JP5097293B2 - Ultrasonic meter device - Google Patents

Ultrasonic meter device Download PDF

Info

Publication number
JP5097293B2
JP5097293B2 JP2011219090A JP2011219090A JP5097293B2 JP 5097293 B2 JP5097293 B2 JP 5097293B2 JP 2011219090 A JP2011219090 A JP 2011219090A JP 2011219090 A JP2011219090 A JP 2011219090A JP 5097293 B2 JP5097293 B2 JP 5097293B2
Authority
JP
Japan
Prior art keywords
ultrasonic
reference voltage
time
transmitter
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011219090A
Other languages
Japanese (ja)
Other versions
JP2011257435A (en
Inventor
由規 小澤
久男 大西
泰宏 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2011219090A priority Critical patent/JP5097293B2/en
Publication of JP2011257435A publication Critical patent/JP2011257435A/en
Application granted granted Critical
Publication of JP5097293B2 publication Critical patent/JP5097293B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、測定流路を流れるガスなどの流体中の超音波の伝搬時間を計測し、当該伝搬時間から流体の流速や流量等の当該流速に関する流速値を導出する超音波式メータ装置に関する。   The present invention relates to an ultrasonic meter device that measures the propagation time of an ultrasonic wave in a fluid such as a gas flowing in a measurement flow path and derives a flow velocity value related to the flow velocity such as a flow velocity and a flow rate of the fluid from the propagation time.

従来、この種の超音波式メータ装置は、流体が流れる測定流路の上流側と下流側とに相互に超音波を送受信可能な一対の超音波送受信器を設置し、その一対の超音波送受信器のうちの一方側から送信した超音波を他方側で受信して一対の超音波送受信器間の超音波の伝播時間を計測する伝播時間計測手段と、その伝播時間計測手段の計測結果に基づいて上記流速値を導出する流速値演算手段とを備えて構成されている(例えば、特許文献1を参照。)。   Conventionally, this type of ultrasonic meter device has been installed with a pair of ultrasonic transmitters / receivers capable of transmitting and receiving ultrasonic waves to and from the upstream and downstream sides of a measurement channel through which a fluid flows. Based on the measurement result of the propagation time measuring means for receiving the ultrasonic wave transmitted from one side of the transmitter on the other side and measuring the propagation time of the ultrasonic wave between the pair of ultrasonic transceivers And a flow velocity value calculating means for deriving the flow velocity value (see, for example, Patent Document 1).

具体的に、伝播時間計測手段は、流体の流れ方向に沿った順方向で超音波が一対の超音波送受信器間を伝播する順方向伝播時間t1と、その順方向とは逆の逆方向で超音波が一対の超音波送受信器間を伝播する逆方向伝播時間t2とを計測する。このように計測した順方向伝播時間t1と逆方向伝播時間t2とは、測定流路における超音波送受信器間の対向方向に沿った流体の瞬時流速をv’とし、測定流路における流体中の音速をCとし、超音波送受信器間の距離をLとしたときに、次式に示すようになる。
t1=L/(C+v’)
t2=L/(C−v’)
Specifically, the propagation time measuring means includes a forward propagation time t1 in which the ultrasonic wave propagates between the pair of ultrasonic transceivers in the forward direction along the fluid flow direction, and a reverse direction opposite to the forward direction. A backward propagation time t2 in which the ultrasonic wave propagates between the pair of ultrasonic transceivers is measured. The forward propagation time t1 and the backward propagation time t2 measured in this way are the instantaneous flow velocity of the fluid along the opposing direction between the ultrasonic transmitters and receivers in the measurement channel, and v ′, When the speed of sound is C and the distance between the ultrasonic transceivers is L, the following equation is obtained.
t1 = L / (C + v ′)
t2 = L / (Cv ′)

そして、上記流速v’は、音速Cに関係なく、次式で求めることができる。
v’=L・(1/t1−1/t2)/2
The flow velocity v ′ can be obtained by the following equation regardless of the sound velocity C.
v ′ = L · (1 / t1-1 / t2) / 2

よって、流速値演算手段は、上式により求められる流速v’を用いて、測定流路における流体の流速、又は、その流速に測定流路の流路断面積を乗じて求められる流量を、流速値として導出することができる。   Therefore, the flow velocity value calculation means uses the flow velocity v ′ obtained by the above equation to calculate the flow velocity of the fluid in the measurement channel, or the flow rate obtained by multiplying the flow velocity by the channel cross-sectional area of the measurement channel. It can be derived as a value.

また、従来の超音波式メータ装置では、超音波を受信した超音波送受信器の受信信号は、設定電圧を最大とするものに増幅しても、振幅が次第に増大した後に減衰するような波形を有するので、その受信信号が受信された直後の時点は振幅が非常に小さく、その受信時点を正確に認識することは困難である。尚、本願において、受信信号の波形とは、受信信号全体の最大電圧に対する各波の最大電圧の比率を示す。
そこで、上記伝搬時間計測手段は、超音波送受信器の超音波の受信時点を、受信信号の振幅が正確に認識可能な程度に大きくなった時点を基準として判定する形態で、当該超音波送受信器の受信信号と基準電圧との比較により判定するように構成されている。
例えば、上記伝搬時間計測手段は、受信信号が基準電圧に到達した時点の直後に受信信号がゼロレベルとなった時点(以下、「ゼロクロス点」と呼ぶ。)を求める。このように求めたゼロクロス点は、受信信号の波形が一定であると仮定すると、受信時点から特定番目の波(以下、「ターゲット波」と呼ぶ。)のゼロクロス点と一致することから、受信時点からゼロクロス点までの遅れ時間が、受信信号の周期の一定倍の値として予め認識可能となる。
よって、上記伝搬時間計測手段は、上記のように求めたゼロクロス点から上記遅れ時間分前の時点を、上記受信時点として正確に判定することができる。
Further, in the conventional ultrasonic meter device, the received signal of the ultrasonic transmitter / receiver that has received the ultrasonic wave has a waveform that attenuates after the amplitude gradually increases, even if it is amplified to the maximum set voltage. Therefore, the time immediately after the reception signal is received has a very small amplitude, and it is difficult to accurately recognize the reception time. In the present application, the waveform of the received signal indicates the ratio of the maximum voltage of each wave to the maximum voltage of the entire received signal.
Therefore, the propagation time measuring means determines the ultrasonic wave reception time of the ultrasonic wave transmitter / receiver with reference to the time point when the amplitude of the received signal becomes large enough to be accurately recognized. The received signal and the reference voltage are compared for determination.
For example, the propagation time measuring means obtains a time point (hereinafter referred to as “zero cross point”) when the received signal becomes zero level immediately after the received signal reaches the reference voltage. Assuming that the waveform of the received signal is constant, the zero cross point obtained in this way coincides with the zero cross point of the specific wave from the reception time point (hereinafter referred to as “target wave”). The delay time from to the zero cross point can be recognized in advance as a value that is a fixed multiple of the period of the received signal.
Therefore, the propagation time measuring means can accurately determine the time point before the delay time from the zero cross point obtained as described above as the reception time point.

しかし、受信信号の波形が変化すると、例えば、基準電圧を越える受信信号の波が上記ターゲット波ではなく、その前後の波となってしまい、上記受信時点を正確に判定できなくなる場合がある。
そこで、従来の超音波式メータ装置では、基準電圧を変化させながら、逐次、一対の超音波送受信器間の超音波の伝搬時間や、受信信号が基準電圧に到達した時点からゼロクロス点までの時間差を求めることで、その伝搬時間や時間差の変化状態から、ターゲット波のゼロクロス点を検知するための最適な基準電圧を検出するという最適基準電圧検出処理を実行する。
そして、基準電圧を上記最適基準電圧検出処理で検出した最適なものに設定して計測した超音波の伝搬時間から、流速値を導出するように構成されている。
そして、この種の超音波式メータ装置では、上記受信信号が変化した場合でも、上記最適基準電圧検出処理を実行することにより、ターゲット波のゼロクロス点を検知するための最適な基準電圧を検出して、正確な流速値を導出することができる。
However, when the waveform of the received signal changes, for example, the wave of the received signal that exceeds the reference voltage is not the target wave but the waves before and after the target wave, and the reception time may not be accurately determined.
Therefore, in the conventional ultrasonic meter device, while changing the reference voltage, the propagation time of the ultrasonic wave between the pair of ultrasonic transmitters / receivers and the time difference from the time when the received signal reaches the reference voltage to the zero cross point are sequentially changed. Thus, the optimum reference voltage detection process for detecting the optimum reference voltage for detecting the zero-cross point of the target wave is executed from the propagation time and the change state of the time difference.
The flow velocity value is derived from the propagation time of the ultrasonic wave measured by setting the reference voltage to the optimum one detected by the optimum reference voltage detection process.
In this type of ultrasonic meter device, even when the received signal changes, the optimum reference voltage for detecting the zero-cross point of the target wave is detected by executing the optimum reference voltage detection process. Thus, an accurate flow velocity value can be derived.

特開2003−106882号公報JP 2003-106882 A

しかしながら、上記特許文献1に記載の超音波式メータ装置では、上述したように最適基準電圧検出処理を実行する必要があるので、装置構成の煩雑化及び高コスト化を招き、更には、流速値を導出するまでの時間が長くなるという問題があった。
上述のように、流速値を導出するまでの時間が長くなると、当該時間が経過する間に流体の流速が大幅に変化する場合があり、上記最適基準電圧検出処理で検出した基準電圧が、次に流速値を導出するために最適なものではなくなって、正確な流速値を導出できなくなるという問題がある。
However, in the ultrasonic meter device described in Patent Document 1, since it is necessary to execute the optimum reference voltage detection process as described above, the device configuration becomes complicated and the cost is increased. There was a problem that it took a long time to derive.
As described above, if the time until the flow velocity value is derived becomes long, the flow velocity of the fluid may change significantly while the time elapses, and the reference voltage detected in the optimum reference voltage detection process is However, it is not optimal for deriving the flow velocity value, and there is a problem that an accurate flow velocity value cannot be derived.

本発明は、上記の課題に鑑みてなされたものであり、その目的は、測定流路を流れるガスなどの流体中の超音波の伝搬時間を計測し、当該伝搬時間から流体の流速や流量等の当該流速に関する流速値を導出する超音波式メータ装置において、簡素化且つ低廉化が可能で、迅速且つ正確に流速値を導出することができる技術を提供する点にある。   The present invention has been made in view of the above problems, and its purpose is to measure the propagation time of an ultrasonic wave in a fluid such as a gas flowing through a measurement flow path, and to determine the flow velocity and flow rate of the fluid from the propagation time. In the ultrasonic meter device for deriving a flow velocity value related to the flow velocity, it is possible to simplify and reduce the cost, and to provide a technique capable of deriving the flow velocity value quickly and accurately.

上記目的を達成するための本発明に係る超音波式メータ装置は、流体が流れる測定流路の上流側と下流側とに相互に超音波を送受信可能な一対の超音波送受信器を設置し、前記一対の超音波送受信器のうちの一方側から送信した超音波を他方側で受信して当該一対の超音波送受信器間の超音波の伝播時間を計測する伝播時間計測手段と、前記伝播時間計測手段の計測結果に基づいて前記測定流路を流れる流体の流速に関する流速値を導出する流速値演算手段とを備え、前記伝播時間計測手段が、前記超音波送受信器の超音波の受信時点を、当該超音波送受信器の受信信号と基準電圧との比較により判定するように構成された超音波式メータ装置であって、その第1特徴構成は、前記超音波送受信器の使用時間を導出する使用時間導出手段と、
前記使用時間導出手段の導出結果に基づいて前記基準電圧を設定する基準電圧設定手段を備えた点にある。
In order to achieve the above object, an ultrasonic meter device according to the present invention is provided with a pair of ultrasonic transmitters / receivers capable of transmitting / receiving ultrasonic waves to / from an upstream side and a downstream side of a measurement channel through which a fluid flows, Propagation time measuring means for receiving ultrasonic waves transmitted from one side of the pair of ultrasonic transceivers on the other side and measuring ultrasonic propagation time between the pair of ultrasonic transceivers, and the propagation time A flow velocity value calculating means for deriving a flow velocity value related to the flow velocity of the fluid flowing through the measurement flow path based on the measurement result of the measurement means, and the propagation time measuring means determines the reception time of the ultrasonic waves of the ultrasonic transceiver. An ultrasonic meter device configured to make a determination by comparing the received signal of the ultrasonic transceiver and a reference voltage, the first characteristic configuration of which is to derive the usage time of the ultrasonic transceiver Usage time deriving means;
A reference voltage setting unit that sets the reference voltage based on a result derived by the usage time deriving unit is provided.

本願発明者らは、鋭意研究した結果、測定流路を流れるガスなどの流体中の超音波の伝搬時間を計測するにあたり、超音波の送受信時での、超音波送受信器の使用時間(超音波送受信器の使用を開始してからの使用時間の累積値)の変化が、超音波送受信器の受信信号の波形が変化する主な要因であることを見出した。更に、使用時間の変化と、受信信号の波形の変化との間には、一定の相関関係が存在し、その相関関係を予め実験などにより求めて、上記使用時間を取得することができれば、その取得した使用時間と予め求めた相関関係とで、計測時における受信信号の波形を推定し得ることを見出して、本発明を完成するに至った。   As a result of diligent research, the inventors of the present application have determined that the ultrasonic transmitter / receiver usage time (ultrasonic wave) during ultrasonic transmission / reception is measured when measuring the propagation time of ultrasonic waves in a fluid such as a gas flowing through a measurement channel. It has been found that the change in the accumulated time of use since the start of use of the transceiver is the main factor that changes the waveform of the received signal of the ultrasonic transceiver. Furthermore, there is a certain correlation between the change in the usage time and the change in the waveform of the received signal. If the correlation is obtained in advance by experiments and the above usage time can be obtained, It has been found that the waveform of the received signal at the time of measurement can be estimated from the acquired usage time and the correlation obtained in advance, and the present invention has been completed.

即ち、上記第1特徴構成によれば、上記使用時間導出手段を備えるという簡素化且つ低廉化が可能な構成により、超音波送受信器での超音波の送受信時の超音波送受信器の使用時間を導出することができる。更に、上記基準電圧設定手段により、それら導出手段の導出結果、即ち超音波送受信器の使用時間に基づいて、上記伝搬時間計測手段で受信信号における受信時点を判定するのに使用される基準電圧を、受信信号の波形に合った最適なものに迅速に設定することができる。
よって、上記伝搬時間計測手段により、超音波送受信器の超音波の受信時点を、超音波送受信器の受信信号と、上記基準電圧設定手段で設定した最適な基準電圧との比較により判定するにあたり、受信信号において最初に上記基準電圧を超える波を、略確実に受信時点から特定番目のターゲット波とすることができるので、そのターゲット波における受信信号が基準電圧に到達した時点を基準に、受信時点を正確に判定し、正確な伝搬時間を計測することができる。
従って、簡素化且つ低廉化が可能な構成により迅速に最適な基準電圧を設定して、測定流路を流れるガスなどの流体中の超音波の伝搬時間を正確に計測し、更に、その正確な伝搬時間に基づいて、測定流路を流れる流体の流速に関する流速値を高精度に導出する超音波式メータ装置を実現することができる。
That is, according to the first characteristic configuration, the usage time of the ultrasonic transmitter / receiver at the time of ultrasonic transmission / reception by the ultrasonic transmitter / receiver can be reduced by the configuration capable of being simplified and reduced in price by including the usage time deriving unit. Can be derived. Further, the reference voltage setting means determines the reference voltage used for determining the reception time point in the received signal by the propagation time measuring means based on the derivation results of the derivation means, that is, the usage time of the ultrasonic transceiver. Therefore, it is possible to quickly set an optimum one according to the waveform of the received signal.
Therefore, in determining the reception time of the ultrasonic wave of the ultrasonic transmitter / receiver by the propagation time measuring unit by comparing the reception signal of the ultrasonic transmitter / receiver and the optimum reference voltage set by the reference voltage setting unit, The first wave in the received signal that exceeds the reference voltage can be almost certainly the specific target wave from the reception time, so the reception time is based on the time when the received signal in the target wave reaches the reference voltage. Can be accurately determined, and an accurate propagation time can be measured.
Therefore, the optimum reference voltage is quickly set by a configuration that can be simplified and reduced in price, and the propagation time of the ultrasonic wave in the fluid such as the gas flowing through the measurement channel is accurately measured. Based on the propagation time, it is possible to realize an ultrasonic meter device that accurately derives a flow velocity value related to the flow velocity of the fluid flowing through the measurement channel.

また、本発明に係る超音波式メータ装置の第2特徴構成は、上記第1特徴構成に加えて、前記超音波送受信器の受信信号を、設定電圧を最大とするものに増幅させる増幅手段を備え、前記基準電圧設定手段が、前記超音波送受信器の使用時間が長いほど、前記基準電圧を高い側に設定する点にある。   Further, the second characteristic configuration of the ultrasonic meter device according to the present invention is, in addition to the first characteristic configuration, an amplification means for amplifying the reception signal of the ultrasonic transmitter / receiver to maximize the set voltage. And the reference voltage setting means sets the reference voltage to a higher side as the operating time of the ultrasonic transceiver is longer.

即ち、上記第2特徴構成によれば、超音波送受信器の受信信号が全体的に弱い場合、言い換えれば超音波送受信器の受信信号の電圧が全体的に小さい場合でも、当該受信信号を上記増幅手段により増幅させることで、増幅後の受信信号の全体的な強さをある程度安定させることができる。よって、超音波送受信器における超音波の受信時点を、増幅された受信信号と基準電圧との比較により、より正確に判定することができる。
また、前記超音波送受信器の使用時間が長いほど、超音波送受信器の受信信号は全体的に弱くなるが、逆に、その受信信号を上記増幅手段により上記設定電圧を最大とするものに増幅させると、ターゲット波直前の波の最大電圧が上昇してしまう。よって、上記基準電圧設定手段により、その受信信号におけるターゲット波直前の波の最大電圧の上昇に合わせて、基準電圧を高い側に設定することにより、その設定された基準電圧を、受信信号においてターゲット波が略確実に最初に越える最適なものとして、測定流路を流れる流体の流速に関する流速値を高精度に導出す
ることができる。
That is, according to the second characteristic configuration, when the reception signal of the ultrasonic transceiver is weak overall, in other words, even when the voltage of the reception signal of the ultrasonic transceiver is generally small, the reception signal is amplified. By amplifying by means, the overall strength of the received signal after amplification can be stabilized to some extent. Therefore, it is possible to more accurately determine the reception time of the ultrasonic wave in the ultrasonic transceiver by comparing the amplified reception signal with the reference voltage.
Also, the longer the operating time of the ultrasonic transmitter / receiver, the weaker the received signal of the ultrasonic transmitter / receiver is. However, on the contrary, the received signal is amplified by the amplifying means to maximize the set voltage. If it does, the maximum voltage of the wave just before a target wave will rise. Therefore, by setting the reference voltage to the higher side in accordance with the increase in the maximum voltage of the wave immediately before the target wave in the received signal by the reference voltage setting means, the set reference voltage is set to the target in the received signal. As an optimum one in which the wave almost certainly exceeds the first, the flow velocity value related to the flow velocity of the fluid flowing through the measurement channel can be derived with high accuracy.

また、本発明に係る超音波式メータ装置の第3特徴構成は、上記第1特徴構成に加えて、前記基準電圧設定手段が、前記基準電圧を前記超音波送受信器の受信信号のピーク電圧に対する所定比率の電圧に設定し、且つ、前記超音波送受信器の使用時間が長いほど、前記基準電圧の前記ピーク電圧に対する比率を大きくする点にある。   According to a third characteristic configuration of the ultrasonic meter device according to the present invention, in addition to the first characteristic configuration, the reference voltage setting unit sets the reference voltage to a peak voltage of a reception signal of the ultrasonic transceiver. The voltage is set to a predetermined ratio and the ratio of the reference voltage to the peak voltage is increased as the operating time of the ultrasonic transceiver is longer.

即ち、上記第3特徴構成によれば、超音波送受信器の受信信号の強度が全体的に変動する場合でも、基準電圧を当該受信信号のピーク電圧に対する所定比率の電圧に設定することで、受信信号の全体的な強度に対する基準電圧の相対的な高さをある程度安定させることができる。よって、超音波送受信器における超音波の受信時点を、受信信号と基準電圧との比較により、より正確に判定することができる。
また、前記超音波送受信器の使用時間が長いほど、超音波送受信器の受信信号は全体的に弱くなるが、逆に、ターゲット波直前の波の最大電圧のピーク電圧に対する比率は増加してしまう。よって、上記基準電圧設定手段により、そのピーク電圧に対するターゲット波直前の波の最大電圧の比率の増加に合わせて、同ピーク電圧に対する基準電圧の比率を大きくすることにより、そのピーク電圧に対する比率で設定された基準電圧を、受信信号においてターゲット波が略確実に最初に越える最適なものとして、測定流路を流れる流体の流速に関する流速値を高精度に導出することができる。
In other words, according to the third feature configuration, even when the intensity of the reception signal of the ultrasonic transceiver fluctuates as a whole, the reference voltage is set to a voltage having a predetermined ratio with respect to the peak voltage of the reception signal. The relative height of the reference voltage with respect to the overall strength of the signal can be stabilized to some extent. Therefore, it is possible to more accurately determine the reception time point of the ultrasonic wave in the ultrasonic transceiver by comparing the received signal with the reference voltage.
In addition, the longer the operating time of the ultrasonic transmitter / receiver, the weaker the received signal of the ultrasonic transmitter / receiver is, but conversely, the ratio of the maximum voltage of the wave immediately before the target wave to the peak voltage increases. . Therefore, the reference voltage setting means increases the ratio of the reference voltage to the peak voltage by increasing the ratio of the maximum voltage of the wave immediately before the target wave to the peak voltage, thereby setting the ratio to the peak voltage. As a result, the flow velocity value relating to the flow velocity of the fluid flowing through the measurement flow path can be derived with high accuracy by using the reference voltage as the optimum one that the target wave in the received signal almost certainly first exceeds.

実施形態の超音波式メータ装置の概略構成図Schematic configuration diagram of an ultrasonic meter device of an embodiment 受信信号の状態を示す図Diagram showing the state of the received signal 超音波送受信器の温度に対する設定基準電圧の関係を示すグラフ図Graph showing the relationship of the set reference voltage to the temperature of the ultrasonic transceiver 超音波送受信器の使用時間に対する設定基準電圧の関係を示すグラフ図Graph showing the relationship of the set reference voltage to the usage time of the ultrasonic transceiver 超音波送受信器の使用時間の分類毎の超音波送受信器の温度に対する設定基準電圧の関係を示すグラフ図The graph which shows the relationship of the setting reference voltage with respect to the temperature of an ultrasonic transmitter / receiver for every classification of the usage time of an ultrasonic transmitter / receiver 超音波送受信器の温度の分類毎の超音波送受信器の使用時間に対する設定基準電圧の関係を示すグラフ図The graph which shows the relationship of the setting reference voltage with respect to the usage time of an ultrasonic transmitter / receiver for every classification of the temperature of an ultrasonic transmitter / receiver 別実施形態の超音波式メータ装置の概略構成図Schematic configuration diagram of an ultrasonic meter device according to another embodiment

本発明に係る超音波式メータ装置の実施の形態について、図面に基づいて説明する。
図1は、本実施形態の超音波式メータ装置(以下、「本装置」と略称する。)1により測定流路2を流れるガスg(流体の一例)の流速や流量等の当該流速に関する流速値の導出を実施している状態における本装置の側断面図である。
尚、図1において、測定流路2でのガスgの流れ方向は、左から右に向かう方向とされている。
An embodiment of an ultrasonic meter device according to the present invention will be described with reference to the drawings.
FIG. 1 shows a flow velocity relating to a flow rate such as a flow rate or a flow rate of a gas g (an example of a fluid) flowing through a measurement channel 2 by an ultrasonic meter device (hereinafter referred to as “this device”) 1 according to the present embodiment. It is side sectional drawing of this apparatus in the state which has implemented derivation | leading-out of the value.
In FIG. 1, the flow direction of the gas g in the measurement channel 2 is a direction from left to right.

先ず、本装置の基本構成について説明する。
本装置は、図1及び図2に示すように、上記測定流路2を上流側と下流側との間で斜めに横断する方向の両端部に配置されて相互に当該横断方向に沿って超音波を送受信可能な一対の超音波送受信器(以下、「送受信器」と略称する。)6と、その一対の送受信器6により計測した測定流路2における超音波の伝搬状態により測定流路2を流通するガスgの流速値を導出するように構成された制御装置50を備える。
First, the basic configuration of this apparatus will be described.
As shown in FIG. 1 and FIG. 2, this apparatus is disposed at both ends of the measurement flow channel 2 in a direction that obliquely crosses between the upstream side and the downstream side, and is superordinate to each other along the transverse direction. The measurement channel 2 is determined by a pair of ultrasonic transmitters / receivers (hereinafter abbreviated as “transmitter / receiver”) 6 capable of transmitting and receiving sound waves and the propagation state of ultrasonic waves in the measurement channel 2 measured by the pair of transmitters / receivers 6. The control apparatus 50 comprised so that the flow velocity value of the gas g which distribute | circulates was derived | led-out was provided.

測定流路2の上流側に設置された送受信器6aと、測定流路2の下流側に設置された送受信器6bとは、距離Lを隔てた位置に互いに対向して設置され、それら一対の送受信器6の対向方向と測定流路2を流通するガスgの流れ方向(測定流路2の中心軸に沿った方向)とが角度θをなす。   The transmitter / receiver 6a installed on the upstream side of the measurement channel 2 and the transmitter / receiver 6b installed on the downstream side of the measurement channel 2 are installed facing each other at a position separated by a distance L. The facing direction of the transmitter / receiver 6 and the flow direction of the gas g flowing through the measurement flow path 2 (the direction along the central axis of the measurement flow path 2) form an angle θ.

また、この送受信器6は、制御装置50側から電気信号である駆動パルスが入力されると、超音波を他方の送受信器6側に向けて送信し、一方、他方の送受信器6側から送信された超音波を受信すると、電気信号である受信信号を制御装置50側に出力するように構成されている。   In addition, when a drive pulse that is an electrical signal is input from the control device 50 side, the transmitter / receiver 6 transmits an ultrasonic wave toward the other transmitter / receiver 6 side, while transmitting from the other transmitter / receiver 6 side. When the received ultrasonic wave is received, a reception signal which is an electric signal is output to the control device 50 side.

制御装置50は、メモリ等からなる記憶媒体、CPU、入出力部等を備えたマイクロコンピュータで構成され、そのコンピュータが所定のプログラムを実行することにより、後述の伝搬時間計測手段10、流速値演算手段20、基準電圧設定手段25、温度導出手段27、使用時間導出手段29等の様々な手段として機能する。以下、各手段の詳細構成について説明を加える。   The control device 50 is configured by a microcomputer including a storage medium including a memory, a CPU, an input / output unit, and the like, and the computer executes a predetermined program, thereby causing a propagation time measuring unit 10 and a flow velocity value calculation described later. It functions as various means such as means 20, reference voltage setting means 25, temperature deriving means 27, usage time deriving means 29, and the like. Hereinafter, a detailed configuration of each unit will be described.

制御装置50が機能する伝播時間計測手段10は、一対の送受信器6の夫々に対する駆動パルスの送信及び受信信号の受信の状態を切り換える切換部11、上記切換部11を通じて上記送受信器6に超音波を発生させるための駆動パルスを出力する駆動部12、上記切換部11を通じて入力された送受信器6の受信信号を増幅させる増幅部13、上記増幅部13で増幅された受信信号を後述する基準電圧と比較して送受信器6の超音波の受信時点を判定する受信時点判定部14、上記受信時点判定部14の判定結果に基づいて一対の送受信器6間の超音波の伝播時間として計測する計時部15とからなる。   The propagation time measuring means 10 in which the control device 50 functions includes a switching unit 11 that switches between transmission of a driving pulse and reception of a received signal for each of the pair of transceivers 6, and ultrasonic waves to the transceiver 6 through the switching unit 11. A driving unit 12 for outputting a driving pulse for generating a signal, an amplifying unit 13 for amplifying a received signal of the transceiver 6 inputted through the switching unit 11, and a reference voltage to be described later for the received signal amplified by the amplifying unit 13. The reception time determination unit 14 that determines the reception time of the ultrasonic waves of the transmitter / receiver 6 as compared with the time measurement that measures the ultrasonic wave propagation time between the pair of transmitter / receivers 6 based on the determination result of the reception time determination unit 14 Part 15.

上記切換部11は、一対の送受信器6のうち上流側の送受信器6aに駆動部12から入力された駆動パルスを送信すると共に、下流側の送受信器6bから受信した受信信号を増幅部13に出力する順方向伝播状態と、逆に、一対の送受信器6のうち下流側の送受信器6bに駆動部12から入力された駆動パルスを送信すると共に上流側の送受信器6aから受信した受信信号を増幅部13に出力する逆方向伝播状態とを切り換えるように構成されている。   The switching unit 11 transmits the drive pulse input from the drive unit 12 to the upstream side transmitter / receiver 6 a of the pair of transmitters / receivers 6, and receives the reception signal received from the downstream side transmitter / receiver 6 b to the amplification unit 13. In contrast to the forward propagation state to be output, conversely, the drive pulse input from the drive unit 12 is transmitted to the downstream transmitter / receiver 6b of the pair of transmitters / receivers 6, and the received signal received from the upstream transmitter / receiver 6a is transmitted. It is configured to switch the reverse propagation state output to the amplifying unit 13.

上記受信時点判定部14は、図2に示すように、増幅部13で増幅された受信信号が、所定の基準電圧に到達した時点の直後にゼロレベルとなったゼロクロス点を求め、そのゼロクロス点から予め設定されている所定の遅れ時間分前の時点を、上記受信時点として判定するように構成されている。   As shown in FIG. 2, the reception time point determination unit 14 obtains a zero cross point at which the reception signal amplified by the amplification unit 13 reaches a zero level immediately after reaching a predetermined reference voltage. The time point before a predetermined delay time set in advance is determined as the reception time point.

そして、上記計時部15は、タイマ28で計測される時間を参照しながら駆動部12で駆動パルスを出力した送信時点から受信時点判定部14で判定した受信時点までの時間を、一対の送受信器6間の超音波の伝播時間として計測するように構成されている。   Then, the time measuring unit 15 refers to the time from the transmission time when the driving pulse is output by the driving unit 12 to the reception time determined by the reception time determining unit 14 while referring to the time measured by the timer 28. It is configured to measure the propagation time of ultrasonic waves between the six.

そして、制御装置50は、上記切換部11を上記順方向伝搬状態と上記逆方向伝搬状態とを切り換えることで、上記計時部15において、測定流路2を流れるガスgの流れ方向に沿った順方向で超音波が一対の送受信器6間を伝播する順方向伝播時間t1と、測定流路2を流れるガスgの流れ方向に沿った上記順方向とは逆の逆方向で超音波が一対の送受信器6間を伝播する逆方向伝播時間t2とを計測するように構成されている。   Then, the control device 50 switches the switching unit 11 between the forward propagation state and the backward propagation state, so that the timer unit 15 in the forward direction along the flow direction of the gas g flowing through the measurement flow channel 2. The ultrasonic wave is transmitted in a direction opposite to the forward direction along the flow direction of the gas g flowing through the measurement flow path 2 and the forward propagation time t1 in which the ultrasonic wave propagates between the pair of transceivers 6 in the direction. It is configured to measure the backward propagation time t2 that propagates between the transceivers 6.

制御装置50が機能する流速値演算手段20は、上記伝搬時間計測手段10の計測結果に基づいて、測定流路2を流れるガスgの流速に関する流速値を導出するように構成されており、その流速値の導出方法について、以下に説明を加える。   The flow velocity value calculation means 20 in which the control device 50 functions is configured to derive a flow velocity value related to the flow velocity of the gas g flowing through the measurement flow path 2 based on the measurement result of the propagation time measurement means 10. The method for deriving the flow velocity value will be described below.

一対の送受信器6間の対向方向に沿ったガスgの瞬時流速をv’とし、測定流路2の流れ方向に沿った瞬時流速をvとし、これら対向方向と流れ方向とがなす角度をθとし、一対の送受信器6間の距離をLとし、ガスg内の音速をCとすると、上記伝搬時間計測手段10で計測される順方向伝播時間t1と逆方向伝播時間t2とは、次式に示すように表すことができる。
t1=L/(C+v’)=L/(C+v・cosθ)
t2=L/(C−v’)=L/(C−v・cosθ)
The instantaneous flow velocity of the gas g along the facing direction between the pair of transceivers 6 is denoted by v ′, the instantaneous flow velocity along the flow direction of the measurement flow path 2 is denoted by v, and the angle between the facing direction and the flow direction is θ. Assuming that the distance between the pair of transceivers 6 is L and the sound velocity in the gas g is C, the forward propagation time t1 and the backward propagation time t2 measured by the propagation time measuring means 10 are as follows: As shown in FIG.
t1 = L / (C + v ′) = L / (C + v · cos θ)
t2 = L / (Cv ′) = L / (Cv · cos θ)

そして、これらの式から、瞬時流速vは、次式に示すように、順方向伝播時間t1、逆方向伝播時間t2、距離Lのみで求められる関数となる。
v=L・(1/t1−1/t2)/(2・cosθ)
From these equations, the instantaneous flow velocity v is a function obtained only from the forward propagation time t1, the backward propagation time t2, and the distance L as shown in the following equation.
v = L · (1 / t1-1 / t2) / (2 · cos θ)

よって、流速値演算手段20は、伝播時間計測手段10により計測された順方向伝播時間t1と逆方向伝播時間t2とから、上記の関数を用いて、測定流路2を流れるガスgの瞬時流速vを導出し、その瞬時流速v自身、又は、その瞬時流速vに測定流路2の断面積を乗じて求めた瞬時流量、又は、単位時間における瞬時流量を時間積分して求めた単位時間あたりの流量等を、上記流速値として導出する。
また、制御装置50は、このように導出した流速値を表示又は記憶したり、外部に出力することができる。
Therefore, the flow velocity value calculating means 20 uses the above function to calculate the instantaneous flow velocity of the gas g flowing through the measurement flow path 2 from the forward propagation time t1 and the backward propagation time t2 measured by the propagation time measuring means 10. per unit time obtained by deriving v and calculating the instantaneous flow rate v itself, or the instantaneous flow rate v obtained by multiplying the instantaneous flow rate v by the cross-sectional area of the measurement flow path 2 or the instantaneous flow rate per unit time. Is derived as the flow velocity value.
Further, the control device 50 can display or store the flow velocity value derived in this way or output it to the outside.

次に、本装置の特徴構成について説明する。
上記増幅部13は、送受信器の増幅後の受信信号の強さを安定させるために、切換部11を通じて入力された送受信器6の受信信号を、予め設定された設定電圧を最大とするものに増幅させる増幅手段として構成されている。
そして、超音波を受信した送受信器6の受信信号(増幅部13の出力)は、図2に示すように、振幅が次第に増大した後に減衰するような波形を有し、超音波の送受信時での送受信器6の温度の変化、及び、送受信器6の使用時間の変化により、その受信信号の波形が変化するので、上記受信時点判定部14により、送受信器6の超音波の受信時点を、送受信器6の受信信号と基準電圧との比較により判定するにあたり、基準電圧を所定の値とすると、その基準電圧を越える受信信号の波が、所定のターゲット波ではなくなってしまい、結果、上記受信時点を正確に判定できなくなる場合がある。
Next, the characteristic configuration of this apparatus will be described.
In order to stabilize the strength of the received signal after amplification of the transceiver, the amplifying unit 13 maximizes the preset set voltage for the received signal of the transceiver 6 input through the switching unit 11. It is comprised as an amplification means to amplify.
The received signal of the transmitter / receiver 6 that has received the ultrasonic wave (the output of the amplifying unit 13) has a waveform that attenuates after the amplitude gradually increases, as shown in FIG. The waveform of the received signal changes due to the change in temperature of the transmitter / receiver 6 and the change in the usage time of the transmitter / receiver 6. In determining by comparing the received signal of the transceiver 6 with the reference voltage, if the reference voltage is set to a predetermined value, the wave of the received signal exceeding the reference voltage is not the predetermined target wave, and as a result, the reception The time may not be accurately determined.

そこで、本装置は、簡素化且つ低廉化が可能で、迅速且つ正確に流速値を導出するために、図1に示すように、送受信器6の温度を導出する温度導出手段27と、送受信器6の使用時間を導出する使用時間導出手段29と、温度導出手段27と使用時間導出手段29との導出結果に基づいて基準電圧を設定する基準電圧設定手段25とを、制御装置50が機能する形態で備えており、こられの詳細構成について以下に説明する。   In view of this, the present apparatus can be simplified and reduced in cost, and in order to quickly and accurately derive the flow velocity value, as shown in FIG. 1, the temperature deriving means 27 for deriving the temperature of the transceiver 6 and the transceiver The control device 50 functions as a usage time deriving unit 29 for deriving 6 usage times, and a reference voltage setting unit 25 for setting a reference voltage based on the derived results of the temperature deriving unit 27 and the usage time deriving unit 29. The detailed configuration will be described below.

増幅手段としての増幅部13に入力された、送受信器6における増幅前の受信信号のピーク電圧を計測するピーク電圧計測手段26を備え、上記温度導出手段27は、そのピーク電圧に基づいて、送受信器6の温度を導出するように構成されている。   A peak voltage measuring unit 26 that measures a peak voltage of a reception signal before amplification in the transceiver 6 input to the amplifying unit 13 as an amplifying unit is provided. The temperature deriving unit 27 performs transmission / reception based on the peak voltage. The temperature of the vessel 6 is derived.

即ち、送受信器6の温度が低いほど上記ピーク電圧が小さくなることを利用し、その送受信器6の温度と、送受信器6の受信信号のピーク電圧との相関関係を予め実験等により求めておくことができる。
また、上記ピーク電圧計測手段26は、上記伝播時間計測手段10による伝搬時間の計測に先立って、一方側の送受信器6に駆動部12から入力された駆動パルスを送信して他方側の送受信器6から受信した増幅前の受信信号の最大電圧を上記ピーク電圧として計測する。
That is, using the fact that the peak voltage decreases as the temperature of the transmitter / receiver 6 decreases, the correlation between the temperature of the transmitter / receiver 6 and the peak voltage of the received signal of the transmitter / receiver 6 is obtained in advance by experiments or the like. be able to.
Prior to the measurement of the propagation time by the propagation time measurement means 10, the peak voltage measurement means 26 transmits the drive pulse input from the drive unit 12 to the transceiver 6 on one side and transmits the transmitter / receiver on the other side. The maximum voltage of the received signal received from 6 before amplification is measured as the peak voltage.

そして、上記温度導出手段27は、上記予め求めておいた送受信器6の温度と当該ピーク電圧との相関関係を参照して、上記ピーク電圧計測手段26により導出した受信信号のピーク電圧から、上記送受信器6の温度を導出することができる。   Then, the temperature deriving unit 27 refers to the correlation between the temperature of the transmitter / receiver 6 and the peak voltage obtained in advance, and uses the peak voltage of the received signal derived by the peak voltage measuring unit 26 to calculate the temperature. The temperature of the transceiver 6 can be derived.

一方、上記使用時間導出手段29は、タイマ28で計測される時間を参照しながら、本装置の使用を開始してから、又は、送受信器6を新品に効果してから、現時点までの使用時間の累積値を、上記送受信器6の使用時間として導出するように構成されている。   On the other hand, the use time deriving means 29 refers to the time measured by the timer 28 and starts using the present apparatus, or after using the transmitter / receiver 6 for a new product, the use time up to the present time. Is derived as the usage time of the transceiver 6.

そして、基準電圧設定手段25は、上記温度導出手段27と上記使用時間導出手段29との導出結果、即ち送受信器6の温度と送受信器6の使用時間とに基づいて、上記伝搬時間計測手段10の受信時点判定部14で受信信号における受信時点を判定するのに使用される基準電圧を、受信信号の波形に合った最適な設定基準電圧に迅速に設定する。   The reference voltage setting means 25 then determines the propagation time measuring means 10 based on the derivation results of the temperature deriving means 27 and the usage time deriving means 29, that is, the temperature of the transceiver 6 and the usage time of the transceiver 6. The reference voltage used to determine the reception time point in the reception signal by the reception time point determination unit 14 is quickly set to an optimum set reference voltage that matches the waveform of the reception signal.

具体的に、上記基準電圧設定手段25は、例えば送受信器6の使用時間が一定であるとすると、図3に示すように、温度導出手段27で導出される送受信器6の温度Thが低温であるほど、増幅後の受信信号におけるターゲット波直前の波の最大電圧が上昇するので、その上昇に合わせて上記設定基準電圧を高い側に移行させる。
また、上記送受信器6の温度Thが所定温度Th2(例えば20℃)以上である場合には、その受信信号の波形が略一定であることから、上記設定基準電圧を一定値とすることもできる。
Specifically, if the usage time of the transceiver 6 is constant, for example, the reference voltage setting means 25 has a low temperature Th of the transceiver 6 derived by the temperature deriving means 27 as shown in FIG. The maximum voltage of the wave immediately before the target wave in the amplified received signal rises as it increases, and the set reference voltage is shifted to the higher side in accordance with the increase.
Further, when the temperature Th of the transmitter / receiver 6 is equal to or higher than a predetermined temperature Th2 (for example, 20 ° C.), the waveform of the received signal is substantially constant, and therefore the set reference voltage can be set to a constant value. .

一方、上記基準電圧設定手段25は、例えば送受信器6の温度が一定であるとすると、図4に示すように、使用時間導出手段29で導出される送受信器6の使用時間Tiが長いほど、増幅後の受信信号におけるターゲット波直前の波の最大電圧が上昇するので、その上昇に合わせて上記設定基準電圧を高い側に移行させる。   On the other hand, when the temperature of the transceiver 6 is constant, for example, the reference voltage setting means 25 has a longer usage time Ti of the transceiver 6 derived by the usage time deriving means 29 as shown in FIG. Since the maximum voltage of the wave immediately before the target wave in the amplified received signal increases, the set reference voltage is shifted to a higher side in accordance with the increase.

具体的に、図5に示すように、送受信器6の使用時間Tiを複数の範囲(Ti0以上Ti1未満の範囲、Ti1以上Ti2未満の範囲、Ti2以上Ti3未満の範囲、Ti3以上Ti4未満の範囲等)に分類し、その分類毎に、送受信器6の温度Thに対する最適な設定基準電圧の相関関係を、予め実験等により求めておく。
そして、上記基準電圧設定手段25は、上記使用時間導出手段29で導出された送受信器6の使用時間Tiの分類を特定した上で、その分類において上記予め求めておいた相関関係を参照して、上記温度導出手段27で導出された送受信器6の温度から、最適な設定基準電圧を導出し、受信時点判定部14で用いる基準電圧をその設定基準電圧に設定することができる。
Specifically, as shown in FIG. 5, the usage time Ti of the transmitter / receiver 6 has a plurality of ranges (a range of Ti0 or more and less than Ti1, a range of Ti1 or more and less than Ti2, a range of Ti2 or more and less than Ti3, a range of Ti3 or more and less than Ti4. Etc.), and for each of the classifications, an optimum correlation of the set reference voltage with respect to the temperature Th of the transmitter / receiver 6 is obtained in advance through experiments or the like.
The reference voltage setting means 25 specifies the classification of the usage time Ti of the transmitter / receiver 6 derived by the usage time deriving means 29, and then refers to the correlation previously obtained in the classification. The optimum setting reference voltage can be derived from the temperature of the transmitter / receiver 6 derived by the temperature deriving means 27, and the reference voltage used in the reception time determination unit 14 can be set as the setting reference voltage.

よって、上記伝搬時間計測手段10の受信時点判定部14で受信信号における受信時点を判定するために使用される基準電圧が、上記基準電圧設定手段25により上記最適な設定基準電圧に設定されるので、受信信号において最初に上記設定基準電圧を超える波が略確実に受信時点から特定番目のターゲット波となり、そのターゲット波における受信信号が基準電圧に到達した時点を基準に、ゼロクロス点及び受信時点が正確に判定され、正確な伝搬時間が計測されることになる。
また、本実施形態では、送受信器6の温度と送受信器6の使用時間との両方に基づいて基準電圧を設定するので、一方に基づいて設定する場合と比較して、当該基準電圧が、より一層受信信号の波形に合った最適なものとなる。
Therefore, the reference voltage used for determining the reception time point in the reception signal by the reception time point determination unit 14 of the propagation time measuring means 10 is set by the reference voltage setting means 25 to the optimum set reference voltage. The first wave in the received signal that exceeds the set reference voltage is almost certainly the specific target wave from the reception time, and the zero cross point and the reception time are determined based on the time when the received signal in the target wave reaches the reference voltage. It is determined accurately and the accurate propagation time is measured.
Moreover, in this embodiment, since the reference voltage is set based on both the temperature of the transmitter / receiver 6 and the usage time of the transmitter / receiver 6, compared with the case where the reference voltage is set based on one, the reference voltage is more It becomes the most suitable for the waveform of the received signal.

〔別実施形態〕
(1)上記実施の形態では、上記基準電圧設定手段25を、図5に示すような送受信器6の使用時間Tiの分類毎の送受信器6の温度Thに対する最適な設定基準電圧の相関関係を利用して、温度導出手段27と使用時間導出手段29との導出結果に基づいて基準電圧を設定するように構成したが、別に、当該基準電圧設定手段25を、以下のように構成することもできる。
[Another embodiment]
(1) In the above-described embodiment, the reference voltage setting means 25 is configured so that the optimum setting reference voltage correlates with the temperature Th of the transmitter / receiver 6 for each class of use time Ti of the transmitter / receiver 6 as shown in FIG. The reference voltage is set based on the derived results of the temperature deriving means 27 and the usage time deriving means 29. Alternatively, the reference voltage setting means 25 may be configured as follows. it can.

即ち、図6に示すように、送受信器6の温度Thを複数の範囲(Th0以上Th1未満の範囲、Th1以上Th2未満の範囲、Th2以上等)に分類し、その分類毎に、送受信器6の使用時間Tiに対する最適な設定基準電圧の相関関係を、予め実験等により求めておく。尚、この実施形態では、上記送受信器6の温度Thの分類において、所定温度Th2以上の設定基準電圧を一定として、当該所定温度Th2以上を一の分類としているが、別に、所定温度Th2以上の範囲において、細かく複数の分類を設定しても構わない。   That is, as shown in FIG. 6, the temperature Th of the transmitter / receiver 6 is classified into a plurality of ranges (a range of Th0 or more and less than Th1, a range of Th1 or more and less than Th2, Th2 or more, etc.). The optimum correlation of the set reference voltage with respect to the usage time Ti is obtained in advance by experiments or the like. In this embodiment, in the classification of the temperature Th of the transmitter / receiver 6, the set reference voltage equal to or higher than the predetermined temperature Th2 is made constant and the predetermined temperature Th2 or higher is set as one classification. A plurality of classifications may be set finely in the range.

そして、上記基準電圧設定手段25は、上記温度導出手段27で導出された送受信器6の温度Thの分類を特定した上で、その分類において上記予め求めておいた相関関係を参照して、上記使用時間導出手段29で導出された送受信器6の使用時間Tiから、最適な設定基準電圧を導出し、受信時点判定部14で用いる基準電圧をその設定基準電圧に設定することができる。   The reference voltage setting means 25 specifies the classification of the temperature Th of the transmitter / receiver 6 derived by the temperature deriving means 27 and then refers to the correlation previously obtained in the classification, The optimum set reference voltage can be derived from the use time Ti of the transceiver 6 derived by the use time deriving means 29, and the reference voltage used in the reception time determination unit 14 can be set as the set reference voltage.

尚、送受信器6の温度Th及び送受信器6の使用時間に対する設定基準電圧の相関関係を予め求めておき、基準電圧設定手段25を、その相関関係を参照して、上記温度導出手段27で導出された送受信器6の温度Th及び上記使用時間導出手段20で導出された送受信器6の使用時間Tiとから、最適な設定基準電圧を導出し、受信時点判定部14で用いる基準電圧をその設定基準電圧に設定するように構成することもできる。   The correlation of the set reference voltage with respect to the temperature Th of the transmitter / receiver 6 and the usage time of the transmitter / receiver 6 is obtained in advance, and the reference voltage setting means 25 is derived by the temperature deriving means 27 with reference to the correlation. The optimum setting reference voltage is derived from the temperature Th of the transmitter / receiver 6 and the use time Ti of the transmitter / receiver 6 derived by the use time deriving means 20, and the reference voltage used by the reception time determination unit 14 is set. It can also be configured to set the reference voltage.

(2)上記実施の形態では、上記温度導出手段27を、送受信器6の受信信号のピーク電圧に基づいて送受信器6の温度を導出するように構成したが、別に、以下のように構成することもできる。 (2) In the above embodiment, the temperature deriving unit 27 is configured to derive the temperature of the transmitter / receiver 6 based on the peak voltage of the received signal of the transmitter / receiver 6, but separately configured as follows. You can also.

即ち、図7に示す本装置は、伝播時間計測手段10の計測結果に基づいて測定流路2における音速を導出する音速演算手段30を備え、制御装置51が機能する温度導出手段31は、その音速に基づいて送受信器6の温度を導出するように構成されている。尚、送受信器6は、測定流路2内に設置されているので、送受信器6の温度は、測定流路2における温度になるとする。
尚、図7に示す本装置の説明において、図1に示す本装置と同様の構成については、同じ符号を付すことで、説明を割愛する。
That is, this apparatus shown in FIG. 7 includes a sound speed calculation means 30 for deriving the sound speed in the measurement flow path 2 based on the measurement result of the propagation time measurement means 10, and the temperature deriving means 31 that the control device 51 functions is The temperature of the transmitter / receiver 6 is derived based on the speed of sound. Since the transmitter / receiver 6 is installed in the measurement channel 2, the temperature of the transmitter / receiver 6 is assumed to be the temperature in the measurement channel 2.
In the description of the apparatus shown in FIG. 7, the same components as those of the apparatus shown in FIG.

測定流路における音速Cは、次式に示すように、送受信器6の温度Thの関数となるので、その音速Cを求めれば、送受信器6の温度Thを求めることができる。
C=C1+C2・Th
但し、C1,C2は定数。
Since the sound velocity C in the measurement channel is a function of the temperature Th of the transmitter / receiver 6 as shown in the following equation, if the sound velocity C is obtained, the temperature Th of the transmitter / receiver 6 can be obtained.
C = C1 + C2 · Th
However, C1 and C2 are constants.

そして、上記音速演算手段30は、次式に示すように、例えば直前に上記伝搬時間計測手段10により計測した順方向伝播時間t1と逆方向伝播時間t2とから音速Cを導出することができる。
t1=L/(C+v’)=L/(C+v・cosθ)
t2=L/(C−v’)=L/(C−v・cosθ)
C=L・(1/t1+1/t2)/(2・cosθ)
The sound speed calculation means 30 can derive the sound speed C from, for example, the forward propagation time t1 and the reverse propagation time t2 measured immediately before by the propagation time measurement means 10 as shown in the following equation.
t1 = L / (C + v ′) = L / (C + v · cos θ)
t2 = L / (Cv ′) = L / (Cv · cos θ)
C = L · (1 / t1 + 1 / t2) / (2 · cos θ)

そして、上記温度導出手段31は、上記音速演算手段30により導出した音速Cを、その音速Cと上記送受信器6の温度Thとの関数に代入して、送受信器6の温度Thを求めることができる。   Then, the temperature deriving means 31 substitutes the sound speed C derived by the sound speed calculating means 30 into a function of the sound speed C and the temperature Th of the transceiver 6 to obtain the temperature Th of the transceiver 6. it can.

尚、当然、温度導出手段31は、送受信器6近傍に設置した温度センサの出力により直接送受信器6の温度を導出するように構成しても構わない。   Of course, the temperature deriving means 31 may be configured to directly derive the temperature of the transmitter / receiver 6 based on the output of a temperature sensor installed in the vicinity of the transmitter / receiver 6.

(3)上記実施の形態では、受信時点判定部14が、上記増幅部13で増幅された後の受信信号が基準電圧に到達した時点の直後にゼロレベルとなったゼロクロス点から遅れ時間分前の時点を、上記受信時点として判定するように構成したが、例えば、上記受信信号が基準電圧に到達した時点や上記ゼロクロス点自身を上記受信時点として判定するなどのように、別の形態で、受信信号を基準電圧と比較して送受信器6の超音波の受信時点を判定するように構成することもできる。 (3) In the above embodiment, the reception time determination unit 14 is delayed by the delay time from the zero cross point at which the reception signal after being amplified by the amplification unit 13 reaches the zero level immediately after reaching the reference voltage. However, in another form, for example, when the received signal reaches a reference voltage or the zero cross point itself is determined as the reception time point, The reception signal may be compared with a reference voltage to determine the reception time point of the ultrasonic wave of the transceiver 6.

(4)上記実施形態では、送受信器6の受信信号を、設定電圧を最大とするものに増幅させる増幅部13を設けたが、特に問題がなければ、この増幅部を、受信信号を一定割合で増幅させるものに改変したり、増幅部を省略しても、構わない。
また、このように増幅部を改変又は省略する場合には、基準電圧設定手段が、送受信器の受信信号のピーク電圧に対して所定の比率の電圧を基準電圧として設定するにあたり、基準電圧を受信信号においてターゲット波が略確実に最初に越える最適なものとするために、送受信器6の温度が低温であるほど、又は、送受信器6の使用時間が長いほど、送受信器6の受信信号のピーク電圧に対して設定する基準電圧の比率を小さくして、基準電圧を高い側に設定するように構成しても構わない。
(4) In the above embodiment, the amplifying unit 13 is provided that amplifies the received signal of the transceiver 6 so that the set voltage is maximized. It may be modified to amplify with or the amplifying unit may be omitted.
Further, when the amplifying unit is modified or omitted in this way, the reference voltage setting means receives the reference voltage when setting a voltage having a predetermined ratio with respect to the peak voltage of the reception signal of the transceiver as the reference voltage. In order to ensure that the target wave is optimally exceeded first in the signal, the peak of the received signal of the transmitter / receiver 6 becomes lower as the temperature of the transmitter / receiver 6 is lower or the usage time of the transmitter / receiver 6 is longer. The ratio of the reference voltage set with respect to the voltage may be reduced, and the reference voltage may be set on the higher side.

(5)上記実施の形態では、基準電圧設定手段25が、温度導出手段27で導出した送受信器6の温度と、使用時間導出手段29で導出した送受信器6の使用時間との両方に基づいて、基準電圧を設定するように構成したが、別に、上記温度導出手段を省略し、基準電圧設定手段25が、上記送受信器の使用時間に基づいて、基準電圧を設定するように構成しても構わない。 (5) In the above embodiment, the reference voltage setting unit 25 is based on both the temperature of the transceiver 6 derived by the temperature deriving unit 27 and the usage time of the transceiver 6 derived by the usage time deriving unit 29. However, the temperature deriving unit may be omitted and the reference voltage setting unit 25 may be configured to set the reference voltage based on the usage time of the transceiver. I do not care.

(6)上記実施の形態では、測定流路2を流れる流体をガスgとしたが、当然、別の流体が流れる場合でも本願発明を適用することができる。 (6) In the above embodiment, the fluid flowing in the measurement flow path 2 is the gas g, but the present invention can be applied even when another fluid flows.

本発明に係る超音波式メータ装置は、測定流路を流れるガスなどの流体中の超音波の伝搬時間を計測し、当該伝搬時間から流体の流速や流量等の当該流速に関する流速値を導出する超音波式メータ装置であって、簡素化且つ低廉化が可能で、迅速且つ正確に流速値を導出することができるものとして有効に利用可能である   The ultrasonic meter device according to the present invention measures the propagation time of an ultrasonic wave in a fluid such as a gas flowing through a measurement flow path, and derives a flow velocity value related to the flow velocity such as a fluid flow velocity and a flow rate from the propagation time. It is an ultrasonic meter device, which can be simplified and inexpensive, and can be effectively used as a device capable of deriving a flow velocity value quickly and accurately.

1:超音波式メータ装置
2:測定流路
6,6a,6b:超音波送受信器
10:伝播時間計測手段
14:受信時点判定部
20:流速値演算手段
25:基準電圧設定手段
26:ピーク電圧計測手段
29:使用時間導出手段
30:音速演算手段
50,51:制御装置
g:ガス(流体)
t1,t2:伝播時間
C:音速
1: Ultrasonic meter device 2: Measurement flow path 6, 6a, 6b: Ultrasonic transmitter / receiver 10: Propagation time measurement means 14: Reception time determination unit 20: Flow rate value calculation means 25: Reference voltage setting means 26: Peak voltage Measuring means 29: Usage time deriving means 30: Sonic speed calculating means 50, 51: Control device g: Gas (fluid)
t1, t2: propagation time C: speed of sound

Claims (3)

流体が流れる測定流路の上流側と下流側とに相互に超音波を送受信可能な一対の超音波送受信器を設置し、前記一対の超音波送受信器のうちの一方側から送信した超音波を他方側で受信して当該一対の超音波送受信器間の超音波の伝播時間を計測する伝播時間計測手段と、前記伝播時間計測手段の計測結果に基づいて前記測定流路を流れる流体の流速に関する流速値を導出する流速値演算手段とを備え、前記伝播時間計測手段が、前記超音波送受信器の超音波の受信時点を、当該超音波送受信器の受信信号と基準電圧との比較により判定するように構成された超音波式メータ装置であって、
前記超音波送受信器の使用時間を導出する使用時間導出手段と、
前記使用時間導出手段の導出結果に基づいて前記基準電圧を設定する基準電圧設定手段を備えた超音波式メータ装置。
A pair of ultrasonic transceivers capable of mutually transmitting and receiving ultrasonic waves are installed on the upstream side and the downstream side of the measurement flow channel through which the fluid flows, and ultrasonic waves transmitted from one side of the pair of ultrasonic transceivers are transmitted. Propagation time measuring means for receiving on the other side and measuring the propagation time of ultrasonic waves between the pair of ultrasonic transceivers, and the flow rate of the fluid flowing through the measurement channel based on the measurement result of the propagation time measuring means A flow velocity value calculating means for deriving a flow velocity value, wherein the propagation time measuring means determines the reception time of the ultrasonic wave of the ultrasonic transceiver by comparing the received signal of the ultrasonic transceiver with a reference voltage. An ultrasonic meter device configured as follows:
Usage time deriving means for deriving the usage time of the ultrasonic transceiver;
An ultrasonic meter device comprising reference voltage setting means for setting the reference voltage based on a result derived by the use time deriving means.
前記超音波送受信器の受信信号を、設定電圧を最大とするものに増幅させる増幅手段を備え、
前記基準電圧設定手段が、前記超音波送受信器の使用時間が長いほど、前記基準電圧を高い側に設定する請求項1に記載の超音波式メータ装置。
Amplifying means for amplifying the reception signal of the ultrasonic transmitter / receiver to a maximum set voltage,
The ultrasonic meter device according to claim 1, wherein the reference voltage setting unit sets the reference voltage to a higher side as the usage time of the ultrasonic transceiver is longer.
前記基準電圧設定手段が、前記基準電圧を前記超音波送受信器の受信信号のピーク電圧に対する所定比率の電圧に設定し、且つ、前記超音波送受信器の使用時間が長いほど、前記基準電圧の前記ピーク電圧に対する比率を大きくする請求項1に記載の超音波式メータ装置。   The reference voltage setting means sets the reference voltage to a voltage of a predetermined ratio with respect to a peak voltage of a reception signal of the ultrasonic transceiver, and the longer the usage time of the ultrasonic transceiver is, the longer the reference voltage is The ultrasonic meter device according to claim 1, wherein a ratio with respect to a peak voltage is increased.
JP2011219090A 2011-10-03 2011-10-03 Ultrasonic meter device Expired - Fee Related JP5097293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011219090A JP5097293B2 (en) 2011-10-03 2011-10-03 Ultrasonic meter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011219090A JP5097293B2 (en) 2011-10-03 2011-10-03 Ultrasonic meter device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006303145A Division JP4926660B2 (en) 2006-11-08 2006-11-08 Ultrasonic meter device

Publications (2)

Publication Number Publication Date
JP2011257435A JP2011257435A (en) 2011-12-22
JP5097293B2 true JP5097293B2 (en) 2012-12-12

Family

ID=45473710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011219090A Expired - Fee Related JP5097293B2 (en) 2011-10-03 2011-10-03 Ultrasonic meter device

Country Status (1)

Country Link
JP (1) JP5097293B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0810151B2 (en) * 1987-10-14 1996-01-31 株式会社トキメック Ultrasonic velocity measuring device
JPH09250939A (en) * 1996-03-14 1997-09-22 Aichi Tokei Denki Co Ltd Ultrasonic flow meter
JP3468233B2 (en) * 2001-10-02 2003-11-17 松下電器産業株式会社 Flow measurement device
JP3906107B2 (en) * 2002-04-26 2007-04-18 大阪瓦斯株式会社 Ultrasonic flow meter
JP2004361167A (en) * 2003-06-03 2004-12-24 Ricoh Elemex Corp Ultrasonic flowmeter
JP2005300244A (en) * 2004-04-08 2005-10-27 Matsushita Electric Ind Co Ltd Ultrasonic flow meter
JP4511257B2 (en) * 2004-06-21 2010-07-28 愛知時計電機株式会社 Ultrasonic flow meter

Also Published As

Publication number Publication date
JP2011257435A (en) 2011-12-22

Similar Documents

Publication Publication Date Title
EP2631610B1 (en) Flow-rate measurement device
JP2014092467A (en) Flow rate measurement device
JP5796154B2 (en) Flow measuring device
JP6111422B2 (en) Flow measuring device
JP2007187506A (en) Ultrasonic flowmeter
US9304022B2 (en) Flow rate measuring device
JP5173233B2 (en) Measuring device
JP4926660B2 (en) Ultrasonic meter device
JP5097293B2 (en) Ultrasonic meter device
TWI438426B (en) Adjustable ultrasonic gas flow measurement device
US10591330B2 (en) Flow rate measurement device
US20230243682A1 (en) Ultrasonic flow measurement
JP2008122102A (en) Ultrasonic type meter device
US9212937B1 (en) Flow meter device
JP4572546B2 (en) Fluid flow measuring device
US9869572B2 (en) Semiconductor acoustic measurement device that determines the presence or absence of the second ultrasonic measurement
JP6101020B2 (en) Ultrasonic flow meter
JP4059733B2 (en) Ultrasonic meter device
JP6064160B2 (en) Flow measuring device
JP5298388B2 (en) Temperature measuring method and temperature measuring apparatus using ultrasonic waves
JP6767628B2 (en) Flow measuring device
JP4821240B2 (en) Fluid flow measuring device
JP2004069525A (en) Flow rate measuring apparatus
JP4765463B2 (en) Flow measuring device
JP2020076615A (en) Ultrasonic measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120921

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees