring layers located between the plurality of resin insulation layers, and on the front-side and back-side built-up layers. And having a plurality of front-side or back-side pads that are electrically connected to the wiring layer and the via conductor.
The wiring board for an electronic component inspection apparatus according to claim 1 or 2 .
前記表面側ビルトアップ層の表面に形成された複数の表面側パッドには、それぞれプローブが取り付けられる、
ことを特徴とする請求項1乃至3の何れか一項に記載の電子部品検査装置用配線基板。
A probe is attached to each of the plurality of surface side pads formed on the surface of the surface side built-up layer,
The wiring board for an electronic component inspection apparatus according to any one of claims 1 to 3.
JP2007246386A 2007-09-25 2007-09-25 Wiring board for electronic component inspection equipment Active JP5108433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007246386A JP5108433B2 (en) 2007-09-25 2007-09-25 Wiring board for electronic component inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007246386A JP5108433B2 (en) 2007-09-25 2007-09-25 Wiring board for electronic component inspection equipment

Publications (2)

Publication Number Publication Date
JP2009075027A JP2009075027A (en) 2009-04-09
JP5108433B2 true JP5108433B2 (en) 2012-12-26

Family

ID=40610123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007246386A Active JP5108433B2 (en) 2007-09-25 2007-09-25 Wiring board for electronic component inspection equipment

Country Status (1)

Country Link
JP (1) JP5108433B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010027075A1 (en) * 2008-09-05 2010-03-11 日本発條株式会社 Wiring board and probe card
KR101018097B1 (en) 2009-04-29 2011-02-25 삼성전기주식회사 Method for Manufacturing of Probe Board
KR101167762B1 (en) 2009-09-04 2012-07-24 삼성전기주식회사 Method for treating electrode pad, and method for testing open short of a substrate with the same
JP5507278B2 (en) * 2010-02-01 2014-05-28 日本発條株式会社 Machinable ceramic circuit board and manufacturing method thereof
JP5588851B2 (en) * 2010-12-14 2014-09-10 株式会社日本マイクロニクス Electrical connection device and manufacturing method thereof
KR20120076265A (en) * 2010-12-29 2012-07-09 삼성전기주식회사 Ceramic substrate for probe card and fabricating method therepof
JP6589990B2 (en) * 2015-09-30 2019-10-16 株式会社村田製作所 Laminated wiring board for probe card and probe card having the same
JP6947708B2 (en) * 2018-08-29 2021-10-13 日本特殊陶業株式会社 Wiring board
KR102575741B1 (en) * 2021-04-29 2023-09-06 (주)샘씨엔에스 Space transformer having common through via and method of fabricating the same
CN114397482A (en) * 2021-12-20 2022-04-26 百及纳米科技(上海)有限公司 Probe device and probe control apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003203954A (en) * 1999-11-18 2003-07-18 Ibiden Co Ltd Inspection apparatus and probe card
JP2002257853A (en) * 2001-02-27 2002-09-11 Ibiden Co Ltd Probe card
JP4599121B2 (en) * 2004-09-08 2010-12-15 イビデン株式会社 Electrical relay plate
JP4583224B2 (en) * 2005-04-05 2010-11-17 京セラ株式会社 Wiring board for measurement, probe card and evaluation device

Also Published As

Publication number Publication date
JP2009075027A (en) 2009-04-09

Similar Documents

Publication Publication Date Title
JP5108433B2 (en) Wiring board for electronic component inspection equipment
CN110678434B (en) Multilayer ceramic substrate and method for manufacturing same
JP5236379B2 (en) IC inspection apparatus substrate and manufacturing method thereof
JP2009074823A (en) Wiring board for electronic component inspection device, and its manufacturing method
US20110063066A1 (en) Space transformer for probe card and method of repairing space transformer
TWI658754B (en) Multilayer wiring board for electronic parts inspection
US8806731B2 (en) Method of repairing a probe board
JP2009158576A (en) Multilayer ceramic substrate for electronic component inspecting tool
JP5566271B2 (en) Wiring board and manufacturing method thereof
JP5145089B2 (en) WIRING BOARD FOR ELECTRICAL CHARACTERISTICS MEASUREMENT, AND METHOD FOR PRODUCING WIRING BOARD FOR ELECTRICAL CHARACTERISTICS
JP2006275579A (en) Test substrate and test device
JP4960854B2 (en) Wiring board for electronic component inspection equipment
KR20090005785A (en) Space transformer having through via and manufacturing method thereof
JP6250309B2 (en) Manufacturing method of multilayer wiring board
KR20120076266A (en) Ceramic substrate for probe card and fabricating method thereof
JP5122935B2 (en) Manufacturing method of multilayer ceramic substrate for electronic component inspection jig
TW202038686A (en) Multilayer ceramic substrate and manufacturing method thereof
JP4789675B2 (en) A wiring board having a through hole, a manufacturing method thereof, and a probe card having the wiring board.
JP2007221093A (en) Dielectric laminate structure, and wiring substrate
JP6301595B2 (en) Wiring board and method for manufacturing multilayer wiring board
JP2011114174A (en) Wiring board
JP6442136B2 (en) Wiring board and manufacturing method thereof
JP2009092581A (en) Wiring board for electronic component inspection device
JP4616230B2 (en) Substrate for IC inspection equipment
JP5601993B2 (en) Wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121005

R150 Certificate of patent or registration of utility model

Ref document number: 5108433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250