JP5104308B2 - Biphenylene cross-linked phenol novolac resin and its use - Google Patents

Biphenylene cross-linked phenol novolac resin and its use Download PDF

Info

Publication number
JP5104308B2
JP5104308B2 JP2007524700A JP2007524700A JP5104308B2 JP 5104308 B2 JP5104308 B2 JP 5104308B2 JP 2007524700 A JP2007524700 A JP 2007524700A JP 2007524700 A JP2007524700 A JP 2007524700A JP 5104308 B2 JP5104308 B2 JP 5104308B2
Authority
JP
Japan
Prior art keywords
phenol
parts
biphenylene
resin
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007524700A
Other languages
Japanese (ja)
Other versions
JPWO2007007827A1 (en
Inventor
紀幸 三谷
真希 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2007524700A priority Critical patent/JP5104308B2/en
Publication of JPWO2007007827A1 publication Critical patent/JPWO2007007827A1/en
Application granted granted Critical
Publication of JP5104308B2 publication Critical patent/JP5104308B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/10Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aromatic carbon atoms, e.g. polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Description

本発明は、ビス(アルコキシメチル)ビフェニルあるいはビス(ハロゲン化メチル)ビフェニルと、二価フェノールを少なくとも1成分含有するフェノール類混合物とを反応させて得られるビフェニレン架橋フェノールノボラック樹脂に関するものである。本発明のフェノールノボラック樹脂はエポキシ樹脂用硬化剤として使用される他、エポキシ化ノボラック樹脂、イソシアネート化によるウレタン樹脂、トリアジン樹脂、ポリエステル樹脂の原料としても使用することができる。  The present invention relates to a biphenylene-crosslinked phenol novolak resin obtained by reacting bis (alkoxymethyl) biphenyl or bis (halogenated methyl) biphenyl with a phenol mixture containing at least one dihydric phenol. In addition to being used as a curing agent for epoxy resins, the phenol novolac resin of the present invention can also be used as a raw material for epoxidized novolak resins, urethane resins by isocyanate conversion, triazine resins, and polyester resins.

従来、ビス(アルコキシメチル)ビフェニルあるいはビス(ハロゲン化メチル)ビフェニルと、フェノール類とを反応させて得られるフェノールノボラック樹脂に関しては、ビス(メトキシメチル)ビフェニル化合物の各異性体またはそれらの混合物を使用したビフェニレン架橋フェノールノボラック樹脂が開示されている(特許文献1)。
これらビフェニレン架橋を有するフェノールノボラック樹脂をエポキシ樹脂用硬化剤として用いた場合、低吸水性(低吸湿性)、難燃性、機械特性、接着特性の優れた硬化物が得られる。
Conventionally, for phenol novolac resins obtained by reacting bis (alkoxymethyl) biphenyl or bis (halogenated methyl) biphenyl with phenols, isomers of bis (methoxymethyl) biphenyl compounds or mixtures thereof are used. A biphenylene-crosslinked phenol novolac resin is disclosed (Patent Document 1).
When these phenol novolak resins having biphenylene crosslinks are used as curing agents for epoxy resins, cured products having low water absorption (low moisture absorption), flame retardancy, mechanical properties, and adhesive properties can be obtained.

しかしながら、従来技術によるビフェニレン架橋フェノールノボラック樹脂は、フェノールノボラック樹脂と比較し、硬化速度が遅いという問題がある。硬化速度が遅いと硬化時間が長くなる為、各用途に使用する場合の生産性あるいは生産コストに悪影響を及ぼす。そこで低吸水性(低吸湿性)、難燃性且つ高耐熱性を満足し、さらに硬化速度の速いビフェニレン架橋フェノールノボラック樹脂が要望されている。  However, the biphenylene-crosslinked phenol novolac resin according to the prior art has a problem that the curing rate is slower than the phenol novolac resin. If the curing speed is slow, the curing time becomes long, which adversely affects the productivity or production cost when used for each application. Therefore, there is a demand for a biphenylene-crosslinked phenol novolac resin that satisfies low water absorption (low hygroscopicity), flame retardancy and high heat resistance, and has a high curing rate.

特開平08−143648号公報Japanese Patent Laid-Open No. 08-143648

本発明の目的は、低吸水性(低吸湿性)、耐熱性、難燃性、機械特性、接着特性を有しながら、従来技術のビフェニレン架橋フェノールノボラック樹脂と比較し、エポキシ樹脂の硬化速度が速いビフェニレン架橋フェノールノボラック樹脂を提供することにある。  The object of the present invention is to have a low water absorption (low hygroscopicity), heat resistance, flame retardancy, mechanical properties and adhesive properties, while the epoxy resin has a curing rate compared with the conventional biphenylene-crosslinked phenol novolac resin. It is to provide a fast biphenylene cross-linked phenol novolac resin.

本発明者は、上記目的を達成するために鋭意検討した結果、フェノール類に二価フェノールを少なくとも1成分含むビフェニレン架橋フェノールノボラック樹脂が有効であることを見出し、本発明に至った。  As a result of intensive studies to achieve the above object, the present inventor has found that a biphenylene cross-linked phenol novolak resin containing at least one dihydric phenol in phenols is effective, and has reached the present invention.

即ち、本発明は、一般式(1)で表されるビフェニル化合物と二価フェノールを少なくとも1成分含有するフェノール類混合物との反応生成物から成る下記一般式(2)で表されるビフェニレン架橋フェノールノボラック樹脂に関する。  That is, the present invention relates to a biphenylene-crosslinked phenol represented by the following general formula (2) comprising a reaction product of a biphenyl compound represented by the general formula (1) and a phenol mixture containing at least one dihydric phenol. It relates to novolac resin.

Figure 0005104308
式中、Xは、炭素原子数1〜4のアルコキシル基またはハロゲン原子を表す、
Figure 0005104308
In the formula, X represents an alkoxyl group having 1 to 4 carbon atoms or a halogen atom.

Figure 0005104308
式中、R、R及びRは、それぞれ、同一でも異なっていてもよく、また、複数のR、R及びRは同一でも異なっていてもよく、置換又は非置換の炭素原子数1〜10の直鎖又は分岐状アルキル基、置換又は非置換のアリール基を表し、p1及びp3は0〜4の整数を表し、p2は0〜3の整数を表し、nは0〜15の整数を表し、m1、m2及びm3はそれぞれ1または2の整数を表し、複数のm2は同一でも異なっていてもよく、但し、m1、m2、m3が全て1または全て2の場合は除く。
Figure 0005104308
In the formula, each of R 1 , R 2 and R 3 may be the same or different, and a plurality of R 1 , R 2 and R 3 may be the same or different, and a substituted or unsubstituted carbon A linear or branched alkyl group having 1 to 10 atoms, a substituted or unsubstituted aryl group, p1 and p3 represent an integer of 0 to 4, p2 represents an integer of 0 to 3, and n represents 0 to 0 Represents an integer of 15, m1, m2, and m3 each represent an integer of 1 or 2, and a plurality of m2 may be the same or different, except when m1, m2, and m3 are all 1 or all 2. .

本発明の方法で得られたビフェニレン架橋フェノールノボラック樹脂は、低吸水性(低吸湿性)、耐熱性、難燃性、機械特性、接着特性を有しながら、従来技術のビフェニレン架橋フェノールノボラック樹脂よりエポキシ樹脂の硬化速度が速い樹脂であり、生産性の向上に寄与できる。
また、該樹脂の用途としては、エポキシ樹脂硬化剤や、エピクロルヒドリンと反応させることによりエポキシ樹脂として使用することが挙げられ、さらにはビフェニレン架橋基を含むことから難燃剤としても使用することができる。
The biphenylene cross-linked phenol novolak resin obtained by the method of the present invention has a low water absorption (low hygroscopicity), heat resistance, flame retardancy, mechanical properties, and adhesive properties, but is more than the conventional biphenylene cross-linked phenol novolak resin. It is a resin with a fast curing rate of epoxy resin and can contribute to the improvement of productivity.
Moreover, as an application of this resin, using it as an epoxy resin by making it react with an epoxy resin hardening | curing agent and epichlorohydrin is mentioned, Furthermore, since a biphenylene crosslinking group is included, it can be used also as a flame retardant.

以下、本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.

本発明で使用するフェノール類とは、ベンゼン環に1個の水酸基を有する化合物である。該フェノール類としては、例えば、置換または非置換のフェノール、ナフトール、ビスフェノールが挙げられ、式(2)におけるR、R及びRで示される置換基としては、炭素原子数1〜10の直鎖又は分岐状アルキル基、置換又は非置換のアリール基などが挙げられる。これらの置換基はR及びRにおいては1〜4個、Rにおいては1〜3個置換されていても良い。好ましいアルキル基としては、メチル、エチル、プロピル、ブチル、ヘキシルおよびオクチルの直鎖又は分岐のアルキル基が挙げられる。具体的に例示すると、フェノール;クレゾール、エチルフェノール、n−プロピルフェノール、オクチルフェノール、ノニルフェノール、フェニルフェノールなど、一置換フェノール類;キシレノール、メチルプロピルフェノール、ジプロピルフェノール、ジブチルフェノール、グアヤコール、グエトールなど、二置換フェノール類;トリメチルフェノールに代表される三置換フェノール類;ナフトール、メチルナフトールなどナフトール類;ビスフェノール、ビスフェノールA、ビスフェノールFなどのビスフェノール類などが挙げられる。これらのフェノール類は、単独もしくは2種以上を混合して使用しても何ら問題はない。好ましいフェノール類としては、該フェノール類の反応性からして、無置換のフェノールおよびメタ位置換の炭素原子数1〜4の直鎖又は分岐状のアルキルフェノールであり、より好ましくは、フェノールおよびm−クレゾールである。The phenols used in the present invention are compounds having one hydroxyl group on the benzene ring. Examples of the phenols include substituted or unsubstituted phenol, naphthol, and bisphenol. The substituents represented by R 1 , R 2, and R 3 in Formula (2) include those having 1 to 10 carbon atoms. Examples thereof include a linear or branched alkyl group and a substituted or unsubstituted aryl group. 1 to 4 of these substituents may be substituted for R 1 and R 3 and 1 to 3 may be substituted for R 2 . Preferred alkyl groups include linear or branched alkyl groups of methyl, ethyl, propyl, butyl, hexyl and octyl. Specific examples include: phenol; cresol, ethylphenol, n-propylphenol, octylphenol, nonylphenol, phenylphenol, monosubstituted phenols; xylenol, methylpropylphenol, dipropylphenol, dibutylphenol, guaiacol, guetol, etc. Substituted phenols; trisubstituted phenols represented by trimethylphenol; naphthols such as naphthol and methylnaphthol; and bisphenols such as bisphenol, bisphenol A, and bisphenol F. These phenols may be used alone or in combination of two or more. Preferred phenols are unsubstituted phenol and meta-substituted linear or branched alkylphenols having 1 to 4 carbon atoms in view of the reactivity of the phenols, and more preferably phenol and m- Cresol.

本発明で使用する二価フェノールとは、ベンゼン環に2個の水酸基を有する化合物である。具体的に例示すると、レゾルシン、ハイドロキノン、カテコールを挙げることができる。これらの二価フェノールは、単独もしくは2種以上を混合して使用しても何ら問題はない。好ましくは、レゾルシンである。
さらに、レゾルシン、ハイドロキノン、カテコールには、炭素原子数1〜10の直鎖又は分岐状アルキル基、置換又は非置換のアリール基を少なくとも1個有していても何ら問題はないが、好ましくは無置換の化合物である。
また、本発明の二価フェノールに含まれる化合物としては、分子中のベンゼン環にそれぞれ1個の水酸基を有するが、合計2個の水酸基を有する化合物群、例えば、ビスフェノール化合物群も含まれる。ビスフェノール化合物群の具体例としては、ビスフェノール、ビスフェノールA、およびビスフェノールF等が挙げられる。
これらの二価フェノールは、単独もしくは2種以上を混合して使用しても何ら問題はない。好ましくは、無置換のレゾルシン、ハイドロキノン、カテコールであり、さらに好ましくは無置換のレゾルシンである。
The dihydric phenol used in the present invention is a compound having two hydroxyl groups on the benzene ring. Specific examples include resorcin, hydroquinone, and catechol. These dihydric phenols may be used alone or in combination of two or more. Resorcin is preferable.
Further, resorcin, hydroquinone, and catechol may have at least one linear or branched alkyl group having 1 to 10 carbon atoms or a substituted or unsubstituted aryl group, but preferably none. It is a substituted compound.
Further, the compounds contained in the dihydric phenol of the present invention include a group of compounds having one hydroxyl group on each benzene ring in the molecule, but a total of two hydroxyl groups, for example, a bisphenol compound group. Specific examples of the bisphenol compound group include bisphenol, bisphenol A, and bisphenol F.
These dihydric phenols may be used alone or in combination of two or more. Preferred are unsubstituted resorcin, hydroquinone and catechol, and more preferred is unsubstituted resorcin.

本発明では、フェノール類に二価フェノールを少なくとも1成分含有した混合物で使用することが必須である。これをフェノール類混合物とする。フェノール類と二価フェノールの配合割合は、特に制限はない。しかし、フェノール類混合物(フェノール類と二価フェノールの合計使用モル数)100モルに対する二価フェノールの含有割合は、5〜80モルが好ましい。さらに好ましくは、7〜70モル、より好ましくは10〜50モルである。
二価フェノール単独では、硬化速度の速いビフェニル架橋フェノールノボラック樹脂が得られるが、樹脂製造工程での不純物除去が困難となる場合があり好ましくない。さらに、吸水率が比較的高いという欠点が解消されない。
二価フェノールをまったく含まない系では、硬化速度の向上に効果が見出せない。フェノール類と二価フェノールとの混合方法については、特に制限はないが、好ましくは反応の仕込み時に混合すればよい。
In the present invention, it is essential to use a mixture of phenols containing at least one component of dihydric phenol. This is a phenol mixture. The mixing ratio of phenols and dihydric phenols is not particularly limited. However, the content ratio of the dihydric phenol to 100 mol of the phenol mixture (total number of moles of phenol and dihydric phenol used) is preferably 5 to 80 mol. More preferably, it is 7-70 mol, More preferably, it is 10-50 mol.
Bivalent phenol alone can provide a biphenyl-crosslinked phenol novolac resin having a high curing rate, but is not preferred because it may make it difficult to remove impurities in the resin production process. Furthermore, the disadvantage that the water absorption rate is relatively high is not solved.
In a system containing no dihydric phenol, no effect can be found in improving the curing rate. Although there is no restriction | limiting in particular about the mixing method of phenols and dihydric phenol, Preferably what is necessary is just to mix at the time of preparation of reaction.

本発明の下記一般式(1)で示されるビフェニル化合物としては、ビス(アルコキシメチル)ビフェニルあるいはビス(ハロゲン化メチル)ビフェニルが挙げられる。これらの化合物は、例えば、4、4’−体、2,2’−体、2、4’−体の異性体を挙げることができるが、好ましくは4,4’−体である。これらの異性体は、2種以上を混合して使用しても何ら問題はない。  Examples of the biphenyl compound represented by the following general formula (1) of the present invention include bis (alkoxymethyl) biphenyl and bis (halogenated methyl) biphenyl. Examples of these compounds include isomers of 4,4'-isomer, 2,2'-isomer, and 2,4'-isomer, and preferably 4,4'-isomer. There is no problem even if these isomers are used in combination of two or more.

Figure 0005104308
ここで、アルコキシル基は、炭素原子数が1〜4の脂肪族直鎖の炭化水素のアルコキシル基が好ましく、具体的には、メトキシ、エトキシ、プロポキシ、ブトキシが挙げられ、取り扱いが容易であることから主にメトキシが使用される。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられるが、塩素原子が好ましく使用される。
Figure 0005104308
Here, the alkoxyl group is preferably an aliphatic linear hydrocarbon alkoxyl group having 1 to 4 carbon atoms, and specifically includes methoxy, ethoxy, propoxy, butoxy, and is easy to handle. Mainly methoxy is used.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a chlorine atom is preferably used.

本発明の上記一般式(1)で示されるビス(アルコキシメチル)ビフェニルあるいはビス(ハロゲン化メチル)ビフェニルの各異性体混合物としては、その組合せならびに使用量について、特に制限はないが、4、4’−体が主成分として含有される場合が好ましい。
また、この架橋剤は一括添加して反応させても、または分割添加して反応させても合成は可能である。好ましくは、仕込み時の一括添加である。
The isomer mixture of bis (alkoxymethyl) biphenyl or bis (halogenated methyl) biphenyl represented by the above general formula (1) of the present invention is not particularly limited in terms of the combination and amount used, but 4, 4 It is preferable that the '-form is contained as a main component.
The crosslinking agent can be synthesized by adding it all at once or reacting it, or by adding it in portions. The batch addition at the time of charging is preferable.

本発明の合成触媒としては、有機酸である蓚酸、蟻酸、酢酸、および硫酸、p−トルエンスルホン酸、硫酸ジエチルのようなフリーデルクラフト型触媒の存在下において縮重合させて合成することができる。  The synthesis catalyst of the present invention can be synthesized by condensation polymerization in the presence of organic acids such as oxalic acid, formic acid, acetic acid, and Friedel-Craft type catalysts such as sulfuric acid, p-toluenesulfonic acid, and diethyl sulfate. .

本発明の一般式(2)で表されるフェノールノボラック樹脂の具体的な製造条件は以下のとおりである。
上記で述べた二価フェノールの各異性体またはそれらの混合物とフェノール類との合計使用量と、架橋剤となるビス(アルコキシメチル)ビフェニルあるいはビス(ハロゲン化メチル)ビフェニルの各異性体混合物あるいはその混合物の配合割合については、通常二価フェノールの各異性体またはそれらの混合物とフェノール類との使用量は、ビス(アルコキシメチル)ビフェニルあるいはビス(ハロゲン化メチル)ビフェニルの各異性体混合物に対し、トータルで1.2倍モル以上であればよい。好ましくは1.3〜5.5倍モルで、さらに好ましくは1.4〜4.5倍モルである。1.2倍モルより少ない場合では、架橋が進み、本発明の目的に合うフェノールノボラック樹脂が安定的に得られない場合もあり好ましいとはいえない。また、あまりに多すぎる場合、未反応の原料が多くなり経済的でない。
Specific production conditions of the phenol novolac resin represented by the general formula (2) of the present invention are as follows.
The total amount of dihydric phenol isomers described above or a mixture thereof and phenols, and the bis (alkoxymethyl) biphenyl or bis (halogenated methyl) biphenyl isomer mixture used as a crosslinking agent or a mixture thereof Regarding the blending ratio of the mixture, the amount of each isomer of dihydric phenol or the mixture thereof and phenol is usually used for each isomer mixture of bis (alkoxymethyl) biphenyl or bis (halogenated methyl) biphenyl. It may be 1.2 times or more in total. Preferably it is 1.3-5.5 times mole, More preferably, it is 1.4-4.5 times mole. When the amount is less than 1.2 times mol, the crosslinking proceeds and a phenol novolak resin suitable for the purpose of the present invention may not be stably obtained, which is not preferable. Moreover, when there are too many, unreacted raw materials increase and it is not economical.

本発明で使用する合成触媒の使用量は、二価フェノールの各異性体またはそれらの混合物とフェノール類との合計使用量に対し、0.001〜0.5重量部、好ましくは0.001〜0.2重量部、さらに好ましくは0.001〜0.1重量部の範囲で好適に使用される。使用量が少ない場合反応速度が遅く、使用量が多すぎる場合は反応が急激に進行して反応をコントロールすることが不可能になる等の問題が生じる。
また、ビス(ハロゲン化メチル)ビフェニルの場合には、発生するハロゲン化水素が触媒の働きをするので合成触媒を添加してもしなくても良い。
The use amount of the synthesis catalyst used in the present invention is 0.001 to 0.5 parts by weight, preferably 0.001 to 0.5 parts by weight based on the total use amount of each isomer of dihydric phenol or a mixture thereof and phenols. It is suitably used in the range of 0.2 parts by weight, more preferably 0.001 to 0.1 parts by weight. When the amount used is small, the reaction rate is slow, and when the amount used is too large, the reaction proceeds rapidly and it becomes impossible to control the reaction.
In the case of bis (halogenated methyl) biphenyl, the generated hydrogen halide functions as a catalyst, so that it is not necessary to add a synthesis catalyst.

本発明の反応温度は、使用する二価フェノールの各異性体またはそれらの混合物とフェノール類、および架橋基となるビス(アルコキシメチル)ビフェニルあるいはビス(ハロゲン化メチル)ビフェニルの各異性体混合物の配合割合にもよるが、通常50℃〜200℃、好ましくは70〜180℃、より好ましくは80〜180℃である。あまり低いと縮重合が進まず、あまりに高いと反応をコントロールすることが困難となり、請求項のフェノールノボラック樹脂を安定的に得ることが難しくなる。  The reaction temperature of the present invention is determined by blending each isomer of dihydric phenol to be used or a mixture thereof with phenols and each isomer mixture of bis (alkoxymethyl) biphenyl or bis (halogenated methyl) biphenyl as a bridging group. Although it depends on the ratio, it is usually 50 ° C to 200 ° C, preferably 70 to 180 ° C, more preferably 80 to 180 ° C. If it is too low, condensation polymerization will not proceed. If it is too high, it will be difficult to control the reaction, and it will be difficult to stably obtain the phenol novolac resin of the claims.

本発明における反応時間は、反応温度にもよるが、通常は10時間以内で、付加縮合反応、脱メタノール反応または脱ハロゲン反応させる。  Although the reaction time in the present invention depends on the reaction temperature, it is usually within 10 hours, and the addition condensation reaction, demethanol reaction or dehalogenation reaction is carried out.

本発明における反応圧力は、通常常圧下で行われるが、若干の加圧ないし減圧下でも行うことができる。  The reaction pressure in the present invention is usually carried out under normal pressure, but can also be carried out under slight pressure or reduced pressure.

上記反応条件下にて得られる一般式(2)で示されるビフェニレン架橋フェノールノボラック樹脂のポリスチレン換算数平均分子量(Mn)および重量平均分子量(Mw)は、低分子量のものから高分子量のものまで幅広く得ることができる。しかし、物性および取り扱いの容易性を考慮して、Mnとしては350〜6800が好ましく、500〜3500が更に好ましく、500〜3000がより好ましい。Mwとしては350〜20000が好ましく、500〜15000が更に好ましく、500〜13000がより好ましい。
上記反応条件下にて得られる一般式(2)で示されるビフェニレン架橋フェノールノボラック樹脂のビフェニレン架橋基の繰り返し度数nについては、0〜15までの整数であり、好ましくは0〜12の整数、さらに好ましくは0〜10の整数である。
The polystyrene-equivalent number average molecular weight (Mn) and weight average molecular weight (Mw) of the biphenylene-crosslinked phenol novolak resin represented by the general formula (2) obtained under the above reaction conditions range widely from low molecular weight to high molecular weight. Obtainable. However, considering physical properties and ease of handling, Mn is preferably 350 to 6800, more preferably 500 to 3500, and more preferably 500 to 3000. As Mw, 350-20000 are preferable, 500-15000 are still more preferable, 500-13000 are more preferable.
The repeating frequency n of the biphenylene crosslinking group of the biphenylene crosslinked phenol novolak resin represented by the general formula (2) obtained under the above reaction conditions is an integer from 0 to 15, preferably an integer from 0 to 12, Preferably it is an integer of 0-10.

本発明で得られるビフェニレン架橋フェノールノボラック樹脂は、そのままエポキシ樹脂の硬化剤として使用することもできるし、エピクロルヒドリンと反応させることによりエポキシ樹脂とすることもできる。さらにはこれらを用いた硬化物とすることもできる。
また、ビフェニレン架橋基を含んでいるので難燃剤としても使用することができる。
The biphenylene cross-linked phenol novolak resin obtained in the present invention can be used as it is as a curing agent for an epoxy resin, or can be made into an epoxy resin by reacting with epichlorohydrin. Furthermore, it can also be set as the hardened | cured material using these.
Further, since it contains a biphenylene crosslinking group, it can also be used as a flame retardant.

本発明のビフェニレン架橋フェノールノボラック樹脂をエポキシ樹脂用硬化剤として使用する場合には、該フェノールノボラック樹脂とエポキシ樹脂及び硬化促進剤を混合し、100℃〜250℃温度範囲で硬化させることにより得られる。  When the biphenylene-crosslinked phenol novolak resin of the present invention is used as a curing agent for an epoxy resin, the phenol novolak resin, the epoxy resin and a curing accelerator are mixed and obtained by curing in a temperature range of 100 ° C to 250 ° C. .

エポキシ樹脂としては、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、ビフェニル型エポキシ樹脂などのグリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ハロゲン化エポキシ樹脂など分子中にエポキシ基を2個以上有するエポキシ樹脂が挙げられる。これらエポキシ樹脂は単独もしくは2種以上を混合して使用しても何ら問題ない。
好ましいエポキシ樹脂としては、クレゾールノボラック型エポキシ樹脂およびビフェニル型エポキシ樹脂が挙げられる。
Examples of the epoxy resin include glycidyl ether type epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin, triphenolmethane type epoxy resin, biphenyl type epoxy resin, and glycidyl. Examples thereof include an epoxy resin having two or more epoxy groups in the molecule, such as an ester type epoxy resin, a glycidylamine type epoxy resin, and a halogenated epoxy resin. These epoxy resins may be used alone or in combination of two or more.
Preferred epoxy resins include cresol novolac type epoxy resins and biphenyl type epoxy resins.

硬化促進剤としては、エポキシ樹脂をフェノール樹脂で硬化させる為の公知の硬化促進剤を用いることができる。例えば、有機ホスフィン化合物及びそのボロン塩、3級アミン、4級アンモニウム塩、イミダゾール類及びのテトラフェニルボロン塩などを挙げることができるが、この中でも硬化性や耐湿性の面からトリフェニルホスフィンが好ましい。また、より高流動性する為には、加熱処理にて活性が発現する熱潜在性の硬化促進剤が好ましく、テトラフェニルホスフォニウム・テトラフェニルボレートなどのテトラフェニルホスフォニウム誘導体が好ましい。  As a hardening accelerator, the well-known hardening accelerator for hardening an epoxy resin with a phenol resin can be used. For example, organic phosphine compounds and boron salts thereof, tertiary amines, quaternary ammonium salts, tetraphenyl boron salts of imidazoles and the like can be mentioned, among which triphenylphosphine is preferable from the viewpoint of curability and moisture resistance. . In order to achieve higher fluidity, a heat-latent curing accelerator that exhibits activity upon heat treatment is preferred, and tetraphenylphosphonium derivatives such as tetraphenylphosphonium and tetraphenylborate are preferred.

本発明のビフェニレン架橋フェノールノボラック樹脂をエピクロルヒドリンと反応させてエポキシ樹脂とする方法については、例えば、該フェノールノボラック樹脂に過剰のエピクロルヒドリンを加え、水酸化ナトリウムや水酸化カリウム等のアルカリ金属水酸化物の存在下に50〜150℃、好ましくは60〜120℃の範囲で1〜10時間程度反応させる方法が挙げられる。この場合、エピクロルヒドリンの使用量は、該フェノールノボラック樹脂の水酸基当量に対して2〜15倍モル、好ましくは2〜10倍モルである。また、使用するアルカリ金属水酸化物の使用量は、該フェノールノボラック樹脂の水酸基当量に対して0.8〜1.2倍モル、好ましくは0.9〜1.1倍モルである。
反応後の後処理については、反応終了後、過剰のエピクロルヒドリンを蒸留除去し、残留物をメチルイソブチルケトン等の有機溶剤に溶解し、ろ過し水洗して無機塩を除去し、次いで有機溶剤を留去することにより、目的とするエポキシ樹脂を得ることができる。
With respect to the method of reacting the biphenylene-crosslinked phenol novolak resin of the present invention with epichlorohydrin to form an epoxy resin, for example, an excess of epichlorohydrin is added to the phenol novolak resin, and an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is added. In the presence, a method of reacting in the range of 50 to 150 ° C., preferably 60 to 120 ° C. for about 1 to 10 hours can be mentioned. In this case, the usage-amount of epichlorohydrin is 2-15 times mole with respect to the hydroxyl equivalent of this phenol novolak resin, Preferably it is 2-10 times mole. Moreover, the usage-amount of the alkali metal hydroxide to be used is 0.8-1.2 times mole with respect to the hydroxyl equivalent of this phenol novolak resin, Preferably it is 0.9-1.1 times mole.
Regarding post-treatment after the reaction, excess epichlorohydrin is distilled off after completion of the reaction, the residue is dissolved in an organic solvent such as methyl isobutyl ketone, filtered, washed with water to remove inorganic salts, and then the organic solvent is distilled off. By leaving, the target epoxy resin can be obtained.

このようにして得られたエポキシ樹脂と該ビフェニレン架橋フェノールノボラック樹脂を硬化剤として新たなエポキシ樹脂組成物とすることができる。  The epoxy resin thus obtained and the biphenylene-crosslinked phenol novolak resin can be used as a curing agent to form a new epoxy resin composition.

得られたエポキシ樹脂組成物には、必要に応じて、無機充填材、離型剤、着色剤、カップリング剤、難燃剤等を添加または予め反応して用いることができる。特に半導体封止用途に使用する場合、無機充填材の添加は必須となる。このような無機充填材の例として、非晶性シリカ、結晶性シリカ、アルミナ、珪酸カルシウム、炭酸カルシウム、タルク、マイカ、硫酸バリウムなどをあげることができるが、特に非晶性シリカ、結晶性シリカなどが好ましい。また、これら添加剤の配合割合は公知の半導体封しようエポキシ樹脂組成物における割合と同様でよい。  The obtained epoxy resin composition can be used by adding or reacting in advance with an inorganic filler, a release agent, a colorant, a coupling agent, a flame retardant, or the like, if necessary. In particular, when used for semiconductor sealing applications, the addition of an inorganic filler is essential. Examples of such inorganic fillers include amorphous silica, crystalline silica, alumina, calcium silicate, calcium carbonate, talc, mica, barium sulfate, etc., and particularly amorphous silica and crystalline silica. Etc. are preferable. Moreover, the compounding ratio of these additives may be the same as the ratio in a known semiconductor sealing epoxy resin composition.

以下、実施例及び比較例を挙げて本発明をより具体的に説明する。しかし、本発明はこれらの実施例に限定されるものではない。また、本文中「部」はすべて重量部を示す。  Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to these examples. In the text, “parts” indicate all parts by weight.

実施例1
温度計、仕込み・留出口、冷却器および攪拌機を備えた容量1000容量部のガラス製フラスコにフェノール169.2部(1.8モル)、カテコール22部(0.2モル)、4、4’−ビスメトキシメチルビフェニル112.6部(0.465モル)及び50重量%硫酸0.10部を4つ口フラスコに入れ、窒素気流下、内温110℃〜140℃にて3時間、さらに165℃にて3時間反応させ、95℃まで冷却した。冷却後、90℃以上の純水250部を投入し、水洗した。その後、内温を160℃まで昇温し、減圧−スチーミング処理にて未反応成分を除去した。得られた樹脂の軟化点は65.3℃であった。ゲル浸透クロマトグラフ分析(以下GPCと略記することもある。)によるポリスチレン換算数平均分子量(Mn)は773で、重量平均分子量(Mw)は920であった。
Example 1
In a glass flask having a capacity of 1000 parts by volume equipped with a thermometer, charging / distilling outlet, condenser and stirrer, 169.2 parts (1.8 moles) of phenol, 22 parts (0.2 moles) of catechol, 4, 4 ′ -112.6 parts (0.465 mol) of bismethoxymethylbiphenyl and 0.10 parts of 50% by weight sulfuric acid are placed in a four-necked flask, and at an internal temperature of 110 ° C to 140 ° C for 3 hours under a nitrogen stream, further 165 The mixture was reacted at 0 ° C. for 3 hours and cooled to 95 ° C. After cooling, 250 parts of pure water of 90 ° C. or higher was added and washed with water. Thereafter, the internal temperature was raised to 160 ° C., and unreacted components were removed by a reduced pressure-steaming treatment. The softening point of the obtained resin was 65.3 ° C. The number average molecular weight (Mn) in terms of polystyrene by gel permeation chromatographic analysis (hereinafter sometimes abbreviated as GPC) was 773, and the weight average molecular weight (Mw) was 920.

実施例2
温度計、仕込み・留出口、冷却器および攪拌機を備えた容量1000容量部のガラス製フラスコにフェノール169.2部(1.8モル)、レゾルシン22部(0.2モル)、4、4’−ビスメトキシメチルビフェニル112.6部(0.465モル)及び50重量%硫酸0.10部を4つ口フラスコに入れ、窒素気流下、内温110℃〜140℃にて3時間、さらに165℃にて3時間反応させ、95℃まで冷却した。冷却後、90℃以上の純水250部を投入し、水洗した。その後、内温を160℃まで昇温し、減圧−スチーミング処理にて未反応成分を除去した。得られた樹脂の軟化点は78.8℃であった。GPCによるポリスチレン換算数平均分子量(Mn)は858で、重量平均分子量(Mw)は1116であった。
Example 2
In a glass flask with a capacity of 1000 parts by volume equipped with a thermometer, charging / distilling outlet, condenser and stirrer, 169.2 parts (1.8 moles) of phenol, 22 parts (0.2 moles) of resorcin, 4, 4 ′ -112.6 parts (0.465 mol) of bismethoxymethylbiphenyl and 0.10 parts of 50% by weight sulfuric acid are placed in a four-necked flask, and at an internal temperature of 110 ° C to 140 ° C for 3 hours under a nitrogen stream, further 165 The mixture was reacted at 0 ° C. for 3 hours and cooled to 95 ° C. After cooling, 250 parts of pure water of 90 ° C. or higher was added and washed with water. Thereafter, the internal temperature was raised to 160 ° C., and unreacted components were removed by a reduced pressure-steaming treatment. The softening point of the obtained resin was 78.8 ° C. The number average molecular weight (Mn) in terms of polystyrene by GPC was 858, and the weight average molecular weight (Mw) was 1116.

実施例3
温度計、仕込み・留出口、冷却器および攪拌機を備えた容量1000容量部のガラス製フラスコにフェノール169.2部(1.8モル)、ハイドロキノン22部(0.2モル)、4、4’−ビスメトキシメチルビフェニル112.6部(0.465モル)及び50重量%硫酸0.10部を4つ口フラスコに入れ、窒素気流下、内温110℃〜140℃にて3時間、さらに165℃にて3時間反応させ、95℃まで冷却した。冷却後、90℃以上の純水250部を投入し、水洗した。その後、内温を160℃まで昇温し、減圧−スチーミング処理にて未反応成分を除去した。得られた樹脂の軟化点は70.6℃であった。GPCによるポリスチレン換算数平均分子量(Mn)は778で、重量平均分子量(Mw)は930であった。
Example 3
In a glass flask having a capacity of 1000 parts by volume equipped with a thermometer, a charging / distilling outlet, a condenser and a stirrer, 169.2 parts (1.8 moles) of phenol, 22 parts (0.2 moles) of hydroquinone, 4, 4 ′ -112.6 parts (0.465 mol) of bismethoxymethylbiphenyl and 0.10 parts of 50% by weight sulfuric acid are placed in a four-necked flask, and at an internal temperature of 110 ° C to 140 ° C for 3 hours under a nitrogen stream, further 165 The mixture was reacted at 0 ° C. for 3 hours and cooled to 95 ° C. After cooling, 250 parts of pure water of 90 ° C. or higher was added and washed with water. Thereafter, the internal temperature was raised to 160 ° C., and unreacted components were removed by a reduced pressure-steaming treatment. The softening point of the obtained resin was 70.6 ° C. The number average molecular weight (Mn) in terms of polystyrene by GPC was 778, and the weight average molecular weight (Mw) was 930.

実施例4
温度計、仕込み・留出口、冷却器および攪拌機を備えた容量1000容量部のガラス製フラスコにフェノール169.2部(1.8モル)、ハイドロキノン11部(0.1モル)、カテコール11部(0.1モル)、4、4’−ビスメトキシメチルビフェニル112.6部(0.465モル)及び50重量%硫酸0.10部を4つ口フラスコに入れ、窒素気流下、内温110℃〜140℃にて3時間、さらに165℃にて3時間反応させ、95℃まで冷却した。冷却後、90℃以上の純水250部を投入し、水洗した。その後、内温を160℃まで昇温し、減圧−スチーミング処理にて未反応成分を除去した。得られた樹脂の軟化点は70.9℃であった。GPCによるポリスチレン換算数平均分子量(Mn)は725で、重量平均分子量(Mw)は858であった。
Example 4
In a glass flask having a capacity of 1000 parts by volume equipped with a thermometer, a charging / distilling outlet, a condenser and a stirrer, 169.2 parts (1.8 moles) of phenol, 11 parts (0.1 moles) of hydroquinone, 11 parts of catechol ( 0.1 mol), 4,4′-bismethoxymethylbiphenyl (112.6 parts, 0.465 mol) and 50 wt% sulfuric acid (0.10 part) were placed in a four-necked flask and the internal temperature was 110 ° C. under a nitrogen stream. The mixture was reacted at ˜140 ° C. for 3 hours and further at 165 ° C. for 3 hours, and cooled to 95 ° C. After cooling, 250 parts of pure water of 90 ° C. or higher was added and washed with water. Thereafter, the internal temperature was raised to 160 ° C., and unreacted components were removed by a reduced pressure-steaming treatment. The softening point of the obtained resin was 70.9 ° C. The number average molecular weight (Mn) in terms of polystyrene by GPC was 725, and the weight average molecular weight (Mw) was 858.

実施例5
温度計、仕込み・留出口、冷却器および攪拌機を備えた容量1000容量部のガラス製フラスコにフェノール178.6部(1.90モル)、レゾルシン11部(0.10モル)、4、4’−ビスメトキシメチルビフェニル112.6部(0.465モル)及び50%硫酸0.10部を4つ口フラスコに入れ、窒素気流下、内温110℃〜140℃にて3時間、さらに165℃にて3時間反応させ、95℃まで冷却した。冷却後、90℃以上の純水250部を投入し、水洗した。その後、内温を160℃まで昇温し、減圧−スチーミング処理にて未反応成分を除去した。得られた樹脂の軟化点は74℃であった。GPCによるポリスチレン換算数平均分子量(Mn)は811で、重量平均分子量(Mw)は1005であった。
Example 5
In a glass flask with a capacity of 1000 parts by volume equipped with a thermometer, charging / distilling outlet, condenser and stirrer, 178.6 parts (1.90 mole) of phenol, 11 parts (0.10 mole) of resorcin, 4, 4 ' -112.6 parts (0.465 mol) of bismethoxymethylbiphenyl and 0.10 parts of 50% sulfuric acid were placed in a four-necked flask, and at an internal temperature of 110 ° C to 140 ° C for 3 hours under a nitrogen stream, further 165 ° C. For 3 hours and cooled to 95 ° C. After cooling, 250 parts of pure water of 90 ° C. or higher was added and washed with water. Thereafter, the internal temperature was raised to 160 ° C., and unreacted components were removed by a reduced pressure-steaming treatment. The softening point of the obtained resin was 74 ° C. The number average molecular weight (Mn) in terms of polystyrene by GPC was 811 and the weight average molecular weight (Mw) was 1005.

実施例6
温度計、仕込み・留出口、冷却器および攪拌機を備えた容量1000容量部のガラス製フラスコにフェノール94部(1.0モル)、レゾルシン110部(1.0モル)、4、4’−ビスメトキシメチルビフェニル112.6部(0.465モル)及び50重量%硫酸0.10部を4つ口フラスコに入れ、窒素気流下、内温110℃〜140℃にて3時間、さらに165℃にて3時間反応させ、95℃まで冷却した。冷却後、90℃以上の純水250部を投入し、水洗した。その後、内温を160℃まで昇温し、減圧−スチーミング処理にて未反応成分を除去した。得られた樹脂の軟化点は97℃であった。GPCによるポリスチレン換算数平均分子量(Mn)は912で、重量平均分子量(Mw)は1127であった。
Example 6
94 parts by volume of phenol (1.0 mol), 110 parts by weight of resorcin (1.0 mol), 4, 4′-bis in a 1000-volume glass flask equipped with a thermometer, charging / distilling outlet, condenser and stirrer Methoxymethylbiphenyl (112.6 parts, 0.465 mol) and 50 wt% sulfuric acid (0.10 part) were placed in a four-necked flask, and the temperature was increased from 110 ° C to 140 ° C for 3 hours and further to 165 ° C under a nitrogen stream. For 3 hours and then cooled to 95 ° C. After cooling, 250 parts of pure water of 90 ° C. or higher was added and washed with water. Thereafter, the internal temperature was raised to 160 ° C., and unreacted components were removed by a reduced pressure-steaming treatment. The softening point of the obtained resin was 97 ° C. The number average molecular weight (Mn) in terms of polystyrene by GPC was 912, and the weight average molecular weight (Mw) was 1127.

実施例7
温度計、仕込み・留出口、冷却器および攪拌機を備えた容量1000容量部のガラス製フラスコにフェノール37.6部(0.4モル)、レゾルシン176部(1.6モル)、4、4’−ビスメトキシメチルビフェニル112.6部(0.465モル)及び50重量%硫酸0.10部を4つ口フラスコに入れ、窒素気流下、内温110℃〜140℃にて3時間、さらに165℃にて3時間反応させ、95℃まで冷却した。冷却後、90℃以上の純水250部を投入し、水洗した。その後、内温を160℃まで昇温し、減圧−スチーミング処理にて未反応成分を除去した。得られた樹脂の軟化点は102℃であった。GPCによるポリスチレン換算数平均分子量(Mn)は1006で、重量平均分子量(Mw)は1234であった。
Example 7
In a glass flask having a capacity of 1000 parts by volume equipped with a thermometer, a charging / distilling outlet, a condenser and a stirrer, 37.6 parts (0.4 mol) of phenol, 176 parts (1.6 mol) of resorcin, 4, 4 ′ -112.6 parts (0.465 mol) of bismethoxymethylbiphenyl and 0.10 parts of 50% by weight sulfuric acid are placed in a four-necked flask, and at an internal temperature of 110 ° C to 140 ° C for 3 hours under a nitrogen stream, further 165 The mixture was reacted at 0 ° C. for 3 hours and cooled to 95 ° C. After cooling, 250 parts of pure water of 90 ° C. or higher was added and washed with water. Thereafter, the internal temperature was raised to 160 ° C., and unreacted components were removed by a reduced pressure-steaming treatment. The softening point of the obtained resin was 102 ° C. The number average molecular weight (Mn) in terms of polystyrene by GPC was 1006, and the weight average molecular weight (Mw) was 1234.

実施例8
温度計、仕込み・留出口、冷却器および攪拌機を備えた容量1000容量部のガラス製フラスコにフェノール169.2部(1.8モル)、レゾルシン22部(0.2モル)、4、4’−ビスメトキシメチルビフェニル207.7部(0.858モル)及び50重量%硫酸0.15部を4つ口フラスコに入れ、窒素気流下、内温110℃〜140℃にて3時間、さらに165℃にて3時間反応させ、95℃まで冷却した。冷却後、90℃以上の純水250部を投入し、水洗した。その後、内温を160℃まで昇温し、減圧−スチーミング処理にて未反応成分を除去した。得られた樹脂の軟化点は90.3℃であった。GPCによるポリスチレン換算数平均分子量(Mn)は925で、重量平均分子量(Mw)は1180であった。
Example 8
In a glass flask with a capacity of 1000 parts by volume equipped with a thermometer, charging / distilling outlet, condenser and stirrer, 169.2 parts (1.8 moles) of phenol, 22 parts (0.2 moles) of resorcin, 4, 4 ′ -207.7 parts (0.858 mol) of bismethoxymethylbiphenyl and 0.15 part of 50% by weight sulfuric acid are placed in a four-necked flask, and at an internal temperature of 110 ° C to 140 ° C for 3 hours under a nitrogen stream, further 165 The mixture was reacted at 0 ° C. for 3 hours and cooled to 95 ° C. After cooling, 250 parts of pure water of 90 ° C. or higher was added and washed with water. Thereafter, the internal temperature was raised to 160 ° C., and unreacted components were removed by a reduced pressure-steaming treatment. The softening point of the obtained resin was 90.3 ° C. The number average molecular weight (Mn) in terms of polystyrene by GPC was 925, and the weight average molecular weight (Mw) was 1180.

実施例9
温度計、仕込み・留出口、冷却器および攪拌機を備えた容量1000容量部のガラス製フラスコにフェノール169.2部(1.8モル)、レゾルシン22部(0.2モル)、4、4’−ビスメトキシメチルビフェニル312.3部(1.29モル)及び50重量%硫酸0.15部を4つ口フラスコに入れ、窒素気流下、内温120℃〜135℃にて3.5時間、さらに165℃にて3時間反応させ、95℃まで冷却した。冷却後、90℃以上の純水250部を投入し、水洗した。その後、内温を160℃まで昇温し、減圧−スチーミング処理にて未反応成分を除去した。得られた樹脂の軟化点は125.6℃であった。GPCによるポリスチレン換算数平均分子量(Mn)は2044で、重量平均分子量(Mw)は11306であった。
Example 9
In a glass flask with a capacity of 1000 parts by volume equipped with a thermometer, charging / distilling outlet, condenser and stirrer, 169.2 parts (1.8 moles) of phenol, 22 parts (0.2 moles) of resorcin, 4, 4 ′ -322.3 parts (1.29 mol) of bismethoxymethylbiphenyl and 0.15 part of 50% by weight sulfuric acid were placed in a four-necked flask, and at an internal temperature of 120 ° C to 135 ° C for 3.5 hours under a nitrogen stream, The mixture was further reacted at 165 ° C. for 3 hours and cooled to 95 ° C. After cooling, 250 parts of pure water of 90 ° C. or higher was added and washed with water. Thereafter, the internal temperature was raised to 160 ° C., and unreacted components were removed by a reduced pressure-steaming treatment. The softening point of the obtained resin was 125.6 ° C. The number average molecular weight (Mn) in terms of polystyrene by GPC was 2044, and the weight average molecular weight (Mw) was 11306.

実施例10
温度計、仕込み・留出口、冷却器および攪拌機を備えた容量1000容量部のガラス製フラスコにフェノール171.8部(1.83モル)、レゾルシン18.9部(0.17モル)、4、4’−ビスメトキシメチルビフェニル96.8部(0.4モル)及び50重量%硫酸0.05部を4つ口フラスコに入れ、窒素気流下、内温120℃〜140℃にて3時間、さらに165℃にて3時間反応させ、95℃まで冷却した。冷却後、90℃以上の純水250部を投入し、水洗した。その後、内温を160℃まで昇温し、減圧−スチーミング処理にて未反応成分を除去した。得られた樹脂の軟化点は73.0℃であった。GPCによるポリスチレン換算数平均分子量(Mn)は822で、重量平均分子量(Mw)は957であった。
Example 10
In a glass flask having a capacity of 1000 parts by volume equipped with a thermometer, charging / distilling outlet, condenser and stirrer, 171.8 parts (1.83 moles) of phenol, 18.9 parts (0.17 moles) of resorcin, 96.8 parts (0.4 mol) of 4′-bismethoxymethylbiphenyl and 0.05 part of 50% by weight sulfuric acid were placed in a four-necked flask, and the temperature was 120 ° C. to 140 ° C. for 3 hours under a nitrogen stream. The mixture was further reacted at 165 ° C. for 3 hours and cooled to 95 ° C. After cooling, 250 parts of pure water of 90 ° C. or higher was added and washed with water. Thereafter, the internal temperature was raised to 160 ° C., and unreacted components were removed by a reduced pressure-steaming treatment. The softening point of the obtained resin was 73.0 ° C. The number average molecular weight (Mn) in terms of polystyrene by GPC was 822, and the weight average molecular weight (Mw) was 957.

実施例11
温度計、仕込み・留出口、冷却器および攪拌機を備えた容量1000容量部のガラス製フラスコにフェノール171.8部(1.83モル)、レゾルシン18.9部(0.17モル)、4、4’−ビスメトキシクロルビフェニル113.16部(0.4モル)を4つ口フラスコに入れ、窒素気流下、内温120℃〜140℃にて3時間、さらに165℃にて3時間反応させ、95℃まで冷却した。冷却後、90℃以上の純水250部を投入し、水洗した。その後、内温を160℃まで昇温し、減圧−スチーミング処理にて未反応成分を除去した。得られた樹脂の軟化点は78.0℃であった。GPCによるポリスチレン換算数平均分子量(Mn)は882で、重量平均分子量(Mw)は1171であった。
Example 11
In a glass flask having a capacity of 1000 parts by volume equipped with a thermometer, charging / distilling outlet, condenser and stirrer, 171.8 parts (1.83 moles) of phenol, 18.9 parts (0.17 moles) of resorcin, 113.16 parts (0.4 mol) of 4′-bismethoxychlorbiphenyl was placed in a four-necked flask and reacted under a nitrogen stream at an internal temperature of 120 ° C. to 140 ° C. for 3 hours, and further at 165 ° C. for 3 hours. Cooled to 95 ° C. After cooling, 250 parts of pure water of 90 ° C. or higher was added and washed with water. Thereafter, the internal temperature was raised to 160 ° C., and unreacted components were removed by a reduced pressure-steaming treatment. The softening point of the obtained resin was 78.0 ° C. The number average molecular weight (Mn) in terms of polystyrene by GPC was 882, and the weight average molecular weight (Mw) was 1171.

比較例1
温度計、仕込み・留出口、冷却器および攪拌機を備えた容量1000容量部のガラス製フラスコにフェノール188部(2モル)、4、4’−ビスメトキシメチルビフェニル112.6部(0.465モル)及び50重量%硫酸0.09部を4つ口フラスコに入れ、窒素気流下、内温110℃〜120℃にて2.5時間、さらに165℃にて3時間反応させ、95℃まで冷却した。冷却後、90℃以上の純水250部を投入し、水洗した。その後、内温を160℃まで昇温し、減圧−スチーミング処理にて未反応成分を除去した。得られた樹脂の軟化点は68℃であった。GPCによるポリスチレン換算数平均分子量(Mn)は753で、重量平均分子量(Mw)は896であった。
Comparative Example 1
In a glass flask having a capacity of 1000 parts by volume equipped with a thermometer, charging / distilling outlet, condenser and stirrer, 188 parts (2 mol) of phenol, 112.6 parts of 4,4′-bismethoxymethylbiphenyl (0.465 mol) ) And 0.09 part of 50% by weight sulfuric acid are placed in a four-necked flask and allowed to react at an internal temperature of 110 ° C. to 120 ° C. for 2.5 hours and further at 165 ° C. for 3 hours under a nitrogen stream, and cooled to 95 ° C. did. After cooling, 250 parts of pure water of 90 ° C. or higher was added and washed with water. Thereafter, the internal temperature was raised to 160 ° C., and unreacted components were removed by a reduced pressure-steaming treatment. The softening point of the obtained resin was 68 ° C. The number average molecular weight (Mn) in terms of polystyrene by GPC was 753, and the weight average molecular weight (Mw) was 896.

比較例2
温度計、仕込み・留出口、冷却器および攪拌機を備えた容量1000容量部のガラス製フラスコにフェノール188部(2モル)、4、4’−ビスメトキシメチルビフェニル140.3部(0.579モル)及び50重量%硫酸0.09部を4つ口フラスコに入れ、窒素気流下、内温110℃〜120℃にて2.5時間、さらに165℃にて3時間反応させ、95℃まで冷却した。冷却後、90℃以上の純水250部を投入し、水洗した。その後、内温を160℃まで昇温し、減圧−スチーミング処理にて未反応成分を除去した。得られた樹脂の軟化点は74℃であった。GPCによるポリスチレン換算数平均分子量(Mn)は915で、重量平均分子量(Mw)は1191であった。
Comparative Example 2
In a glass flask having a capacity of 1000 parts by volume equipped with a thermometer, a charging / distilling outlet, a condenser and a stirrer, 188 parts of phenol (2 moles), 140.3 parts of 4,4′-bismethoxymethylbiphenyl (0.579 moles) ) And 0.09 part of 50% by weight sulfuric acid are placed in a four-necked flask and allowed to react at an internal temperature of 110 ° C. to 120 ° C. for 2.5 hours and further at 165 ° C. for 3 hours under a nitrogen stream, and cooled to 95 ° C. did. After cooling, 250 parts of pure water of 90 ° C. or higher was added and washed with water. Thereafter, the internal temperature was raised to 160 ° C., and unreacted components were removed by a reduced pressure-steaming treatment. The softening point of the obtained resin was 74 ° C. The number average molecular weight (Mn) in terms of polystyrene by GPC was 915, and the weight average molecular weight (Mw) was 1191.

比較例3
温度計、仕込み・留出口、冷却器および攪拌機を備えた容量1000容量部のガラス製フラスコに、レゾルシン405.8部(3.689モル)、4、4’−ビスメトキシメチルビフェニル207.7部(0.858モル)及び50重量%硫酸0.10部を4つ口フラスコに入れ、窒素気流下、内温110℃〜140℃にて3時間、さらに165℃にて3時間反応させ、95℃まで冷却した。その後、内温を160℃まで昇温し、減圧処理にて未反応成分を除去した。得られた樹脂の軟化点は95℃であった。GPCによるポリスチレン換算数平均分子量(Mn)は891で、重量平均分子量(Mw)は1038であった。
Comparative Example 3
In a glass flask with a capacity of 1000 parts by volume equipped with a thermometer, charging / distilling outlet, condenser and stirrer, 405.8 parts (3.689 mol) of 4,4′-bismethoxymethylbiphenyl 207.7 parts. (0.858 mol) and 0.10 parts of 50% by weight sulfuric acid were placed in a four-necked flask and reacted under a nitrogen stream at an internal temperature of 110 ° C. to 140 ° C. for 3 hours and further at 165 ° C. for 3 hours. Cooled to ° C. Thereafter, the internal temperature was raised to 160 ° C., and unreacted components were removed by a reduced pressure treatment. The softening point of the obtained resin was 95 ° C. The number average molecular weight (Mn) in terms of polystyrene by GPC was 891, and the weight average molecular weight (Mw) was 1038.

本発明で得られた樹脂および硬化剤の分析方法は以下のとおりである。
フェノールノボラック樹脂
(1)ゲル浸透クロマトグラフ分析:GPC測定方法
・型式:HLC−8220 東ソー(株)製
・カラム:TSK−GEL Hタイプ
G2000H×L 4本
G3000H×L 1本
G4000H×L 1本
・測定条件:カラム圧力 13.5MPa
・溶解液:テトラヒドロフラン(THF)
・フローレート:1ml/min.
・測定温度:40℃
・検出器:スペクトロフォトメーター(UV−8020)
・RANGE:2.56 WAVE LENGTH 254nm & RI
(2)軟化点
・試料を溶融し、銅製リングに充填させて室温まで冷却。
・試料を充填したリングを自動軟化点測定装置(型式;EX−719PD ELEXSCIENTIFIC CO.,LTD.製)にセットする。
・自動軟化点測定装置のオイルを昇温速度;4℃/minでスタートさせる。
・3.5gの鋼球がセンサー通過時のオイルバス温度が軟化点とする。(n=2の平均値)
(3)ICI粘度
・ICIコーンプレート粘度計のプレート温度を150℃に設定する。
・使用コーンを試料粘度に応じ、選択する。
・150℃のホットプレート中心に試料を乗せ、更にコーンをその上に接触させる。
・90sec.後モータースイッチを入れ、指示値が安定した点で数値を読み取る。
・n=2の平均値を粘度値とする。
(4)電気伝導度
・100mlポリ瓶に試料;8.0±0.1gを正確に秤量し、その中にメスシリンダーで電気伝導度;2.0μS/cm以下イオン交換水;80mlを入れる。
・熱風循環式乾燥器中にて、95℃×20時間抽出させる。
・20時間後、乾燥器より取り出し、低温恒温水槽に浸けて25℃に冷却する。
・溶液導電率計(京都電子工業(株)製)の電極部を抽出水中に浸けて、電気伝導値が安定するまで待つ。
・安定した時点の数値を電気伝導度とする。
(5)OH当量
(概要;塩化アセチルでアセチル化を行い、過剰の塩化アセチルを水で分解しアルカリで滴定する方法)
・試料1gを精秤し、1,4−ジオキサン;10mlを加え溶解する。
・溶解を確認後、1.5mol/L塩化アセチル/無水トルエン溶液;10mlを加え、0℃まで冷却する。
・ピリジン;2mlを加え、60±1℃のウォーターバス中で1時間反応させる。
・反応後、冷却し純水;25mlを加え、よく混合させることで塩化アセチルを分解させる。
・アセトン;25ml、フェノールフタレインを加える。
・1mol/L−水酸化カリウムを用いて、試料溶液が赤紫色に呈色するまで滴定を行う。
・ブランク(試料なし)について上記操作にて同時に測定を行う。
次式により計算し、求める。
OH当量[g/eq.]=(1000×W)/(f×(B−A))
ここで
W:試料重量[g]
f:1mol/L−水酸化カリウムのファクター=1.002
B:ブランク測定に要した1mol/L−水酸化カリウム量[ml]
A:試料測定に要した1mol/L−水酸化カリウム量[ml]
硬化剤
(6)吸水率測定
・150℃×5時間+180℃×3時間にて注型し、下記サイズに硬化させる。
サイズ;(φ50±1)×(3±0.2)(径×厚;mm)
・表面を良く拭き取り、試料重量を測定する。
・100mlサンプル瓶に入れ、純水を80mlを加える。
・熱風循環式乾燥器中にて、95℃×24時間吸水させる。
・24時間後、乾燥器より取り出し、低温恒温水槽に浸けて25℃に冷却する。
・冷却後、表面に付着した水分を良く拭き取り重量を測定する。
・次式により計算し、吸水率を求める。
吸水率[%]=((B−A)/A)×100
A:吸水前重量[g]
B:吸水後重量[g]
(7)ガラス転位温度(Tg)測定
・150℃×5時間+180℃×3時間にて注型、硬化させた試料を下記サイズにカットする。
サイズ;(50±1)×(40±1)×(100±1)(縦×横×高;mm)
・測定装置;TMA−60(SHIMADZU製)に試料をセットし、N雰囲気にて測定。
・昇温速度;3℃/min.で350℃まで測定し、変曲点の温度を求めガラス転位温度(Tg)とする。
(8)硬化物機械特性(弾性率・エネルギー・変位・応力・歪み)測定
・150℃×5時間+180℃×3時間にて注型、硬化させた試料を下記サイズにカットする。
・サイズ;(75±1)×(6±1)×(4±1)(縦×横×厚;mm)
・測定装置;オートグラフ(型式;AG−5000D SHIMADZU製)
ヘッドスピード;10mm/min.2点間距離;50mm室温下にて
圧縮曲げ試験を行う。
The analysis method of the resin and the curing agent obtained in the present invention is as follows.
Phenol novolac resin (1) Gel permeation chromatographic analysis: GPC measurement method • Model: HLC-8220, manufactured by Tosoh Corporation • Column: TSK-GEL H type G2000H × L 4 G3000H × L 1 G4000H × L 1 Measurement conditions: Column pressure 13.5 MPa
-Solution: Tetrahydrofuran (THF)
-Flow rate: 1 ml / min.
・ Measurement temperature: 40 ℃
・ Detector: Spectrophotometer (UV-8020)
・ RANGE: 2.56 WAVE LENGTH 254nm & RI
(2) Softening point • The sample is melted, filled into a copper ring, and cooled to room temperature.
-The ring filled with the sample is set in an automatic softening point measuring device (model: EX-719PD ELEX SCIENTIFIC CO., LTD.).
-Start the oil of the automatic softening point measuring device at a heating rate of 4 ° C / min.
・ Oil bath temperature when 3.5g steel ball passes the sensor is the softening point. (Average value of n = 2)
(3) ICI viscosity ・ Set the plate temperature of the ICI cone plate viscometer to 150 ° C.
・ Select the cone to be used according to the sample viscosity.
Place the sample on the center of the hot plate at 150 ° C., and further contact the cone on it.
・ 90 sec. Turn on the motor switch and read the value when the indicated value is stable.
-Let the average value of n = 2 be a viscosity value.
(4) Electric conductivity-Sample: 8.0 ± 0.1 g is accurately weighed in a 100 ml plastic bottle, and the electric conductivity; 2.0 μS / cm or less ion exchange water;
Extract in a hot air circulation dryer at 95 ° C. for 20 hours.
・ After 20 hours, take it out of the dryer, immerse it in a low temperature constant temperature water bath and cool to 25 ° C.
・ Soak the electrode part of the solution conductivity meter (manufactured by Kyoto Electronics Co., Ltd.) in the extraction water and wait until the electric conductivity value is stabilized.
・ The value at the time of stabilization is the electrical conductivity.
(5) OH equivalent (Outline: Method of acetylating with acetyl chloride, decomposing excess acetyl chloride with water, and titrating with alkali)
-Weigh accurately 1 g of sample, add 1,4-dioxane; 10 ml and dissolve.
-After confirming dissolution, add 1.5 ml / L acetyl chloride / anhydrous toluene solution; 10 ml, and cool to 0 ° C.
-Pyridine; add 2 ml and react in water bath at 60 ± 1 ° C for 1 hour.
-After the reaction, cool and add pure water; 25 ml, and mix well to decompose acetyl chloride.
Add acetone; 25 ml, phenolphthalein.
-Titration is performed using 1 mol / L-potassium hydroxide until the sample solution turns reddish purple.
・ Measure the blank (no sample) at the same time by the above operation.
Calculate by the following formula.
OH equivalent [g / eq. ] = (1000 × W) / (f × (BA))
Where W: sample weight [g]
f: Factor of 1 mol / L-potassium hydroxide = 1.002
B: 1 mol / L-potassium hydroxide amount [ml] required for blank measurement
A: 1 mol / L-potassium hydroxide amount [ml] required for sample measurement
Curing agent (6) Water absorption measurement-Cast at 150 ° C x 5 hours + 180 ° C x 3 hours and cure to the following size.
Size: (φ50 ± 1) × (3 ± 0.2) (diameter × thickness: mm)
・ Wipe the surface well and measure the sample weight.
• Place in a 100 ml sample bottle and add 80 ml of pure water.
・ Absorb water at 95 ° C. for 24 hours in a hot air circulation dryer.
・ After 24 hours, take it out of the dryer, immerse it in a low temperature water bath and cool to 25 ° C.
・ After cooling, wipe off the water adhering to the surface and measure the weight.
・ Calculate the water absorption rate by the following formula.
Water absorption [%] = ((B−A) / A) × 100
A: Weight before water absorption [g]
B: Weight after water absorption [g]
(7) Measurement of glass transition temperature (Tg)-A sample cast and cured at 150 ° C x 5 hours + 180 ° C x 3 hours is cut to the following size.
Size: (50 ± 1) × (40 ± 1) × (100 ± 1) (length × width × height; mm)
Measurement device; the sample was set in TMA-60 (manufactured by SHIMADZU), measured in an N 2 atmosphere.
-Temperature rising rate: 3 ° C / min. Measured to 350 ° C., the temperature of the inflection point is obtained and set as the glass transition temperature (Tg).
(8) Measurement of cured product mechanical properties (elastic modulus, energy, displacement, stress, strain) ・ Cut the sample cast and cured at 150 ° C. × 5 hours + 180 ° C. × 3 hours into the following sizes.
・ Size: (75 ± 1) × (6 ± 1) × (4 ± 1) (length × width × thickness: mm)
・ Measuring device: Autograph (Model: AG-5000D manufactured by SHIMADZU)
Head speed: 10 mm / min. Distance between two points: 50 mm Perform a compression bending test at room temperature.

上記実施例1〜11、および比較例1〜3に準じて合成したフェノールノボラック樹脂の物性特性を表1に示す。  Table 1 shows the physical properties of the phenol novolac resins synthesized according to Examples 1 to 11 and Comparative Examples 1 to 3.

表1中の各フェノールノボラック樹脂を硬化剤として、エポキシ樹脂としては日本化薬(株)製EOCN−1020−70(エポキシ当量197g/eq)を、硬化促進剤としてトリフェニルフォスフィンを使用した。上記エポキシ樹脂と同当量比で配合し、150℃に加熱、溶融混合し、真空脱泡後150℃に加熱された金型に注形し、150℃にて5時間、180℃にて3時間硬化し、エポキシ樹脂硬化物を得た。得られたエポキシ樹脂硬化物の配合と物性特性を表2に併せて示す。  Each phenol novolak resin in Table 1 was used as a curing agent, EOCN-1020-70 (epoxy equivalent 197 g / eq) manufactured by Nippon Kayaku Co., Ltd. was used as an epoxy resin, and triphenylphosphine was used as a curing accelerator. Blended at the same equivalent ratio as the above epoxy resin, heated to 150 ° C, melt mixed, cast into a mold heated to 150 ° C after vacuum defoaming, 5 hours at 150 ° C, 3 hours at 180 ° C Cured to obtain a cured epoxy resin. Table 2 shows the composition and physical properties of the obtained cured epoxy resin.

表1中の各フェノールノボラック樹脂を硬化剤として、エポキシ樹脂としてはジャパンエポキシレジン(株)製エピコートYX−4000(エポキシ当量187g/eq)を、硬化促進剤としてトリフェニルフォスフィンを使用した。上記エポキシ樹脂と同当量比で配合し、150℃に加熱、溶融混合し、真空脱泡後150℃に加熱された金型に注形し、150℃にて5時間、180℃にて3時間硬化し、エポキシ樹脂硬化物を得た。得られたエポキシ樹脂硬化物の配合と物性特性を表3に併せて示す。  Each phenol novolak resin in Table 1 was used as a curing agent, and Epicoat YX-4000 (epoxy equivalent 187 g / eq) manufactured by Japan Epoxy Resin Co., Ltd. was used as an epoxy resin, and triphenylphosphine was used as a curing accelerator. Blended at the same equivalent ratio as the above epoxy resin, heated to 150 ° C, melt mixed, cast into a mold heated to 150 ° C after vacuum defoaming, 5 hours at 150 ° C, 3 hours at 180 ° C Cured to obtain a cured epoxy resin. Table 3 shows the composition and physical properties of the obtained cured epoxy resin.

Figure 0005104308
Figure 0005104308

Figure 0005104308
Figure 0005104308

Figure 0005104308
Figure 0005104308

本発明によれば、低吸水性(低吸湿性)、耐熱性、難燃性、機械特性、接着特性を有しながら、従来技術のビフェニレン架橋フェノールノボラック樹脂と比較し、エポキシ樹脂の硬化速度が速いビフェニレン架橋フェノールノボラック樹脂を提供することができる。
また、本発明のビフェニレン架橋フェノールノボラック樹脂は、エピクロルヒドリンと反応させることによりエポキシ樹脂として使用することでき、さらにはビフェニレン架橋基を含むことから難燃剤としても使用することができる。
According to the present invention, while having low water absorption (low hygroscopicity), heat resistance, flame retardancy, mechanical properties, and adhesive properties, the curing rate of epoxy resins is higher than that of conventional biphenylene-crosslinked phenol novolac resins. Fast biphenylene cross-linked phenol novolac resins can be provided.
Moreover, the biphenylene bridge | crosslinking phenol novolak resin of this invention can be used as an epoxy resin by making it react with epichlorohydrin, Furthermore, since it contains a biphenylene bridge | crosslinking group, it can also be used as a flame retardant.

Claims (5)

下記一般式(1)で表されるビフェニル化合物と、二価フェノールを少なくとも1成分含有するフェノール類混合物との反応生成物から成り、ここで、フェノール類混合物100モルに対し、二価フェノールが5〜80モルである、下記一般式(2)で表されるビフェニレン架橋フェノールノボラック樹脂。
Figure 0005104308
式中、Xは、炭素原子数1〜4のアルコキシル基またはハロゲン原子を表す、
Figure 0005104308
式中、R、R及びRは、それぞれ、同一でも異なっていてもよく、また、
複数のR、R及びRは同一でも異なっていてもよく、置換又は非置換の炭
素原子数1〜10の直鎖又は分岐状アルキル基、置換又は非置換のアリール基を
表し、p1及びp3は0〜4の整数を表し、p2は0〜3の整数を表し、nは0
〜15の整数を表し、m1、m2及びm3はそれぞれ1または2の整数を表し、
複数のm2は同一でも異なっていてもよく、但し、m1、m2、m3が全て1ま
たは全て2の場合は除く。
A biphenyl compound represented by the following general formula (1), Ri formed from the reaction product of a phenol mixture at least one component containing a dihydric phenol, wherein, with respect to phenol mixture 100 moles, dihydric phenols The biphenylene bridge | crosslinking phenol novolak resin represented by following General formula (2) which is 5-80 mol .
Figure 0005104308
In the formula, X represents an alkoxyl group having 1 to 4 carbon atoms or a halogen atom.
Figure 0005104308
In the formula, each of R 1 , R 2 and R 3 may be the same or different, and
A plurality of R 1 , R 2 and R 3 may be the same or different and each represents a substituted or unsubstituted linear or branched alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted aryl group, p1 and p3 represent an integer of 0 to 4, p2 represents an integer of 0 to 3, and n represents 0.
Represents an integer of ˜15, m1, m2 and m3 each represent an integer of 1 or 2,
A plurality of m2 may be the same or different, except when m1, m2, and m3 are all 1 or all 2.
請求項1に記載のビフェニレン架橋フェノールノボラック樹脂からなるエポキシ樹脂用硬化剤。The hardening | curing agent for epoxy resins which consists of a biphenylene bridge | crosslinking phenol novolak resin of Claim 1 . 請求項1に記載のビフェニレン架橋フェノールノボラック樹脂をエポキシ化したエポキシ化ノボラック樹脂。An epoxidized novolac resin obtained by epoxidizing the biphenylene-crosslinked phenol novolac resin according to claim 1 . 請求項1に記載のビフェニレン架橋フェノールノボラック樹脂とエポキシ樹脂とを配合してなるエポキシ樹脂組成物。The epoxy resin composition formed by mix | blending the biphenylene bridge | crosslinking phenol novolak resin and epoxy resin of Claim 1 . 請求項に記載のエポキシ樹脂組成物からなる硬化物。Hardened | cured material which consists of an epoxy resin composition of Claim 4 .
JP2007524700A 2005-07-13 2006-07-13 Biphenylene cross-linked phenol novolac resin and its use Active JP5104308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007524700A JP5104308B2 (en) 2005-07-13 2006-07-13 Biphenylene cross-linked phenol novolac resin and its use

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005203746 2005-07-13
JP2005203746 2005-07-13
PCT/JP2006/313929 WO2007007827A1 (en) 2005-07-13 2006-07-13 Biphenylene-bridged phenol novolak resins and use thereof
JP2007524700A JP5104308B2 (en) 2005-07-13 2006-07-13 Biphenylene cross-linked phenol novolac resin and its use

Publications (2)

Publication Number Publication Date
JPWO2007007827A1 JPWO2007007827A1 (en) 2009-01-29
JP5104308B2 true JP5104308B2 (en) 2012-12-19

Family

ID=37637209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007524700A Active JP5104308B2 (en) 2005-07-13 2006-07-13 Biphenylene cross-linked phenol novolac resin and its use

Country Status (5)

Country Link
JP (1) JP5104308B2 (en)
KR (1) KR101211319B1 (en)
CN (1) CN101208368B (en)
TW (1) TWI415911B (en)
WO (1) WO2007007827A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150054180A1 (en) * 2012-03-16 2015-02-26 Sumitomo Bakelite Co., Ltd. Resin composition for encapsulation and electronic device using the same

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070471A (en) * 2008-09-17 2010-04-02 Air Water Inc Phenolic polymer, method of producing the same, and use therefor
KR101609014B1 (en) * 2009-01-30 2016-04-04 메이와가세이가부시키가이샤 Epoxy resin composition, process for producing the epoxy resin composition, and cured object formed therefrom
MY155689A (en) * 2009-06-22 2015-11-13 Sumitomo Bakelite Co Resin composition for encapsulating semiconductor and semiconductor device
SG189911A1 (en) * 2010-10-19 2013-06-28 Sumitomo Bakelite Co Resin composition for encapsulation and electronic component device
JP5968227B2 (en) * 2010-12-27 2016-08-10 旭化成株式会社 Photosensitive resin composition for alkali development, cured relief pattern, and semiconductor device
JP5825860B2 (en) * 2011-06-06 2015-12-02 旭化成イーマテリアルズ株式会社 Photosensitive resin composition
JP5754731B2 (en) * 2011-08-25 2015-07-29 明和化成株式会社 Epoxy resin, method for producing epoxy resin, and use thereof
CN103988127B (en) * 2011-12-09 2019-04-19 旭化成株式会社 Photosensitive polymer combination, the manufacturing method of cured relief pattern, semiconductor device and display body device
JP5948538B2 (en) * 2012-01-13 2016-07-06 旭化成株式会社 Method for manufacturing silicon wafer having insulating film
JP5981737B2 (en) * 2012-03-14 2016-08-31 旭化成株式会社 Photosensitive resin composition and method for producing cured relief pattern
JP5981738B2 (en) * 2012-03-14 2016-08-31 旭化成株式会社 Photosensitive resin composition and method for producing cured relief pattern
KR101639927B1 (en) * 2012-03-16 2016-07-14 스미또모 베이크라이트 가부시키가이샤 Resin composition for encapsulation and electronic device using the same
JP6063740B2 (en) * 2012-12-27 2017-01-18 明和化成株式会社 NOVOLAC RESIN, PROCESS FOR PRODUCING THE SAME, AND USE THEREOF
CN103897143B (en) * 2012-12-28 2018-05-01 明和化成株式会社 Epoxy resin, the manufacture method of epoxy resin and its use
KR102286273B1 (en) * 2014-08-25 2021-08-04 닛뽄 가야쿠 가부시키가이샤 Novel reactive epoxy carboxylate compound, derivative thereof, resin composition containing them, cured product thereof, and article
KR102513654B1 (en) * 2015-04-21 2023-03-23 미츠비시 가스 가가쿠 가부시키가이샤 Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
JP6755643B2 (en) * 2015-07-29 2020-09-16 明和化成株式会社 Allyl ether-modified biphenyl aralkyl novolac resin, allyl-modified biphenyl aralkyl novolac resin, a method for producing the same, and a composition using the same.
JP2017082052A (en) * 2015-10-26 2017-05-18 住友ベークライト株式会社 Epoxy resin composition and semiconductor device using the same
JP6588346B2 (en) * 2016-01-14 2019-10-09 日本化薬株式会社 Epoxy resin, reactive carboxylate compound, curable resin composition using the same, and use thereof
JP2018104603A (en) * 2016-12-27 2018-07-05 日立化成株式会社 Curable resin composition and electronic component device
JP6885782B2 (en) * 2017-05-11 2021-06-16 Jfeケミカル株式会社 Thermosetting resin composition and thermosetting resin cured product
JP7068857B2 (en) * 2018-02-23 2022-05-17 群栄化学工業株式会社 Manufacturing method of polyvalent hydroxy resin, manufacturing method of thermosetting resin composition, manufacturing method of encapsulant, manufacturing method of laminated board, polyvalent hydroxy resin and thermosetting resin composition
KR102497115B1 (en) * 2020-11-06 2023-02-07 송원산업 주식회사 Phenolin novolac resin and process for production thereof
EP4317237A4 (en) * 2021-03-31 2024-08-21 Sumitomo Bakelite Co Resin composition for encapsulating and electronic device using same
EP4335886A1 (en) * 2021-05-06 2024-03-13 DIC Corporation Phenolic resin, epoxy resin, curable resin composition, cured article, fiber-reinforced composite material, and fiber-reinforced resin molded article
WO2023153160A1 (en) * 2022-02-14 2023-08-17 Dic株式会社 Phenolic resin, epoxy resin, curable resin composition, cured product, fiber-reinforced composite material, and fiber-reinforced resin molded article
CN117887016A (en) * 2024-01-15 2024-04-16 同宇新材料(广东)股份有限公司 Polybiphenyl phenolic resin and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005290321A (en) * 2004-04-05 2005-10-20 Bridgestone Corp Rubber composition and pneumatic tire using it
JP2005314525A (en) * 2004-04-28 2005-11-10 Air Water Chemical Inc Phenolic polymer, method for producing the same and application thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5162156A (en) * 1990-09-21 1992-11-10 Lord Corporation Phenolic resin adhesion promoters and adhesive compositions, and bonding method employing same
JP3476027B2 (en) * 1994-04-28 2003-12-10 日本化薬株式会社 Manufacturing method of epoxy resin
JP3122834B2 (en) * 1994-09-20 2001-01-09 明和化成株式会社 New phenol novolak condensate
JPH11255688A (en) * 1998-03-10 1999-09-21 Nippon Steel Chem Co Ltd New polyhydric hydroxy compound, new epoxy compound, their production, epoxy resin composition and cured product using the same
CN1410466A (en) * 2001-09-29 2003-04-16 济南圣泉集团股份有限公司 Organic ester hardening alkaline phenolic resin and its preparation method
JP2004123859A (en) * 2002-10-01 2004-04-22 Nippon Steel Chem Co Ltd Polyhydric hydroxy resin, epoxy resin, method for producing the same, epoxy resin composition using the same and cured product
JP4385831B2 (en) * 2004-04-05 2009-12-16 宇部興産株式会社 Phenol resin mixture for rubber composition addition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005290321A (en) * 2004-04-05 2005-10-20 Bridgestone Corp Rubber composition and pneumatic tire using it
JP2005314525A (en) * 2004-04-28 2005-11-10 Air Water Chemical Inc Phenolic polymer, method for producing the same and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150054180A1 (en) * 2012-03-16 2015-02-26 Sumitomo Bakelite Co., Ltd. Resin composition for encapsulation and electronic device using the same
US9136194B2 (en) * 2012-03-16 2015-09-15 Sumitomo Bakelite Co., Ltd. Resin composition for encapsulation and electronic device using the same

Also Published As

Publication number Publication date
JPWO2007007827A1 (en) 2009-01-29
WO2007007827A1 (en) 2007-01-18
CN101208368B (en) 2011-02-09
KR101211319B1 (en) 2012-12-11
TW200706613A (en) 2007-02-16
CN101208368A (en) 2008-06-25
KR20080030664A (en) 2008-04-04
TWI415911B (en) 2013-11-21

Similar Documents

Publication Publication Date Title
JP5104308B2 (en) Biphenylene cross-linked phenol novolac resin and its use
JP5012003B2 (en) Low melt viscosity phenol novolac resin, its production method and its use
JP5754731B2 (en) Epoxy resin, method for producing epoxy resin, and use thereof
JP5170493B2 (en) Phenol polymer, its production method and its use
JP5228328B2 (en) Low melt viscosity phenol novolac resin, process for producing the same, and cured epoxy resin using the same
JP5413488B2 (en) Phenol novolac resin, method for producing the same, epoxy resin composition and cured product using the same
JPWO2014065152A1 (en) Epoxy resin composition, method for producing cured epoxy resin, and semiconductor device
WO2012057228A1 (en) Phenol-type oligomer and process for production thereof
JP6605828B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof
KR20110109939A (en) Polyhydroxy resin, epoxy resin, method for manufacturing the same, epoxy resin composition and cured product using the same
JPWO2008050879A1 (en) Epoxy resin composition and cured product
JP5476762B2 (en) Phenol resin, process for producing the resin, epoxy resin composition containing the resin, and cured product thereof
JP6469654B2 (en) Phenol resin, epoxy resin composition containing the phenol resin, cured product of the epoxy resin composition, and semiconductor device having the cured product
JP2017105891A (en) Phenol aralkyl resin, manufacturing method therefor, epoxy resin, and thermosetting molding material
JP5616234B2 (en) Epoxy resin composition, method for producing the epoxy resin composition, and cured product thereof
JP4188022B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product using them
JP5139914B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product using them
KR100656489B1 (en) Epoxy resin and resin-sealed type semiconductor apparatus
TW201942170A (en) Phenolic resin and producing method thereof, and epoxy resin composition and cured product thereof
JP5841947B2 (en) Epoxy resin composition and cured product
JP5268404B2 (en) Phenol polymer, its production method and its use
JP3813105B2 (en) Epoxy resin composition having excellent curability, cured product thereof and use thereof
JPH11158255A (en) Novel polyhydroxy compound, novel epoxy resin, their production, and epoxy resin composition and cured article prepared by using them
JPH09255758A (en) New epoxy resin, its intermediate, production thereof, epoxy resin composition made using the same, and cured item thereof
JP2015164997A (en) Polyhydroxy resin and epoxy resin, as well as thermosetting molding material and semiconductor encapsulant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120917

R150 Certificate of patent or registration of utility model

Ref document number: 5104308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250