JP5108180B2 - 効率的な反射結合を行なうための導波路の配置と角度の決定 - Google Patents

効率的な反射結合を行なうための導波路の配置と角度の決定 Download PDF

Info

Publication number
JP5108180B2
JP5108180B2 JP2001155578A JP2001155578A JP5108180B2 JP 5108180 B2 JP5108180 B2 JP 5108180B2 JP 2001155578 A JP2001155578 A JP 2001155578A JP 2001155578 A JP2001155578 A JP 2001155578A JP 5108180 B2 JP5108180 B2 JP 5108180B2
Authority
JP
Japan
Prior art keywords
light
waveguide
boundary surface
refractive index
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001155578A
Other languages
English (en)
Other versions
JP2002006244A5 (ja
JP2002006244A (ja
Inventor
マーク・エイ・トロル
Original Assignee
アバゴ・テクノロジーズ・ジェネラル・アイピー(シンガポール)プライベート・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アバゴ・テクノロジーズ・ジェネラル・アイピー(シンガポール)プライベート・リミテッド filed Critical アバゴ・テクノロジーズ・ジェネラル・アイピー(シンガポール)プライベート・リミテッド
Publication of JP2002006244A publication Critical patent/JP2002006244A/ja
Publication of JP2002006244A5 publication Critical patent/JP2002006244A5/ja
Application granted granted Critical
Publication of JP5108180B2 publication Critical patent/JP5108180B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3596With planar waveguide arrangement, i.e. in a substrate, regardless if actuating mechanism is outside the substrate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/004Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3538Optical coupling means having switching means based on displacement or deformation of a liquid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35442D constellations, i.e. with switching elements and switched beams located in a plane
    • G02B6/3546NxM switch, i.e. a regular array of switches elements of matrix type constellation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3564Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details
    • G02B6/3568Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details characterised by the actuating force
    • G02B6/3576Temperature or heat actuation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、一般的に、光導波路の効率的な結合に関し、さらに詳しくは、全反射面に対する導波路の位置および角度の決定に関するものである。
【0002】
【従来の技術】
遠隔通信あるいはデータ通信環境における信号伝達には、光学的なネットワークが盛んに使用されるようになってきた。レーザ光の変調の形態で情報を交換することができる。光信号を効率的に発生させるための装置と長距離にわたって光信号を送信するためのケーブルは、容易に入手可能である。しかしながら、信号の強度に大きく減衰させることなく信号を局所的に操作できるようにすることには多少の問題がある。局所的な操作は、2つの導波路間における定常状態信号送信装置により可能であり、あるいは、一つの導波路を通る光信号を多数の出力導波路のいずれかに伝達することができるスイッチング装置により可能となる。
【0003】
一つの導波路から他の導波路への光信号を再び導くための1つの技術として、反射鏡(または、ミラー)を使用する。反射鏡は固定することができ、あるいは、反射鏡をマイクロマシン装置に接続することによりスイッチング装置で使用することができる。反射鏡を使用する代わりに、全反射面(TIR)を設けることができる。従来技術において知られているように、TIRは、光線が屈折率の高い領域と屈折率の低い領域との間の境界面に向かって、屈折率の高い方の側から進行するときに生じる。TIRの現象を利用したスイッチング装置は、本発明の譲受人に譲渡されているFouquet他による米国特許第5,699,462号に記載されている。分離したスイッチングユニット10を図1に示す。スイッチングユニットは、基板上の層によって形成された平らな導波路を有している。導波路層は、下方のクラッド層14、光学的なコア16、および、図示せぬ上方のクラッド層からなる。光学的なコアは、主として2酸化ケイ素から構成することができるが、必要な屈折率を得るための材料が注入されている。クラッド層は、コア材料の屈折率とは大きく異なる屈折率を有する材料から形成されているので、光信号はコアに沿って導かれる。導波路の実効位相屈折率は、当該技術分野において周知のように、コア材料の屈折率とクラッド層の材料の屈折率によって決まる。コア材料の層は、第1の光路における第1の入力導波路20と第1の出力導波路26を画定する導波路セグメントにパターン形成されている。このパターン形成は、また、第2の直線路における第2の入力導波路24と第2の出力導波路22を画定する。次に、上方のクラッド層が、パターン化されたコア材料の上に被着される。コア材料、上方のクラッド層、および、下方のクラッド層14の少なくとも一部分を貫通するようにトレンチ28をエッチングすることによりギャップが形成される。
【0004】
第1の入力導波路20と第2の出力導波路22は、導波路の接合部30が蒸気あるいはガスで充填されているときに、第1の入力導波路20から第2の出力導波路22に向かうTIR転向光を生じることになる入射角度でトレンチ28の側壁と交差する軸を有する。しかしながら、接合部30が導波路の実効位相屈折率にほぼ一致する屈折率を有する流体で充填されているときは、第1の入力導波路20からの光は、屈折率の一致した流体を通って直線的に整列した第1の出力導波路26に向かって進むことになる。
【0005】
Fouquet他による特許には、透過状態と反射状態に光学スイッチングユニット10を切り換えるための多数の代替実施態様が記載されている。透過状態では、2つの入力導波路20と24は、それらと直線的に整列した出力導波路26と22にそれぞれ光学的に結合される。反射状態では、第1の入力導波路20は、第2の出力導波路22に光学的に結合されるが、第2の入力導波路24は、出力導波路22及び26のいずれにも光学的に接続されない。2つの状態を切り換えるための一つのアプローチを図1に示す。スイッチングユニット10は、流体が収容されたトレンチ内における気泡の形成を制御するマイクロヒータ38を有している。ヒータが、屈折率の一致している流体内に気泡を形成するのに十分な高温に達しているときは、気泡は、4つの導波路の接合部30に配置される。その結果、導波路20に沿って進む光は、トレンチ28の側壁に達する際に屈折率の不一致に遭遇してTIRを生じ、これにより、導波路20と22は、光学的に結合される。しかしながら、ヒータ38が動作していないときは、屈折率の一致している流体が、再び、4つの導波路間の接合部30に留まることになる。
【0006】
図1を参照して説明する原理は、定常状態反射装置にも適用できる。すなわち、屈折率の一致している流体がトレンチ28から除去されると、導波路20と22は、トレンチの壁においてTIRにより連続的に結合される。この定常状態の実施態様には、導波路24と26は含まれない。
【0007】
【発明が解決しようとする課題】
TIRの現象は、一つの導波路から他の導波路への光信号の転送にうまく使われてきたが、さらなる改善が必要である。屈折率の高い領域と屈折率の低い領域との間の境界面に入射する光は、TE偏光を有するモードとTM偏光を有するモードとの間で変化する。光は、その偏光に従い、境界面で異なる応答をする。結果として、導波路モードへの結合が不完全なために偏光依存損失(PDL)が生じる。境界面に入射する光の偏光はランダムに変化するので、PDLの変化もランダムである。
【0008】
偏光依存損失をなくし、あるいは、予測可能にする導波路の光学的結合構成が必要とされている。TIR境界面に対して導波路を位置決めするための効率的なレイアウトを決定する方法も必要とされている。
【0009】
【課題を解決するための手段】
屈折率の高い領域と屈折率の低い領域との間の境界面を交差する2つの導波路の結合における光学的な効率は、境界面に沿ったグーズ−ヘンヒェン効果を補償することによって高められる。1実施態様では、境界面に沿った反射光の横方向のずれが、2つの導波路の軸が境界面に沿って離れているべき距離を決定するために予測される。他の実施態様では、2つの導波路の軸間の距離が固定されていても、適切な角度を選択することによって第2の導波路による集光度を上げることができるので、2つの導波路の入射角度は、偏光による横方向のずれを等しくするように選択される。好ましい実施例では、軸間の距離および入射角度の両方とも、グーズ−ヘンヒェン効果を補償するように選択される。
【0010】
前述したように、TIRは、屈折率の高い領域と屈折率の低い領域との間の境界面に、屈折率の高い領域の側から光線が入射するときに生じる。しかしながら、グーズ−ヘンヒェン効果により、反射光は、入射光が境界面と交差するポイントから短い距離だけ離れた境界面から生じることになる。反射光の集光が最大になるように導波路の位置および/または角度を調整することによって、信号処理の信頼性を高めることができる。最適な位置決めは、偏光に左右される。すなわち、TM偏光を有する光の横方向のずれ(ZTM)は、TE偏光を有する光の横方向のずれ(ZTE)とは異なる。TM偏光またはTE偏光のいずれかに対して反射を最適化することができる。代替的には、境界面に沿った導波路の軸間の距離を、2つの偏光に対する損失が等しくなるように選択することができる。2つの偏光における2つの最適ポイント間の差の半分になるように距離を選択することによって、反射の偏光依存損失(PDL)を0に近づけることができる。これにより、許容可能な全体的な低損失構成が得られる。
【0011】
TM偏光を有する光の横方向のずれは、以下の式に基づいて計算することができる。
【式1】
Figure 0005108180
ここで、k=2π/λ、nsは低い方の屈折率、nfは高い方の屈折率、N=nsinθ、θは入射角度、λは光の波長である。TE偏光を有する光の横方向のずれは、以下の式を用いて決定することができる。
【式2】
Figure 0005108180
により決定される。ZTMとZTEの値は、幾何学的な反射が生じたとしたときに光束が得られる位置からの光束のずれに対して既知の三角法を用いることにより変換することができる。この変換を使用して、2つの導波路が幾何学的な反射位置にあるときに生じるであろう信号減衰を決定することができる。しかしながら、導波路の軸が必要な距離だけ離れるように、2つの導波路を全反射面と交差させて配置することによってこの損失を除去することができる。導波路を配置するこの工程は、境界面を画定する予め選択された面で終端するように導波路を作製することによって実施することができる。代替的には、交差軸を有するように導波路を作製し、次いで、それらの2つの軸間に所望の距離を与える面に沿って切り取ることによって実施することができる。前述したように、ZTMの決定にのみ基づいて、あるいは、ZTEの決定にのみ基づいて、あるいは、ZTMとZTEの平均に基づいて、この距離を選択することができる。
【0012】
2つの導波路に沿った伝播を含む光路の折り曲げを行なう特定のアプリケーションに対する入射角度を、偏光依存損失が最小になるように選択することができる。式1と式2における横方向のずれは入射角度(θ)に依存するので、境界面の法線に対して等しくなるように選択された2つの導波路の入射角度は、導波路の屈折率(nf)(すなわち、導波路の実効位相屈折率)と、導波路に対向する境界面の側にある領域の屈折率(ns)の関数である。2つの偏光に対してずれがほぼ等しくなる条件について式1と式2を解くと、式3及び式4になる。
【式3】
Figure 0005108180
【式4】
Figure 0005108180
境界面に沿った軸方向のずれの決定と同じように、一方の偏光あるいは他方の偏光に対して入射角度を最適化することができるが、式4を使用して、偏光依存損失が理論的に0となる条件を決定するのが好ましい。1例として、nsが空気の屈折率であり、導波路が1.30〜1.60の範囲にある実効位相屈折率を与える材料から形成されている場合は、式4を用いて決定される入射角度の範囲は48°〜60°である。
【0013】
【発明の実施の形態】
図2を参照して説明する。高い屈折率を有する光路に沿って伝播する入力光40が屈折率の低い領域に対する境界である境界面42に入射したとき、全反射が生じる。例えば、この屈折率の低い領域を、空気で充填された領域とすることができる。入力光40は、TE偏光を有するモードとTM偏光を有するモードとの間でランダムに変化する。図2では、2つの偏光を数字46と44で示している。グーズ−ヘンヒェン効果として知られている現象のために、反射光は、入力光40が境界面に入射する境界面42のポイントから短い距離だけ離れたポイントから発する。この距離は、入力光のその時点での偏光によって決まる。図2では、TM偏光を有する出力光48は、TE偏光を有する出力光50が生じる距離(ZTE)よりも、その入射ポイントから短い距離(ZTM)において生じるものとして示している。
【0014】
グーズ−ヘンヒェン効果を考慮して、光結合装置の設計者は、出力光線48の位置または出力光線50の位置のいずれかに出力導波路を配置することにより、特定の偏光を有する光の結合を最適化するように選択することができる。従って、入力導波路と出力導波路の軸間距離は、ZTMあるいはZTEのいずれかになる。一方、設計者は、距離ZTMおよびZTEの平均値であるZAVEで示される距離に出力導波路を配置することによって偏光依存損失が0になるよう試みることもできる。
【0015】
効率の良い光結合装置を得るためには、導波路の入射角度を考慮することも必要である。以下でさらに詳しく説明するように、入射角度は、入力光40の光線軸から2つの偏光依存出力光48及び50の光線軸への横方向のずれを決定する際の一つのファクタである。導波路について適正な角度を選択することにより、2つの偏光について同じずれを得ることができ、出力光線52の理論的な偏光依存損失が0になる。この角度は、導波路の屈折率と境界面42の反対側の領域の屈折率によって決まる。
【0016】
図3に、トレンチ60と交差する入力導波路56および出力導波路58を有する定常状態光結合構成54を示す。導波路は、基板62上に形成されている。導波路の構造は、図1に関して説明した構造と同一のものとすることができる。すなわち、パターン形成された2酸化ケイ素の層から導波路を形成することができる。この2酸化ケイ素は、所望の屈折率を有する導波路のコアを形成するように注入処理(またはドーピング)されており、伝播する光をコア材料内に捕捉するためのクラッド層がコアの回りに形成されている。しかしながら、導波路を形成するためにドーピングされた2酸化ケイ素を使用することは、本発明にとって重要なことではない。コア材料とクラッド層をエッチング処理することによりトレンチ60を形成して、空気が充填された領域を作り出し、これによって、その屈折率を導波路の実効位相屈折率よりも十分小さくすることができる。しかしながら、高い屈折率と低い屈折率の間に境界面を形成するために、他の技術を使用することもできる。
【0017】
入力導波路56は、出力導波路58の軸66の交差ポイントから離れたポイントでトレンチ60の壁に交差する軸64を有している。全反射のため、入力導波路56からトレンチ60の側壁に光が入射する際に、光路が折り曲げられる。反射光の集光が最大になるように導波路の位置および/または角度を調整することによって、信号処理の信頼性を高めることができる。入射角度は等しいが、これは、図3では、入力導波路軸64とトレンチ60の側壁に対する法線とのなす角θ1と、出力導波路軸66とトレンチ60の側壁に対する法線とのなす角θ2として別々に示されている。角度θ1とθ2とが固定されている場合は、軸64と66がトレンチ60の側壁と交差するポイント間の距離を変えることができる。例えば、あるアプリケーションにおいて、導波路は形成するが、トレンチ60の位置については選択の余地があり、従って、図2における三つの距離、ZTM、ZTEあるいはZAVEの任意の1つを、トレンチ60を適切な位置に正確にエッチングすることによって画定することができる。一方、トレンチ上における導波路軸の交差ポイント間の距離は固定であるが、入射角度は選択できるというアプリケーションも考えられる。アプリケーションに応じて、導波路および境界面の幾何学的な形状は、入力導波路56から出力導波路58への結合が効率の良いものになるよう選択される。
【0018】
導波路56及び導波路58を、それぞれ入力導波路及び出力導波路として説明するが、図3に示す構成では双方向の結合が実現できる。すなわち、外部の光源から導波路56に導かれる光線は、トレンチ60の側壁から導波路56に反射されるが、これは、逆方向に伝播する場合の効率と同じ効率で行なわれる。
【0019】
所定の入射角度に対して、TM偏光を有する光の横方向のずれは、以下の式に基づいて計算することができる。
【式5】
Figure 0005108180
ここで、k=2π/λ、nfは導波路の屈折率(実効位相屈折率)、nsはトレンチ60内の領域の屈折率、N=nsinθ、θは入射角度、λは光線の波長である。TM偏光を有する光に関して入力導波路56と出力導波路58との結合を最適化することを目的とするアプリケーションについてはこの式が使える。この場合は、高い偏光依存損失が生じることになる。なぜなら、光結合構成では偏光が優先するからである。しかしながら、偏光の選択性は、いくつかのアプリケーションでは必要とされる場合がある。
【0020】
TE偏光を有する光の選択性が所望されるアプリケーションでは、以下の式を使うことができる。
【式6】
Figure 0005108180
入力および出力導波路56および58の軸を距離ZTEだけ離すことにより、結合構成は、所望の偏光を有する光に優位なものとなる。
【0021】
他のアプリケーションでは、入力導波路56から出力導波路58への反射に対する偏光依存損失を最小にすることが目的である。これは、所与の導波路入射角度に対して、ZTMとZTEとの平均の距離だけ2つの導波路軸64と66を分離することによって達成される。結果として、出力導波路58への伝達は、光線の中心と出力導波路の軸66との間のずれに関してほぼガウス形の伝達係数を有する。従って、信号損失は予測可能であり、許容可能な範囲内にある。
【0022】
他の実施態様では、入射角度は、入力導波路56と出力導波路58との間に光学的に効率の良い結合構成を実現するために選択される。適切な入射角度を選択することによって、2つの偏光に同じ横方向のずれが生じる。2つの偏光に対して同じずれを与える条件は以下の式によって求められる。
【式7】
Figure 0005108180
導波路軸64、66のそれぞれと、トレンチ60の側壁に直交する線とのなす角度は、以下の式によって求められる。
【式8】
Figure 0005108180
従って、導波路の材料の屈折率(nf)と、トレンチ領域の屈折率(ns)が既知の場合は、入射角度は簡単に計算できる。例えば、nsが空気の屈折率であり、導波路が1.30〜1.60の範囲にある屈折率(nf)を与える材料で形成されている場合に、式7を用いて決定される入射角度の範囲を表1に示す。表1に示す屈折率は導波路の実効位相屈折率であり、これは、典型的な導波路にはほぼ53°の入射角度が必要であることを意味している。
【表1】
Figure 0005108180
【0023】
図4は、本発明によるスイッチング構成68を示すものである。このスイッチング構成は、2つの入力導波路70及び72、2つの出力導波路74及び76を備えている。図4では、このスイッチング構成は反射状態で示されている。この状態では、マイクロヒータ78が励起されてトレンチ82内の流体80を加熱する。この流体は、導波路の実効位相屈折率にほぼ等しい屈折率を有している。1つの許容可能な流体はイソプロピルアルコールである。マイクロヒータ78の加熱により4つの導波路の接合部で気泡が形成され、これにより、トレンチ82の側壁に全反射境界面が形成される。
【0024】
スイッチング構成68が図4に示す反射状態にあるとき、入力導波路70は、出力導波路74に光学的に結合される。従って、入力導波路70を伝播する光は、トレンチ82の側壁で反射されて出力導波路74に入る。一方、導波路76の軸は、入力導波路72の軸から十分に離れているため、入力導波路72と出力導波路76との間の光結合は阻止される。しかしながら、いくつかの実施態様では、入力導波路72と出力導波路76を光学的に結合することが望ましい場合もある。
【0025】
マイクロヒータ78が停止すると、トレンチ82内の流体80は、4つの導波路70、72、74および76の接合部においてトレンチ82の一部分を占めることになる。流体80は導波路の実効位相屈折率にほぼ等しい屈折率を有しているので、スイッチング構成68は透過状態にある。入力導波路70を経由して導かれる信号は、屈折率の一致した流体80を通って出力導波路76に伝播する。同様に、入力導波路72を介して導入される光信号は、流体80を通って出力導波路74に伝搬する。4つの導波路の接合部に関して流体を操作する他のアプローチを使用することもできる。例えば、インクジェットプリントヘッドに使われる技術を使用して、導波路の接合部から屈折率の一致した液体を噴射することができる。この場合は、流体を充填するために毛管作用を利用する。
【0026】
図5に示すように、全反射(TIR)境界面を用いて導波路を効率的に光結合するための1実施例は、TM偏光を有する光の横方向のずれを決定するステップ84を有している。このステップは、式5を使用して実行することができる。ステップ86で、TE偏光を有する光の横方向のずれが決定される。この計算は、式6に基づいて行うことができる。TM偏光された光あるいはTE偏光された光の一方のみの結合が好ましいアプリケーションもあるので、ステップ84と86の一方のみを使用することも任意に可能である。
【0027】
ステップ88において、導波路とTIR境界面との間の計算された関係が設定される。このステップの1実施例では、導波路は、固定されたTIR境界面に対してパターン形成される。他の実施例では、導波路は、交差する軸を備えるように作製されるが、導波路材料は、所望の位置にTIR境界面を形成するようにエッチングされ、それらの軸は、図3と図4に関連して説明したようにTIR境界面において離れて配置される。
【0028】
導波路の効率的な光結合構成を提供するための他のまたは追加のプロセスとして、図6のステップ90は、TM偏光とTE偏光を有する光線にほぼ等しい横方向のずれを生じる入射角度を決定するステップを含んでいる。ステップ90を実施する際には、式8を使用することできる。次に、決定された入射角度をステップ92で使用して、各導波路とTIR境界面との間の計算された関係を確立する。結果として、ほぼ0である偏光依存損失が、0の反射損失と同時に達成される。
【0029】
以下においては、本発明の種々の構成要件の組み合わせからなる例示的な実施態様を示す。
【0030】
1.光結合装置(54、68)において、
第1の軸(64)と第1の端部を有する第1の光導波路(56、70)と、
第2の軸(66)と第2の端部を有する第2の光導波路(58、74)であって、前記第1および第2の端部が共通の境界面(60、82)に沿って配置されており、前記境界面における屈折率の変化により、前記第1の光導波路から前記第2の光導波路への光の反射が生じ、前記第1および第2の軸が、前記境界面において前記境界面に沿ったグーズ−ヘンヒェン効果を補償するように選択された距離だけ離れて配置されている、第2の光導波路(58、74)
とからなる、光結合装置(54、68)。
2.前記境界面(60、82)が、前記第1の光導波路(56、70)および第2の光導波路(58、74)の比較的高い屈折率からそれより低い屈折率に屈折率が変化する境界であり、前記グーズ−ヘンヒェン効果が、前記境界面に入射する光の、前記第1の光導波路からの横方向のずれ(ZS)である、上項1の光結合装置。
3.前記第1および第2の軸(64及び66)が、TM偏光を有する光の横方向のずれとTE偏光を有する光の横方向のずれとのオフセットだけ前記境界面に沿って互いに離れて配置される、上項2の光結合装置。
4.前記TM偏光を有する前記光の横方向のずれ(ZTM)が、
TM=2(N2−ns 2-1/2tan(θ)/k(N2/ns 2+N2/nf 2−1)
であり、
前記TE偏光を有する前記光の横方向のずれ(ZTE)が、
TE=2(N2−ns 2-1/2tan(θ)/k
であり、ここで、k=2π/λ、nfは前記比較的高い屈折率、nsは前記低い方の屈折率、N=nfsinθ、θは前記境界面への前記光の入射角度、および、λは前記光の波長である、上項3の光結合装置。
5.前記第1および第2の軸(64、66)が、TM偏光を有する光とTE偏光を有する光のうちの一方の効率の高い結合に基づくオフセットだけ前記境界面に沿って離れて配置される、上項2の光結合装置。
6.前記第1の光導波路(56、70)および第2の光導波路(58、74)が、前記境界面の法線に対して、それぞれ、角度θ1とθ2をなし、これらの角度が、前記境界面(82)におけるグーズ−ヘンヒェン効果を補償するように選択される、上項1の光結合装置。
7.前記角度θ1とθ2のそれぞれが、それらの角度が、arcsin((2/(nf 2/ns 2+1))1/2)にほぼ等しいということに基づいて決定され、ここで、nfは前記第1の光導波路(56、70)および第2の光導波路(58、74)の屈折率、nsは前記境界面における屈折率であり、前記角度が等しいことからなる、上項6の光結合装置。
8.前記第1の光導波路(70)および第2の光導波路(74)の実効位相屈折率にほぼ等しい屈折率を有する流体(80)と、
前記第1および第2の端部に対して前記流体を操作するためのメカニズム(78)であって、前記流体が前記第1および第2の端部に存在しない反射状態と、及び、前記流体が前記第1および第2の端部に存在して、前記第1および第2の光導波路からの光を前記境界面を通して伝播するようにした透過状態とを形成するメカニズム
をさらに備える、上項1、2、3、4、5、6、または7の光結合装置。
9.第1の導波路(56、70)を第2の導波路(58、74)に光学的に結合する方法において、
前記第1の導波路から伝播する光線の横方向のずれを決定して全反射面に入射させるステップであって、前記第1の導波路と前記第1の導波路に対向する前記面の側にある領域(60、82)の屈折率を含むファクタ(要因)に基づいて前記横方向のずれを決定するステップを含む、ステップと、
前記第1および第2の導波路を前記全反射面に交差するように配置するステップであって、前記第1および第2の導波路の軸(64、66)を、前記決定された横方向のずれに基づいた距離だけ前記面において離して配置する、ステップ
からなる、方法。
【0031】
本発明の概要を以下に示す。全反射境界面に沿ってグーズ-ヘンヒェン効果を補償することより、導波路(56及び58と70及び74)の効率的な光結合構成を実現する。1実施態様では、境界面に沿った反射光の横方向シフトを、2つの導波路の軸(64及び66)間の距離を決定するために計算する。TE偏光を有する光またはTM偏光を有する光の結合を最大にするために、軸間の距離を計算することができる。好ましくは、軸間の距離は、偏光依存損失が最小になるよう設定される。本発明の他の実施態様では、2つの偏光の横方向シフトが等しくなるように2つの導波路の入射角度を選択して、偏光依存損失を最小にする。
【0032】
【発明の効果】
本発明によれば、偏光依存損失を低減した効率の良い導波路の光結合手段が得られる。
【図面の簡単な説明】
【図1】従来技術による全反射を用いた光スイッチングユニットの上面図である。
【図2】グーズ−ヘンヒェン効果の結果としての全反射を表す図である。
【図3】本発明による定常状態の光スイッチング構成の上面図である。
【図4】本発明によるスイッチング構成の上面図である。
【図5】本発明の1実施態様を実施するための処理フローを示す図である。
【図6】本発明の代替実施態様または追加の実施態様を実施するための処理フローを示す図である。
【符号の説明】
54、68 光結合装置
56、70 第1の光導波路
58、74 第2の光導波路
60、82 境界面(トレンチ)
64 第1の光導波路の軸
66 第2の光導波路の軸
80 流体

Claims (4)

  1. 光結合装置において、
    第1の軸と第1の端部を有する第1の光導波路と、
    第2の軸と第2の端部を有する第2の光導波路であって、前記第1および第2の端部が共通の境界面に沿って配置されている、第2の光導波路と、
    前記第1及び第2の光導波路の実効位相屈折率にほぼ等しい屈折率を有する流体と、
    前記第1および第2の端部に対して前記流体を操作するためのメカニズムであって、前記流体が前記第1および第2の端部に存在しないようにすることにより、前記境界面において屈折率の変化を生じさせて前記第1の光導波路から前記第2の光導波路へ光が反射する反射状態を提供し、及び、前記流体が前記第1および第2の端部に存在するようにすることにより、前記第1および第2の光導波路からの光が前記境界面を通って伝播する透過状態を提供するメカニズム
    を備え、
    前記第1の軸と前記第2の軸が、前記境界面に沿ったグーズ−ヘンヒェン効果を補償するために、TM偏光を有する光の前記境界面に沿った横方向のずれ量とTE偏光を有する光の前記境界面に沿った横方向のずれ量の平均値と同じ距離だけ前記境界面において離れて配置され
    前記第1及び第2の軸のそれぞれと前記境界面とがなすそれぞれの角度は、前記TM偏光を有する光の前記横方向のずれ量と前記TE偏光を有する光の前記横方向のずれ量が異なるように設定されており、前記平均値は、それらの角度を変更することなく決定される、光結合装置。
  2. 前記境界面が、前記第1の光導波路および第2の光導波路の比較的高い屈折率からそれより低い屈折率に屈折率が変化する境界であり、前記グーズ−ヘンヒェン効果が、前記境界面に入射する光の、前記第1の光導波路からの前記境界面に沿った横方向のずれ(Z)である、請求項1の光結合装置。
  3. 前記TM偏光を有する前記光の前記境界面に沿った横方向のずれ(ZTM)が、
    TM=2(N−n −1/2tan(θ)/k(N/n +N/n −1)であり、
    前記TE偏光を有する前記光の前記境界面に沿った横方向のずれ(ZTE)が、
    TE=2(N−n −1/2tan(θ)/k
    であり、ここで、k=2π/λ、nは前記比較的高い屈折率、nは前記低い方の屈折率、N=nsinθ、θは前記境界面への前記光の入射角度、および、λは前記光の波長である、請求項1または2の光結合装置。
  4. 第1の導波路を第2の導波路に光学的に結合する方法において、前記第1の導波路が第1の端部を有し、前記第2の導波路が第2の端部を有し、該第1の端部と該第2の端部が共通の境界面に沿って配置されており、
    前記第1の導波路から伝播する光線の前記境界面に沿った横方向のずれを決定して前記境界面に入射させるステップであって、前記第1の導波路と前記第1の導波路に対向する前記境界面の側にある領域の屈折率を含むファクタ(要因)に基づいて前記光線のうちTM偏光を有する光の前記境界面に沿った横方向のずれ量と前記光線のうちTE偏光を有する光の前記境界面に沿った横方向のずれ量を決定するステップを含む、ステップと、
    前記第1および第2の導波路を前記境界面に交差するように配置するステップであって、前記第1および第2の導波路の軸を、前記TM偏光を有する光の前記境界面に沿った横方向のずれ量と前記TE偏光を有する光の前記境界面に沿った横方向のずれ量の平均値と同じ距離だけ前記境界面において離して配置し、これによって前記境界面に沿ったグーズ−ヘンヒェン効果が補償されるようにする、ステップと、
    前記第1及び第2の光導波路の実効位相屈折率にほぼ等しい屈折率を有する流体を前記第1および第2の端部に対して操作するステップであって、該流体が前記第1および第2の端部に存在しないようにすることにより、前記境界面において屈折率の変化を生じさせて前記第1の導波路から前記第2の導波路へ光が反射する反射状態を提供し、及び、前記流体が前記第1および第2の端部に存在するようにすることにより、前記第1および第2の導波路からの光が前記境界面を通って伝播する透過状態を提供するステップ
    を含み、
    前記平均値は、前記第1及び第2の光導波路の軸と前記境界面とがなす複数の異なる角度の各々について、該角度を変更することなく決定される、方法。
JP2001155578A 2000-06-08 2001-05-24 効率的な反射結合を行なうための導波路の配置と角度の決定 Expired - Fee Related JP5108180B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/590,754 US6470109B1 (en) 2000-06-08 2000-06-08 Determining waveguide positions and angles for efficient reflective coupling
US09/590754 2000-06-08

Publications (3)

Publication Number Publication Date
JP2002006244A JP2002006244A (ja) 2002-01-09
JP2002006244A5 JP2002006244A5 (ja) 2008-06-19
JP5108180B2 true JP5108180B2 (ja) 2012-12-26

Family

ID=24363560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001155578A Expired - Fee Related JP5108180B2 (ja) 2000-06-08 2001-05-24 効率的な反射結合を行なうための導波路の配置と角度の決定

Country Status (3)

Country Link
US (1) US6470109B1 (ja)
EP (1) EP1162483A3 (ja)
JP (1) JP5108180B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1439428A3 (en) * 2003-01-14 2009-05-13 ASML Netherlands B.V. Level sensor for lithographic apparatus
JP3910180B2 (ja) 2003-01-14 2007-04-25 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置のレベルセンサ
JP5622068B2 (ja) * 2005-11-15 2014-11-12 株式会社ニコン 面位置検出装置、露光装置、およびデバイスの製造方法
KR101165715B1 (ko) 2008-12-10 2012-07-18 한국전자통신연구원 광 스위치를 포함하는 광통신 소자
KR101108641B1 (ko) 2010-02-05 2012-01-31 중앙대학교 산학협력단 음의 구스-한센 시프트를 이용한 광소자
CN102230986B (zh) * 2011-05-20 2013-10-09 北京航空航天大学 一种光学相位器件及其应用方法和系统
US20130287336A1 (en) * 2012-04-26 2013-10-31 Shih-Yuan Wang Optical switch
US8842296B2 (en) * 2012-05-02 2014-09-23 Nikon Corporation Methods and devices for reducing errors in Goos-Hänchen corrections of displacement data
US20140078505A1 (en) * 2012-09-18 2014-03-20 Agency For Science, Technology And Research Optical device, method of forming an optical device, and method for determining a parameter of a fluid
CN105606032B (zh) * 2016-01-28 2018-04-20 南开大学 检测消逝场与古斯汉欣位移关系的方法、装置及光学器件

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3990059A (en) * 1975-04-03 1976-11-02 Texas Instruments Incorporated Magnetic bubble detector
DE3122134A1 (de) * 1981-06-04 1982-12-23 Philips Kommunikations Industrie AG, 8500 Nürnberg "dielektrische leitung mit einem leitungsknick mit reflektor"
US4988157A (en) 1990-03-08 1991-01-29 Bell Communications Research, Inc. Optical switch using bubbles
US5436991A (en) * 1992-01-11 1995-07-25 Fuji Photo Film Co., Ltd. Optical waveguide device
JP3036613B2 (ja) * 1992-10-06 2000-04-24 日本電信電話株式会社 マトリクス光導波路スイッチ
US5699462A (en) 1996-06-14 1997-12-16 Hewlett-Packard Company Total internal reflection optical switches employing thermal activation
US5960131A (en) 1998-02-04 1999-09-28 Hewlett-Packard Company Switching element having an expanding waveguide core
US6055344A (en) 1998-02-18 2000-04-25 Hewlett-Packard Company Fabrication of a total internal reflection optical switch with vertical fluid fill-holes
JP3181268B2 (ja) * 1999-04-27 2001-07-03 日本電信電話株式会社 偏波低依存の導波路型光部品
JP3061134B1 (ja) * 1999-05-20 2000-07-10 日本電信電話株式会社 光スイッチ
US6320994B1 (en) * 1999-12-22 2001-11-20 Agilent Technolgies, Inc. Total internal reflection optical switch

Also Published As

Publication number Publication date
US6470109B1 (en) 2002-10-22
EP1162483A3 (en) 2004-06-09
JP2002006244A (ja) 2002-01-09
EP1162483A2 (en) 2001-12-12

Similar Documents

Publication Publication Date Title
EP3759532B1 (en) Optical apparatus and methods of manufacture thereof
US6195478B1 (en) Planar lightwave circuit-based optical switches using micromirrors in trenches
US7031562B2 (en) Photonic input/output port
EP0935149B1 (en) Switching element having an expanding waveguide core
US6571039B1 (en) Optical waveguide having a weakly-confining waveguide section and a strongly-confining waveguide section optically coupled by a tapered neck
KR102427251B1 (ko) 집적 광학 기반의 광 응력 위상 변조기
US8363995B2 (en) Sub-micron planar lightwave devices formed on an SOI optical platform
US6243516B1 (en) Merging optical waveguides having branch angle within a specific range
EP2634605B1 (en) A diffractive coupling grating for perpendicular coupling
US20150378095A1 (en) Efficient optical (light) coupling
KR20030051717A (ko) 트렌치 구조를 갖는 광학 도파관
US20050213873A1 (en) Optical Crossover in thin silicon
JP5108180B2 (ja) 効率的な反射結合を行なうための導波路の配置と角度の決定
JP3976514B2 (ja) 光導波路の製造方法
US20040202429A1 (en) Planar optical component for coupling light to a high index waveguide, and method of its manufacture
US5822481A (en) Waveguide grating optical demultiplexer
EP1623255A2 (en) Low-loss optical waveguide crossovers using an out-of-plane waveguide
KR100899933B1 (ko) 단일모드 soi 광도파로와 광섬유간 연결을 위한 모드변환기 구조
US6614947B1 (en) Digital optical switch using an integrated mach-zehnder interferometer having a movable phase shifter
JP2005326876A (ja) 光導波路
US20040013344A1 (en) Planar optical switch and switch array
KR100819309B1 (ko) 파장분할다중전송 필터 장치
JPH11258434A (ja) 導波形光素子
JPH0618731A (ja) 導波路型光分岐器

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080507

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120113

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees